
Reprompting: Automated Chain-of-Thought Prompt Inference
Through Gibbs Sampling

Weijia Xu 1 Andrzej Banburski-Fahey 1 Nebojsa Jojic 1

Abstract
We introduce Reprompting, an iterative sampling
algorithm that automatically learns the Chain-of-
Thought (CoT) recipes for a given task without
human intervention. Through Gibbs sampling,
Reprompting infers the CoT recipes that work
consistently well for a set of training samples by
iteratively sampling new recipes using previously
sampled recipes as parent prompts to solve other
training problems. We conduct extensive exper-
iments on 20 challenging reasoning tasks. Re-
sults show that Reprompting outperforms human-
written CoT prompts substantially by +9.4 points
on average. It also achieves consistently better
performance than the state-of-the-art prompt opti-
mization and decoding algorithms.

1. Introduction
Few-shot prompting with large language models (LLMs)
has revolutionized the landscape of natural language pro-
cessing. Given natural language instructions and a few
demonstrations as in-context examples, LLMs can quickly
adapt to new tasks, approaching or even surpassing the per-
formance of models fine-tuned on larger datasets on a wide
range of tasks (Brown et al., 2020). However, such prompt-
ing techniques fall short on tasks that require multi-step rea-
soning and constraint propagation (Wei et al., 2022), such as
logical deduction in the Big-Bench Hard benchmark (Suz-
gun et al., 2022). To address these limitations, prior works
proposed to teach LLMs to reason step by step like humans
by prompting them with chain-of-thought (CoT) reasoning
steps for a few example problems (Wei et al., 2022). Despite
the improved performance, such a method requires human
experts with not only the task knowledge but also an under-
standing of how prompting works to craft the CoT prompt
for each task (Zamfirescu-Pereira et al., 2023), which limits

1Microsoft Research, Redmond, USA. Correspondence to: Wei-
jia Xu <weijiaxu@microsoft.com>.

Proceedings of the 41st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

the scalability and generalizability of the method. Further-
more, a problem can be reasoned in many different ways,
and some of them may work well on some LLMs but not on
others. To fairly compare the performance of various LLMs
on each task, we need to find the CoT prompt that works best
for each model in a feasible way, which remains a challenge.

In this paper, we propose Reprompting, an iterative sampling
algorithm that automatically finds effective CoT prompt
for each model given a few question-answer pairs without
human intervention. Specifically, the algorithm aims to
infer a set of CoT recipes that perform consistently well
as in-context examples for a set of training problems. We
frame it as a problem of sampling from a joint distribution
of CoT recipes given the training question-answer pairs,
which is infeasible to characterize directly but can be ap-
proached using Gibbs sampling – we initially sample a set
of recipes through zero-shot prompting, expand the set with
new recipes sampled iteratively by using previously sampled
recipes as parent prompts to solve a different training prob-
lem, and weed out the least-fit recipes that lead to wrong
answers. Thus, the algorithm will eventually converge to
a set of recipes that share similar chains of thought for ef-
fectively solving the training problems. These CoT recipes
optimized on the training set then serve as effective CoT
prompts for solving unseen test problems.

We evaluate Reprompting on 20 tasks from three reason-
ing benchmarks including Big-Bench Hard (BBH) (Suz-
gun et al., 2022), GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) using ChatGPT (OpenAI,
2023) and InstructGPT (Ouyang et al., 2022) as LLMs.
Compared with human-written CoT prompts, Reprompting
achieves +9.4 higher accuracy on average. It also consis-
tently outperforms self-consistency decoding (Wang et al.,
2022b), Auto-CoT (Zhang et al., 2022) and Automatic
Prompt Optimization (Pryzant et al., 2023) by 11–33 points
on average. Furthermore, Reprompting facilitates model
combination by using different LLMs for initializing and
sampling new recipes. Empirically, leveraging ChatGPT to
sample initial recipes for InstructGPT brings up to +71 point
improvements over using InstructGPT alone and even out-
performs ChatGPT alone on certain tasks. Lastly, our results
confirm that the CoT recipes that work well on one model

1

Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling

Figure 1: An example that ChatGPT can propose various different
solutions to the same problem in zero-shot.

may work poorly on another, even when the latter may ap-
proach the best performance using prompts optimized for
itself. These findings emphasize the need to optimize the
prompt for each model for fair comparisons.

2. Reprompting: Prompt Inference Through
Gibbs Sampling

2.1. In-Context Learning

In-context learning has become the cornerstone of evalu-
ating large language models (LLMs) (Brown et al., 2020;
Srivastava et al., 2022). To facilitate this evaluation ap-
proach, data is provided for a large number of different
tasks, with each task consisting of dozens or, more often,
hundreds of instances with varying problem setup and ques-
tion texts xi and their corresponding text answers yi, where
i ∈ [1..N] and N is the number of problem instances for the
task. Formally, in-context learning infers the answer for a
given test question x by prompting an LLM with a set of
demonstration examples {xi,yi}K

i=1:

ŷ∼ pLLM(y|{xi,yi}K
i=1,x) (1)

The performance of in-context learning can be significantly
enhanced by incorporating auxiliary knowledge or human-
written instructions in a prompt (Shwartz et al., 2020; Zelik-
man et al., 2022; Nye et al., 2021), particularly in the form
of Chain-of-Thought (CoT) reasoning (Wei et al., 2022;
Wang et al., 2022b; Zhou et al., 2022; Creswell et al., 2022;
Wang et al., 2022a; Liu et al., 2022; Kojima et al., 2022; Li
et al., 2022).

