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SemGIR: Semantic-Guided Image Regeneration based method for
AI-generated Image Detection and Attribution

Anonymous Authors

ABSTRACT
The rapid development of image generative models has lowered the
threshold for image creation but also raised security concerns re-
lated to the propagation of false information, urgently necessitating
the development of detection technologies for AI-generated images.
Presently, text-to-image generation stands as the predominant ap-
proach to image generation, where the rendering of generated
images hinges on two primary factors: text prompts and the inher-
ent characteristics of the model. However, the variety of semantic
text prompts yields diverse generated images, posing significant
challenges to existing detection methodologies that rely solely on
learning from image features, particularly in scenarios with limited
samples. To tackle these challenges, this paper presents a novel
perspective on the AI-generated image detection task, advocat-
ing for detection under semantic-decoupling conditions. Building
upon this insight, we propose SemGIR, a semantic-guided image
regeneration based method for AI-generated image detection. Sem-
GIR first regenerates images through image-to-text followed by
a text-to-image generation process, subsequently utilizing these
re-generated image pairs to derive discriminative features. This
regeneration process effectively decouples semantic features or-
ganically, allowing the detection process to concentrate more on
the inherent characteristics of the generative model. Such an effi-
cient detection scheme can also be effectively applied to attribution.
Experimental findings demonstrate that in realistic scenarios with
limited samples, SemGIR achieves an average detection accuracy
15.76% higher than state-of-the-art (SOTA) methods. Furthermore,
in attribution experiments on the SDv2.1 model, SemGIR attains an
accuracy exceeding 98%, affirming the effectiveness and practical
utility of the proposed method.

CCS CONCEPTS
• Security and privacy→ Human and societal aspects of se-
curity and privacy.

KEYWORDS
AI-generated Image Detection, Semantic Image Regeneration

1 INTRODUCTION
The rise of image generative models, including VAE [16], GAN [8],
Diffusion [25] and their variations [2, 11, 13, 14, 25], has made
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AI-generated
Image

Re-generated
Image

Caption
“a penguin on a surfboard in the ocean 
with a wave in the background”

Figure 1: Images re-generated using the same generative
model as the AI-generated image demonstrate consistency.

it possible for people to create images corresponding to simple
text descriptions. However, this has also raised concerns. Some un-
scrupulous individuals may abuse these technologies, using image
generative models to create false information, spread rumors, and
even manipulate public opinion. For example, an image of “explo-
sion at the Pentagon” on social media caused a stir in the U.S. stock
market [4]. However, it is an AI-generated image rather than not a
real image. The fact that merely an AI-generated image can cause
such a significant upheaval fully demonstrates the harm of misus-
ing image generation technology. Developing effective detectors
for AI-generated images is crucial.

ExistingAI-generated image detection techniques predominantly
employ a learning-based paradigm, wherein discriminative features
are extracted from images and subsequently utilized to train classi-
fication models [1, 6, 9, 12, 18, 20, 29, 31, 32]. Earlier methods ex-
tract features by directly employing convolutional neural networks
(CNNs) from images [1, 29, 31]. UnivFD [20] extracts discriminate
features using a large pre-trained vision-language model and then
employs a nearest neighbor classifier to detect AI-generated images.

In our view, the generation process can be seen as a couple of
text prompts and inherent characteristics of the generative model.
To achieve a more general detection, the discriminative features
shall rely more on the inherent characteristics features of the model
instead of text prompts. Therefore, these learning-based detection
methods often need large-scale datasets generated with various dif-
ferent prompts, so as to eliminate the interference of text prompts
and then focus on the inherent characteristics of the generative
model, thereby achieving good generalization ability and high ac-
curacy.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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However, collecting data is time-consuming and laborious. This
challenge is exacerbatedwhen it comes to closed-source commercial
generative models, as acquiring extensive training datasets can be
prohibitively expensive and, at times, unfeasible due to intellectual
property protection measures. Such a challenge naturally leads to a
requirement: achieving effective detection in scenarios with limited
samples. Unfortunately, directly applying the previous detection
mechanisms in this scenario will result in subpar performance.
Therefore, in this paper, our goal is to design a detection method
that remains effective in scenarios with limited samples.

In order to achieve this goal, our first step will involve analyzing
the inefficacy of previous detection mechanisms. Our analysis re-
veals that the interference caused by text prompts is a key factor, as
the restricted range of text prompts will introduce biased features
during training, consequently impacting the generalizability of the
detectors.

Building on this analysis, we provide a novel insight regard-
ing scenarios with limited samples, that is detecting should be con-
ducted under the semantic-decoupled conditions. DIRE [32] proposed
an effective reconstruction based method to establish semantic-
decoupled features, where they regenerate an image with a DDIM
inversion followed by a diffusion process, and then learn discrim-
inative features from the difference between the original image
and the reconstructed image. However, such a method requires the
generative process to be invertible, when faced with an irreversible
generative process (e.g., GAN), such an approach cannot be used.

