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ABSTRACT

We study the problem of data reduction for clustering when the input dataset P̂
is a noisy version of the true dataset P . Motivation for this problem derives from
settings where data is obtained from inherently noisy measurements or noise is
added to data for privacy or robustness reasons. In the noise-free setting, coresets
have been proposed as a solution to this data reduction problem – a coreset is a
subset S of P that comes with a guarantee that the maximum difference, over
all center sets, in cost of the center set for S versus that of P is small. We find
that this well-studied measure which determines the quality of a coreset is too
strong when the data is noisy because the change in the cost of the optimal center
set in the case S = P̂ when compared to that of P can be much smaller than
other center sets. To bypass this, we consider a modification of this measure by
1) restricting only to approximately optimal center sets and 2) considering the
ratio of the cost of S for a given center set to the minimum cost of S over all
approximately optimal center sets. This new measure allows us to get refined
estimates on the quality of the optimal center set of a coreset as a function of the
noise level. Our results apply to a wide class of noise models satisfying certain
bounded-moment conditions that include Gaussian and Laplace distributions. Our
results are not algorithm-dependent and can be used to derive estimates on the
quality of a coreset produced by any algorithm in the noisy setting. Empirically,
we present results on the performance of coresets obtained from noisy versions
of real-world datasets, verifying our theoretical findings and implying that the
variance of noise is the main characterization of the coreset performances.

1 INTRODUCTION

Clustering problems are ubiquitous in machine learning with diverse applications (Lloyd, 1982; Tan
et al., 2006; Arthur & Vassilvitskii, 2007; Coates & Ng, 2012). An important class of clustering
problems is called (k, z)-CLUSTERINGwhere, given a dataset P ⊂ Rd of n points and a k ≥ 1, the
goal is to find a set C ⊂ Rd of k points that minimizes the cost costz(P,C) :=

∑
x∈P dz(x,C).

Here dz(x,C) := min {dz(x, c) : c ∈ C} is the distance of x to the center set C and dz denotes
the z-th power of the Euclidean distance. Examples of (k, z)-CLUSTERINGinclude k-MEDIAN
(when z = 1) and k-MEANS (when z = 2). In many applications, the dataset P is large, and
it is desirable to have a small representative subset that requires less storage and compute while
allowing us to solve the underlying clustering problem. Coresets have been proposed as a solution
towards this (Har-Peled & Mazumdar, 2004) – a coreset is a subset S that approximately preserves
the clustering cost for all center sets. Coresets have found further applications in sublinear models,
including streaming (Har-Peled & Mazumdar, 2004; Braverman et al., 2016), distributed (Balcan
et al., 2013; Huang et al., 2022b), and dynamic settings (Henzinger & Kale, 2020) due to the ability
to merge and compose them (see, e.g., (Wang et al., 2021, Section 3.3)).

In the majority of results on coresets for clustering, the dataset P is assumed to be accurately known.
Data in the real world, however, may often be noisy. One reason is that the measurement process
may itself introduce noise in data, or corruptions may occur in the recording or reporting processes
(Halevy et al., 2006; Agrawal et al., 2010; Sáez et al., 2013; Iam-on, 2020). Further, noise can be in-
troduced intentionally in data due to privacy concerns (Ghinita et al., 2007; Dwork et al., 2014; Ghazi
et al., 2020), or to ensure robustness (Ying, 2019; Li et al., 2019). In these settings, one observes
a noisy dataset P̂ ⊂ Rd instead of the true dataset P . Various types of noise can arise in different
scenarios: stochastic noise, adversarial noise, and noise due to missing data (Balcan et al., 2008;