In-context learning with CoT (Wei et al., 2022) can be seen
in a similar light, statistically. In addition to the question-
answer pairs {xi,yi}, the CoT prompt also contains worked
out step-by-step reasoning “recipes” zi in text, which are
inserted between the question and answer: {xi,zi,yi}. These
recipes can play two roles. First, they further explain the
intent of the question xi, as a small collection of question-
answer pairs alone may be insufficient to disambiguate

among different patterns an LLM might detect. The second
role is more important: it provides step-by-step guidance
on one problem and thus teaches an LLM to solve similar
problems following the same routine as it continues the text
conditioned on the previous tokens. In the extreme, with
prompts that strictly regiment self-attention, GPT models
can be turned into Turing Machines to execute standard
computer algorithms (Jojic et al., 2023). In practice, the
CoT prompts commonly used in prior work fall somewhere
between colloquial explanations and regimented recipes.
Formally, in-context learning with CoT infers the answer
for a given test question x by prompting an LLM with an
optional instruction message m and a set of demonstration
examples with step-by-step solutions {xi,zi,yi}K

i=1:

ẑ, ŷ∼ pLLM(z,y|{xi,zi,yi}K
i=1,x,m) (2)

Here, m is a textual message that instructs the model to gen-
erate the step-by-step solution z j before the answer text y j
and the specific format to present the answer.1 It can be
task-specific or generic, as in the case of our experiments.
Such an instruction message can trigger instruction-tuned
LLMs to generate step-by-step solutions given [x j,m] alone
without any demonstration examples (i.e. K = 0), as illus-
trated in Figure 1. These solutions follow varying styles
and often lead to incorrect answers. However, we argue
that good recipes for solving the set of problems on a given
task can evolve from these zero-shot solutions. In the next
section, we introduce Reprompting, an iterative sampling
algorithm that automatically produces the CoT recipes for a
given set of problems without human intervention.

2.2. Prompt Inference Through Gibbs Sampling

We introduce the Reprompting algorithm, which aims to
find a set of CoT recipes zi that work consistently well
as few-shot in-context examples for a dataset {xi,yi}N

i=1.
Specifically, we formulate it as the problem of sampling
from a joint distribution

p(z1,z2, ...zN |{xi,yi}N
i=1,m) (3)

such that z1...N are generalized enough so that given any test
question x, the distribution over z and y is approximately
invariant to the choice of the K-shot CoT recipes:

pLLM(z,y|{xi,zi,yi}N
i=1,x,m)

≈pLLM(z,y|{xi,zi,yi}i∈S,x,m), ∀S⊂ [1,N], |S|= K
(4)

Without characterizing the joint distribution, we can use
Gibbs sampling (Geman & Geman, 1984) to generate such

1This enables us to separate the generated answer y j from
the step-by-step solution z j and forces the model to stop after
generating the answer.

2

Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling

samples {z1,z2, ...zN} by first sampling {z1,z2, ...zN} inde-
pendently from the distributions p(z j|x j,y j), and then it-
eratively drawing samples from the conditional distribu-
tions p(z j|z1, ...,z j−1,z j+1, ...zN ,{xi,yi}N

i=1,m). Based on
the property (4) of the joint distribution, we have the follow-
ing approximation:

p(z j|z1, ...,z j−1,z j+1, ...zN ,{xi,yi}N
i=1,m)

=pLLM(z j|{xi,zi,yi}i̸= j,x j,y j,m)

∝pLLM(z j,y j|{xi,zi,yi}i̸= j,x j,m)

≈pLLM(z j,y j|{xi,zi,yi}i∈S j ,x j,m),

∀S j ⊂ [1,N]\{ j}, |S j|= K

(5)

Thus, we can sample z j by randomly picking K data
points (excluding j) and then sampling z j with weights
proportional to the conditional probability

pLLM(z j,y j|{xi,zi,yi}i∈S j ,x j,m)

=pLLM(z j|{xi,zi,yi}i∈S j ,x j,m)

· pLLM(y j|{xi,zi,yi}i∈S j ,x j,m,z j)

(6)

One way to approximate it is to sample several ẑ j from
the LLM conditioned on {xi,zi,yi}i∈S j , x j and m, compute
the weight for each ẑ j using the model’s probability of
the correct answer y j conditioned on {xi,zi,yi}i∈S j , x j, m
and ẑ j, and sample a z j from {ẑ j} based on the weights.
In practice, however, the model likelihood of a given text
may be inaccessible. Thus, we approximate it using re-
jection sampling – we sample z j by sampling ẑ j and ŷ j
from pLLM(z,y|{xi,zi,yi}i∈S j ,x j,m) and then reject ẑ j with
a probability of pre j if ŷ j ̸= y j. Otherwise, we accept ẑ j
and update the sample. Algorithm 1 shows the complete
Reprompting algorithm consisting of the initialization and
iterative sampling steps. Note that we set the rejection prob-
ability pre j in a way that allows solutions that lead to incor-
rect answers to be kept occasionally, as these solutions may
still contain useful segments that evolve into good recipes
through Reprompting.

Based on the properties of Gibbs sampling (Casella
& George, 1992; Roberts & Smith, 1994), the algo-
rithm should converge to the point where the probability
pLLM(z j,y j|{xi,zi,yi}i∈S j ,x j,m) is high and agnostic to the
choice of S j, which leads to a set of {z j} that work well as
a prompt for solving similar problems in a separate test set.

