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Abstract

The lack of non-English language data in spe-
cific fields greatly hinders the creation of Nat-
ural Language Processing (NLP) tools bene-
ficial to professionals. This paper introduces
TransBERT, a novel framework capable of pre-
training a Language Model (LM) using solely
synthetically translated text. This study focuses
on the French language within the life sciences
sector to evaluate the effectiveness of this ap-
proach. The research includes a comprehen-
sive statistical approach based on an existing
Domain-Specific (DS) benchmark. Alongside
a vast corpus of 36.4GB of raw text, featuring
22M translated PubMed abstracts, both a Pre-
trained Language Model (PLM) and a tokenizer
were trained on the synthetically translated cor-
pus. The model effectively addresses the short-
age of DS PLMs for non-English languages, re-
sulting in significant improvements that outper-
form previous State-of-the-Art (SOTA) mod-
els with statistical significance across various
downstream tasks, potentially setting a new
SOTA in multilingual and DS NLP solutions.
The modular architecture of the framework fur-
ther enables the demonstration of the impact
of DS tokenizers in tasks such as NER. The
results, corpus, code and models are publicly
available to encourage further study in this area.

1 Introduction

PLMs have revolutionized the field of NLP by
leveraging large-scale datasets and powerful neu-
ral network architectures to learn rich linguistic
representations. These models, such as BERT (De-
vlin et al., 2019), GPT (Radford et al., 2018), and
T5 (Raffel et al., 2019), are pre-trained on vast
amounts of text data in an unsupervised manner,
enabling them to capture intricate patterns and nu-
ances of human language.

Despite the success of PLMs in English and
other high-resource languages, there is a significant
lack of DS PLMs for many languages other than

English. This scarcity is primarily due to the lim-
ited availability of large-scale, high-quality corpora
required for training such models. Additionally, the
majority of NLP research and development has his-
torically focused on English, leading to a disparity
in resources and tools available for other languages.
Consequently, many non-English languages, es-
pecially those with fewer speakers or less digital
presence, do not benefit from the advancements in
PLMs technology, hindering the development of
robust NLP applications in these languages.

Recent advancements in Machine Translation
(MT) have significantly improved both the quality
and efficiency of translated text. SOTA models,
such as Transformer-based (Vaswani et al., 2017)
architectures, have demonstrated remarkable ca-
pabilities in capturing context and producing flu-
ent translations. Techniques like back-translation,
transfer learning, and multilingual training have
further enhanced the performance of translation
systems, enabling them to handle a wide range
of languages and domains with greater accuracy.
Moreover, the integration of large-scale parallel
corpora and the use of pre-trained language mod-
els have reduced the need for extensive labeled
data, making it feasible to generate high-quality
translations even for low-resource languages with
PLMs such as M2M-100 (Fan et al., 2020) which is
able to handle 100 languages. These improvements
have paved the way for more effective cross-lingual
applications and have facilitated the development
of DS language models in various languages.

In this paper, we present several key contribu-
tions to the field of NLP: (1) We introduce a
novel framework that demonstrates the feasibil-
ity of training a PLM using solely synthetically
translated data. This method capitalizes on MT
advances to create high-quality training sets for
low-resource languages and enhances DrBench-
mark (Labrak et al., 2024) with important features
such as Hyperparameter Optimization (HPO) and



5-fold cross-validations, adding robust statistical
testing to a French life science benchmark. (2) We
provide a substantial corpus consisting of 36.4GB
comprising about 22M translated abstracts from
PubMed, which serves as a valuable resource for
training and evaluating PLMs in the biomedical do-
main in French. (3) We released both a PLM and
a tokenizer specifically tailored for the French lan-
guage in the context of Life Sciences. This model
addresses the scarcity of DS PLMs for languages
other than English and showcases significant im-
provements in various downstream tasks, thereby
advancing the SOTA in DS NLP applications. (4)
With our framework’s modular design, we high-
light the impact of DS tokenizers on tasks such as
Named Entity Recognition (NER). (5) We make
our results, corpus, code and models publicly avail-
able to encourage further research in this area and
facilitate the development of NLP tools for low-
resource language/domain pairs.

2 Related Work

In (Isbister et al., 2021), sentiment analysis is ap-
proached in four low-resource Scandinavian lan-
guages using three different methods. The first
approach fine-tunes a native monolingual PLM on
the original downstream task datasets, the second
translates each sequence of the downstream task
datasets into English and then fine-tunes an En-
glish PLM on the translated data, and finally the
third fine-tunes a multilingual PLM directly on the
native downstream task datasets. Generally, the
results favor the third method, which employs the
multilingual model. However, it is worth noting
that fine-tuning the English model with translated
data generally produces superior results compared
to fine-tuning the low-resource language PLM.

The scarcity of data for Luxembourgish, a lan-
guage with limited resources and a related to Ger-
man, was tackled by partially translating unambigu-
ous words from a high-resource auxiliary language
to train a LM (Lothritz et al., 2022). The research
evaluated four different models: mBERT, a Bidi-
rectional Encoder Representations from Transform-
ers (BERT) focused exclusively on Luxembourgish,
a BERT combining Luxembourgish and German,
and LuxemBERT, a model trained on mixed cor-
pora with partial translations. LuxemBERT sug-
gests superior performance compared to mBERT,
however below statistical significance.

After the introduction of EInBERTeu (Urbizu

et al., 2022), a PLM trained on a corpus of 351M
words in Basque, a strategy has been implemented
using synthetic translated data to improve the cor-
pus size of this low-resource language (Urbizu
et al., 2023). Using Spanish as the auxiliary lan-
guage, a MT Transformer Base model has been
trained on 8.6M parallel sentences in order to trans-
late a corpus from Spanish to Basque. Evaluated on
BasqueGLUE (Urbizu et al., 2022), results show
that the PLM trained solely on synthetic data is
competitive, although it does not outperform the
model trained only on a native Basque corpus. A
final experiment that tweaks the native/translated
data ratio suggests that the addition of synthetic
data enhances the native PLM performance.