To address such limitation, we propose a more general frame-
work SemGIR, which is based on a Semantic-Guided Image
Regeneration method. Specifically, given a candidate image, we
utilize image-to-text generation methods to extract text from the
candidate image. Then, based on this text, we perform semantic
image regeneration by a text-to-image generation model [25] so
that the re-generated image is consistent with the candidate image
in semantic content. Finally, we measure the similarity between
the candidate and the re-generated images. SemGIR compels the
detector to ignore the content of the images and focus solely on the
inherent characteristic of the model expressed within them. Since
the characteristic features expressed in the images are distinct, the
detection method based on SemGIR does not require a large number
of samples for learning to achieve a high detection accuracy.

Besides, AI-generated image attribution, determining which gen-
erative model generated the image, is also crucial for safeguarding
image security, which offers a more detailed form of detection.
Hence, it is essential to enhance the focus of the detector on the
inherent characteristic of the model. In pursuit of this goal, we
additionally propose a semantic condition classification method,
named SemGIR-A, using the text extracted from the candidate im-
age as a semantic condition to measure the similarity of candidate
images and corresponding re-generated images.

Our main contributions can be summarized in the following four
aspects:

• We have reconsidered the shortcomings of the current de-
tection methods in dealing with the diversified generative
model in scenarios with limited samples; that is, the text
prompt in the generated image is coupled with the inherent
characteristic of the generative model, which is difficult to

detect. Therefore, a semantic image regeneration method is
proposed to strip the semantic content from the image and
realize the organic decoupling of the two, making the detec-
tor focus on the inherent characteristics of the generative
model.

• In view of the particularity of detection and attribution tasks,
a corresponding detection method is proposed on how to use
the regenerated images. For detection, we directly measure
the similarity between images for detection. For attribution,
a semantic conditional similarity measurement is proposed,
to further mitigate the impact of the diverse text prompt.

• In experiments conducted on various generative models us-
ing only 2000 training images, SemGIR enhances the average
detection accuracy by 15.76% compared to state-of-the-art
(SOTA) techniques. Regarding attribution, SemGIR-A attains
accuracies of 98.01% in tracing to the SDv2.1 models. These
findings underscore the efficacy of our proposed method.

2 RELATEDWORK
2.1 Image Generative Model
A generative model refers to a probabilistic model capable of ran-
domly generating observable data. As images are one of the most
commonly encountered data types, research on generative mod-
els for image generation is also widely explored. From Generative
Adversarial Networks (GAN) [8] to diffusion models [28], these
generative models [2, 11, 13, 14, 25, 35] have been lauded for their
ability to generate lifelike images. Particularly, Text-to-Image mod-
els now can synthesize high-resolution images that conform to
complex text prompts [7, 17, 24–27, 33, 34], and allow for a wide
range of image editing [22] and other downstream applications.

During the early stages, one of the most prominent generative
models was the Generative Adversarial Network [8]. These models
consist of a generator and a discriminator, which engage in an adver-
sarial learning process. Through this process, the generator learns
to produce images that resemble the distribution of real images.
Since the introduction of GANs, researchers have proposed vari-
ous improvements and variants [2, 3, 13, 14, 21, 36], continuously
enhancing the quality and stability of the generated images. In par-
ticular, StyleGAN and its improved version, StyleGAN2 [15], have
achieved fine-grained control over image style and attributes by
incorporating style transfer techniques, resulting in the generation
of highly realistic images.

However, GANs often face challenges such as mode collapse. As
a result, recent researchers have shifted their focus to the diffusion
model as a promising alternative. The diffusion model is inspired
by nonequilibrium thermodynamics by iteratively adding Gaussian
noise to an image, and then learning the reverse diffusion process to
reconstruct the original image from the noise. To enhance the con-
trollability of generated images, researchers have proposed a series
of text-to-image diffusion models such as ADM [5], VQDM [10],
Stable Diffusion [25], and Midjourney1. These models take a de-
scription i.e., a piece of text prompt and random noise as inputs,
and then denoise the image under the guidance of the prompt so
that the resulting image matches the prompt. Thanks to the incor-
poration of the text prompt, the generated images not only contain
1https://www.midjourney.com/
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the inherent characteristic of the generative model but also the
thematic content of the text. These two elements are closely cou-
pled together, allowing the generative models to offer users a more
enriched and personalized visual experience.

2.2 Detection of AI-generated images
With the rapid progress of generative models, the authenticity and
origin of generated images have become increasingly difficult to
discern. This has led to a growing demand for detection methods
to identify and distinguish AI-generated images.