1



Under review as a conference paper at ICLR 2024

Batista & Monard, 2003; Iam-on, 2020). The knowledge of noise in data can range from completely
unknown to known parameters of a known distribution. Stochastic noise, in particular, has been
examined in fundamental problems such as clustering (Iam-on, 2020) and regression (Theodoridis,
2020), and is commonly observed in social sciences (Baye & Monseur, 2016; O’Dea et al., 2018;
Fong et al., 2022), economics (Fang & Moro, 2010), and machine learning (Dwork et al., 2014;
Ying, 2019; Li et al., 2019). When the attributes of data interact weakly with each other, indepen-
dent and additive stochastic noise is considered (Zhu & Wu, 2004; Freitas, 2001; Langley et al.,
1992), i.e., for every point p ∈ P and every attribute j ∈ [d], the observed point is p̂j = pj + ξp,j
where ξp,j is drawn from a given distribution Dj . Various choices of Dj have been considered:
Gaussian distribution (Secondini, 2020; Helou & Süsstrunk, 2019), Laplace distribution (Bun et al.,
2019), uniform distribution (Agrawal et al., 2010; Roizman et al., 2019), and Dirac delta distribution
(Zimmermann & Dostert, 2002). Such additional noise may come from inherent individual varia-
tions, such as STEM scores (Baye & Monseur, 2016; O’Dea et al., 2018) whose mean and variance
can be estimated by multiple exams; or employers making employment decisions via statistical in-
formation on the group they belong to (Fang & Moro, 2010). In privacy or robustness settings, we
may also add noise with known parameters to data, e.g., the deliberate addition of i.i.d. Gaussian
noise in the Gaussian mechanism (Dwork & Roth, 2014), and the introduction of i.i.d. Gaussian
noise for robustness to adversarial attacks in deep learning (Ying, 2019; Li et al., 2019) Numerous
studies have investigated the impact of modeled noise, specifically Gaussian noise (Yu & Wong,
2009; Iam-on, 2020), on clustering tasks (Dave, 1993; Garc’ia-Escudero et al., 2008; Iam-on, 2020).
They analyze the relation between the level of noise and the performance of clustering algorithms
and show that small amount of noise may benefit centroid-based clustering methods (Iam-on, 2020).

Given the wide-ranging applications of coresets as a data reduction technique for clustering prob-
lems, it is thus natural to study them in the presence of noise. To measure the error due to a coreset S
with respect to P (in the absence of noise), one considers the maximum ratio Err(S) between the cost
difference |costz(S,C) − costz(P,C)| and the original costz(P,C), over all center sets C of size
k (Feldman & Langberg, 2011; Cohen-Addad et al., 2021). Previous research has primarily focused
on analyzing the optimal tradeoff between the size |S| of a coreset and the associated estimation
error (Cohen-Addad et al., 2022; Cohen-Addad et al., 2022; Huang et al., 2023b). A natural idea is
to extend this size-error tradeoff analysis for Err(S) to the setting of stochastic additive noise with
known parameters. However, there are a few obstacles: 1) Due to the noise, the observed dataset
P̂ may not be well-correlated with the true dataset P . Thus, even with the knowledge of the noise
model and associated parameters, one can not expect to recover a coreset for P from P̂ . 2) Even
if we let S = P̂ , to estimate Err(P̂ ), we need to upper bound |costz(P̂ , C) − costz(P,C)| for all
possible center sets C ⊂ Rd. Naively, one can get a bound on this in terms of the cumulative norms
of noise over all datapoints. However, this approach is not tight (see Appendix B) and to more accu-
rately quantify the effect of noise, we need to understand how noise may cancel. 3) Importantly, we
find that the coreset error measure Err(·) may be too strong to measure how good a center set we can
obtain from P̂ in the presence of noise. This is because, due to noise, costz(P̂ , C) − costz(P̂ , C ′)
may have a different sign compared to costz(P,C) − costz(P,C

′) for two center sets C,C ′ ∈ R.
Thus, roughly speaking, how good a center set we can obtain from P̂ is affected by the number of
sign changes. Moreover, due to noise, costz(P̂ , C)− costz(P̂ , C ′) may change significantly which
makes Err(P̂ ) large compared to the number of sign changes. Thus, a new measure is needed to
account for this inconsistency and specifically, to quantify the quality of the optimal center set Ĉ of
P̂ , i.e., how good Ĉ is on P .

Our contributions. We study the problem of quantifying the quality of a coreset for clustering in
the presence of noise. Motivated by the aforementioned applications, we consider the stochastic
additive noise model in which each Dj (as above) is parameterized by the noise-level θ, and is only
required to satisfy a certain bounded-moment condition (see Definition 2.1). This model includes
distributions such as Gaussian and Laplace where θ is the variance. Conceptually, to address the
issues emerging from the use of the Err(·) discussed above, we propose a new notion ErrAR(·) of
coreset performance (Definition 2.2), called approximation-ratio. Roughly, ErrAR(·) ensures that
the optimal center set of P̂ is (1 + ErrAR(P̂ ))-approximately optimal for P (Claim 2.3).