In their paper, (Phan et al., 2023) enhance Mtet
(Ngo et al., 2022), the current SOTA MT model in
the English-to-Vietnamese direction by injecting
synthetic biomedical parallel text into its training
corpus using a self-training approach (He et al.,
2019). Although the MT model size is not dis-
closed, the fine-tuned MT system outperforms the
models to which it is compared, that is, M2M-100,
Google Translate and Mtet, in two translation test
sets covering both general and biomedical domains.
The resulting translation model is used to gen-
erate ViPubmed, a Vietnamese-translated corpus
comprising 20M abstracts, as well as ViMedNLI,
a benchmark dataset generated by translation of
MedNLI (Romanov and Shivade, 2018) and refined
with human experts. Subsequently, ViPubmed is
used to keep pre-training ViT5 (Phan et al., 2022),
the first pre-trained Text-to-Text Transfer Trans-
former (T5) for the generation of the Vietnamese
language, while ViMedNLI is used for fine-tuning.
ViPubMedT35, the final model, outperformed mod-
els including ViT5 in ViMedNLI and acrDrAid, an
acronym disambiguation task, while being close
second in a summarization task, showing that us-
ing artificially translated data can improve model
performance.

3 TransCorpus

3.1 MEDLINE/PubMed Abstracts Collection

For the building of this life sciences corpus, the
2021 MEDLINE/PubMed Baseline Repository
(MBR), encompassing 31M citations, and updates
up until April 2021 was downloaded. Then, each
citation in the dataset that includes a PMID, a title,
and an abstract is kept, subsequently, its raw text
is modified by substituting any sequence of one or



more whitespace characters with a single space. An
example of a title and abstract after modification,
as it would appear prior to translation can be found
in Appendix A.1.

A considerable amount of citations lacks one of
the three essential attributes, i.e. title, abstract, or
PMID. Consequently, after filtering the complete
dataset, our corpus comprises about 22M abstracts.
Despite a few missing unknown values, a compre-
hensive comparison of our corpus statistics against
several models can be found in Appendix A.2. De-
spite both BioBERT (Lee et al., 2019) and Pub-
MedBERT (Gu et al., 2020) have a version that
also includes PubMed Central (PMC) full-text ar-
ticles, only those that use PubMed are displayed
for a better comparison. This juxtaposition is cru-
cial for understanding the scale of data that similar
models have been trained on, which directly im-
pacts their performance and applicability in various
NLP tasks.

3.2 Large Scale Translation Process

To select the MT model among different candidates
both a qualitative and quantitative analysis were
conducted. Figure 1 shows the quantitative analysis
based on a 1000-abstracts sample, comparing (a)
the input level by examining the number of tokens
per sentence or abstract, (b) the translation time
per abstract by both model sizes and translation
methods (i.e. abstract or sentence-wise), and lastly,
(c) the word distribution after translation for both
translation methods and model sizes compared to
the original distribution methods.

Quantitatively, Figure 1a clearly demonstrates
that when translations are carried out by sentence,
the distribution tends to favor parallelization. Fig-
ure 1b shows sentence-by-sentence translation con-
sistently results in faster processing for any given
model size, with the speed advantage becoming
more pronounced as the model size increases. Fi-
nally, the distribution disparity observed in Fig-
ure 1c was reviewed qualitatively and appears to be
partially attributed to a ’repetition’ problem. Fig-
ure 5 shows an observed example. It is worth not-
ing that M2M-100 was trained on sentence pairs
and is probably aimed to be used the way it was
trained.

Both quantitative and qualitative analyses led to
the choice of sentence-wise translation. Follow-
ing some extrapolations and using multiple V100
Graphics Processing Units (GPUs), the use of the
1.2B parameters model was deemed feasible, result-
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Figure 1: Abstract Translation Method Analysis on
a 1000 Abstracts Sample - (a) Box plot showing the
number of tokens per sentence and abstract, with a red
line at 512 tokens representing the maximum token
limit that M2M-100 can handle. (b) The average time
in seconds to translate each abstract using the 418M
and 1.2B model versions, comparing sentence-level and
abstract-level translation. (c) Distribution of word count
per abstract for both model sizes, displayed with the
original English abstract at the bottom when translating
by abstract (middle) and by sentence (top). All distri-
butions are normalized to the same scale, so their areas
addup to 1.

ing in the complete translation of the entire corpus
in approximately 11.52k GPU/hours. Figure 2 de-
picts the process deployed for translating the whole
corpus. First, the 22M abstracts are divided and
distributed across different machines to parallelize
the translation process. Each abstract is then split
into sentences with the Fairseq package handling
the tokenization as shown in Appendix A.4. By
grouping sentences of the same length, bucketing
is employed to minimize padding, thereby avoiding
computational inefficiency that results from juxta-
posing long and short sentences. Though it may
seem counterintuitive, there is a considerable in-
crease in speed when translating sentences of the
same length simultaneously. Once the sentences
are translated, they are matched to their respective
abstracts and sentence numbers, and the entire cor-
pus is reconciled. Appendix A.5 shows an abstract
translation example.

3.3 TransCorpus Comparison with Others

After translation, the resultant raw text file is
36.4GB, containing 221M sentences and 5.25B
words. Table 1 compares TransCorpus with the
only two French life science corpora leveraged for
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Figure 2: Large Scale Translation Workflow - Follow-
ing the extraction of 22 million abstracts from JSON
files, the corpus was shuffled to reduce length biases,
then divided and allocated across 32xGPUs. Before
translating % of the corpus, each abstract was broken
down into sentences. The Fairseq toolkit encoded each
sentence with the model’s tokenizer and translated them
into batches using bucketing to optimize the process.
Once translation was finished, sentences were decoded
back into strings and reassembled into abstracts. Finally,
all pieces of the translated abstracts were concatenated,
completing the translation of the entire corpus.

pre-training. The comparison reveals that DrBERT
(Labrak et al., 2023), the SOTA life science LM in
French, despite it utilizes the largest corpus until
now, is about five times smaller than TransCorpus.

TransCorpus DrBERT | CmBERT
P Corpus | Bio Corpus
Size 36.4GB 7.5GB ~4GB*
Sentences 221M 54M -
Words 5.25B 1.1B 413M

Table 1: Translated Corpus Statistics Compared to
French Life Science Corpora - ’-’: Unknown value,
’*?: Number obtained by linear extrapolation because
only the size in GB for a given proportion is disclosed
in their paper.

