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Abstract: Deep neural networks (DNNs) have demonstrated exceptional performance
in image classification. However, their “black-box” nature raises concerns about trust
and transparency, particularly in high-stakes fields such as healthcare and autonomous
systems. While explainable AI (XAI) methods attempt to address these concerns through
feature- or concept-based explanations, existing approaches are often limited by the need
for manually defined concepts, overly abstract granularity, or misalignment with human
semantics. This paper introduces the Enhanced Bottleneck Concept Learner (E-BotCL),
a self-supervised framework that autonomously discovers task-relevant, interpretable
semantic concepts via a dual-path contrastive learning strategy and multi-task regular-
ization. By combining contrastive learning to build robust concept prototypes, attention
mechanisms for spatial localization, and feature aggregation to activate concepts, E-BotCL
enables end-to-end concept learning and classification without requiring human supervi-
sion. Experiments conducted on the CUB200 and ImageNet datasets demonstrated that
E-BotCL significantly enhanced interpretability while maintaining classification accuracy.
Specifically, two interpretability metrics, the Concept Discovery Rate (CDR) and Concept
Consistency (CC), improved by 0.6104 and 0.4486, respectively. This work advances the
balance between model performance and transparency, offering a scalable solution for
interpretable decision-making in complex vision tasks.

Keywords: visual concept; explainable artificial intelligence; image classification

1. Introduction
Interpreting the behavior of deep neural networks (DNNs) has emerged as a critical

challenge in the deployment of these models, particularly in high-stakes domains such
as healthcare [1] and autonomous vehicles [2]. Despite their success in achieving state-
of-the-art performance, DNNs remain predominantly “black-box” models: their decision-
making processes are opaque and difficult to comprehend [3]. This lack of interpretability
hinders trust and impedes verification, making it challenging to ensure model reliability
in safety-critical applications [4]. In sensor-based systems, such as those employed in
autonomous vehicles, medical imaging, and environmental monitoring, the demand for
explainable AI is particularly critical. These systems rely extensively on sensor data to
make real-time decisions that directly affect human safety. Explainable AI (XAI) [5,6] offers
a promising solution by providing transparency through per-pixel relevance information,
thereby elucidating the basis for model decisions.

A substantial body of XAI research has concentrated on providing feature-level expla-
nations, particularly at the pixel or patch level for vision-related tasks [7]. These methods
assign relevance scores to input features—such as individual pixels in an image—indicating
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their significance in the model’s decision-making process. Widely recognized approaches,
such as saliency maps [8], Grad-CAM [9], and integrated gradients [10], are commonly
employed to generate these feature-based explanations. While these methods offer valu-
able insights, they are often criticized for being challenging to interpret without domain
expertise. The relevance information is typically presented at a very granular level, which
can be abstract and unintuitive for non-expert users.

To address this gap, recent advancements in explainable AI (XAI) have introduced
concept-based methods that aim to represent model behavior using high-level, human-
understandable concepts [11]. These approaches seek to align a model’s reasoning with
human cognitive processes by linking model outputs to interpretable concepts, such as
objects, attributes, or scenes. By focusing on the relationship between these concepts and
the model’s decisions, these methods facilitate more transparent explanations that are easier
for humans to comprehend [12]. However, most existing concept-based methods rely on
the explicit definition of concepts or supervision, which limits their generalizability and
scalability. The need for large quantities of labeled data to predefine concepts or reliance
on human expertise in defining meaningful concepts presents significant challenges in
real-world applications.

We propose a novel concept-based explainability method, the Enhanced Bottleneck
Concept Learner (E-BotCL), which leverages self-supervised learning to address the lim-
itations of traditional concept-based methods. E-BotCL represents images by learning
the presence or absence of concepts directly from the target task, without depending on
manually defined concepts or external supervision. E-BotCL encourages the model to
discover task-relevant, human-interpretable semantic concepts. This self-supervised learn-
ing framework enhances E-BotCL’s scalability and explainability, making it suitable for a
broad range of applications without the need for manual annotation or domain expertise.
Through our proposed framework, we aim to make strides toward more interpretable,
reliable, and transparent AI models that can be deployed effectively in real-world scenarios,
with a focus on enhancing both the model’s accuracy and the explainability of its decisions.

2. Related Works
2.1. Explainable AI

Explainable artificial intelligence (XAI) seeks to improve the transparency of decision-
making processes in machine learning models [5,8,12–16], such as deep neural networks,
in response to the growing demand for interpretability and trustworthiness, particularly in
high-risk domains. XAI methods are typically divided into two broad categories [17]: post
hoc explanations and intrinsic interpretability.