Technically, under mild assumptions on the dataset P (Assumptions 1 and 2), we prove quantitative
bounds on the coresets selected using this approximation-ratio measure as a function of the noise-
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level θ, the input parameters n, k, ε, and OPT := minC⊂Rd:|C|=k costz(P,C) (see Theorem 3.1).
A consequence of Theorem 3.1 is that ErrAR(P̂ ) = O( θkd

OPT ), which implies that the optimal k-
MEANS solution Ĉ of P̂ is (1 + O( θkd

OPT ))-approximately optimal for P (see Corollary 3.2). This
approximation ratio is shown to be nearly tight in Theorem 3.3 and is better than the approximation
ratio 1 +O( θnd

OPT ) obtained by the coreset measure Err(·). Additionally, we also provide bounds for
(k, z)-CLUSTERINGin Section E. The key ingredient in the proof of Theorem 3.1 is an understanding
of how the noise cancels (Claim 3.6). Finally, we show in Lemma 3.4 how Theorem 3.1 can be used
to guide the selection of coreset size for any algorithm for a given noise level.

Empirically, in Section 4, we present estimates on Err and ErrAR for coresets of different sizes for
Adult and Bank datasets with additive Gaussian or Laplace noise. The empirical findings are
consistent with the theoretical results and demonstrate the following: 1) A numerical separation
exists between Err and ErrAR, in which the errors with respect to ErrAR are smaller (see e.g., solid
lines vs. dashed lines in Figure 1). 2) Both Err and ErrAR initially decrease and then stabilize as the
coreset size increases; this can be utilized to select an appropriate coreset size (see the changes in
the columns of Table 1). 3) Variance of noise (or noise level) is the main parameter that determines
both Err and ErrAR (e.g., similar lines can be observed in all Figures 1a–1d).

2 MODEL

Coreset for (k, z)-CLUSTERING. Denote the collection of all subsets C ⊂ Rd of size k ≥ 1
by C. An ε-coreset for the (k, z)-CLUSTERING problem (which we define in Section 1) is a set
S ⊂ Rd with a weight function w : S → R≥0 such that costz(S,C) :=

∑
x∈S w(x) · dz(x,C) ∈

(1 ± ε) · costz(P,C) holds for every C ∈ C. Define Err(S) := supC∈C
|costz(S,C)−costz(P,C)|

costz(P,C)

to be the error measure of a coreset S that bounds the maximum difference in the clustering cost
of all center sets C ∈ C for S versus that of P . This measure is well studied in the noise-free
setting (Har-Peled & Mazumdar, 2004; Feldman & Langberg, 2011; Huang et al., 2019).

Noise models. Given a probability distribution D on R with mean µ and variance σ2, we say that
D satisfies the Bernstein condition if there exists some constant b > 0 such that for every integer
i ≥ 3, EX∼D

[
|X − µ|i

]
≤ 1

2k!σ
2bi−2, i = 3, 4, . . .. This condition has been well studied in

the literature (Bernstein, 1946; Bennett, 1962; Fan et al., 2012). It imposes an upper bound on
each moment of D, which allows for control of tail behaviors. Multiple well-known distributions
satisfy the Bernstein condition, including Gaussian distribution, Laplace distribution, sub-Gaussian
distributions, sub-exponential distributions, and so on (Vershynin, 2018); see Appendix C.1 for a
discussion. Next, we define the following noise model that we consider in this paper.

Definition 2.1 (Noise model I) Let θ ∈ [0, 1] be a noise parameter and D1, . . . , Dd be probability
distributions on R with mean 0 and variance 1 that satisfy the Bernstein condition. Every point p̂i
(i ∈ [n]) is i.i.d. drawn from the following distribution: 1) with probability 1 − θ, p̂i = pi; 2) with
probability θ, for every j ∈ [d], p̂i,j = pi,j + ξp,j where ξp,j is drawn from Dj .