Even if the corpus size is important, its quality
must also be closely monitored. While MBR is
already considered a benchmark of quality in En-
glish as it is used for pre-training models such as
BioBERT and PubMedBERT, it is crucial to assess
the quality of our translations to make sure that

everything has been conducted properly. As de-
picted in Figure 1c, a comparable density check of
the entire translated corpus reveals a density pro-
file similar to the original corpus. After manually
reviewing a randomly chosen set of abstracts, no ir-
regular translation events, such as repetitions, were
detected. A few translated abstracts alongside their
counterparts originally written in French can be
found in Appendix A.6.

4 TransBERT

4.1 TransTokenizer

Evaluations of BERT-like models have been ex-
tensive, yet comprehensive studies and consensus
on the best tokenizer remain limited. Subword
segmentation algorithms aim to split words opti-
mally using probability. Considering the poten-
tial addition of more languages in future works,
choosing a tokenizer capable of handling specific
linguistic features could prove beneficial. In that
context, SentencePiece treats whitespaces as regu-
lar characters rather than relying on them, which
means that it is suited for all kinds of languages.
As SentencePiece tokenizers require a considerable
amount of RAM, a cut-off at 10M translated ab-
stracts were randomly selected in order to train
a DS tokenizer based on our synthetic translated
corpus. The original SentencePiece implementa-
tion! (Kudo and Richardson, 2018) is used to train
an Unigram tokenizer with a vocabulary size of
32k and a character coverage set to 0.9995 (default
values). An example showcasing the difference
between the tokenization of TransTokenizer and
CamemBERT (CmBERT)’s (Martin et al., 2020)
tokenizer can be found in Appendix A.7.

4.2 Pre-training Hyperparameters

A BERT architecture (Devlin et al., 2018), i.e. a
Transformer decoder with 12 hidden layers, each
with 12 attention heads of dimension 768, is pre-
trained on TransCorpus following Robustly op-
timized BERT approach (RoBERTa) (Liu et al.,
2019) with an extensive batch size of 8k, an Adam
Optimizer (Kingma and Ba, 2017), along with 24k
warm-up steps and a learning rate of 6e-4. The
model was updated for 500k steps on a Masked
Language Model (MLM) objective function.

"https://github.com/google/sentencepiece
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4.2.1 TransBERT Vs. CmTransBERT

To evaluate the impact of the tokenizer, Trans-
BERT is pre-trained using TransTokenizer while
CmTransBERT is combined using CmBERT’s tok-
enizer. Both models are trained on the same corpus,
with the same hyperparameters, and evaluated on
the same test set. Prior to fine-tuning our mod-
els, the Pseudo-Perplexity (PPPL) (Salazar et al.,
2020) per token and word for each model was com-
puted on a 50 authentic French abstracts. This
step confirms the success of the pre-training and
provides the go-ahead for the experimental phase.
For further details, the results are presented in Ap-
pendix A.9.

5 Experiments

5.1 Downstream Tasks

Common LM benchmarks in life sciences are pre-
dominantly biomedical or clinical, such as Biomed-
ical Language Understanding & Reasoning Bench-
mark (BLURB) (Gu et al., 2021) and Biomedi-
cal Language Understanding Evaluation (BLUE)
(Peng et al., 2019) in English. In French, only
one option was recently published DrBenchmark
(Labrak et al., 2024). Available in our GitHub, an
adaptation of the benchmark containing a few addi-
tions such as HPO implementation instead of fixed
hyperparameters setting, a few data cleaning steps
to avoid duplicates, datasets merging to avoid un-
necessary small datasets and the implementation
of a k-fold cross-validation strategy to allow for
a more robust evaluation. Appendix A.8 shows
the adapted benchmark datasets statistics, which
includes 15 tasks, five of which are classification,
six NER, two Part-Of-Speech (POS), and two Se-
mantic Textual Similarity (STS).

5.2 Baseline Models

To evaluate our method with competitive baselines,
we chose the top performing models of each kind,
a general French model, to see at least how our
model compares with a general model and a DS
model. Given that the general French models pro-
duced similar results in DrBenchmark, we selected
the most downloaded one, CmBERT. For the DS
model, the highest performing one in DrBench-
mark, DrBERT, was picked.

5.2.1

After a model has completed a training iteration
with HPO on all tasks, it will undergo four addi-

Multiple Training Repetition

tional rounds of retraining using the previously op-
timized hyperparameter sets on a freshly initialized
model. This extra process, as initially introduced in
the original DrBenchmark paper, helps to prevent
a fortunate initialization from unfairly enhancing a
model’s performance for a specific dataset or task.
Consequently, each model will be trained and eval-
uated over five folds, five times, totaling 25 runs
per task or dataset. This will only serve to modify
training randomness and will not enhance statisti-
cal power during testing. Hence, the iterations of
models must be aggregated at the prediction phase,
prior to evaluation. The key concept is that if one
model misses a classification decision, for instance,
while the other four rounds capture it, the com-
bined predictions will consider these minor errors
and adjust them to reflect what a particular PLM
would typically predict.

5.3 Statistical Testing

Once a metric is computed for each label/class/en-
tity/tag/regression, a statistical test is performed to
assess if there is a significant difference between
models (1) at the dataset level comparing labels per-
formance across labels and folds and (2) at the task
level comparing performances across labels, folds
and datasets. For comparisons involving more than
two models, the Friedman test is employed, fol-
lowed by the Nemenyi test. When comparing two
models, the Wilcoxon test is used. Figure 3 shows
the statistical testing process following (Demsar,
2006) recommended practice for comparing met-
rics rankings to assess model difference for one or
multiple datasets.

6 Results & Discussion

Table 2 presents models performances across all
folds for each dataset with the weighted F;-score
for each task except STS, which utilizes the R?
metric. Among the 15 datasets evaluated, Trans-
BERT outperforms the other models in 10 cases,
with statistical significance noted on four occasions.
CmBERT ranks first in five cases, with one statis-
tically significant result. DrBERT fails to achieve
the top metric in any dataset and ranks lowest in
11 datasets. In parentheses are the highest labels
metric count across all the folds. For instance, in
DiaMed, TransBERT secures the highest F-score
for 55 labels over five folds, whereas CmBERT and
DrBERT attain the highest F;-score for 22 and 27
labels, respectively.
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Figure 3: Statistical Testing - In order to compare more than two models, the Friedman test is used to determine if
there is a significant difference between models, if so, the Nemenyi post-hoc test is used to determine which models
are significantly different. For two models, the Wilcoxon test is used.