The algorithm can also be viewed as a variant of evolution-
ary algorithms: 1) First, we generate the initial population
of individuals (where each individual is a CoT recipe given
a problem). 2) Next, we repeat the following regeneration
steps iteratively: 2a) we first evaluate the fitness of each CoT
recipe by comparing the answer that follows the recipe with
the correct answer and weed out the least-fit recipes; 2b) we
then breed new individuals through crossover and mutation

Algorithm 1: Reprompting algorithm

Input :Training set {xi,yi}N
i=1, number of examples in

the prompt K, number of iterations M, rejection
probability pre j, the initialization model LLM1
and the sampling model LLM2

1 Initialization:
2 for each j do
3 z j← /0
4 Sample ẑ j, ŷ j ∼ pLLM1(z,y|x j,m)
5 Sample u∼Uni f orm([0,1])
6 if ŷ j = y j or u > pre j then
7 z j← ẑ j
8 end
9 end

10 Sampling:
11 repeat
12 Randomly select j ∈ [1,N]
13 Randomly select S j ⊂ [1,N]\{ j} of size K
14 Sample ẑ j, ŷ j ∼ pLLM2(z,y|{xi,zi,yi}i∈S j ,x j,m)

15 Sample u∼Uni f orm([0,1])
16 if ŷ j = y j or u > pre j then
17 z j← ẑ j
18 end
19 until convergence or M iterations are reached

by randomly selecting K recipes from the population as
parent recipes, which are then used to prompt the LLM to
generate recipes for a new problem. By repeating the 2a and
2b steps, initial recipes can be recombined (Figure 4) and
evolve into better recipes (Figure 3) through iterations. And
eventually, the fittest recipes (i.e. ones that can be followed
to solve similar problems) will survive.

During testing, we select K tuples {xi,zi,yi} from the in-
ferred {z j} based on the training accuracy when using each
tuple individually in a prompt.

3. Experimental Setup
We evaluate the Reprompting algorithm against var-
ious baselines including zero-shot, few-shot, Chain-
of-Thought (CoT), Chain-of-Thought combined with
self-consistency decoding (Wang et al., 2022b), Auto-
CoT (Zhang et al., 2022) and Automatic Prompt Opti-
mization (Pryzant et al., 2023) on 20 challenging rea-
soning tasks, including 12 challenging tasks in the Big-
Bench Hard (BBH) benchmark (Suzgun et al., 2022),2

2The BBH tasks include Logical Deduction, Geometric Shapes,
Object Counting, Penguins in a Table, Temporal Sequences, Date
Understanding, Formal Fallacies, Movie Recommendation, Rea-
soning About Colored Objects, Ruin Names, Salient Translation
Error Detection, and Word Sorting.

3

Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling

GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021). We choose both tasks that have been shown to benefit
substantially from human-written CoT recipes, such as Log-
ical Deduction, Geometric Shapes, Temporal Sequences,
GSM8K and MATH, and tasks on which CoT does not im-
prove much or does not improve consistently over zero-shot
prompting, such as Formal Fallacies, Movie Recommenda-
tion and Word Sorting.

3.1. Reprompting Setup

For each task, we randomly select 20 training examples
from the Big-Bench dataset excluding the test examples
in the BBH benchmark.3 We experiment with hav-
ing k ∈ {1,3} clones of the same training example in the
set {xi,yi}N

i=1 to allow for more diverse recipe samples (so
the number of recipes we need to sample from the joint
distribution (3) is N = 20∗ k) and choose k that obtains the
highest training accuracy. We set the number of examples in
the prompt by K = 5. We run Reprompting for a maximum
of M = 20,000 iterations. We allow for early stopping if
the average training accuracy stops increasing for 1,000
iterations. For the rejection probability, we experiment
with pre j ∈ {0.95,0.99} and choose pre j = 0.99 as it leads
to higher training accuracy on various tasks.

3.2. Baselines

Prompting Baselines For zero-shot prompting, we only
include the test question xi and the special message m in the
prompt, which triggers the model to generate a step-by-step
solution prior to the answer text. For few-shot prompting,
we randomly select 20 training examples in the same way as
in Reprompting and concatenate these examples in the form
of question-answer pairs in the prompt, followed by the test
question. For CoT prompting, we use the human-written
CoT prompts from Suzgun et al. (2022). For CoT with self-
consistency decoding, we use the same CoT prompts and
follow Wang et al. (2022b) by sampling 10 reasoning paths
per question and taking the majority vote on the answer. For
both approaches, we randomly select 20 training examples
in the same way as in Reprompting.4

3Except for Penguins in a Table where there are only three
samples in the Big-Bench dataset that are excluded from BBH, so
we randomly select 17 more examples from BBH into the training
set.

4Recent prompting methods that are more annotation-intensive,
such as Complex-CoT (Fu et al., 2022) and Progressive-Hint
Prompting (Zheng et al., 2023), are shown to outperform Re-
prompting by 3.3–5.6 points on GSM8K. However, these methods
leverage substantially more human-annotated examples (e.g. 7.5K
annotated examples on GSM8K) than Reprompting, thus they are
not directly comparable.

Prompt Optimization Baselines We also compare Re-
prompting with two previous state-of-the-art prompt opti-
mization algorithms, including Auto-CoT (Zhang et al.,
2022) and APO (Pryzant et al., 2023). For Auto-CoT, since
the original Auto-CoT algorithm differs from our setting as
it focuses on the unsupervised setting without exploiting any
labeled examples, we adapt the algorithm to our few-shot
setting where it follows the original algorithm to generate
diverse CoT recipes through zero-shot prompting but selects
the demonstration examples based on the training accuracy
when used individually in a prompt.5 We also evaluate APO,
a recently proposed nonparametric prompt optimization al-
gorithm that uses LLMs to generate “textual gradient” –
criticism of the current prompt – based on training samples
and edit the prompt accordingly. The algorithm has been
shown to outperform other prompt optimization methods,
such as TEMPERA (Zhang et al., 2023), Automatic Prompt
Engineering (Zhou et al., 2023), and AutoGPT.6

3.3. Large Language Models (LLMs)

We experiment with two powerful LLMs including Chat-
GPT (gpt-3.5-turbo; OpenAI (2023)) and InstructGPT (text-
davinci-003; Ouyang et al. (2022)). We also experiment
with a combo model for Reprompting where we use Chat-
GPT as LLM1 for initialization and InstructGPT as LLM2
for sampling. For both LLMs, we set the maximum number
of output tokens to 500, top_p = 0.5, zero frequency and
presence penalty. Additionally, we include “END” as the
stop word. We set the temperature to 1.0 for Reprompting
and 0.0 for testing.