Existing methodss [6, 12, 18–20, 29, 31, 32] for detecting AI-
generated images primarily rely on the differences in the image
features. CNNSpot [31] involves training a CNN as a binary classi-
fier to directly distinguish between real and AI-generated images.
Although this method is intuitive, its effectiveness relies on the
similarity between the architecture of the generative model and
the CNN network. Therefore, researchers are exploring alternative
classification features to enhance the detection effectiveness. Fus-
ing [12] proposes combining patch and global information of images
to train a classifier, and GramNet [19] incorporates global texture
features into the ResNet structure to improve the robustness and
generalizability of AI-generated image detection. Meanwhile, Fre-
Dect [6] discovers that AI-generated images exhibit similar artifacts
in the frequency domain caused by upsampling operations, and
proposes a binary classifier based on frequency domain features.

Later, researchers discovered that pre-trained models can serve
as effective feature extractors. LNP [18] extracts spatial image noise
patterns based on a pre-trained denoising model. It then distin-
guishes between real images and AI-generated images based on
the frequency domain of the noise patterns. LGrad [29] employs a
pre-trained model to convert an image to be detected into a gradient
map and normalize it, and then trains a binary classification model
on the gradient map to identify AI-generated images. DIRE [32]
proposes using a pre-trained diffusion model to reconstruct the
image to be detected and judging the authenticity of the image by
comparing the differences between the original and reconstructed
images. However, DIRE performs well only on images generated
by diffusion models. Subsequently, researchers began to focus on
the generalizability of detection methods across architectures. Uni-
vFD [20] argues that to enhance the generalization ability of detec-
tors and enable them to reasonably detect AI-generated images, i.e.,
to learn a balanced decision boundary, a suitable feature space is
required. Therefore, they utilized a pre-trained CLIP:ViT model to
extract the feature space.

3 METHOD
In this section, we first outline the motivation behind proposing
SemGIR. We then provide a detailed description of our method, as
illustrated in Figure 3, focusing on three aspects: semantic-guided
regeneration, feature extraction, and classification. We design dif-
ferent feature extraction strategies for the detection and attribution
tasks.

3.1 Motivation
Regeneration is an effective method for disentangling the inher-
ent characteristics of the model and text prompt within an image.

AI-generated Image

DIRE Re-generate Image

Image-to-Text 
Generator

“a husky dog standing on a
rock in front of a forest”

“a dog standing in a field of
green grass and grass, with
trees in the background”

Unconditional 
Diffusion

“a dog standing in a field of
green grass and grass, with
trees in the background”

Image-to-Text 
Generator

Image-to-Text 
Generator

Semantic-Guided 
Image Regeneration 

SemGIR Re-generate Image
Similar

Unsimilar

Figure 2: Themain difference between DIRE’s reconstruction
method and SemGIR’s reconstruction method. DIRE is only
a pixel-level reconstruction, while SemGIR is a semantic-
level reconstruction that rebuilds the image using the text,
ensuring the semantic consistency between the AI-generated
image and the original image.

DIRE [32] proposes a method that utilizes a diffusion model for
pixel-level reconstruction of the image. The reconstruction error is
then employed as a detection feature. From our perspective, this is
a method of decoupling the text prompt and the inherent charac-
teristics of the model. However, it can only identify images created
through diffusion models. However, DIRE performs image recon-
struction at the pixel level, which requires the presence of reversible
structures in the generative model. Therefore, it is only applicable
to stable diffusion models.

To achieve a general decoupling method against image genera-
tive models of different architectures, we propose to employ seman-
tics to guide the regeneration of images, achieving semantic-level
reconstruction. Compared to pixel-level reconstruction in DIRE,
semantic reconstruction operates at a higher level of abstraction.
Our proposed semantic reconstruction is independent of the model
architecture and can be generalized to a wider range of generative
models, addressing the generalization limitation of DIRE. Moreover,
as semantic consistency is ensured between the original and regen-
erated images, it effectively removes the influence of text prompt,
leading to a more thorough decoupling.

The examples shown in Figure 2 further validate our idea. The
reconstructed image obtained using the reconstruction proposed
by DIRE is only similar at the pixel level. Semantically, the two
images differ significantly, so the influence of text prompt is not
completely eliminated. On the other hand, using our proposed
semantic-guided regeneration method for reconstruction ensures
that the re-generated image and the AI-generated image are seman-
tically consistent.
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① Semantic-guided Image Regeneration

② Feature Extraction

Candidate Image

Text

Re-generated Image

“a penguin on a surfboard in the ocean 
with a wave in the background”

Re-generated 
Image

Candidate 
Image ③ Classification

Text-to-Image 
Generator

From Same 
Model

From Diff
Model 

Dedection
Classifier

Combiner

g(𝐸𝐼𝑐 , 𝐸𝑇)

s𝑑

s𝑎

𝐸𝐼𝑟

𝐸𝑇

𝐸𝐼𝑐

Attribution
Classifier

Real Image

Fake Image

Text

Encoder

Image-to-Text 
Generator

Figure 3: An overview of our approach. Given a candidate image, we utilize image-to-text generator to extract text from the
candidate image, and then perform semantic-guided image regeneration based on the text, ensuring that the re-generated
image is consistent with the candidate image in terms of text content. For detection and attribution tasks, we design different
feature extraction methods.