Datasets \ CmBERT \ DrBERT \TransBERT
DEFT-2020/T2 9891 (1) | 97.55(1) | 98.82 (4)
wy DiaMed 64.70 (22) | 68.89 (27) | 75.32"(55)
d FrMedMCQA 56.95 (14) | 56.01 (9) | 57.25 (10)
MorFITT 73.16 (14) | 72.74 (8) |75.36"(38)
PxCorpus/T2 96.31 (11) | 95.34(8) | 95.34 (7)
E3C/Clinical 74.88 (0) | 7544 (1) | 76.83 (4)
E3C/Temporal 8544 (12) | 83.92(2) | 85.73(12)
5 MantraGSC 60.56 (12) | 57.80 (8) | 62.83 (16)
Z PxCorpus/T1 92.86 (40) | 92.56 (66) | 95.17°(96)
QUAERO/EMEA | 84.70 (12) | 84.74 (13) | 85.67"(26)
QUAERO/MdL | 62.22 (17) | 60.71 (5) | 64.06 (29)
L@ CAS 97.66 (74) | 97.56 (50) | 97.74 (75)
A& ESSAI 98.66"(107)| 98.53 (53) | 98.64 (71)
E CLISTER 82.80 (2) | 75.44 (0) | 82.62 (3)
@2 DEFT-2020/T1 83.95(3) | 71.69 (0) | 83.46 (2)

* Significant at 0.05 level (Friedman & Nemenyi test).

Table 2: Performance Evaluation on the French Life
Science Datasets - Table compares the main metrics
for each dataset for Classification, Named Entity Recog-
nition, Part-of-Speech Tagging, and Semantic Textual
Similarity tasks. F;-score is used for each task as the
main metric aside STS which uses R?. In (parenthe-
ses) is the count of class/label/entity/tag across all the
folds where a model achieved the highest metric. In
bold is the highest metric/count while underlined text
represents the second.

In classification tasks, even though CmBERT
achieves the top performance on two datasets, the
differences in metrics and ranking between the
models on these datasets are not significant. Con-
versely, on the DiaMed and MorFITT datasets
where TransBERT outperforms, the distinction in
metrics and ranking is notable and statistically sig-
nificant.

In NER, TransBERT leads across all datasets
in both metrics and rankings, achieving statistical
significance in two instances. In POS tasks, the
models demonstrate high and closely matched per-
formances, with the lowest-scoring model achiev-
ing a weighted Fi-score of 97.56. Despite this
narrow margin, CmBERT secures top results for

one dataset, showing statistical significance and
attaining the highest F;-score across 107 tags in
all five folds. In STS, CmBERT and TransBERT
perform similarly, with only minor differences,
obtaining three and two top results, respectively.
However, DrBERT performs poorly in this task,
particularly with a margin exceeding 10 points in
DEFT-2020/T1.

6.1 Aggregated Results by Task

Table 3 presents the weighted precision, recall, and
F;-score across each task, except for STS, which
utilizes the R? metric. TransBERT achieves the
best performance for both classification and NER,
with statistically significant results at the 0.01 level
for every metric. CmBERT secures second place in
weighted recall for the NER task, also with statisti-
cal significance. The difference between CmBERT
and TransBERT in the POS task is minimal; though
TransBERT leads in terms of the three metrics, the
margin between them is slight. In the STS task,
both CmBERT and TransBERT do not show statis-
tical significance, while DrBERT comes last with
statistical significance.

With only the second more precise classifier, Dr-
BERT ends up having the poorest results in 9 of the
10 metrics. It is worth noting that despite DrBERT
is pre-trained on a native French corpus, its sources
are quite varied, which could lead to confusion dur-
ing the pre-training stage for a LM. Specifically,
it draws from 24 diverse sources such as disease
and condition descriptions, clinical cases, meeting
reports, health courses, or even optical character
recognition data. Beyond this diversity factor, if
a provided sequence is too short for the model to
deduce a context helping it identify the kind of
document it is receiving, this may cause confusion,
potentially resulting in ineffective learning. As
already mentioned, even if TransBERT corpus is
made of synthetic data, it has already been proved
that using MBR worked in English for pre-training



| CmBERT | DrBERT | TransBERT
' p. RY F,|P, RY F.,|P., RY F,

74.65 75.54 74.17 | 74.81 73.42 73.73 |75.82" 76.69" 75.71°"
Named Entity Recognition | 81.23 82.13™ 81.55 | 80.74 81.27" 80.88 [83.03" 83.46"" 83.15""
Part-Of-Speech 98.31 98.29 98.29 [98.20" 98.18 98.18""| 98.33 98.30 98.31
Semantic Textual Similarity - 83.38 - - 73.56"" - - 83.04 -

Classification

** Significant at 0.01 level (Friedman & Nemenyi test)

Table 3: Performance Evaluation on the French Life Science by Task - Weighted Precision, Recall, and F; -scores
for each task taking into account each class/label/entity/tag and weighted across all folds and datasets. For Semantic
Textual Similarity, the weighted R? is reported. In bold is highest metric/count while underlined text represents the

second.

of BioBERT and PubMedBERT.

6.2 Tokenizer Ablation Study

One approach to mitigating the impact of tokeniz-
ers on downstream applications is to conduct the
same experiment twice from scratch. This entails
replicating the pre-training process with different
tokenizers. To our knowledge, no studies of this
nature exist yet, since pre-training two PLMs on
the same corpus is quite labor-intensive. Typically,
researchers pre-train a model for comparison with
others to evaluate the overall method’s improve-
ment. As mentioned earlier, to achieve this goal, a
LM has been pre-trained on the same machine-
translated corpus using the CmBERT tokenizer,
which was trained on a non-DS corpus.

Table 4 presents the comprehensive set of
weighted main metrics for both models. The re-
sults indicate that TransBERT generally outper-
forms CmTransBERT in almost all tasks, with sta-
tistical significance achieved solely in NER. This
implies that NER is more influenced by tokeniza-
tion compared to other tasks, which aligns with the
fact that NER is basically token-based, involving
the classification of tokens into specific categories.