Post hoc explanation methods aim to provide insights into a model’s decision-making
after the model has been trained, without modifying the model itself. This category includes
techniques such as saliency maps [8], which highlight regions in the input data (e.g., image
pixels) that have the greatest impact on the model’s predictions, and feature attribution
methods such as LIME [3] and SHAP [18], which approximate decision boundaries by
training interpretable surrogate models on localized data regions. Although post hoc
explanations are valuable, they are often limited by their lack of semantic clarity and the
risk of misinterpretation, as the relevance maps generated may not always align with
human-understandable concepts [19].

In contrast, intrinsic interpretability [20] aims to design models that are interpretable
by their very structure. These models are typically simpler, and their decision-making
processes are more directly comprehensible. Examples of intrinsically interpretable models
include decision trees, linear models, and rule-based systems [21]. However, these models
often face a trade-off between interpretability and performance, as they may fail to capture
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the complexity of data as effectively as more sophisticated, opaque models such deep neural
networks. Recent research has focused on improving the balance between performance
and interpretability, with some efforts dedicated to developing models that retain high
accuracy while maintaining transparent internal processes [22,23].

Despite the progress made in XAI, several challenges remain. A key issue is ensuring
the trustworthiness of explanations. Explanations must be not only interpretable but also
accurate and consistent with the model’s underlying decision-making process. Moreover,
there is an ongoing need for improved tools and metrics to evaluate the quality of expla-
nations, as well as to assess the usability, effectiveness, and potential biases in different
XAI methods.

2.2. Concept-Based Framework for Interpretability

The concept-based framework for interpretability has emerged as a promising ap-
proach to enhancing the transparency of deep learning models, particularly by providing
human-understandable explanations for complex decision-making processes [12,24]. In
contrast to pixel-based or feature-based methods, which explain decisions at a granular
level, the concept-based framework aims to offer high-level, semantically meaningful
explanations by associating model predictions with a set of interpretable concepts. This
approach is inspired by human cognition, where decisions are often based on abstract
concepts that are more comprehensible than raw features.

At its core, the concept-based framework operates by defining a set of concepts that
capture significant patterns or structures in the input data. These concepts can either be
predefined or learned directly from the data. Predefined concepts often stem from do-
main knowledge, such as medical terminology in healthcare or object categories in image
recognition tasks. In contrast, data-driven methods seek to discover these concepts auto-
matically, typically through unsupervised or semi-supervised learning techniques [25–27].
Once the concepts are defined, the model’s decision-making process is articulated in terms
of the presence or absence of these concepts, providing a more intuitive explanation for
human users.

A prominent structure within this framework is the Concept Bottleneck Model (CBM) [24],
which directly links model predictions to concept activations. The CBM introduces a
bottleneck layer that forces the model to rely on a limited set of concepts to make decisions.
As a result, the decision-making process is tightly coupled with the presence or absence
of these predefined concepts, offering a transparent mechanism for interpretation. In this
structure, the classifier is trained not on raw input data but on the binary activations of
concepts, ensuring that the model’s decisions can be traced back to human-understandable
features. This concept has been extended and refined in several studies to handle more
complex datasets, such as images and text, with notable success.

Despite the advantages of concept-based frameworks in providing semantically rich
explanations, designing an appropriate set of concepts remains a critical challenge. Hand-
crafting concepts through domain expertise, while ensuring interpretability, can be labor-
intensive and may not scale well to large, complex tasks. To address this, recent research
has focused on automated concept discovery methods [26,27], where concepts are learned
directly from data. Techniques such as clustering, factorization, and self-supervised learn-
ing have been employed to uncover meaningful concepts that align with human intuition.
For example, in image classification, methods such as attention-based mechanisms and
unsupervised feature learning have been used to discover high-level object concepts with-
out requiring manual annotations [12]. However, while these automatically discovered
concepts can improve scalability and flexibility, they may not always align with human-
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understandable semantics, potentially leading to interpretations that are less intuitive or
harder to verify [28,29].

Moreover, the semantic gap between learned concepts and human understanding
remains a persistent challenge. Although concept-based frameworks aim to provide ex-
planations that are easier for humans to interpret, concepts learned through data-driven
methods may still lack the richness and clarity of those defined by human experts. To
address this, some studies have proposed hybrid approaches that combine predefined and
learned concepts, thereby balancing interpretability with model flexibility [12].