3.2 Semantic-guided Image Regeneration
To achieve the decoupling of text prompt and the inherent char-
acteristic of the model in images, we propose semantic-guided
image regeneration. Given a candidate image 𝐼𝑐 , we aim to obtain
a semantic-guided regenerated image 𝐼𝑟 . This process mainly in-
volves two steps: image-to-text generation and semantic-guided
image regeneration.

Image-to-text Generation: Given a candidate image 𝐼𝑐 , we
utilize a large pre-trained vision-language model ℱ1 to get a corre-
sponding text description 𝑇 .

𝑇 = ℱ1 (𝐼𝑐 ) . (1)

Semantic-guided Image Regeneration After obtaining 𝑇 of
𝐼𝑐 , the next step is to utilize a pre-trained text-to-image generation
model ℱ2 to get 𝐼𝑟 that is semantically consistent with 𝐼𝑐 based on
𝑇 . Specifically, given 𝑇 , we use ℱ2 to obtain 𝐼𝑟 :

𝐼𝑟 = ℱ2 (𝑇 ). (2)

For different tasks, we adopt different model selection strategies.
For the detection task, since the generative model of 𝐼𝑐 is un-

known, we uniformly use Stable Diffusion v1.5 (SDv1.5)2 as the
regenerative model. In fact, choosing different generation models
has marginal impact on the detection performance, because the
generation is only to inject semantic information to facilitate elim-
ination. The results of the ablation experiment on regeneration
model in Section 4.4, has also verified the inference.

For the attribution task. Given a set of models to be attributed
{𝑚1,𝑚2, ...,𝑚𝑘 }, we use each model𝑚𝑖 , 𝑖 = 1, 2, ..., 𝑘 in the set to
regenerate 𝐼𝑐 and obtain the corresponding re-generated images
𝐼
𝑚1
𝑟 , 𝐼

𝑚2
𝑟 , ..., 𝐼

𝑚𝑘
𝑟 .

𝐼
𝑚𝑖
𝑟 =𝑚𝑖 (𝑇 ), (3)

where𝑚𝑖 belongs to ℱ2.
The reason for using all the models to be attributed to regenerate

the candidate image is that we believe the same model contains the
2https://huggingface.co/runwayml/stable-diffusion-v1-5

same inherent characteristics, while different models have different
inherent characteristics. Therefore, we use all the generative models
to be attributed to regenerate the candidate image and compare the
similarity between these re-generated images and the candidate
image. The generative model corresponding to the the re-generated
image most similar to the candidate image is the generative model
of the candidate image.

3.3 Feature Extraction
Building on previous foundations, we aim to select different feature
extraction strategies for detection and attribution tasks, enhancing
the decoupling effect. In this section, we will first introduce feature
extraction for detection, followed by the introduction of semantic
conditional feature extraction strategies for attribution.

Feature Extraction for Detection. We learn a separate en-
coder Φ(𝐼 ) for images. With Φ(𝐼 ), we encode the 𝐼𝑐 and 𝐼𝑟 to obtain
their respective feature representations 𝐸𝐼𝑐 and 𝐸𝐼𝑟 . Notably, we
use the pre-trained model CLIP [23] to initialize the encoder Φ(𝐼 )
for images. Thereafter, we concatenate 𝐸𝐼𝑐 with 𝐸𝐼𝑟 and get the
embedding s as the similarity feature for detection task.

s𝑑 = 𝐸𝐼𝑐 | |𝐸𝐼𝑟 . (4)

Feature Extraction for Attribution. In the detection task, we
use a large pre-trained language model [23] to obtain features of 𝐼𝑐
and 𝐼𝑟 . Then, directly concatenate them to serve as classification
features. For the traceability task, we tried the same method but
found it did not achieve the desired effect. We believe this is because
the features extracted through the pre-trained model are not tightly
bound to a particular generative model, making it difficult for the
detector to learn the unique inherent characteristic of different
generative models without a large number of samples. This suggests
that for attribution tasks, more stringent constraints are needed,
forcing the classification model to focus solely on the inherent
characteristic of the generative model in the images. Based on this
analysis, we propose a semantic conditional classification for
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traceability tasks, using 𝑇 as a semantic condition for classification.
The advantage of this approach is that it strictly limits the classifier
to disregard the text prompt in the images, classifying only based
on the inherent characteristic of the model, which helps to extract
features bound to the generative model in AI-generated images.

Given 𝐼𝑐 and 𝐼𝑟 , and 𝑇 , we define the semantic conditional sim-
ilarity feature 𝑠 as the similarity feature between 𝐼𝑐 and 𝐼𝑟 under
the condition of 𝑇 .

When extracting semantic conditional similarity features, the
process is divided into three steps: feature extraction, feature fusion
and feature concatenation.