It is essential to highlight the particular configu-
ration of our experiment. Despite integrating a DS
tokenizer prior to pre-training with a DS corpus
shows improvements, it does not ensure the same
enhancement when training on a non-DS corpus,
despite evidence suggesting this potential. Indeed,
even if no experiment directly supports this hypoth-
esis, it can be deduced from the fact that Trans-
BERT significantly outperforms CmBERT in the
NER task while CmTransBERT performs only on
the same level as CmBERT for that task. In other
words, it implies that tokenization has a significant

impact in NER task as TransBERT significantly
outperforms CmTransBERT. Therefore, examining
a model pre-trained on the CmBERT corpus with
the TransTokenizer would likely yield better results
in at least DS NER datasets. The question remains
if it would be competitive with a model pre-trained
on a DS corpus as it could be a compound effect.
Although this might seem a bit trivial, the data and
computational power required to train a tokenizer
are very low, and these findings could allow bet-
ter pre-training of DS LM by only pre-training a
LM on a generic corpus using the DS tokenizer. It
is worth noting that CmTransBERT outperforms
CmBERT with statistical significance in the clas-
sification task which shows that pre-training con-
tinuation is also a viable approach to improve an
existing model with DS data.

7 Conclusion & Contributions

This work establishes a rigorous framework for
assessing LMs on DS for non-English dataset. It
builds upon prior research and extends it to a more
comprehensive benchmark that includes a more
robust way of evaluating the models by applying
HPO, multiple training repetition, 5-folds cross-
validation, and statistical testing on 15 datasets
along with their aggregation by task.

This framework illustrates that employing trans-
lated synthetic data for training LMs within the life
sciences domain is a viable approach to address the
lack of native language data. Our proposed model,
TransBERT, outperforms existing SOTA models in
various life science tasks, including classification,
NER, POS, and STS. By making this framework
available, it facilitates future research in determin-
ing the required data volume or translation quality
needed to attain optimal results or break even.



| TransBERT | CmTransBERT

| P, R.Y F, | Py RiY F,,
Classification 75.82 76.69 75.71 75.10 76.05 74.70
Named Entity Recognition 83.03" 83.46" 83.15™ 81.02"" 82.13" 81.44™
Part-Of-Speech 98.33 98.30 98.31 98.31 98.29 98.29
Semantic Textual Similarity - 83.04 - - 84.36 -

** Significant at 0.01 level (Wilcoxon test)

Table 4: Ablation study comparing TransBERT and CmTransBERT - Weighted Precision, Recall, and F; -scores
for each task taking into account each class/label/entity/tag and weighted across all folds and datasets. For STS, the
weighted R? is reported. In bold is the highest metric/count while underlined text represents the second.

In fact, thanks to the modular nature of this
framework, a minor adjustment in variables en-
abled the tokenizer ablation study. This study
demonstrates that tokenization significantly influ-
ences model performance, particularly in NER
tasks within the life sciences domain. Although
it would be interesting to determine if similar re-
sults would occur in other domains or language, our
results indicate that utilizing a DS tokenizer can
additionally improve the performance of models
pre-trained on a DS corpus.

In addition to offering a framework for address-
ing data scarcity in certain domains, TransCorpus,
TransBERT, and TransTokenizer are accessible to
the public and can be used by the life sciences com-
munity to enhance various NLP applications. By
providing a competitive model that is specifically
tailored to the life sciences domain, we aim to facil-
itate research, innovation, and collaboration within
the community.

8 Future Work

Although our work has provided important infor-
mation on the use of translated synthetic data for
training LMs within the field of life sciences, it
has generated more research questions than defini-
tive answers. This result emphasizes the intricate
and dynamic nature of NLP in specialized areas.
The issues prompted by our study span several as-
pects of machine translation, domain adaptation,
and the interaction between artificial and natural
language data. These emerging research paths un-
derline the necessity for ongoing exploration into
the subtleties of cross-lingual and cross-domain
knowledge transfer in language models. One focal
area is the evaluation of both the quantity and qual-
ity of the translated data required to outperform a
SOTA model’s performance.

One encouraging direction for future research
is to expand our approach to encompass a wider
array of languages, especially those that are un-
derrepresented in the life sciences field. Applying
our methodology across various linguistic settings
will help us better understand its generalizability
and any possible constraints. Additionally, creating
multilingual models capable of managing several
languages within the life sciences sector poses a
fascinating challenge. These models might exploit
cross-lingual knowledge transfer, allowing for a
more efficient use of scarce data resources and pro-
moting a more inclusive global scientific commu-
nity.

Another path for future research is an extensive
comparison between our method and the latest gen-
erative Large Language Models (LLMs) on identi-
cal datasets. Such a comparison would yield valu-
able understanding of the trade-offs between spe-
cialized, domain-focused models and more general,
resource-heavy models LLMs. Assessing perfor-
mance, efficiency, and cost-effectiveness across dif-
ferent life science tasks would help researchers and
practitioners in making informed decisions. Fur-
thermore, this analysis could highlight the possibil-
ity of integrating the strengths of both approaches.

A promising direction for upcoming research
involves exploring the use of generative LLMs to
create synthetic data for training DS models, as an
alternative to our translation-based method. This
approach could yield more varied and nuanced
datasets, encapsulating intricate domain-specific
knowledge and linguistic patterns. Assessing the
quality, reliability, and possible biases of LMs-
generated synthetic data in comparison to trans-
lated data could offer valuable insights into data
augmentation strategies for low-resource domains
and languages.



Limitations

8.1 In-Domain/Language Generalization

While our benchmark study presents strong evi-
dence for the effectiveness of our proposed model
across various datasets, it is important to note the
limitations in generalizing these findings. Although
our benchmark was meticulously designed to cover
a wide array of tasks within the life sciences do-
main, it cannot comprehensively represent every
possible scenario or use case. One major limita-
tion lies in the wide variety of NLP tasks and the
continually evolving nature of scientific language.
Even though our benchmark includes a broad range
of datasets and tasks, it is impossible to cover ev-
ery potential application or future development in
the field. The performance of our model, while
impressive within the scope of our study, may not
necessarily be consistent across all possible tasks
or datasets in the life sciences domain.

