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Abstract

We consider the problem of selecting an optimal subset of information sources for a hypothesis
testing/classification task where the goal is to identify the true state of the world from a finite
set of hypotheses, based on finite observation samples from the sources. In order to characterize
the learning performance, we propose a misclassification penalty framework, which enables non-
uniform treatment of different misclassification errors. In a centralized Bayesian learning setting,
we study two variants of the subset selection problem: (i) selecting a minimum cost information
set to ensure that the maximum penalty of misclassifying the true hypothesis is below a desired
bound and (ii) selecting an optimal information set under a limited budget to minimize the maxi-
mum penalty of misclassifying the true hypothesis. Under certain assumptions, we prove that the
objective (or constraints) of these combinatorial optimization problems are weak (or approximate)
submodular, and establish high-probability performance guarantees for greedy algorithms. Further,
we propose an alternate metric for information set selection which is based on the total penalty of
misclassification. We prove that this metric is submodular and establish near-optimal guarantees
for the greedy algorithms for both the information set selection problems. Finally, we present nu-
merical simulations to validate our theoretical results over several randomly generated instances.'
Keywords: Combinatorial Optimization, Bayesian Classification, Submodularity, Greedy Algo-
rithms, Finite Sample Convergence

1. Introduction

In many autonomous systems, agents depend on predictions made by classifiers for making de-
cisions (or taking actions), and may have to pay a high cost for acting on erroneous predictions.
An example of this is an incident of an autonomous vehicle crash caused due to the vision system
misclassifying a white truck as a bright sky (NHTSA (2016)). In such scenarios, one needs to en-
sure minimal risk associated with misclassification. In order to improve the quality of predictions,
one may need to select an optimal set of features (or observations), often provided by information
sources (or sensors), that can best describe the true state. In many practical scenarios, due to lim-
itations on communication or compute resources, one can only query data from a small subset of
information sources (Krause and Cevher (2010); Chepuri and Leus (2014); Hashemi et al. (2020)).
Moreover, one may also need to pay a certain cost in order to obtain measurements from informa-
tion sources (Krause et al. (2008)). Thus, a fundamental problem that arises in such scenarios is to
select a subset of information sources with minimal cost or under a limited budget, while ensuring

1. An extended version of this paper that includes all the omitted proofs can be found on arXiv as Bhargav et al. (2024).
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certain learning performance using the observations provided by the selected sources. In order to
characterize the quality of an information set, we propose a framework based on misclassification
penalties, specified by a penalty matrix. The goal is to select an information set that minimizes the
maximum penalty of misclassifying the true state. As a motivating example, consider a surveillance
task, where identifying a target of interest is of importance. One many have to pay a penalty for
misclassifying the true state, for instance, misclassifying a drone (an intruder) as a bird. However,
the event of misclassifying a bird as a drone may have a different penalty associated with it. The
penalty matrix captures the fact that different misclassification errors incur different penalties.

1.1. Related Work

Misclassification risk and uncertainty quantification for various types of classifiers have been very
well studied in the literature (Adams and Hand (1999); Pendharkar (2017); Hou et al. (2013)). In
Sensoy et al. (2021), the authors propose a risk-calibrated classifier to reduce the costs associated
with misclassification errors, and empirically show the effectiveness of their algorithm, in a deep
learning framework. In Elkan (2001), the authors study cost-sensitive learning for class balancing
in order to improve the quality of predictions in decision tree learning methods. In our work, we
consider a hypothesis testing (or classification) task in a Bayesian learning framework.

A subset of the literature has addressed the problem of sequential information gathering within
a limited budget (Hollinger and Sukhatme (2013); Chen et al. (2015)). The authors of Golovin
et al. (2010) study data source selection for a monitoring application, where the sources are selected
sequentially in order to estimate certain parameters of an environment. In Ghasemi and Topcu
(2019), the authors study sequential information gathering under a limited budget for a robotic
navigation task. In contrast, we consider the scenario where the information set is selected a priori.

A substantial body of work focuses on the study of submodularity (and/or weak submodular-
ity) and greedy techniques with provable guarantees for feature selection in sparse learning (Krause
and Cevher (2010); Chepuri and Leus (2014)); sensor selection for estimation (Mo et al. (2011);
Hashemi et al. (2020)), Kalman filtering (Ye et al. (2020)), and mixed-observable Markov decision
processes (Bhargav et al. (2023)). Along the lines of these works, we leverage the weak submodular-
ity property of the performance metric and present greedy algorithms with performance guarantees.