(1) Feature Extraction:We learn separate encodersΦ(𝐼 ) andΨ(𝑇 )
for images and text. The Φ(𝐼 ) is used to encode 𝐼𝑐 and 𝐼𝑟 , obtaining
their respective feature representations 𝐸𝐼𝑐 and 𝐸𝐼𝑟 . Meanwhile, the
Ψ(𝑇 ) is used to encode 𝑇 , obtaining the text feature 𝐸𝑇 . We also
use the pre-trained cross-modal model CLIP [23] to initialize Φ(·)
and Ψ(·). The visual and text embeddings are aligned, making it
easier to learn the combination between the 𝐸𝐼𝑐 and 𝐸𝑇 .

(2) Feature Fusion: Following the approach of genecis [30], we
use a function𝒢 to combine 𝐸𝐼𝑐 with 𝐸𝑇 , obtaining the fused feature
𝑔(𝐸𝐼𝑐 , 𝐸𝑇 ) ∈ 𝑅𝑁 .

𝑔(𝐸𝐼𝑐 , 𝐸𝑇 ) = 𝒢(𝐸𝐼𝑐 , 𝐸𝑇 ) . (5)

(3) Feature Concatenation: Finally, we use the feature obtained
by concatenating 𝑔(𝐸𝐼𝑐 , 𝐸𝑇 ) with 𝐸𝐼𝑟 as s𝑎 .

s𝑎 = 𝑔(𝐸𝐼𝑐 , 𝐸𝑇 ) | |𝐸𝐼𝑟 . (6)

3.4 Classification
Once the similarity feature sd and sa is obtained, the next step is to
train a classification model. This model can be utilized to detect and
attribute the generated images. For the detection task, real images
are defined as the positive class, and AI-generated images as the
negative class. For the attribution task, the images generated by
the generative model to be attributed are defined as the positive
class, and images generated by other models are defined as the
negative class. Both detection and attribution tasks will use the
same discriminator architecture and loss function.

We trained an end-to-end classification model to directly learn
how to classify based on the extracted features. The classification
model uses fully connected layers and applies the ReLU activation
function. During the training process, we utilize the cross-entropy
loss function to optimize the parameters of the classifier. By mini-
mizing the cross-entropy loss, the classifier learns how to complete
the classification task based on the feature vectors.

L = −[𝑦 log(𝑓 (s)) + (1 − 𝑦) log(1 − 𝑓 (s))] . (7)

Where 𝑓 represents the classification model, s represents the simi-
larity features, s𝑑 for the detection task, s𝑎 for the attribution task,
and 𝑦 represents the true label.

4 EXPERIMENT
4.1 Implementation Details
Datasets. To comprehensively evaluate our method, we employed
6 mainstream models, including generative models based on dif-
fusion models and GANs to generate the fake images, which are

SDv1.53, SDv2.14, Midjourney5, ADM [5], VQDM [10], and Style-
GAN2. Among them, the images for the StyleGAN2 [15] model are
contributed by CNNSpot [31], while the others are sourced from the
DiffusionForensics dataset [32]. For the training set, we randomly
selected 1000 images generated with each model and combined
with 1000 real images. Such amounts align with the few-shot set-
tings. As for the testing, 2000 images generated with each model
are selected to evaluate the performance. Besdies, we also evaluate
the JPEG robustness of the detection, which is done by testing the
detection/attribution accuracy on the JPEG compressed images.
Evaluation Metrics. Both the detection and attribution task of
the AI-generated image are regarded as a binary classification task
to be evaluated. Detection aims to correctly distinguish between
real images and AI-generated images. Attribution aims to detect
the images generated by specifc models. Both the accuracy can be
definded as following manner:

𝐴𝐶𝐶 = (𝑁+ + 𝑁−)/𝑁𝑡𝑜𝑡𝑎𝑙

In the detection task, 𝑁+ indicates the number of the real images
that are correctly detected as real and𝑁− denotes the number of the
fake images that are correctly detected as fake. 𝑁𝑡𝑜𝑡𝑎𝑙 represents
the total number of testing images. For the attribution task, when
attribute specific modelM𝑎 , all the test images are divided into two
classes: the images generated with M𝑎 , denoted as 𝐼M𝑎

and the
other images that are not generated with M𝑎 , denoted as 𝐼M𝑜

. 𝑁+
indicates the number of the images in 𝐼M𝑎

whose source model is
correctly attributed, 𝑁− illustrates the number of the images in 𝐼M𝑜

which are not attributed to M𝑎 . We adopt accuracy and average
precision in our experiments. Due to space limitations, the average
precision results are provided in the supplementary materials.
Baselines.We select CNNSpot [31], FreDect [6], Fusing [12], Gram-
Net [19], LNP [18], LGrad [29], DIRE [32], and UnivFD [20] as our
baseline methods. To ensure a fair comparison, all baselines are
retrained on our few-shot training set. For methods that require
pre-trained models for feature extraction, including DIRE, LNP,
and LGrad, we follow the their settings and use the officially pro-
vided pre-trained models for image reconstruction6, gradient map
acquisition, and noise extraction, respectively.
Training Details.We initialize the backbone of the image and text
feature extractors and the combiner network using the ResNet50×4
CLIP model. For the Image-to-Text model, we chose the BLIP model.
For the classifier, we design a binary classification network con-
sisting of two fully connected layers. The first layer accepts input
features of 640 × 2 dimensions and outputs features with 640 di-
mensions. The second layer performs binary classification based
on the 640-dimensional features. Among the architecture, “ReLU”
is utilized as the activation function. We set the batch size as 32, the
learning rate as 1e-4 and adopt Adam as the optimizer. Training is
performed on an RTX 4090 GPU.