2.3. Contrastive Learning

Contrastive learning has become a cornerstone technique in self-supervised representa-
tion learning, particularly in the field of computer vision. The core idea behind contrastive
learning is to learn discriminative features by minimizing the distance between similar
samples while maximizing the distance between dissimilar ones. Early approaches to
contrastive learning, such as SimCLR [30] and MoCo [31], have significantly advanced the
state of the art by utilizing a large number of negative samples or maintaining a memory
bank to sustain informative contrast. However, this reliance on numerous negative samples
or memory storage introduces substantial computational overhead and complexity, posing
challenges for scalability and efficiency, especially in large-scale settings.

To mitigate these drawbacks, SimSiam [32] introduces a more streamlined approach
that eliminates the need for negative pairs altogether. Instead of relying on negative sam-
ples, SimSiam employs a stop-gradient mechanism to prevent representation collapse
during training, while still enabling the model to learn meaningful features. This approach
involves two key components: a projector network that transforms the learned representa-
tions into a latent space and a predictor network that attempts to predict the representation
of one view from another. Notably, SimSiam’s reliance on positive pairs, which are different
augmentations of the same image, demonstrates that negative pairs are not a necessary
condition for obtaining effective representations. This finding challenges the traditional
paradigm in contrastive learning, offering a more computationally efficient framework for
self-supervised learning.

SimSiam’s success largely depends on the stop-gradient mechanism, which prevents
trivial solutions, such as the collapse of all embeddings into a single point—a common
issue in contrastive learning when negative samples are absent. Empirical evaluations
on the ImageNet dataset reveal that SimSiam not only achieves competitive performance
when compared to methods such as MoCo v2 [30] and BYOL [33] but also requires fewer
hyperparameters and less computational resources. As a result, SimSiam presents an
attractive alternative for practitioners seeking efficient self-supervised learning methods.
Moreover, its simplicity makes it highly scalable and easier to implement than more
complex methods that depend on negative sampling or large memory banks.

In the domain of interpretable AI, SimSiam’s ability to learn structured, high-quality
representations is particularly promising for concept-based learning frameworks. Concept-
based learning seeks to align model representations with human-interpretable concepts,
such as object parts, textures, or semantic categories. Unlike traditional supervised ap-
proaches, where concepts must be manually defined or pre-annotated, self-supervised
contrastive methods such as SimSiam have the potential to autonomously discover mean-
ingful features from the data. This self-discovery of features not only enhances model
interpretability but also offers the potential to bridge the gap between high performance
and explainability.Furthermore, recent works [34] have underscored the importance of
model interpretability in real-world applications, where transparency is critical to ensuring
trust and accountability. Thus, SimSiam’s capacity for learning structured representations
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could provide valuable insights into how deep learning models can achieve both strong
performance and greater transparency.

Despite these compelling advantages, there remain open questions and areas for
further improvement. For example, although SimSiam’s reliance on positive pairs reduces
the need for negative samples, the method still necessitates careful design of augmentation
strategies to ensure the diversity of positive pairs. Furthermore, although SimSiam’s
simplicity enhances its computational efficiency, its scalability in highly complex tasks
beyond image classification, such as object detection and video processing [35,36], remains
to be fully evaluated.

3. Model
3.1. Preliminary

Figure 1 provides an overview of the BotCL framework [12] for training concept-
based models. The process begins with the input image x, from which feature maps
F are extracted using a backbone convolutional neural network (CNN). These feature
maps are subsequently passed to the concept extractor, which performs two critical tasks: it
generates the concept bottleneck activation vector t, representing the activation probabilities
of various visual concepts, and it extracts concept features G corresponding to specific
regions of interest in the image. The vector t is then forwarded to a classifier, which
produces the final score s for the image classification. Throughout the training, the concept
prototypes are constrained using self-supervised and regularization techniques, with both
t and G guiding the learning process.

Figure 1. Overview of the concept extractor framework.

The concept extractor leverages a slot attention mechanism [37] to identify and extract
relevant visual concepts from images. Initially, positional encodings P are incorporated
into the feature map F to preserve spatial information, yielding a modified feature map
F′ = F + P. This modified map is then flattened into a 2D tensor of dimensions l× d, where
l = hw represents the number of spatial locations, while d is the dimensionality of the
feature vectors. The slot attention mechanism computes the attention weight ap for each
concept p across the spatial dimensions, which indicates the spatial distribution of each
concept. The features in F corresponding to concept p are aggregated to form the concept
feature gp, which is calculated as the attention-weighted average of image features along
the spatial dimension.

For classification, a simple fully connected (FC) layer, without any bias terms, is
employed. The concept activation vector t = (t1, t2, . . . , tk)

⊤ serves as the input to the
classifier, which models the concept bottleneck. Let M represent the learnable weight
matrix. The predicted class label ŷ is computed as

ŷ = Mt. (1)
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Here, M is the vector corresponding to class k, and Mkp denotes the pth element of this
vector. A positive value of Mkp suggests that concept p frequently co-occurs with class k in
the dataset, supporting the classification of the image as belonging to class k. Conversely,
a negative value of Mkp implies that concept p rarely co-occurs with class k, offering less
support for the classification.