Additionally, the idea of a universally ’best’
model is inherently flawed in the realm of NLP.
Different models might excel in particular contexts
or specific types of tasks, and their performance can
be affected by factors such as domain specificity,
data distribution, and the nuances of individual use
cases. What works optimally in one scenario may
not be the best choice in another, emphasizing the
need for context-specific model evaluation and se-
lection. It is also important to recognize that the
fast-paced advancements in NLP research could
lead to new architectures, pre-training techniques,
or fine-tuning strategies that may surpass our cur-
rent model in certain aspects. The dynamic nature
of the field requires ongoing evaluation and com-
parison against new innovations.

8.2 Other Domains Generalization

Although our model, which was trained on trans-
lated synthetic data within the life sciences corpus,
shows encouraging generalization towards other do-
mains, it is important to recognize the constraints
when extrapolating these results to other areas. The
success of our method in addressing the lack of
native language data in life sciences should not be
automatically expected to apply to other special-
ized sectors such as finance, law, or engineering.
Each field presents its own unique linguistic hur-
dles, specialized terminologies, and DS conceptual
frameworks that general-purpose machine trans-
lation systems might not handle effectively. The
quality and relevance of translated synthetic data

can differ greatly between domains, possibly af-
fecting the model’s performance. Moreover, the
subtleties of DS language use, such as idiomatic
phrases, technical lingo, and context-dependent
meanings, may not be accurately preserved in trans-
lated data, which could lead to misunderstandings
or errors in other fields. Additionally, the success of
our approach may depend on the degree to which
translatable concepts are within a given domain,
which can vary greatly. For example, concepts that
are highly specific to a culture or legally bound in
sectors like law or social sciences might pose par-
ticular difficulties for this approach. Hence, even
if our results suggest a promising avenue for miti-
gating language resource shortages in specialized
fields, further research is essential to confirm the
broad applicability of this method across various
domains, each with its own distinct linguistic and
conceptual challenges.

8.3 Other Languages Generalization

While our study highlights the effectiveness of em-
ploying synthetic translated data for training LMs
in the field of life sciences in French, caution is
warranted when applying these findings to other
languages, especially those with limited resources.
We believe that the success of our method is highly
dependent on the quality and availability of ma-
chine translation systems for the target language,
which can differ greatly among various language
pairs. Even if M2M-100 has a great potential to
secure relatively great results in low-resource lan-
guages compared to other models, some language
pairs often lack strong machine translation mod-
els, which can undermine the quality of the trans-
lated synthetic data. Additionally, the linguistic
gap between the source language and the target
language can greatly affect the effectiveness of
the approach. Languages with different syntactic
frameworks, morphological structures, or writing
systems might pose additional difficulties in main-
taining semantic subtleties and DS language during
translation. Furthermore, the cultural and scientific
context embedded in the original material might
not always have direct counterparts in the target
language or culture, which could result in mean-
ing loss or the introduction of biases. Although
our findings indicate a potential solution for ad-
dressing the deficit of scientific corpora in some
languages, the method’s suitability across differ-
ent linguistic contexts requires thorough evaluation
and additional investigation.
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A Appendix
A.1 Example of an English Abstract

PMID: 44
Title: The origin of the alkaline inactivation of pepsinogen.

Abstract: Above pH 8.5, pepsinogen is converted into a form which cannot be activated to pepsin
on exposure to low pH. Intermediate exposure to neutral pH, however, returns the protein to a form
which can be activated. Evidence is presented for a reversible, small conformational change in the
molecule, distinct from the unfolding of the protein. At the same time, the molecule is converted
to a form of limited solubility, which is precipitated at low pH, where activation is normally seen.
The results are interpreted in terms of the peculiar structure of the pepsinogen molecule. Titration
of the basic NH2-terminal region produced an open form, which can return to the native form
at neutral pH, but which is maintained at low pH by neutralization of carboxylate groups in the
pepsin portion.

Figure 4: Example of a Citation From the MBR Database

A.2 Corpus Statistics

C%gl‘::lft‘i’f)‘fe BERT BioBERT PubMedBERT
Abstracts 22M N/A - 14M
Size 30.2GB 16GB - 21GB
Sentences 202M - - -
Words 4.4B 3.3B 4.5B 3.1B
Tokens 6.7B - - -

-: Unknown value
N/A: Not Applicable

Table 5: Statistics of English Life Science Corpora Used to Pre-Train Different Models - Tokens number is
computed using a BERT cased tokenizer.

A.3 Example of a Translation with Repetition

Model Size: 418M
Translation Approach: By abstract

Abstract: Des modifications structurelles et fonctionnelles dans les ovaries de I’ovaire de controle
des ovaries des ovaries de controle des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries.

Figure 5: Example of a Translation: 418M, By Abstract (With Repetition)
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A.4 Example of a Tokenized Abstract

PMID: 44

Sentence 1: The origin of the alkaline inactivation of pepsinogen.

[’_The’,’_origin’,’_of’, ’_the’, ’_alkal’, ’ine’, ’_in’, ’activ’, "ation’, ’_of’, ’_pep’, ’sin’, ogen’, *.’]

Sentence 2: Above pH 8.5, pepsinogen is converted into a form which cannot be activated to pepsin on exposure to low
pH.

[’_Ab’, ’ove’,’_pH’,’_8",’5,, ’_pep’, ’sin’, ogen’, ’_is’, ’_convert’, ’ed’, ’_into’, ’_a’, ’_form’, ’_which’, ’_cannot’,
’_be’,’_activ’, ’ated’, ’_to’,’_pep’, ’sin’, ’_on’, ’_expos’, ‘ure’,’_to’,’_low’,’_pH’, ]

Sentence 3: Intermediate exposure to neutral pH, however, returns the protein to a form which can be activated.
[_Inter’, medi’, ’ate’, ’_expos’, ‘ure’, ’_to’, *_neutral’, ’_pH’, ’,’, ’_however’, ’,’, ’_retur’, 'ns’, ’_the’, ’_protein’,
’_to’,’_a’,’_form’,’_which’,’_can’,’_be’, ’_activ’, ’ated’, ’.’]

Sentence 4: Evidence is presented for a reversible, small conformational change in the molecule, distinct from the
unfolding of the protein.