The closest paper to our work is Ye et al. (2021), in which the authors studied data source
selection for Bayesian learning, where the learning performance was characterized by a total vari-
ation error metric based on the asymptotic belief. However, we consider a non-asymptotic setting,
where the learning performance is characterized by misclassification penalties. Building upon the
results in Ye et al. (2021) and Das and Kempe (2018), we establish theoretical guarantees for greedy
information selection algorithms presented in this paper.

1.2. Contributions

We consider two variants of an information subset selection problem for a hypothesis testing task
(1) selecting a minimum cost information set to ensure the maximum penalty for misclassifying the
true hypothesis is below a desired bound and (ii) optimal information set selection under a limited
budget to minimize the maximum penalty of misclassifying the true hypothesis. First, we prove
that the maximum penalty metric is weak submodular by characterizing its submodularity ratio, and
establish high-probability guarantees for greedy algorithms for both the problems, along with the
associated finite sample convergence rates for the Bayesian beliefs. Next, we propose an alternate
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metric based on the total penalty of misclassification. We prove that this metric is submodular,
and establish near-optimal guarantees for the greedy algorithms. Finally, we evaluate the empirical
performance of the proposed greedy algorithms over several randomly generated problem instances.

2. Minimum-Cost Information Set Selection Problem

In this section, we formulate the minimum-cost information set selection problem. Let ©@ =
{61,02,...,0,}, where m = |©], be a finite set of possible hypotheses (also referred to as classes
or states), of which one of them is the true state of the world. We consider a set D = {1,2,...,n}
of information sources (or data streams) from which we need to select a subset Z C D. At each time
step t € Z>1, the observation provided by the information source ¢ € D is denoted as 0;; € O;,
where O; is the observation space of the source ¢. Each information source ¢ € D is associated with
an observation likelihood function ¢;(-|¢), which is conditioned on the state of the world § € ©.
At any time ¢, conditioned on the true state of the world # € ©, a joint observation profile of n
information sources, denoted as oy = (014, ...,0nt) € O where O = O1 X ... X Oy, is generated
by the joint likelihood function £(-|@). We make the following assumption on the observation model
(e.g., see Jadbabaie et al. (2012); Liu et al. (2014); Lalitha et al. (2014) for detailed discussions).
Assumption 1: The observation space O; associated with each information source i € D is
finite, and the likelihood function (;(-|0) satisfies ¢;(-|0) > 0 for all o; € O; and for all 6 € ©. We
assume that the designer knows £;(-|0) for all & € © and all i € D. For all § € ©, conditioned
on the true state, the observations are independent of each other over time, i.e., {0;1,0;2,...} isa
sequence of independent identically distributed (i.i.d.) random variables, given a true state 6 € ©.
Consider the scenario where a designer at a central node needs to select a subset of information
sources in order to identify the true state of the world. Each source ¢ € D has a selection cost

¢i € Rsp. For any subset Z C D with |Z| = k, let {s1, s2, ..., sk} denote the set of information
sources. The cost of the information set Z is given by ¢(Z) = »__ .7 cs,- The joint observation
conditioned on the # € © of this information set at time ¢ is defined as o7+ = {04, ¢,...,0s,4} €

Os, % ... x Og,, and is generated by the joint likelihood function ¢z(-|0) = TI¥_ ¢, (-|0) (by
Assumption 1), and the central designer knows ¢7(-|0) for all Z C D and for all § € O.
Assumption 1 also implies the existence of a constant L € (0, co) such that:

i (0; | 0)p)

log 221 %p) ) p (1)
Ci (0; | 0y)

max max Imax
1€D 0;,€0; Gp,eqe@

For a true state 0, € ©, we define P% = [[2, £(+|6,,) to be the probability measure. For the
sake of brevity, we will say that an event occurs almost surely to mean that it occurs almost surely
w.r.t. the probability measure P%». As the data comes in, the central node updates its belief over the
set of possible hypotheses using the standard Bayes’ rule. Let . (/) denote the belief of the central
designer (or node) that 6 is the true hypothesis at time step ¢ based on the information sources in
Z, and let po(0) denote the initial belief (or prior) of the central node that 6 is the true state of the
world, with ) ", p10(€) = 1. The Bayesian update rule is given by

~ po(0) [T br(oz,5+116)
6,0 H0(0:) TT5—g bz oz 51116:)

2. The constant L is an upper bound on the maximum difference between the log-likelihood of an observation from an
information source under any two hypotheses, which we will use later in our analyses.

pi1(0) V6 € ©. )
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For a hypothesis # € © and an information set Z C D, we have the following.