Given the absence of concept labels, a self-supervised learning approach is employed
for concept discovery. To address various target tasks, two distinct loss functions are
employed: one for learning visual representations and another for capturing relationships
between concepts.

Reconstruction Loss: The SENN [25] framework adopts an autoencoder-like structure
to learn more accurate representations. This structure assumes that the visual elements
in an image are tightly connected to their spatial locations, enabling discrete concepts to
reconstruct the original image effectively. A reconstruction loss is designed based on this
assumption, where the decoder D receives the concept activation t and reconstructs the
image. The reconstruction loss is formulated as

lrec =
1
|B| ∑

x∈B
∥D(t)− x∥2, (2)

where |B| is the mini-batch of images.
Contrastive Loss: Since the composition of natural images is inherently arbitrary, the

information in the concept activations t alone may not suffice for accurate reconstruction.
To address this, a contrastive loss function is introduced using image-level labels from the
target classification task. Let t̂ = 2t− 1k be a vector of ones. If a pair of concept activations
(t̂, t̂′) corresponds to the same class (i.e., y = y′, where y and y′ are the labels corresponding
to t̂ and t̂′, respectively), they are expected to be similar, as the images should share a
similar set of concepts. Conversely, if they belong to different classes, the activations should
be dissimilar. The contrastive loss is then formulated as

lret = −
1
|B|∑ α(y, y′) log J(t̂, t̂′, y, y′), (3)

where α is a weight term that adjusts the contribution of each class to the overall loss,
addressing class imbalance. The function J is defined as

J(t̂, t̂′, y, y′) =

{
σ(t̂⊤ t̂′) for y = y′

1− σ(t̂⊤ t̂′) otherwise
(4)

A concept regularizer is introduced to constrain the concept prototypes {cp} and their
corresponding features {gp}. This regularizer ensures that each concept is stable across
images, particularly when tpis close to 1. The consistency loss is defined using cosine
similarity as

lcon = − 1
p ∑

p
∑

gp ,g′p

(sim(gp, g′p)
1

|Hp|(|Hp| − 1)
), (5)

where the second summation iterates over all concept features within the set Hp, ensuring
similarity between features for similar concept activations.

To ensure diversity among concepts, a diversity loss term is introduced. This en-
courages each concept to correspond to distinct visual elements. The diversity loss is
formulated as

ldis = ∑
p,p′

(sim(ḡp, ¯gp′)
1

p(p− 1)
), (6)
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where the summation is taken over all pairs of concepts, ensuring that different concepts
correspond to different visual features.

Finally, a quantization loss is introduced to enforce binarization of the concept acti-
vation vector t. This loss ensures that the activation values are close to 0 or 1, which is
beneficial for interpretability:

lqua =
1

p|B| ∑
x∈B

∥∥abs(t̂)− 1p
∥∥2 (7)

where abs(·) represents the element-wise absolute value operation, while ∥ · ∥ denotes the
Euclidean norm.

For the target classification task, the softmax cross-entropy loss, denoted as lcls, is
applied. The overall loss function, Lbase, combines the classification loss with various
regularization terms:

Lbase = lcls + λRlR + λconlcon + λdisldis + λqualqua, (8)

where lR is either lrec or lret, depending on the target domain, and λqua, λcon, λdis, and λR

are the regularization coefficients that balance the contributions of each term.

3.2. E-BotCL

E-BotCL is an enhanced iteration of the original BotCL framework [12], designed to im-
prove concept discovery and classification robustness by integrating a dual-path contrastive
learning strategy, inspired by SimSiam [32]. Given a dataset S = {(xi, yi) | i = 1, 2, . . . , N},
where xi represents an image and yi is the target class label associated with xi from the set
Ω. Figure 2 details the architecture of the Contrastive Concept Extractor, where PE denotes
position embedding.

Figure 2. Overview of the contrastive concept extractor framework.