3.4. Evaluation Protocol

We extract the final answer from the model output by extract-
ing the text between “<answer>” and “</answer>”, except
for the CoT baseline where we extract the final answer in the
same way as in Suzgun et al. (2022). We measure accuracy
based on exact match by comparing the extracted answer
with the ground truth.

4. Results
4.1. Main Results

We first compare the performance of Reprompting with all
the baselines on five BBH tasks. As shown in Table 1, re-
sults confirm the previous finding that few-shot in-context
prompting improves the performance over zero-shot (Brown
et al., 2020) and that CoT prompting outperforms both zero-
shot and few-shot prompting by a large margin. However,
human-written CoT prompting requires costly prompt en-

5The original Auto-CoT algorithm selects the demonstration
examples based on the diversity of the demonstration questions.

6https://news.agpt.co/

4

https://news.agpt.co/

Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling

BBH Task SOTA ZS FS CoT CoT+SC APO AutoCoT Reprompting
ChatGPT ChatGPT InsGPT Chat+Ins

Logical 60.4 35.1 46.4 63.1 62.7 28.0 53.2 66.3 53.7 60.0
Geometric 56.0 13.6 20.0 58.0 60.0 52.0 52.4 72.8 40.8 64.4
ObjectCount 93.2 52.4 46.8 95.6 95.2 74.8 88.8 97.2 42.8 99.6
Penguins 81.5 50.7 60.3 67.1 71.2 45.2 85.6 85.6 78.1 82.9
Temporal 96.8 38.4 41.2 66.8 66.8 50.4 80.8 93.2 28.4 99.2

Average 77.6 38.0 42.9 70.1 71.2 50.1 72.2 83.0 48.8 81.2

Table 1: Performance of several large language models (LLMs) using Reprompting versus the baseline prompting and prompt optimization
methods on Big-Bench Hard (BBH) tasks. SOTA refers to the state-of-the-art performance among InstructGPT (text-davinci-002; Ouyang
et al. (2022)), Codex (Chen et al., 2021), and PaLM 540B (Chowdhery et al., 2022) using CoT prompting from Suzgun et al. (2022).
We also compare Reprompting with ChatGPT using ZS (zero-shot), FS (few-shot), CoT, CoT+SC (CoT prompting combined with
self-consistency decoding (Wang et al., 2022b)), APO (automatic prompt optimization using textual gradient (Pryzant et al., 2023)),
and AutoCoT (the few-shot version of Auto-CoT (Zhang et al., 2022)). For Reprompting, we show the performance of various LLMs
– including ChatGPT (gpt-3.5-turbo; OpenAI (2023)), InstructGPT (text-davinci-003), and Chat+Instruct (a combo version that uses
ChatGPT for initialization and InstructGPT at sampling steps).

gineering, as not all CoT recipes work equally well on
LLMs (Madaan & Yazdanbakhsh, 2022; Jojic et al., 2023).
Crucially, we show that using Reprompting, LLMs can
achieve better performance compared to the existing CoT
prompts, but without requiring any human guidance on how
to solve problems step by step. Specifically, comparing the
performance of ChatGPT using Reprompting versus the best
human-written CoT prompts from Suzgun et al. (2022), Re-
prompting achieves consistently higher scores on all tasks.

Next, we compare Reprompting with self-consistency (SC)
decoding (Wang et al., 2022b). CoT+SC improves over
CoT on two of the five tasks, but the improvements are
not consistent. By contrast, Reprompting consistently
outperforms CoT+SC by 2–26 points on all five tasks.

Additionally, we compare Reprompting with existing
prompt optimization algorithms. APO improves over zero-
shot prompting on three out of five tasks but underperforms
it on the two tasks where the model needs to search through
a wide range of strategies to find effective solutions. By con-
trast, Reprompting consistently outperforms zero-shot and
CoT prompting, and improves over APO by 20–43 points
on all five tasks. When compared against Auto-CoT (Zhang
et al., 2022), Reprompting also archives higher accuracy
by +11 points on average. In summary, Reprompting outper-
forms strong decoding and prompt optimization baselines
by 11–33 points on average.

Comparing the performance of Reprompting on different
LLMs, we observe that InstructGPT underperforms Chat-
GPT on most tasks. However, we show that by using Chat-
GPT just as the initialization model LLM1 to bootstrap In-
structGPT as LLM2 in Reprompting, we can improve perfor-
mance over InstructGPT alone by 5–71 points and achieve
competitive or even better performance than ChatGPT alone
on two of the five tasks. We show in the Appendix why that
is: while InstructGPT can follow a given recipe and even be

used for recombining and evolving them, it is less capable
of generating diverse initial solutions in a zero-shot manner.
However, through Reprompting, we can use ChatGPT
to “teach” InstructGPT diverse strategies for solving the
training problems, which are then recombined and evolved
by InstructGPT into better CoT prompts for itself.

Furthermore, Table 2 shows the performance of Reprompt-
ing against zero-shot, few-shot and CoT prompting (all us-
ing ChatGPT) on the remaining 15 tasks.7 Reprompting still
outperforms zero-shot and few-shot prompting consistently
and substantially by 14-15 points on average. Compared
with CoT, Reprompting achieves better performance on
11 out of 15 tasks. On average, Reprompting outperforms
CoT by +8.2 points. Interestingly, on tasks where CoT
even underperforms zero-shot prompting, such as Movie
Recommendation, Salient Translation Error Detection, and
Word Sorting, Reprompting still improves over zero-shot
prompting by large margins. This suggests that not all CoT
recipes improve model performance, and some may even
lead to degradation. This further emphasizes the need for
algorithms like Reprompting for discovering and optimizing
the CoT prompt to best exploit and compare LLMs.

Overall, these findings highlight the potential of Reprompt-
ing as a powerful method for automating CoT prompting on
a wide range of tasks.