Definition 1 (Observationally Equivalent Set) (Ye ef al. (2021)) For a given hypothesis (or class)
0 € © and a given T C D, the observationally equivalent set of classes to 0 is defined as

Fy(1) = {0i € © | D (€z(-16:)¢(-0)) = 0}, 3)
where D1, (01(:]0;)||¢2(:|0)) is the Kullback-Leibler divergence measure (1(-|0;) and (1(-|6).

From the definition above, we have 6 € Fy(Z) for all § € © and all for Z C D. We can write
the set Fy(Z) equivalently as

Fy(Z) = {6; € © : t1(01]6;) = l1(01]0),Vor € O1}, “4)

where O7 = Og, x ... x Og, is the joint observation space of the information set Z. In other
words, Fyp(Z) is the set of hypotheses (or classes) that cannot be distinguished from 6 based on the
observations obtained by the information sources in Z. Furthermore, by Assumption 1 and Equation
(4), we have the following (see Section 2 in Ye et al. (2021)):

Fy(T) = () Fo(s:),¥Z € D,V6 € ©. (5)
s; €L

Define Fy()) = O, i.e., when there is no information set, all classes are observationally equivalent.
At time ¢, the central designer predicts the state of the world based on the belief 17 generated by

the information set Z. In order to characterize the learning performance, we consider a penalty-based
classification framework. Let = = [{;;] € R™*" denote the penalty matrix, where 0 < &;; < 1 is
the penalty associated with predicting the class to be 6;, given that the true class is ¢;. The penalty
matrix is assumed to be row stochastic, i.e., Z;n:1 &; = 1. Wehave §; =0, Vi € {1,2,...,m},
i.e., there is no penalty when the predicted hypothesis is the true hypothesis. Similar to analyses
presented in Nedic et al. (2017) and Mitra et al. (2020), we present finite sample convergence rates
for the Bayesian belief over the set of hypotheses. In this paper, we consider the case of a uniform
prior, but the results can be extended to non-uniform priors (as in Lemma 1 of Mitra et al. (2020)).
We defer all the proofs to Appendix A of the extended version of this paper (Bhargav et al. (2024)).

Theorem 2 Let the true state of the world be 0, and let j1(0) = % V60 € © (i.e., uniform prior).
Under Assumption 1, for any 6, € € [0, 1], and L as defined in Equation (1), and for an information
set T C D, the Bayesian update rule in Equation (2) has the following property: there is an integer
N (6, ¢, L), such that with probability at least 1 — 6, for all t > N (6, €, L) we have:

(a) 1 (0q) = pf (0p) VO, € Fy,(Z), and

(b) 17 (0q) < exp (—t(|K (0, 0q) — €])) Y0y ¢ Fy, (T);
where K (0),0,) = Dgr,(0z(-10p)||z(+|04)) is the Kullback-Leibler divergence measure between
the likelihood functions (1 (-|0,,) and £1(-|0,), Fy,(ZT) is defined in (4), and N (0, ¢, L) = FEL; log %1 .