Given an input image x, the backbone convolutional neural network B extracts a
feature map F = B(x) ∈ Rd×h×w. This feature map F is then passed through the Contrastive
Concept Extractor eC, where C is a matrix whose pth column vector cp represents a learnable
concept prototype. The Contrastive Concept Extractor produces a concept bottleneck
activation tp ∈ [0, 1]l , indicating the presence of each concept, as well as concept features
G ∈ Rd×p corresponding to the regions where each concept is present. The concept
activation t1 is subsequently used as input to the classifier to compute the classification
score s ∈ [0, 1]|Ω|.
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3.3. Contrastive Concept Extractor

The feature map F is first processed through a 1× 1 convolutional layer to project it
into a latent space, followed by batch normalization and ReLU activation. This operation
yields the base feature representation:

Fi = ReLU(Norm(Conv1×1(F))). (9)

Inspired by Siamese networks, the model employs two augmented views (F1, F2) of Fi

for self-supervised contrastive learning: Branch 1 retains the original features F1. Branch 2
applies stochastic dropout (simsiam_drop) to F2 as a form of feature augmentation.

Both feature representations are then combined with position embeddings and re-
shaped into sequential features:

F
′
i = Reshape(Fi + P), i ∈ {1, 2}. (10)

The slot attention mechanism [37,38] is employed to compute the spatial attention of
concept p between cpi and F′i . Let Q(cpi) ∈ Rd and K(F′i ) ∈ Rd×l represent the nonlinear
transformations of cpi and F′i , respectively. These transformations are implemented using
multilayer perceptrons (MLPs) composed of three fully connected (FC) layers with ReLU
activation between them. The attention ap1 ∈ [0, 1]l is computed using a regularization
function φ as follows:

ap1 = φ(Q(cp1)
⊤K(F′1)). (11)

This attention mechanism identifies the spatial location of concept p in the image. If
concept p is absent, the corresponding entries of ap1 remain close to zero. To quantify the
presence of each concept, we compute the concept activation score tp by aggregating the
spatial dimension of ap1 as tp = tanh

(
∑n ap1n

)
, where ap1n is the nth element of ap1.

3.4. Slot-Based Feature Aggregation

During training, we aggregate the features in F corresponding to concept p into the
concept feature gp1, as follows:

gp1 = Fap1, (12)

which provides the weighted average of the image features in the spatial dimension, with
attention applied.

3.5. E-BotCL Loss

The following pseudocode outlines the process for calculating the contrastive learning
loss in a PyTorch-like framework (Algorithm 1).

The slot-updated prototypes z1 and z2 are passed through a prediction network h,
which projects them into a shared representation space. To align the cross-branch represen-
tations, a negative cosine similarity loss function is employed. This is expressed as

Lcont = 1− 1
2
[D(p1, z2) + D(p2, z1)], (13)

where D(p, z) represents the negative cosine similarity measure, p1 = h(z1) and p2 = h(z2)

are the predictions for z1 and z2 obtained from the prediction network h, and z1 and z2 are
the slot-updated prototypes. The operation D computes the cosine similarity between the
predictions and the stop-gradient versions of the prototypes (i.e., z1 and z2 are detached
during the loss calculation). The loss function aims to maximize the similarity between the
projected representations of z1 and z2 across different branches by minimizing the negative
cosine similarity.
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The overall loss is defined as the sum of the contrastive loss and the base loss:

L = Lcont + Lbase. (14)

Algorithm 1: Contrastive Loss Pseudocode, PyTorch-like
Input: Input batch x
Output: Contrastive Loss
Require: Backbone network f , projection mlp g, prediction mlp h, cosine

similarity loss D
1 Function Contrastive Loss(x):
2 x1 ← backbone(x);
3 x2 ← clone(x1);
4 x2 ← dropout(x2);
5 xpe

1 ← x1 + position_encoding(x1);
6 xpe

2 ← x2 + position_encoding(x2);
/* Slot attention for both views */

7 updates1, attn1 ← slot_attention(xpe
1 , x1);

8 updates2, attn2 ← slot_attention(xpe
2 , x2);

9 z1 ← reshape(updates1, flatten);
10 z2 ← reshape(updates2, flatten);

/* Prediction heads (mlp) */
11 p1 ← h(z1);
12 p2 ← h(z2);
13 z1 ← z1.detach();
14 z2 ← z2.detach();

/* contrastive loss computation */

15 Lcont ← 1−
(

D(p1,z2)+D(p2,z1)
2

)
;

16 return Lcont;

17 Function Cosine Similarity(p, z):
18 z← z.detach();
19 p← normalize(p);
20 z← normalize(z);
21 return −(p · z).sum(dim = 1).mean();

4. Results
4.1. Experimental Settings

We evaluated E-BotCL on the CUB200 [39] and ImageNet [40] datasets. For both
CUB200 (using the same data split as in [24]) and ImageNet, we employed a pre-trained
ResNet-18 [41] as the backbone, reducing the channel size from 512 to 128 using a 1 × 1
convolutional layer. We selected p = 20 as the number of concepts for both datasets. The
images were resized to 256× 256 and then cropped to 224× 224. During training, random
horizontal flipping was applied as the sole data augmentation technique. The weights
for each loss term were set to the default values: λqua = 0.1, λcon = 0.01, λdis = 0.05, and
λR = 0.1. The learning rate was set to 0.0001, the number of epochs was set to 60, and the
batch size was set to 128.