4.2. Quantitative Analysis

Ablation Study We conduct an ablation study on the rejec-
tion sampling and recombination process. Results in Table 3
show that, without rejection sampling, the test performance
degrades substantially by 25 point on average. Always

7Based on the main results in Table 1, CoT+SC and Auto-CoT
are more complicated than CoT but only slightly improves over
CoT. Thus, we select CoT as a baseline here.

5

Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling

0 2000 4000 6000 8000 10000
Iterations

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Av
er

ag
e

Tr
ai

ni
ng

 A
cc

ur
ac

y

(a) InstructGPT

0 2000 4000 6000 8000 10000
Iterations

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

Tr
ai

ni
ng

 A
cc

ur
ac

y

(b) ChatGPT

0 4000 8000 12000 16000 20000
Iterations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Tr
ai

ni
ng

 A
cc

ur
ac

y

(c) ChatGPT+InstructGPT

Figure 2: Learning curves of the Reprompting algorithm using InstructGPT, ChatGPT, and the combo ChatGPT+InstructGPT models on
the Logical Deduction task. The y-axis shows the accuracy on training samples averaged over the current and all previous iterations.

ZS FS CoT Reprompting

BBH
Date 63.6 46.4 76.8 76.4
Formal 49.2 53.6 48.4 56.8
Movie 59.2 72.4 25.6 78.4
ColoredObj 66.8 48.8 76.0 74.0
Ruin 53.2 66.8 60.8 74.8
Salient 43.2 53.2 32.8 54.8
WordSort 58.0 72.0 46.0 73.2

GSM8K 45.6 26.5 75.6 79.5

MATH
Algebra 37.6 23.7 52.0 53.1
Counting 17.1 19.8 26.6 32.3
Geometry 12.4 16.2 28.5 29.2
IntAlgebra 9.4 12.1 18.0 16.8
Number 20.8 17.1 32.9 33.3
Prealgebra 31.4 33.2 54.0 43.8
Precalculus 7.4 18.4 19.0 19.3

Average 38.3 38.7 44.9 53.0

Table 2: Performance of ChatGPT using Reprompting versus
ZS (zero-shot), FS (few-shot), and CoT prompting methods on
seven additional tasks from Big-Bench Hard (BBH) (Suzgun et al.,
2022), GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021).

rejecting solutions that lead to incorrect answers also causes
a degradation of 8 point. Additionally, not allowing multiple
solutions to be recombined when sampling new solutions
at the iterative sampling stage also hurts performance.

Do the generated CoT recipes generalize across models?
We test the best-performing CoT recipes optimized with
InstructGPT, ChatGPT, or InstructGPT+ChatGPT through
Reprompting on both InstructGPT and ChatGPT. As shown
in Table 4, the CoT recipes optimized for one model may not

pre j = 0 pre j = 1 NoRec Orig.

Logical 56.3 61.9 54.7 66.3
ObjectCount 52.0 97.2 95.6 97.2
Temporal 74.8 74.4 90.4 93.2

Average 61.0 77.8 80.2 85.6

Table 3: Ablation study on rejection sampling (including no re-
jection (pre j = 0) and always rejecting (pre j = 1)) and recombina-
tion (NoRec represents Reprompting without recombination of pre-
viously sampled recipes) on Logical Deduction, Object Counting,
and Temporal Sequences from Big-Bench Hard (BBH) (Suzgun
et al., 2022). The Orig. column represents the standard Reprompt-
ing algorithm without ablation.

Tasks InsGPT ChatGPT

Logical 65.9 66.3∗
Geometric 53.6 72.8∗
ObjectCount 99.6∗ 96.8
Penguins 82.2 85.6∗
Temporal 99.2∗ 81.6

Table 4: Testing the best performing CoT prompt learned on Chat-
GPT, InstructGPT or InstructGPT+ChatGPT through Reprompting
on both ChatGPT and InstructGPT. The superscript ∗ denotes the
model used as LLM2 in Reprompting.

work as well for other models. Specifically, we observe that
on tasks such as Logical Deduction and Object Counting,
the best CoT recipes achieve similar performance on both
InstructGPT and ChatGPT. However, on Geometric Shapes
and Temporal Sequences, the best CoT prompts optimized
for LLM2 work well on LLM2, but poorly with the other
LLM – using them on the other LLM leads to 18–19 points
lower accuracy than testing with LLM2 (see examples in
Figure A.2). On such tasks, using the prompt optimized
for the testing LLM improves accuracy by 11–12 points
over the same testing LLM with prompt optimized for other
LLMs. These results suggest that, to make a fair comparison

6

Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling

Figure 3: An example of how the CoT recipes evolve through Reprompting. In the left-most recipe, the model (ChatGPT) first reorders
the constraints so that the ones with absolute ranking positions are considered prior to the ones with relative positions (highlighted in dark
blue). Next, the model attempts to deduce the objects at specific positions but makes a mistake (see the red underlined part). Despite the
error, this recipe still provides a useful strategy for solving similar problems – when it is used in a prompt to solve another problem, the
model first adopts the same strategy to reorder the constraints and then proposes another way to deal with the constraints (highlighted in
orange). Although the resulting solution still contains errors, it makes a good recipe for solving this type of problem. Thus, when using it
in a new prompt to solve yet another problem, the model can follow the same recipe and deduce the correct answer.

between different LLMs, one needs to optimize the CoT
prompt for each model.

Reprompting improves CoT recipes over iterations. In
Figure 2, we plot the average training accuracy (averaged
over iterations up to the current iteration) over training it-
erations on Logical Deduction. For all three model variants,
the initial training accuracy is relatively low, but it gradually
increases (with occasional fluctuations) over iterations until
convergence. This is the result of evolution and recombi-
nation of the recipes associated with training examples.