[’_Ev’, ’idence’, ’_is’, ’_present’, ’ed’, ’_for’, ’_a’, ’_re’, vers’, ’ible’, ’,’, ’_small’, ’_conform’, ’ational’, ’_change’,

9 29 9 LRI s 9

_in’,’_the’,’_mol’, ’ec’, ’ule’, ’,’, ’_distin’, 'ct’, ’_from’, ’_the’,’_un’, 'fold’, ’ing’, ’_of’, ’_the’, ’_protein’, *.’]

)

Sentence 5: At the same time, the molecule is converted to a form of limited solubility, which is precipitated at low pH,
where activation is normally seen.

[_At’, ’_the’, ’_same’, ’_time’, ’,’, ’_the’, ’_mol’, ’ec’, 'ule’, ’_is’, ’_convert’, ’ed’, ’_to’, ’_a’, ’_form’, ’_of’,
’_limited’, ’_sol’, *ub’, ’ility’, °,’, °_which’, ’_is’, °_precip’, ’itat’, ’ed’, ’_at’, ’_low’, ’_pH’, ’,’, ’_where’, ’_activ’,
’ation’, ’_is’, ’_norm’, ’ally’, ’_seen’, ’.’]

Sentence 6: The results are interpreted in terms of the peculiar structure of the pepsinogen molecule.
[’_The’,’_results’, ’_are’, ’_interpret’, ’ed’, ’_in’, ’_terms’, ’_of’, ’_the’, ’_pec’, 'uliar’, ’_structure’, ’_of’, ’_the’,

’_pep’, ’sin’, ’ogen’, ’_mol’, ’ec’, "ule’, ’.’]

Sentence 7: Titration of the basic NH2-terminal region produced an open form, which can return to the native form at
neutral pH, but which is maintained at low pH by neutralization of carboxylate groups in the pepsin portion.

[_T,itr’, "ation’, ’_of’, ’_the’, ’_basic’, ’_NH’, ’2-’, ’termin’, ’al’, ’_region’, ’_produc’, ’ed’, ’_an’,’_open’, ’_form’,
>, _which’, ’_can’, ’_return’,’_to’, ’_the’,’_n’ ’

’ , ative’,’_form’, ’_at’, ’_neutral’, ’_pH’, ’;’,’_but’, ’_which’, ’_is’,
’_mainta’, ‘ined’, ’_at’,’_low’,’_pH’,’_by’, ’_neutr’, ’aliz’, ’ation’, ’_of’, ’_car’, 'box’, ’yl’, ’ate’, ’_groups’, ’_in’,
5 : 5

_the’,’_pep’, ’sin’, ’_por’, ’tion’, *.’]

Figure 6: Example of Sentence & Word Tokenization

A.5 Example of a Translated Citation

PMID: 44
Title: L’origine de I’inactivation alcaline du pepsinogene.

Abstract: Au-dessus du pH de 8,5, le pepsinogene est converti en une forme qui ne peut pas
étre activée en pepsine en cas d’exposition a un pH bas. L’exposition intermédiaire au pH neutre,
cependant, renvoie la protéine a une forme qui peut €tre activée. Des preuves sont présentées pour
un changement réversible, de petite conformation dans la molécule, distinct du déploiement de la
protéine. Dans le méme temps, la molécule est convertie en une forme de solubilité limitée, qui
est précipitée a faible pH, ol I’activation est normalement observée. Les résultats sont interprétés
en termes de la structure particuliere de la molécule de pepsinogene. La titration de la région
terminale de base NH2 produit une forme ouverte, qui peut revenir a la forme native a pH neutre,
mais qui est maintenue a un pH bas par la neutralisation des groupes carboxylés dans la portion de
pepsine.

Figure 7: Example of Title and Abstract Citation From the MBR Database Translated in French (McPhie,
1975)
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A.6 Translation Examples Compared to True French Abstracts

Original (PMID:33739270)

Le foie assure une grande partie du métabolisme des xénobiotiques. Ses particularités en font pourtant une cible
privilégiée pour des composés toxiques. Les hépatotoxicités des xénobiotiques, ces molécules étrangeres a notre
organisme, constituent un vrai défi pour les cliniciens, 1’industrie pharmaceutique, et les agences de santé. a la différence
des hépatotoxicités intrinseques, prévisibles et reproductibles, les hépatotoxicités idiosyncrasiques surviennent de
maniere non prévisible. La physiopathologie des hépatotoxicités idiosyncrasiques a médiation immune reste la moins
bien connue. Le développement d’outils qui permettent désormais d’améliorer la prédiction et la compréhension de
ces atteintes hépatiques parait étre une approche prometteuse pour identifier des facteurs de risque, et de nouveaux
mécanismes de toxicité.

Translated (PMID:33739270)

Le foie assure une grande partie du métabolisme des xénobiotiques grace a son équipement enzymatique considérable,
a sa localisation anatomique et a sa vascularisation abondante. Cependant, ces différentes caractéristiques en font
également une cible privilégiée pour les composés toxiques, en particulier dans le cas d’un métabolisme toxique.
L’hépatotoxicité induite par les xénobiotiques est une cause majeure de 1ésions hépatiques et un véritable défi pour
les cliniciens, I’industrie pharmaceutique et les agences de santé. Les hépatotoxicités intrinseques, c’est-a-dire les
hépatotoxicités prévisibles et reproductibles qui se produisent a des doses limites, sont distinguées des hépatotoxicités
idiosyncratiques, qui se produisent de maniere imprévisible chez les personnes présentant des sensibilités individuelles.
Parmi eux, la pathophysiologie de I’hépatotoxicité immunomédiée idiosyncratique n’est toujours pas claire. Cependant,
le développement d’outils visant & améliorer la prévision et la compréhension de ces troubles peut ouvrir des voies pour
I’identification de facteurs de risque et de nouveaux mécanismes de toxicité.