4.2. Interpretability

Figure 3 visually contrasts the top five salient concepts identified by the E-BotCL
and BotCL models in bird image recognition through heatmap analysis. This comparison
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highlights the differences between the two models in terms of interpretability and con-
ceptual accuracy. From the perspective of concept identification, E-BotCL demonstrates a
qualitative improvement over BotCL. Specifically, E-BotCL achieves finer granularity in
locating key features within the image. For instance, in the recognition of a bird’s head and
back, the heatmap produced by E-BotCL shows highly focused activation areas, distinctly
separating these two features. In contrast, BotCL often exhibits numerous regions with no
concept activation. Moreover, BotCL’s concept activation map sometimes confuses the leg
region with the background or abdomen, whereas E-BotCL correctly identifies the legs as
distinct concepts, forming well-defined attention regions. This ability to capture spatially
separated yet semantically related concepts significantly enhances the interpretability of
the model’s decision-making process.

Figure 3. Visualization comparison of five key body parts between BotCL and E-BotCL on the same
input image.

In addition, Figure 4 shows examples of concept activations learned by E-BotCL on the
CUB200 dataset, further illustrating the model’s capacity for fine-grained interpretability. E-
BotCL not only distinguishes between various body parts of a bird as independent concepts
(e.g., cpt0 representing the bird’s wings and cpt10 representing the bird’s head) but also
identifies more subtle and intricate patterns present on the bird’s body. For example,
the concepts activated for the bird’s spots (cpt12 and cpt13) and the stripes on its wings
(cpt15) are clearly visible in the figure, reflecting the model’s ability to recognize and isolate
fine-grained features that are crucial for concept explanation. These results emphasize the
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enhanced granularity and flexibility of the E-BotCL framework in learning both the broader
structural components and the finer texture-based details, which contributes significantly
to improving the model’s ability to explain concepts.

Figure 4. Examples of activated concepts learned from the CUB200 dataset.

By effectively capturing both high-level body parts and low-level texture patterns,
E-BotCL not only enhances the transparency of the decision-making process but also
strengthens the model’s ability to provide clear and interpretable explanations for the
concepts it identifies.

We set the number of concepts to 20 and selected the top 20 activated samples for each
concept to analyze the activation patterns. The experimental results clearly demonstrate
that all concepts in the E-BotCL method exhibited activation, as illustrated in Figure 5.
This indicates a more consistent and robust activation across concepts than in the BotCL
method, which showed notable shortcomings. Specifically, BotCL failed to activate samples
for concepts cpt1, cpt14, and cpt17. Moreover, the activation distribution for the remaining
concepts in BotCL was sparse, with concept cpt3 having only two activated samples;
concepts cpt4, cpt6, cpt7, and cpt10 having four each; and concept cpt12 having three
activated samples. This overall scarcity of activated samples suggests that the BotCL
method struggles to generate meaningful and well-represented concepts, resulting in a less
effective concept activation process.

Figure 5. Concept activation status within each concept.
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To further assess the concept explanation performance, we quantitatively compared
the internal similarity within each concept for both E-BotCL and BotCL. Higher internal
similarity indicates better alignment and coherence within the concept. As shown in
Figure 6, the internal similarity for the concepts generated by E-BotCL was consistently
superior to that of BotCL, signifying that E-BotCL produces more coherent and tightly
defined concepts. This higher similarity is indicative of the method’s ability to capture
more accurate and consistent concept representations, which is essential for interpretability
in model decision-making.

Figure 6. Maximum cosine similarity within each concept category.

Additionally, we evaluated the degree of independence between concepts, where a
lower independence value indicates a higher degree of overlap and interaction between
concepts—often a desirable characteristic in complex models that aim to reflect real-world
semantic relationships. The Distinctiveness Average Similarity (DAS) for E-BotCL was 0.592,
outperforming the 0.578 achieved by BotCL. This observed difference can be attributed
to the fact that BotCL generates certain meaningless concepts that do not exhibit strong
activation patterns or meaningful relationships with other concepts, leading to lower
internal similarity and higher independence. In contrast, E-BotCL produces concepts
that, while distinct, demonstrate a degree of overlap in their activations. This overlap
suggests that the concepts in E-BotCL are more semantically coherent and interrelated,
which ultimately leads to the observed higher overall similarity.