We consider a belief threshold rule in order to rule out hypotheses that do not have a high
likelihood of being predicted as the true hypothesis. Let p;, be the threshold chosen by the central
designer. Corollary 3 presents the sample complexity for the observations in order to ensure that the
beliefs over the states 0, ¢ Fy,(Z) remain bounded under the specified threshold.
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Corollary 3 Instate the hypothesis and notation of Theorem 2. For a specified threshold p, €
(0,1) for the belief over any class 0, ¢ Fy,(I), there exists 6, ¢ € [0, 1], for which one can guarantee

with probability at least 1 — & that jif (0,) < pu, for all 0 & Fy, and for all t > N, where

N = |max { —— log 5 - log — . (6)
€
0p,0,€0

From Corollary 3, we have the following: After any ¢ > N, the central node will predict one of
0, € Fy,(Z) to be the true hypothesis, with probability at least 1 — §. Therefore, it is sufficient to
consider the penalties associated with the states 6, € Fp, (Z) for finding the maximum penalty. We
now formalize the Minimum-Cost Information Set Selection (MCIS) Problem as follows:

Problem 1 (MCIS) Consider a set © = {61,...,0,} of possible states of the world, a set D of
information sources, a selection cost ¢; € R~q of each source i € D, a row-stochastic penalty
matrix = = [§;;] € R™*™, and prescribed penalty bounds 0 < Ry, < 1 for all 0, € ©. The MCIS
Problem is to find a set of selected information sources T C D that solves

glgl% c(Z); s.t. Hier?«“jﬁZ) §pi < R, V0, €06. %)

2.1. Weak Submodularity and Greedy Algorithm

The combinatorial optimization in (7) can be shown to be NP-hard (based on similar arguments
as in Theorem 3 of Ye et al. (2021)). In this section, we propose a greedy algorithm with perfor-
mance guarantees to efficiently approximate the solution to the MCIS Problem. We first begin by
transforming the MCIS problem into the minimum cost set cover problem studied in Wolsey (1982).

Definition 4 (Monotonicity) A set function f : 2 — R is monotone non-decreasing if f(X) <
fY) forall X CY C Q and monotone non-increasing if f(X) > f(Y) forall X CY C Q.

Definition 5 (Submodularity Ratio) * Given a set ), the submodularity ratio of a non-negative
function f : 2% — R>q is the largest vy € R that satisfies for all A, B C (), the following:

> (f{a} UB) - f(B)) = 7(f(AU B) - f(B)).

acA\B

Remark 6 For a non-negative and non-decreasing function f(-) with submodularity ratio , we
have vy € [0,1]. If v is closer to 1, the function is closer to being submodular. f(-) is submodular
if and only if v > 1. Das and Kempe (2018) provide guarantees for greedy optimization of weak
submodular functions, which depend on the submodularity ratio . Thus, in order to characterize
the performance of greedy, one has to give a (non-zero) lower bound on .

The constraint in (7) can be equivalently written as: 1 —maxy, ¢ Fu, (T) §pi =2 1— Ry, V0, € 0.
For all Z C D and for a true state 0, € ©, let us define fj (Z) = 1 — max,¢ Fy, (T) &pi- It follows
from (5) that fy () is a monotone non-decreasing set function with fy 0)=1- maxg, ce &pj-

3. There are several notions of submodularity ratio. We consider vy, as defined in Das and Kempe (2018), where U is
the universal set and k > 1 is a parameter, and drop the dependence on k by defining v = ming vu, k-
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In order to establish the approximate submodularity property, we make the following assump-
tion on the misclassification penalties.
Assumption 2: The misclassification penalties are unique, i.e., &,; # &pj for all ¢ # j,V0, € ©.
Note that the above assumption requires that no two misclassification events have the same penalty
associated with them, which is often a reasonable assumption in many applications.

Lemma 7 Under Assumption 2, the function f_@p (Z): 2P R>q is approximately submodular for
all 0, € ©, with a submodularity ratio -y = £ /&, where

R (ei{gjg@ [pi — Epj\) ;&= max <9f};?ge i — épj!> - ®)

In order to ensure that there exists a feasible solution Z C D that satisfies the constraints, we
assume that fp (D) > 1— Ry, forall 6, € ©. Forany Z C D, we define f(;p (Z) = min{ fy,(Z),1—
Ry,} V0, € ©. The function fép (Z) captures the sufficient condition for satisfying the penalty
constraints corresponding to each state. We now define, for all Z C D,

2T) =Y f3,(T) = min{fy,(T),1-Ro,}. )

0,€0 0,€0

The expression z(Z) combines all the constraints (corresponding to each hypothesis # € ©), which
we wish to satisfy, while selecting the information set. In other words, z(-) is used to find the
optimal set Z, i.e., a set Z C D with minimal ¢(Z), satisfying 2(Z) = 2(D). Since Fp,(0) = O,
we have z(0)) = m — >_6,c0 MaxXg,co &pi- Since fy, (I) is approximately submodular and non-
decreasing, we have that fép (Z) is also approximately submodular and non-decreasing. Noting that
the non-negative sum of approximately submodular functions is approximately submodular (Lemma
3.12 of Borodin et al. (2014)), we have that z(-) is also approximately submodular. We have the
following result, which follows from the existence of a feasible solution for Problem 1.