4.2 Detection Effectiveness
The detection accuracy of SemGIR and other baselines is shown in
Table 1. It can be seen that our method outperforms the baselines

3https://huggingface.co/runwayml/stable-diffusion-v1-5
4https://huggingface.co/stabilityai/stable-diffusion-2-1
5https://www.midjourney.com/
6https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_bedroom.pt
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Table 1: The detection accuracy comparison between SemGIR and baselines. Among all detectors, the best result and the
second-best result are denoted in boldface and underlined, respectively.

Generator Detection Methods

CNNSpot FreDect Fusing GramNet LGrad LNP DIRE UnivFD SemGIR

SDv1.5 0.5630 0.5250 0.9960 0.7950 0.8730 0.9980 0.7980 0.8840 0.9929
SDv2.1 0.7937 0.4850 0.9405 0.6680 0.8710 0.9985 0.9710 0.7960 0.9561

Midjourney 0.5763 0.5145 0.7463 0.8136 0.9845 1.0000 0.9522 0.8327 0.9954
ADM 0.6735 0.5250 0.4990 0.4995 0.8205 0.4880 0.5130 0.6380 0.9960
VQDM 0.4980 0.5005 0.5220 0.6455 0.8725 0.7665 0.6320 0.8285 0.9970

StyleGAN2 0.6260 0.5080 0.9370 0.7235 0.5250 0.6345 0.5147 0.8970 0.9546

Average 0.6217 0.5096 0.7734 0.6908 0.8244 0.8142 0.7301 0.8127 0.9820
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Figure 4: The accuracy change of SemGIR and baselines under different qualities of JPEG compression.

in terms of average detection accuracy, with a clear advantage. Our
method achieves an average accuracy of 98.2% on six generative
models, while the highest average accuracy of the baseline methods
is only 82.44%. This indicates that our proposed method performs
superior in scenarios with limited samples.

However, it is also observed that LNP behaves slightly better re-
garding the images generated with SDv1.5, SDv2.1 and Midjourney,
but the generalizability to other models exhibits a clear drop. Such
a generalizability issue can be found in all the compared methods.
However, with the proposed SemGIR, all the accuracy stays at a
high level, which is higher than 95%. Such a positive results indi-
cates the strong generalizability of SemGIR.We conclude the reason
as: SemGIR separates the intrinsic feature of the generative model
from the textual content in the image. By reducing the influence of
various prompts, the detector can concentrate on the distinguishing
feature of the generative model. Consequently, a small number of
samples are adequate for training the classifier effectively.

For DIRE, which is also a re-generation-based mechanism, the
detection of the invertible structure (diffusionmodel) is much higher
than that of GAN, such results align with our analysis. Compared
with DIRE, SemGIR outperforms a lot, which greatly indicates the
importance of semantic-conditioned detection and the semantic
level reconstruction proposed in this paper.
Robustness Test: In real-world applications, images propagated
on online social networks may undergo various common image
processing techniques, such as JPEG compression. Therefore, it

is crucial to evaluate the performance of detectors in handling
distorted images. We apply JPEG compression at different quality
factors to test the performance of each detector under a lossy envi-
ronment. Figure 4 illustrates the accuracy change of SemGIR and
baselines in this scenario.

It can be seen that our proposed method exhibits robustness
across nearly all models. Even with compressed images, the de-
tection accuracy is still at a high level. For Stable diffusion, the
most commonly used generation model, the detection accuracy
is higher than 93%, which greatly illustrate the robustness of the
detection. We believe the reason comes from the invariance of
the semantic features of the images. Even under different level
of compression, the BLIP model still can extract same semantic
feature for re-generation, such an invariance in semantics leads
to the alignment of the semantic conditions, where making the
detection still works in a semantic-guided manner. Such positive
results greatly show the effectiveness of the proposed SemGIR in
practical scenarios.

4.3 Attribution Effectiveness
As aforementioned, SemGIR can also be utilized asmodel attribution
since different generative models may result in different inherent
characteristics. By detecting with semantic aligned conditions, the
features with different model can be effectively differentiated. In
this section, we focus on investigating the attribution of the SDv1.5
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Table 2: The traceability accuracy comparison between SemGIR and baselines. Among all detectors, the best result and the
second-best result are denoted in boldface and underlined, respectively. QF means the quality factor of JPEG compression.