4.3. Classification Performance

We conducted a comprehensive comparison of the performance of E-BotCL with
BotCL, k-means clustering, Principal Component Analysis (PCA) (re-implemented
from [12,16]), and other leading concept-based models. The results are summarized in
Table 1. Notably, E-BotCL outperforms all baseline methods, achieving the highest accuracy
on both the CUB200 and ImageNet datasets. This reinforces our hypothesis that contrastive
self-supervision plays a pivotal role in facilitating effective concept discovery, providing
both interpretability and robustness to the learned representations.

To further understand the relationship between the number of concepts and classifi-
cation accuracy, we explored this dynamic for both E-BotCL and BotCL on the CUB200
dataset. As depicted in Figure 7, E-BotCL maintains strong performance when the number
of concepts is between 20 and 200. This range demonstrates that the method is capable of
adapting well to datasets of varying sizes, consistently delivering competitive accuracy
even for smaller to medium-sized concept sets. In particular, E-BotCL excels in situations
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where the number of concepts is neither too small nor too large, offering a balance that
ensures high-quality concept learning.

Table 1. Performance Comparison of Classification Accuracy. The best concept-based method is
highlighted in bold. For ImageNet, the top 200 classes were used.

CUB200 ImageNet

k-means [16] 0.063 0.427
PCA [16] 0.044 0.139
SENN [25] 0.642 0.673
ProtoPNet [42] 0.725 0.752
BotCL 0.725 0.768
E-BotCL 0.726 0.770

Figure 7. Impact of the number of concepts (p) on BotCL and E-BotCL classification accuracy.

On the other hand, when the number of concepts is either below 20 or above 200, BotCL
emerges as the superior model. These observations suggest that, while E-BotCL is robust
within an optimal concept range, BotCL may be more effective in scenarios that involve
either a very small or a very large number of concepts. This indicates that the effectiveness of
concept-based learning approaches is significantly influenced by the scale and distribution
of concepts, with E-BotCL showing particular promise for moderate ranges. These results
collectively confirm that the dual-path contrastive learning strategy employed by E-BotCL
contributes significantly to both concept discovery and classification performance.

4.4. User Study

The user study aims to evaluate the performance of E-BotCL in human interpretability
using real-world datasets. Participants were tasked with observing test images annotated
with concept attention maps and selecting the phrase from a predefined vocabulary that
most accurately describes the concept (i.e., the attended region). If no consistent visual
element could be identified, participants were allowed to choose “none”. For each concept
in the CUB200 dataset, 20 participants were recruited for evaluation. For both E-BotCL
and BotCL, we selected 200 concept attention maps for each method to be used in the
user evaluation.
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Table 2 compares the performance of two methods, BotCL and E-BotCL, across three
key metrics [12]: Concept Discovery Rate (CDR), Concept Consistency (CC), and Mutual
Information between Concepts (MIC). These metrics were selected to provide a compre-
hensive assessment of the methods’ effectiveness in concept learning and interpretability,
particularly in terms of their ability to discover and express concepts.

Table 2. Results of user study.

CDR (↑) CC (↑) MIC (↓)

Mean Std Mean Std Mean Std

BotCL 0.3896 0.4527 0.2466 0.3361 0.2489 0.0787
E-BotCL 1.0000 0.0000 0.6952 0.1396 0.1706 0.0512

CDR measures the proportion of participants who successfully identify and generalize
visual elements as valid concepts. A higher CDR indicates that participants are better at
recognizing consistent and representative visual features from the data, thereby forming
clearer concepts. E-BotCL performs exceptionally well in terms of CDR, suggesting that
the method is highly consistent in the concept discovery process, with all participants
successfully identifying and generalizing the concept. In contrast, BotCL shows significant
variability in its CDR, indicating that BotCL has unstable performance in concept discovery
and struggles to provide consistent visual feature guidance for all participants.

CC quantifies the degree of agreement between participants in their expressions of the
same concept, reflecting the method’s effectiveness in guiding participants toward a consis-
tent understanding of the concept. A high CC value suggests that different participants use
similar language and terminology to describe the same concept, indicating that the concept
is both clear and stable. The experimental results reveal that E-BotCL achieves a CC mean
of 0.6952 with a standard deviation of 0.1396, demonstrating its ability to effectively guide
participants toward a highly consistent conceptual understanding, with good stability
across different participants. In contrast, BotCL’s CC is 0.2466 with a standard deviation
of 0.3361, showing considerable fluctuation and highlighting its limitations in ensuring
concept consistency, with substantial variation in participants’ understanding.