Lemma 8 Forany I C D, the constraint 1 — maxy, ¢ Fy, (Z) &pi = 1 — Ry, holds for all ), € © if

and only ifZepe@ fép (1) = Zepe@ fép (D).
We now have from Lemma 8 that the constraint (7) in Problem 1 can be equivalently written as
inc(Z); s.t. z(Z) = z(D).
glglgC( ); s.t. 2(Z) = 2(D) (10)
Problem (10) can then be viewed as the set covering problem studied in Wolsey (1982). In Das
and Kempe (2018), the authors present performance guarantees for the weak submodular version of
the set covering problem studied in Wolsey (1982). Based on Theorem 9 in Das and Kempe (2018),
we have the following performance guarantees for Algorithm 1 when applied to the MCIS problem.

Theorem 9 Let 7* be an optimal solution to the MCIS problem having a submodularity ratio .
For a s;zeciﬁed threshold i, € (0,1) and 0 < § < 1, with probability at least 1 — 0, Algorithm 1
under N observation samples returns a solution L, to the MCIS problem (i.e., (7)) that satisfies the
following:

z(D) — 2(9)
2(D) — 2 (ng*l>

where N is specified in (6), and I;, e ,I;‘F_l are specified in Algorithm 1.

1
c(Zy) < 1+§log c(T%),
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Algorithm 1 Greedy Algorithm for MCIS
Input: D, z : 2P — R>g,¢; € Rog Vi € D
Output: 7,
sk O,Ig —0
while z(Z!) < z(D) do

2(ZgU{i})—=(Zy)

DN

3: jt S al‘g maXie'D\I}; = )
4 T T U{g) ke k+1
5: end while

6: T« k,Iy+ I

7: return Z,

We have the following result characterizing the asymptotic performance of the greedy algorithm.

Corollary 10 [Instate the hypothesis and notation of Theorem 2. Ast — 0o, we have the following:

(a) plo(bg) = 0 Vb, ¢ Fy,(Z), and (b) 1%, (64) = ﬁ V0, € Fy,(I). The near-optimal
p

guarantees provided in Theorem 9 for Problem I hold with probability 1 (a.s.).

3. Minimum-Penalty Information Set Selection

In this section, we consider the problem where the central designer has a fixed budget for select-
ing information sources and seeks to minimize the maximum penalty of misclassifying the true
state. Since the true state is not known a priori, the central designer has to minimize the maxi-
mum penalty for each possible true state, which is a multi-objective optimization problem under a
budget constraint. We scalarize the multi-objective optimization into a single-objective optimiza-
tion problem. The optimal solution to this single-objective problem is a Pareto optimal solution to
the multi-objective problem (Hwang and Masud (2012)). We now formalize the Minimum-Penalty
Information Set Selection (MPIS) Problem as follows.

Problem 2 (MPIS) Consider a set © = {01, ...,0.,} of possible states of the world; a set D of
information sources, with each source 1 € D having a cost ¢; € R>qo; a row-stochastic penalty
matrix Z = [§;;] € R™ "™ ; and a selection budget K € R>(. The MPIS Problem is to find a set of
selected information sources I C D that solves

min max s S.L ¢ < K.
min (Q ax Epa> > i (11)
0p,€0 p i€l

Consider the following equivalent optimization problem:

max 1 - max §p]> 2 oSt Zci < K. (12)
ICD boco ( 0;€Fy,(T) py

It is easy to verify that the problem defined in (12) is equivalent to the problem defined in (11), i.e.,
the information set Z C D that optimizes the problem in Equation (12) is also the optimal solution

to the Problem 2. We note that fp,(Z) = 1 — maxy, ¢ Fy, (7) &pj- We denote A7Z) = Zepe@ fo,(Z).