Generator JPEG
Compression

Attribution Methods

CNNSpot FreDect Fusing GramNet LGrad LNP DIRE UnivFD SemGIR-A

SDv1.5

Original 0.7599 0.7563 0.8674 0.8148 0.8133 0.7387 0.9114 0.7748 0.9016
QF=90 0.7599 0.7563 0.6695 0.8150 0.8282 0.7317 0.7514 0.8001 0.8969
QF=80 0.7602 0.7563 0.6608 0.8143 0.8011 0.7317 0.6850 0.7799 0.9088
QF=70 0.7609 0.7563 0.2514 0.8138 0.7828 0.7317 0.7061 0.7682 0.9266

SDv2.1

Original 0.8021 0.8332 0.9718 0.8054 0.8433 0.9701 0.9020 0.8040 0.9801
QF=90 0.8007 0.83344 0.9268 0.8052 0.8066 0.9935 0.7514 0.8040 0.9781
QF=80 0.8013 0.8332 0.6503 0.8052 0.7674 0.9088 0.7360 0.8040 0.9597
QF=70 0.8009 0.8334 0.3752 0.8050 0.7584 0.9064 0.7134 0.8040 0.8935

and SDv2.1 models and test the robustness of various methods
under JPEG attacks.

In this work, we focus on investigating the attribution of the
SDv1.5 and SDv2.1 models and test the robustness of various meth-
ods under JPEG attacks. Table 2 presents the attribution accuracy
and robustness of our method and other baselines. We also con-
ducted more detailed attribution experiments and the results can
be found in the supplementary material.

For the attribution of SDv1.5, the best and second-best results
are achieved by our method and DIRE, respectively, both reaching
over 90%. This indicates that extracting the the inherent character-
istics of the model is a highly effective approach for the attribution
task, as it allows obtaining features bound to the model. As for the
attribution of SDv2.1, our method achieves the highest accuracy,
which is 98.01%. Both experiments demonstrate the superiority of
our proposed method in the attribution task.

We also find that attributing SDv1.5 is more challenging than
attributing SDv2.1, with most methods achieving higher attribution
accuracy on SDv2.1 compared to SDv1.5. We believe that the reason
for the performance decline is that the inherent characteristics
of SDv2.1 model are easily distinguishable from other models. In
contrast, SDv1.5 may share similar intrinsic properties with other
models.
Robustness Test: Under JPEG compression processing, somemeth-
ods experience a decrease in performance. However, our method
remains relatively stable, especially for the attribution experiment
on SDv1.5, demonstrating the robustness of our method. This can
still be attributed to the stability of the BLIP and CLIP models when
facing attacks, enabling the SemGIR method to maintain robustness
under attacks. At the same time, this is also due to the stability of
the features selected by our method. We believe that the inherent
characteristics of the model are more stable than semantic informa-
tion when facing attacks. The stability in these two aspects makes
our method more robust.

4.4 Ablation Studies
For the detection and attribution experiments, we respectively in-
vestigated the influence of different modules on the detection and
attribution accuracy. Specifically, we investigated the impact of the
regeneration process, the selection of regeneration models, and

the feature extraction module on the accuracy of detection and
attribution. The experimental results are shown in Table 3.

The Importance of Regeneration Process. The core of our
method lies in semantic-guided regeneration. By comparing the
accuracy of methods with and without the regeneration process,
we further emphasize the importance of the regeneration process.
When the regeneration process is not employed, we can only obtain
the candidate image. Alternatively, we can further perform caption
extraction on the candidate image, obtaining both the candidate
image and its corresponding caption. The results are presented in
the “Without Regeneration Progress” section of Table 3.

When using only the candidate image as the classification feature,
the average accuracy is merely 85.34%, especially for the ADM,
VQDM, and StyleGAN2 models, where the accuracy is only 75%.
This indicates that using only the candidate image as a feature
makes it difficult to effectively distinguish between real images and
AI-generated images.

Compared to using only candidate images, when using the joint
features of candidate image and caption for detection, the detection
accuracy is lower, with an average detection accuracy of only 83.53%.
This further demonstrates that when distinguishing between real
images and AI-generated images in scenarios with limited samples,
text should not be introduced as a feature. We believe there are
two reasons for this. The first is that in small sample scenarios,
the content that the detector can learn is limited, so introducing
text and image features will make the features complex and not
conducive to detector learning. The second reason is that since
the text content is encoded through CLIP, it also belongs to the
generated content. Therefore, mixing generated content into real
images will make the features of natural images impure, making it
difficult to distinguish them from the features of generative model
images.

Consistent with the ablation experiment for detection, we used
the attribution accuracy in the cases of using only candidate im-
ages and text, and using only candidate images. It can be seen that
when using only candidate images for attribution, the accuracy is
only around 80%, because generated images often exhibit similar
features, making it difficult to perform attribution. However, after
introducing text features, the attribution accuracy reached 85.01%
and 94.97%, respectively, indicating the positive impact of introduc-
ing text on attribution accuracy. It can provide more features to help
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Table 3: Ablation study of SemGIR. “without Regeneration Process” investigates the impact of not using the regeneration
process on performance, “Regeneration Model” represents the influence of the selection of regeneration model during the
regeneration process on performance, and “Feature Extraction” represents the impact of feature selection on performance.