MIC reflects the similarity of response distributions between different concepts, with
lower values indicating greater differentiation between concepts and avoidance of overlap.
For an effective concept learning method, the MIC should be as low as possible to ensure
that each concept remains sufficiently distinct. E-BotCL excels in MIC, indicating that it
effectively minimizes redundancy between concepts, preventing excessive overlap. In
contrast, BotCL’s MIC suggests some degree of overlap and information redundancy
between concepts, leading to poorer differentiation.

Overall, E-BotCL outperforms BotCL on all three metrics, providing further evidence
of its superiority in enhancing the quality of concept discovery and learning. Specifically,
in the context of interpretability and model transparency, E-BotCL better supports model
explainability, ensuring that the learned concepts not only exhibit high consistency in
expression but also offer clearer and more distinguishable representations.

4.5. Ablation Study

The ablation study presented in Table 3 examines the impact of different components
of the E-BotCL framework on the CUB200 dataset. Specifically, we evaluate the inclusion of
Concept Learning (CL) and Multi-Task Loss (MTL) alongside the baseline BotCL approach
in terms of accuracy, model complexity (number of parameters), training time, and GPU
memory consumption.
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Table 3. Ablation study of E-BotCL components on CUB200 dataset.

BotCL CL MTL Acc #Params Training Time GPU Memory

✓ 0.7733 14.37 M 65 min 6.8 GB
✓ ✓ 0.7758 15.61 M 83 min 7.1 GB
✓ ✓ 0.7765 16.10 M 96 min 9.3 GB
✓ ✓ ✓ 0.7772 17.34 M 107 min 9.6 GB

From the results, we observe that the baseline BotCL model achieves an accuracy
of 0.7733 with a parameter count of 14.37 M. Introducing the CL component improves
accuracy to 0.7758 but comes with an increase in model complexity (15.61 M parameters)
and a rise in training time from 65 to 83 min. Similarly, adding the MTL component to
BotCL results in an accuracy of 0.7765 while further increasing the parameter count to
16.10 M and requiring 96 min for training. The full E-BotCL model, which incorporates
both CL and MTL, achieves the highest accuracy (0.7772). However, this comes at the cost
of additional computational demands, with a parameter count of 17.34 M, a training time
of 107 min, and increased GPU memory consumption of 9.6 GB.

These results indicate that both CL and MTL contribute to performance improvements,
albeit at the expense of higher computational costs. The incremental accuracy gains suggest
that the inclusion of these components enhances the model’s interpretability and robustness
without significantly compromising efficiency. Therefore, the full E-BotCL framework
represents a balanced trade-off between accuracy and computational resources, making it a
viable approach for interpretable image classification tasks.

5. Conclusions
This study addresses the critical challenge of balancing model performance and

interpretability in deep learning by introducing the Enhanced Bottleneck Concept Learner
(E-BotCL). By integrating self-supervised contrastive learning, attention mechanisms, and
multi-task regularization, E-BotCL autonomously discovers human-interpretable semantic
concepts, eliminating the need for manual annotations or predefined concept sets. The
dual-path contrastive framework, inspired by SimSiam, facilitates robust concept prototype
learning, while the slot-based attention mechanism and feature aggregation strategies
ensure precise spatial localization and semantic alignment of the discovered concepts.

Experimental results on the CUB200 and ImageNet datasets demonstrate the superior-
ity of E-BotCL over existing concept-based models, achieving state-of-the-art classification
accuracy rates of 72.6% and 77.0%, respectively, while maintaining high interpretability.
Notably, E-BotCL excels in concept consistency and distinctiveness, as evidenced by quan-
titative metrics (e.g., higher intra-concept similarity) and qualitative visualizations (e.g.,
accurate localization of bird body parts and patterns). These findings underscore the
framework’s ability to bridge the semantic gap between low-level features and high-level,
human-understandable concepts.

This work significantly advances the practical application of explainable AI in domains
that necessitate transparent decision-making, including healthcare, autonomous systems,
and sensor-driven technologies. By enhancing the interpretability of deep learning models,
particularly within sensor-based applications, our approach contributes to the development
of more reliable and trustworthy sensor systems. For instance, in the context of autonomous
vehicles, the ability to explain how sensor data (from cameras, LiDAR, and radar) informs
decision-making can substantially improve both safety and user trust. Similarly, in medical
sensor technologies, offering interpretable AI-driven insights into diagnostic sensor data
can empower clinicians to make more informed and accurate decisions. Future research
could focus on extending E-BotCL to multimodal tasks, refining concept diversity through
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adversarial training, or incorporating domain-specific constraints to enhance performance
in specialized applications.
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