SUBMODULAR INFORMATION SELECTION FOR HYPOTHESIS TESTING WITH MISCLASSIFICATION PENALTIES

Algorithm 2 Greedy Algorithm for MPIS
Input: Data sources: D, Penalties: = € R™*™ Selection costs: ¢; Vi € D, Budget: K € Ry
Output: Zx
0, <0
while t < K do
j + arg MAX;cp\ 7, A(IKU{iC]‘i)*A(IK)
Ik %IKU{j},t%t-FCj
end while
return 7y

AN A o b e

From Lemma 7 and Lemma 3.12 in Borodin et al. (2014), it follows that the objective function
in (12) is approximately submodular with the submodularity ratio . Based on the guarantees for
greedy maximization of monotone, non-decreasing, approximately submodular functions subject to
Knapsack constraints in Theorem 6 of Das and Kempe (2018), we have the following result.

Theorem 11 Let i C D denote the information set selected by Algorithm 2 and let Ty C
D denote the optimal information set for the MPIS Problem with submodularity ratio . For a
specified threshold py, € (0,1) and 0 < & < 1, with probability at least 1 — 6, Algorithm 2
under N observation samples returns a solution Ly to the MPIS problem (i.e., (11)) that satisfies
AZg) > (1 — e ") A(ZL) + ¢, where c = A(D)/e” and N is specified in (6).

We have the following result characterizing the asymptotic performance of the greedy algorithm.

Corollary 12 [nstate the hypothesis and notation of Theorem 2. As t — 0o, we have the following:
(a) pt.(0y) = 0 Vb, ¢ Fy (I), and (b) 1, (0,) = \ngl(Iﬂ V0, € Fy,(Z). The near-optimal
p

guarantees provided in Theorem 11 for Problem 2 hold with probability 1 (a.s.).

4. Alternate Penalty Metric for Information Set Selection

In many practical scenarios, the submodularity ratio of the maximum penalty metric may be arbi-
trarily small (or zero) when misclassification penalties for two hypotheses are very close to each
other (or equal) (see Appendix B of the extended version (Bhargav et al. (2024)) for a detailed
discussion). It is also easy to verify that the submodularity ratio y decreases as the number of hy-
potheses increase. As a result, the performance bounds for the greedy algorithms become weaker.
In such scenarios, one can turn to an alternate metric for optimization, which can provide non-trivial
guarantees for the performance of the greedy algorithm. To this end, we present an alternate met-
ric to characterize the quality of an information set, based on the total penalty of misclassification,
defined as follows:

po,(X) =Y & (13)

0; Eng (I)

Intuitively, in order to minimize the total penalty (pg,(Z)) (or ensure that it is below a desired
bound), one has to select a subset Z C D that ensures that the number of hypotheses which are
observationally equivalent to the true hypothesis 6), i.e., |Fp,(Z)|, is small and/or the hypotheses
that are observationally equivalent to the true hypothesis have lower misclassification penalties.
Effectively, this results in lower penalty associated with misclassifying the true hypothesis.
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We define the Modified Minimum Cost Information Set Selection (M-MCIS) and Modified
Minimum Penalty Information Set Selection (M-MPIS) Problems based on this metric as follows.

Problem 3 (M-MCIS) Consider a set © = {61,...,0,,} of possible states of the world, a set D
of information sources, a selection cost c; € R of each source i € D, a row-stochastic penalty
matrix Z = [£;;] € R™ ™, and prescribed penalty bounds 0 < Rlep < 1 forall 8, € ©. The
M-MCIS Problem is to find a set of selected information sources I C D that solves
. . /

min c(I); s.t. pg,(I) < Ry, VO, €O. (14)
Note that the penalty bounds Ry, of the MCIS Problem (Problem 1) differ from the bounds Rlep of
M-MCIS Problem (Problem 3), as the former is a bound on the maximum penalty, while the latter

is a bound on the total penalty. The designer can choose the bounds Rg,p in order to achieve the
desired classification performance.

Problem 4 (M-MPIS) Consider a set © = {01,...,0,,} of possible states of the world; a set D
of information sources, with each source i € D having a cost ¢; € R>q; a row-stochastic penalty
matrix Z = [&;;] € R™*"™ ; and a selection budget K € R>(. The M-MPIS Problem is to find a set
of selected information sources T C D that solves

Izngi% Z po,(L); s.t. Zci <K. (15)

0,0 i€l
Lemma 13 The function gg,(Z) = 1 — pg, () : 2P — R is submodular for all 6, € ©.