Task Generator SemGIR Without Regeneration Progress Regeneration
Model (SDv2.1)

Feature
ExtractionCandidate image-Caption Candidate Image

Detection

SDv1.5 0.9929 0.9808 0.9456 0.9400 0.9844
SDv2.1 0.9561 0.9793 0.9400 0.9924 0.9808

Midjourney 0.9954 0.8143 0.9458 0.9862 0.9338
ADM 0.9960 0.7011 0.7339 0.9783 0.7848
VQDM 0.9970 0.8760 0.7923 0.9748 0.8624

StyleGAN2 0.9546 0.6603 0.7631 0.9622 0.9083

Average 0.9820 0.8353 0.8534 0.9723 0.9091

Attribution SDv1.5 0.9016 0.8501 0.7559 0.8767 0.8598
SDv2.1 0.9801 0.9497 0.8040 0.9351 0.9670

the detector with attribution, which also proves the correctness
of our idea of introducing text-conditional similarity features for
attribution. After using re-generated and text-conditional similarity
features, the attribution accuracy for SDv1.5 and SDv2.1 reached
90.16% and 98.01%, respectively.

The Impact of Regeneration Model. In re-generation, the
selection of the re-generation model is also a very important part.
To investigate the impact of different re-generation models on the
results, we used SDv2.1 as the regeneration models. The results
displayed in the "Regeneration Model" of Table 3 show the out-
comes of using the SDv2.1 model instead of the SDv1.5 model for
regeneration.

From the table, it can be seen that using SDv1.5 and SDv2.1
as re-generation models does not have a significant impact on
the results, with average accuracies of 98.20% and 97.23%, respec-
tively. This proves our previous point that the similarity between
AI-generated images and re-generated images is greater than the
similarity between human-generated images and re-generated im-
ages. It is worth noting that for the SDv1.5 model, the accuracy of
using the corresponding model as the regeneration model is higher
than the accuracy of using SDv2.1 as the regeneration model, which
are 99.29% and 94.00%, respectively. The same trend is also reflected
in SDv2.1. Using the SDv2.1 model as the re-generation model
achieves a higher detection accuracy than using SDv1.5, which are
95.61% and 99.24%, respectively. From this point of view, it also
proves the rationality of our proposed attribution method, that is,
the same model exhibits the same inherent characteristics of the
model, while different models have different inherent characteris-
tics of the model. When using models different from the source of
the AI-generated image for detection, due to the different inherent
characteristics of different models, the re-generated images show
a slight decrease in similarity with the AI-generated images, lead-
ing to ambiguity in the decision boundary and thus a decrease in
detection accuracy.

Based on the above analysis, When using a different model from
the model to be attributed for re-generation, we can see a signif-
icant decrease in accuracy. When attributing SDv1.5, if SDv2.1 is
used as the re-generation model, the accuracy decreases by 2.49%.

When attributing SDv2.1, the accuracy decreases by 4.5%. This also
simultaneously verifies our previous viewpoint: the same model
contains the same inherent characteristics ,while different models
contain different inherent characteristics.

The Impact of Feature Extraction. Finally, we investigated
the impact of the feature extraction module on the accuracy of
detection and attribution. In the detection task, the similarity fea-
tures between the candidate image and the re-generated image are
extracted; while in the attribution task, the similarity features under
semantic conditions are extracted. To demonstrate the influence
of different feature extraction methods on accuracy, we extracted
semantic conditional similarity features for the detection task and
tested the accuracy, finding that the average accuracy was only
90.91%. This indicates that semantic conditional features should not
be introduced in distinguishing between real images and generated
images, because semantic conditional features belong to the gen-
erated part. When the features of real images are combined with
semantic conditional features, the presence of generated compo-
nents in the supposed real features can lead to misjudgments.

In the attribution task, we only use the features of the candidate
image and the re-generated image for attribution. When using only
image features for attribution of the two models, the accuracy is
only 85.98% and 96.70%. This demonstrates the necessity of selecting
semantically similarity features for the attribution task.

5 CONCLUSION
In this paper, we have presented a novel approach for detecting
AI-generated images by employing semantic-guided image regen-
eration to mitigate the influence of text prompt.

Our method compares the similarity between the input image
and its regenerated version using neural networks, enabling reliable
detection. Furthermore, we have introduced a semantic conditional
image similarity detection method to enhance the accuracy of im-
age attribution by further eliminating text prompt interference.
Our reconsideration of text prompt interference elimination opens
up new avenues for AI-generated image detection research. This
direction encourages the exploration of more efficient methods to
tackle the challenges posed by text prompts.
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