Compute and Resources We use the OpenAI APIs for all
our experiments.8 Running Reprompting costs around $80
(in US dollars) on gpt-3.5-turbo and $800 on text-davinci-
003 based on the standard pricing,9 while being exempted
from any human cost. By contrast, CoT prompting requires
manual prompt construction and engineering, which costs
not only human labor (including the cost for humans to
get familiar with the task itself and how LLM prompting
works, write down various CoT solutions for each problem,
test and optimize the solutions on the LLM) but also LLM
queries, but these costs are typically neglected in previous
works. In addition, previous works typically compare differ-
ent LLMs using the same CoT prompt. While this strategy
avoids additional costs for custimizing CoT prompt for each

8https://platform.openai.com/docs/
api-reference?lang=python

9https://openai.com/pricing

LLM (even with Reprompting, one can also save the cost by
running it with ChatGPT and using the inferred CoT prompt
on other LLMs), it risks making unfair comparisons as we
have shown in Table 4 that the CoT prompt that works well
on one model may be sub-optimal for another.

4.3. Qualitative Analysis

We observe that even model outputs containing errors and
unreasonable deductions can evolve into a high-quality
recipe through Reprompting. This is illustrated by the
Logical Deduction example in Figure 3, when K = 1, where
the model initially generates a recipe that is erroneous and
contains illogical deductions. However, when this recipe
is used as the new prompt for solving a similar problem,
the model is able to exploit parts of the recipe and propose
an alternative way to continue reasoning. Although the
subsequent recipe still contains errors, it aids the model in
correctly solving other problems when incorporated into a
prompt. As a result, such recipes will be populated on other
training samples, while the recipes that lead to low accuracy
will eventually die out.

Reprompting combines fragments from different recipes
into a better one. Reprompting benefits from having
multiple examples in the prompt, which allows the model
to integrate various segments from different prompt recipes
into a new recipe. As illustrated by the Object Counting ex-
amples in Figure 4, the model can combine large segments
of reasoning steps, as well as small segments that address

7

https://platform.openai.com/docs/api-reference?lang=python
https://platform.openai.com/docs/api-reference?lang=python
https://openai.com/pricing

Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling

Figure 4: Examples of how fragments from different recipes in a prompt can be (re)combined into a better recipe to solve a new problem
through Reprompting.

distinct cases to solve a more complex problem. The result-
ing prompts sometimes, but not always, share similarities
with the human-written prompts (See the Appendix).

5. Related Work
In-Context Learning is an emergent ability of LLMs as
they scale up in model sizes and training data, where an
LLMs can learn to perform a task from a few examples in
the context (which is also referred to as few-shot prompt-
ing) (Brown et al., 2020). It has been shown to achieve
promising few-shot and even zero-shot performance on vari-
ous natural language processing (Brown et al., 2020; Schick
& Schütze, 2020; Perez et al., 2021) and program synthe-
sis (Austin et al., 2021) tasks.

Reasoning via Chain-of-Thought Prompting Chain-of-
Thought (CoT) prompting is a technique that enables LLMs
to perform complex reasoning tasks by prompting them with
a few examples with step-by-step solutions (Wei et al., 2022;
Suzgun et al., 2022). CoT prompting has been shown to
improve performance on various reasoning tasks, such as
arithmetic reasoning (Wei et al., 2022; Zhou et al., 2022),
symbolic reasoning (Wei et al., 2022; Zhou et al., 2022),
multi-hop question answering (Press et al., 2022; Arora
et al., 2022), and natural language inference (Wang et al.,
2022b). However, designing effective CoT prompts re-
quires human experts with an understanding of both the
task and the prompting technique (Zamfirescu-Pereira et al.,
2023), which limits the scalability and generalizability of
CoT prompting.

Several works have attempted to automate the process of
CoT prompt discovery. Zhang et al. (2022) proposed Auto-
CoT, which uses LLMs to generate CoT solutions for diverse
training questions in zero-shot and integrates the generated

CoT solutions in the prompt for solving test questions. This
method differs from Reprompting in that: 1) it focuses on
the unsupervised setting and exploits a large set of example
questions without annotated answers, and 2) it relies more
heavily on the correctness of the zero-shot recipes as it
does not have any iterative algorithm (as in Reprompting)
to further improve the recipes. In our experiments, we
adapted Auto-CoT to the few-shot setting and showed that
Reprompting outperforms the few-shot version of Auto-CoT.

Deng et al. (2022); Zhang et al. (2023) proposed to train
an additional policy model to find the best prompt through
reinforcement learning, but their approaches are limited
to prompt optimization within a relatively small search
space (i.e. it is restricted to the prompts that are either ex-
tremely short or within a small edit distance from an initial
prompt). Zhou et al. (2023) proposed a method for automat-
ically generating, scoring and selecting effective instruction
messages m for zero-shot chain-of-thought reasoning, which
is orthogonal and can be potentially combined with our al-
gorithm. Paranjape et al. (2023) introduced a framework
that automatically retrieves demonstrations of related tasks
from a task library and generates CoT solutions for the new
task. However, this framework still requires collective hu-
man efforts to write demonstrations for a diverse set of tasks
in the task library. In contrast, our Reprompting algorithm
enables LLMs to solve complex reasoning tasks without any
human guidance. Additionally, Yoran et al. (2023) proposed
a multi-chain reasoning (MCR) method that prompts LLMs
to combine pieces of information from multiple chains of
thought to predict the final answer, which differs from our
method in two ways: first, MCR combines multiple CoT
solutions to the same question at test time, while Reprompt-
ing combines CoT solutions generated for different training
questions before testing; second, MCR combines solutions
only once, whereas Reprompting iteratively samples new

8

Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling

solutions and recombines them. As a result, Reprompting
generates effective CoT recipes from only a few training
examples, resulting in improved test performance without
slowing down test inference.