By Lemma 13, we have the following result characterizing the performance of the greedy algorithms
for the modified information set selection problems.

Corollary 14 For Algorithm 1 (respectively Algorithm 2) applied to M-MCIS (respectively M-
MPIS) Problem, the near-optimal guarantees provided in Theorem 9 (respectively Theorem 11)
hold with v = 1.

From Corollary 14, we have that the total penalty metric enjoys stronger near-optimal guarantees
(due to submodularity) compared to that of the maximum penalty metric (which is weak submodu-
lar) for greedy optimization. Moreover, the near-optimal guarantees for the M-MCIS and M-MPIS
problems are independent of the misclassification penalties and the number of hypotheses.

5. Empirical Evaluation

In this section, we validate the theoretical results through numerical simulations. We present simu-
lations for varying submodularity ratios, finite sample convergence of the beliefs and the modified
information selection problems in the extended version (Bhargav et al. (2024)) (see Appendix C).
We consider a hypothesis testing task where one has to identify (or classify) an aerial vehi-
cle into one of the following 10 classes: © = {cargo, passenger, freight, heavy fighter, inter-
ceptor, sailplane, hang glider, paraglider, surveillance UAV, quadrotor}. We will refer to this as
the Aerial Vehicle Classification task (AVC task). The penalty matrix is as shown in Figure 1
(a). Each row of the penalty matrix is normalized. We set |D| = 10, the costs ¢; for i € D
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are sampled uniformly from {1,...,10}. We consider the infinite-observation case and randomly
generate the observationally equivalent sets Iy (i) for each 6, € © and i € D. We first con-
sider the minimum cost information set selection problem for the AVC task. The thresholds Ry,
for 6, € {cargo, passenger, freight, sailplane, hang glider, paraglider} are randomly sampled from
[0.7,1] and for 8, € {heavy fighter, interceptor, surveillance UAV, quadrotor} are randomly sam-
pled from [0.1, 0.4]. For 100 randomly generated instances, we run Algorithm 1 to find the greedy
information set Z, and find the optimal information set Z* using brute-force search. We plot the
ratio of cost of the greedy information set to that of the optimal, i.e., ¢(Z,)/c(Z*), in Figure 1 (b).

s Performance of Algorithm 1 (for Problem 1) Performance of Algorithm 2 (for Problem 2)
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Figure 1: (a) Penalty Matrix for the Aerial Vehicle Classification (AVC) task, (b) Performance of
Algorithm 1 (for Problem 1), (¢) Performance of Algorithm 2 (for Problem 2).

Next, we consider the minimum penalty information set selection problem for the AVC task.
We generate 100 random instances with varying information source costs and selection budgets. We
run Algorithm 2 to find the greedy information set Z, and find the optimal information set Z* using
brute-force search. We plot the ratio of greedy utility to that of the optimal, i.e., A(Z;)/A(Z*), in
Figure 1(c). These plots show the near-optimal performance of the greedy algorithm. Note that the
penalty matrix for these instances does not satisfy Assumption 2 (uniqueness of misclassification
penalties). Thus, these problem instances are not guaranteed to exhibit the weak submodularity
property. Despite this, we observe that the greedy algorithms provide near-optimal performance.

6. Conclusion

In this work, we studied two variants of an information set selection problem for hypothesis testing:
(1) selecting a minimum cost information set to ensure that the maximum penalty for misclassifying
the true hypothesis is below a desired bound and (ii) optimal information set selection under a lim-
ited budget to minimize the maximum penalty of misclassifying the true hypothesis. Leveraging the
weak submodularity property of the performance metric, we established high-probability guaran-
tees for greedy algorithms for both problems, along with the associated finite sample convergence
rates for the Bayesian beliefs. Next, we proposed an alternate metric based on the total penalty of
misclassification for information set selection, which enjoys (stronger) near-optimal performance
guarantees with high-probability for the greedy algorithms. Finally, we evaluated the empirical per-
formance of the proposed greedy algorithms over several randomly generated problem instances.
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