Original (PMID:32334967)

La tuberculose est due au complexe M. tuberculosis, dont la croissance lente entraine un long délai de rendu des tests
phénotypiques utilisés pour le diagnostic bactériologique. La biologie moléculaire a réduit considérablement ce délai,
notamment grace au déploiement de la méthode Xpert® MTB/RIF (Cepheid) qui permet de détecter le complexe M.
tuberculosis et la résistance a la rifampicine en 2 heures. D’autres tests détectant en plus la résistance a I’isoniazide et
aux antituberculeux de seconde ligne ont été¢ développés. Cependant, les performances de ces tests sont nettement moins
bonnes si I’examen microscopique est négatif. Il est donc crucial de restreindre leur indication aux fortes suspicions
cliniques. Les tests de détection de la résistance n’explorent que certaines positions caractérisées ; or, toutes les
mutations responsables de I’acquisition de résistance ne sont pas connues. De plus, les performances sont variables pour
les différents antituberculeux. L’avenement du séquencage génomique est une perspective prometteuse. La faisabilité
en routine doit encore étre évaluée et 1’analyse des données reste a standardiser. L’essor des techniques de biologie
moléculaire a révolutionné le diagnostic de la tuberculose et de la résistance. Cependant, elles restent des tests de
dépistage dont les résultats doivent étre confrontés aux méthodes phénotypiques de référence.

Translated (PMID:32334967)

La tuberculose est causée par le complexe M. tuberculosis. Sa croissance lente retarde le diagnostic bactériologique
basé sur des tests phénotypiques. La biologie moléculaire a considérablement réduit ce retard, notamment grace au
déploiement du test Xpert® MTB/RIF (Cepheid), qui détecte le complexe de M. tuberculose et la résistance a la
rifampicine en 2 heures. D’autres tests détectant la résistance a 1’isoniazide et aux médicaments antituberculeux de
deuxieme ligne ont été développés. Cependant, les performances des tests moléculaires sont considérablement réduites
si le dépistage de la microscopie de bacille acide rapide est négatif. Il est donc crucial de limiter leur indication a de
fortes suspicions cliniques. Les tests de détection de la résistance n’explorent que certaines positions caractérisées;
cependant, toutes les mutations de résistance aux médicaments ne sont pas connues. En outre, les performances varient
pour différents médicaments antituberculeux. L’avenement de la séquencage génomique est prometteur. Son intégration
dans le flux de travail de routine doit encore étre évaluée et I’analyse des données doit encore étre normalisée. La
montée des techniques de biologie moléculaire a révolutionné le diagnostic de la tuberculose et de la résistance aux
médicaments. Cependant, ils restent des tests de dépistage; les résultats doivent encore €tre confirmés par des méthodes
de référence phénotypiques.
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Original (PMID: 33742585)

Dans un souci d’amélioration de la qualité de vie des personnes atteintes de maladie chronique, les pratiques de soins se
sont enrichies de 1’éducation thérapeutique du patient (ETP). Celle-ci vise 1’acquisition de savoirs et de compétences
plurielles par les malades pour favoriser une gestion optimale de la pathologie au quotidien et des changements qui en
découlent, en limitant les répercussions négatives sur leur autonomie et leur bien-étre. Le sujet est placé au cceur de
son dispositif, en position de décision et de responsabilité, et collabore activement avec les différents acteurs de soins.
L’ETP implique donc la prise en compte de la dimension psychique du patient, en s’appuyant sur la psychologie et des
concepts fondamentaux pour sa mise en ceuvre.

Translated (PMID: 33742585)

Dans un effort pour améliorer la qualité de vie des personnes atteintes de maladies chroniques, les pratiques de soins
ont été enrichis par I’éducation thérapeutique des patients (TPE). Cela vise a 1’acquisition de connaissances et de
compétences plurielles par les patients, ce qui favorise une gestion optimale de la maladie sur une base quotidienne et
des changements qui en découlent, en limitant leurs répercussions négatives sur leur autonomie et leur bien-étre. Le
sujet est placé au cceur du systeme, dans une position de décision et de responsabilité, et collabore activement avec les
différents acteurs de la santé. Le TPE implique donc la prise en compte de la dimension psychologique du patient, en
utilisant la psychologie et les concepts fondamentaux pour sa mise en ceuvre.

A.7 Tokenizers Comparison Example

Entity: [‘infarctus’, ’du’, 'myocarde,’] (3 words)
TransTokenizer: ['__infarctus’,’__du’,’_ _myocarde’, ’,’] (4 tokens)
CamemBERT: [’__inf’, ’arc’, ’tu’,’s’,’__du’,’__my’, oc’, ’arde’, ’,’] (A+5)

Figure 8: CamemBERT Vs TransTokenizer Sample - An example of tokenization shows that the tokenizer of
TransBERT (i.e., TransTokenizer) requires less tokens than the tokenizer of CamemBERT to encode the same
sequence.
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A.8 Downstream Tasks Summary

Name | Task | Instance |  Label | Source
CAS | POS | 86805 | 30T | cc
CLISTER | STS | 1000 | 05 |CC
DEFT-2020 | STS | 1009 | O0to5 | dCc, encyclopedia &
| cLs | 1100 | 3C | g
DiaMed | CLS | 726 | 15C | cC
E3C/Clinical | Ner | 32700 1E | co
E3C/Temporal | | 5756 | 5E |
ESSAI POS 150269 29T Clinical Trial Protocols
FrenchMedMCQA | CLS | 3102 | 5C | Pharmacy Exam
MantraGSC NER 879 7B Biomedical, Drug & Patent
MorFITT | CLS | 5115 | 12L | Biomedical
PxCorpus | NER | 11465 | 30E | Drug
| CLS | 1727 | 4C
QUAERO/EMEA ‘ NER ‘ 6001 ‘ 10E ‘ Drug & Biomedical
QUAERO/Medline | | 6765 |

Table 7: DrBenchmark Adaptation: Data & Tasks Summary - By alphabetical order - Overall, every model
tested will be evaluated using cross-validation on 15 distinct datasets covering a broad range of tasks. In the Label
column, C indicates a class within a multi-class framework, while L denotes the count of potential labels in a
multi-label classification, T tag and E entity. The instance count reflects the number of positive C, L, T or E. In the
source column CC stands for Clinical Cases.

A.9 Pseudo-Perplexity Comparison Across Models

| TransBERT | CmTransBERT |  CmBERT | DrBERT
PPPL;ojen 6.00 4.14 174.42 8.30
PPPL 0rg 11.71 8.59 2474.88 17.55
Tsentence ‘ 376
Neword | 9204
Nioken | 12640 13934 13934 12459

Table 8: Pseudo-Perplexity Comparison Across Models - Pseudo-Perplexity across models, with the highest
uncertainty highlighted in bold.
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