6. Conclusion
We introduce Reprompting, an automated prompt inference
algorithm which, without human effort, discovers effective
chain-of-thought (CoT) prompts for each task given a few
question-answer pairs. Experiments on 20 challenging
reasoning tasks show that Reprompting achieves +9.4 higher
accuracy than human-written CoT on average. It also out-
performs self-consistency decoding and the state-of-the-art
prompt optimization algorithms by 11–33 points on average.
Our results also suggest that LLM comparisons can be
highly sensitive to the choice of CoT prompts, further
emphasizing the need for automatic prompt discovery and
optimization using algorithms such as Reprompting.

Acknowledgements
We thank Bill Dolan, Sudha Rao and the reviewers for their
valuable feedback.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Arora, S., Narayan, A., Chen, M. F., Orr, L. J., Guha, N.,

Bhatia, K., Chami, I., Sala, F., and Ré, C. Ask me any-
thing: A simple strategy for prompting language models.
arXiv preprint arXiv:2210.02441, 2022.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. Neural Information Pro-
cessing Systems (NeurIPS), 2020.

Casella, G. and George, E. I. Explaining the gibbs sampler.
The American Statistician, 46(3):167–174, 1992.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf,
H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N.,
Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter,
C., Tillet, P., Such, F. P., Cummings, D., Plappert, M.,
Chantzis, F., Barnes, E., Herbert-Voss, A., Guss, W. H.,
Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I.,
Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A. N.,
Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,
A., Knight, M., Brundage, M., Murati, M., Mayer, K.,
Welinder, P., McGrew, B., Amodei, D., McCandlish, S.,
Sutskever, I., and Zaremba, W. Evaluating large language
models trained on code, 2021. URL https://arxiv.
org/abs/2107.03374.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. PaLM: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Creswell, A., Shanahan, M., and Higgins, I. Selection-
inference: Exploiting large language models for
interpretable logical reasoning. arXiv preprint
arXiv:2205.09712, 2022.

Deng, M., Wang, J., Hsieh, C.-P., Wang, Y., Guo, H., Shu, T.,
Song, M., Xing, E. P., and Hu, Z. Rlprompt: Optimizing
discrete text prompts with reinforcement learning. arXiv
preprint arXiv:2205.12548, 2022.

Fu, Y., Peng, H., Sabharwal, A., Clark, P., and Khot, T.
Complexity-based prompting for multi-step reasoning.
arXiv preprint arXiv:2210.00720, 2022.

Geman, S. and Geman, D. Stochastic relaxation, gibbs dis-
tributions, and the bayesian restoration of images. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-6:721–741, 1984.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the MATH dataset.
CoRR, abs/2103.03874, 2021. URL https://arxiv.
org/abs/2103.03874.

Jojic, A., Wang, Z., and Jojic, N. Gpt is becoming a turing
machine: Here are some ways to program it, 2023.

9

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874

Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. arXiv
preprint arXiv:2205.11916, 2022.

Li, Y., Lin, Z., Zhang, S., Fu, Q., Chen, B., Lou, J.-G., and
Chen, W. On the advance of making language models
better reasoners. arXiv preprint arXiv:2206.02336, 2022.

Liu, Z., Patwary, M., Prenger, R., Prabhumoye, S., Ping, W.,
Shoeybi, M., and Catanzaro, B. Multi-stage prompting
for knowledgeable dialogue generation. In Findings of the
Association for Computational Linguistics: ACL 2022,
pp. 1317–1337, Dublin, Ireland, May 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.
findings-acl.104. URL https://aclanthology.
org/2022.findings-acl.104.

Madaan, A. and Yazdanbakhsh, A. Text and patterns: For
effective chain of thought, it takes two to tango. arXiv
preprint arXiv:2209.07686, 2022.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021.

OpenAI. Gpt-4 technical report, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama,
K., Ray, A., et al. Training language models to fol-
low instructions with human feedback. arXiv preprint
arXiv:2203.02155, 2022.

Paranjape, B., Lundberg, S., Singh, S., Hajishirzi, H., Zettle-
moyer, L., and Ribeiro, M. T. Art: Automatic multi-step
reasoning and tool-use for large language models. arXiv
preprint arXiv:2303.09014, 2023.

Perez, E., Kiela, D., and Cho, K. True few-shot learning
with language models. Advances in neural information
processing systems, 34:11054–11070, 2021.

Press, O., Zhang, M., Min, S., Schmidt, L., Smith, N. A.,
and Lewis, M. Measuring and narrowing the com-
positionality gap in language models. arXiv preprint
arXiv:2210.03350, 2022.

Pryzant, R., Iter, D., Li, J., Lee, Y., Zhu, C., and Zeng,
M. Automatic prompt optimization with “gradient de-
scent” and beam search. In Bouamor, H., Pino, J., and
Bali, K. (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing,
pp. 7957–7968, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.494. URL https://aclanthology.
org/2023.emnlp-main.494.

Roberts, G. O. and Smith, A. F. Simple conditions for the
convergence of the gibbs sampler and metropolis-hastings
algorithms. Stochastic processes and their applications,
49(2):207–216, 1994.

Schick, T. and Schütze, H. Exploiting cloze questions for
few shot text classification and natural language inference.
arXiv preprint arXiv:2001.07676, 2020.

Shwartz, V., West, P., Le Bras, R., Bhagavatula, C., and
Choi, Y. Unsupervised commonsense question answer-
ing with self-talk. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 4615–4629, Online, November
2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.373. URL https://
aclanthology.org/2020.emnlp-main.373.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid,
A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A.,
Garriga-Alonso, A., et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language
models. arXiv preprint arXiv:2206.04615, 2022.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi,
E. H., Zhou, D., et al. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261, 2022.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., and
Zhou, D. Rationale-augmented ensembles in language
models. arXiv preprint arXiv:2207.00747, 2022a.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E.,
and Zhou, D. Self-consistency improves chain of
thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022b.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F.,
Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-thought
prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 35:
24824–24837, 2022.

Yoran, O., Wolfson, T., Bogin, B., Katz, U., Deutch,
D., and Berant, J. Answering questions by meta-
reasoning over multiple chains of thought. arXiv preprint
arXiv:2304.13007, 2023.

Zamfirescu-Pereira, J., Wong, R. Y., Hartmann, B., and
Yang, Q. Why johnny can’t prompt: How non-ai experts
try (and fail) to design llm prompts. In Proceedings of the
2023 CHI Conference on Human Factors in Computing
Systems, CHI ’23, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9781450394215.
doi: 10.1145/3544548.3581388. URL https://doi.
org/10.1145/3544548.3581388.

10

https://aclanthology.org/2022.findings-acl.104
https://aclanthology.org/2022.findings-acl.104
https://aclanthology.org/2023.emnlp-main.494
https://aclanthology.org/2023.emnlp-main.494
https://aclanthology.org/2020.emnlp-main.373
https://aclanthology.org/2020.emnlp-main.373
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581388

Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling

Zelikman, E., Wu, Y., and Goodman, N. D. STaR: Boot-
strapping reasoning with reasoning. arXiv preprint
arXiv:2203.14465, 2022.

Zhang, T., Wang, X., Zhou, D., Schuurmans, D., and Gonza-
lez, J. E. TEMPERA: Test-time prompt editing via rein-
forcement learning. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=gSHyqBijPFO.

Zhang, Z., Zhang, A., Li, M., and Smola, A. Automatic
chain of thought prompting in large language models.
arXiv preprint arXiv:2210.03493, 2022.

Zheng, C., Liu, Z., Xie, E., Li, Z., and Li, Y. Progressive-
hint prompting improves reasoning in large language
models. arXiv preprint arXiv:2304.09797, 2023.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang,
X., Schuurmans, D., Bousquet, O., Le, Q., and Chi, E.
Least-to-most prompting enables complex reasoning in
large language models. arXiv preprint arXiv:2205.10625,
2022.

Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis,
S., Chan, H., and Ba, J. Large language models are
human-level prompt engineers. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=92gvk82DE-.

11

https://openreview.net/forum?id=gSHyqBijPFO
https://openreview.net/forum?id=gSHyqBijPFO
https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-

Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling

Figure A.1: Comparing the CoT recipes inferred through Reprompting using IntructGPT alone versus ChatGPT (for initialization) +
InstructGPT (for sampling).

A. Additional Illustrations
On sensitivity to initialization We have shown that Reprompting can be sensitive to initial recipe generation. Armed with
the optimal prompts discovered with ChatGPT+InstructGPT through Reprompting, InstructGPT can reach test accuracy
equalling or besting ChatGPT on most challenging reasoning tasks. However, on some tasks, such prompts could not be
discovered using InstructGPT itself as the initialization model LLM1. Figure A.1 points to a likely explanation: ChatGPT
can generate a wider range of useful recipes, and whether these initial recipes lead to the correct solution or not, InstructGPT
can follow them and, through Reprompting, refine and correct them iteratively. Thus, as we have shown in our experiments,
with a diverse pool of initial recipes, LLMs that may appear inferior based on their zero-shot performance may end up
performing just as well or better than LLMs whose zero-shot performance is more encouraging. It would be interesting to
see if Reprompting can use a mixture of LLMs in initialization to perform even better, or if humans can be put back into the
loop to provide some initial recipes or some generic instructions on how to generate such recipes.

On transferability of discovered recipes The fact that LLM1 (ChatGPT) can point LLM2 (InstructGPT) in the right
directions for prompt discovery does not mean that the discovered prompts, having been optimized for training performance
on LLM2, will perform well when used to prompt LLM1. In fact, Table 4 indicates that the discovered CoT recipes that
work for one model may not necessarily work for other models. For example, in the case of Temporal Sequences, the best
performance is achieved with a prompt trained with InstructGPT (after initialization with ChatGPT as LLM1). But when
using that prompt on ChatGPT, the test performance is by 18% lower. Figure A.2 illustrates how ChatGPT and InstructGPT
follow the same CoT prompt differently. Following the prompt recipes, the time intervals that need to be reasoned over
are sorted, and among the sorted list, the missing interval was inserted as the possible interval when the person in question
could have performed an activity. InstructGPT follows this procedure with accuracy over 99%, but ChatGPT sometimes
skips the crucial line (for this recipe) with the missing interval within the timeline and therefore obtains suboptimal test
accuracy. However, the best performance of ChatGPT (using the CoT prompt optimized for itself through Reprompting) is
only slightly lower than that of the ChatGPT+InstructGPT combination.

These results suggest that, for a fair comparison between different LLMs, one needs to optimize the CoT prompt for each
LLM using prompt optimization algorithms such as Reprompting.

12

Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling

Figure A.2: An example on Temporal Sequences (BBH) where ChatGPT underperforms InstructGPT using the same CoT prompt
optimized for InstructGPT via Reprompting (using ChatGPT+InstructGPT). ChatGPT fails to correctly execute the recipe as it skips a key
step (the blue underlined text from InstructGPT) to reach the final answer. (The illustration does not show the full prompt that precedes
the puzzle x for brevity; it consists of 5 training examples with worked-out solutions that all follow the same strategy of solving these
types of problems.)

How do the model-generated CoT recipes differ from human-written ones? In the paper, We evaluated the performance
of the CoT prompt discovered through Reprompting and contrasted it with human-written ones. As illustrated by the
example recipes in Figure A.3, the automatically discovered CoT recipes share some similarities to human-written ones
on some tasks (such as Logical Deduction), but differs on other tasks. For instance, on Object Counting, the CoT generated
using Reprompting computes the total number of objects by incrementing the count one by one (e.g. adding 4 to the count 5
by “[6,7,8,9]”), while in the human written recipe, it computes the addition through an arithmetic formula at the end.

13

Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling

(a)

(b)

Figure A.3: Examples of the best-performing CoT recipes inferred via Reprompting on Logical Deduction, Geometric Shapes, Object
Counting, Penguins in a Table, and Temporal Sequences.

14