Intuitively, we select a fraction θ of underlying points and add an independent noise to each feature
j ∈ [d] that is drawn from a certain distribution Dj . Note that as θ approaches 1, the estimate P̂
becomes increasingly noisy since the variance of ξp,j is θ for each p and j. Specifically, when θ = 0,
P̂ is noise-free and equal to P . Several applications mentioned in Section 1 apply this noise model,
e.g., selecting θ = 1 and each Dj to be an appropriate Gaussian distribution (Dwork & Roth, 2014;
Li et al., 2019).

Note that the variance of each Dj can be fixed to any t > 0 since we can scale each point in the
dataset by 1

t . For the ease of measuring the impact of the variance of each Dj on the performance of
a coreset empirically, we also define the following model, called noise model II: For every i ∈ [n]
and j ∈ [d], p̂i,j = pi,j + ξp,j where ξp,j is drawn from Dj , which is a probability distribution on R
with mean 0, variance σ2, and satisfies the Bernstein condition.

We study the performance of coreset for (k, z)-CLUSTERING under noise model I. Specifically, for a
set S obtained from P̂ , we want to quantify how good a center set can one obtain for the (unknown)
dataset P .
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Obstacles in using measure Err(·). A natural idea is to extend the prior analysis of the coreset
measure Err(·) to our noise model. However, this coreset measure could be too strong with noisy
data. Take 1-MEANS as an example where there is only one center c ∈ R, and consider S = P̂ . We
first observe that noise may lead to sign changes in cost, i.e., cost2(P̂ , c) − cost2(P̂ , c′) may have
a different sign as cost2(P, c) − cost2(P, c

′) for c, c′ ∈ R. Specifically, if there is no sign change
from P to P̂ , the optimal center c⋆ ∈ Rd of P satisfies that cost2(P̂ , c⋆) = minc∈Rd cost(P̂ , c).
This implies that c⋆ is also an optimal center of P̂ . Intuitively, how good a center set we can obtain
from P̂ is affected by the number of sign changes. Also note that for any c ∈ Rd, we have

cost2(P̂ , c)− cost2(P, c) =
∑

p∈P ∥ξp∥22 + 2
∑

p∈P ⟨ξp, p− c⟩,

which contains term
∑

p∈P ∥ξp∥22, that is the cumulative norms of ξp’s, and term 2
∑

p∈P ⟨ξp, p −
c⟩, that is the cumulative inner-products between ξp and p − c. We remark that the norm term∑

p∈P ∥ξp∥22 can not cause sign changes, say for any two centers c, c′ ∈ R with cost2(P, c) <

cost2(P, c
′), cost2(P, c) +

∑
p∈P ∥ξp∥22 < cost2(P, c

′) +
∑

p∈P ∥ξp∥22 still holds. In contrast, the
inner-product term 2

∑
p∈P ⟨ξp, p − c⟩ varies for different centers c and causes sign changes. We

also note that the norm term can be much larger than the inner-product term and make the coreset
measure Err(P̂ ) large. Thus, Err(·) can not quantify the number of sign changes, which motivates
us to consider new measures to quantify the quality of the optimal center set Ĉ of P̂ for P . See an
illustration example in Appendix B.

New coreset notion. We propose a new notion of coreset (Definition 2.2) to bypass these obstacles.
All proofs of its properties can be found in Appendix C.2. Given a dataset P ⊂ Rd of n points,
α ≥ 1, and a weighted point set S ⊂ Rd with weight w : S → R≥0, we define rS(C) :=

costz(S,C)
minC′∈C costz(S,C′) to be the approximation ratio of C on S for every center set C ∈ C. Moreover,
we define Cα(S) := {C ∈ C : rS(C) ≤ α} to be the collection of all α-approximate solutions for
(k, z)-CLUSTERING of S. Let OPT denote the optimal (k, z)-CLUSTERING cost of P .

Definition 2.2 (Approximation-ratio coreset for (k, z)-CLUSTERING) Given a dataset P ⊂ Rd

of n points, ε ∈ (0, 1), α ≥ 1, an (α, ε)-approximation-ratio coreset for (k, z)-CLUSTERING is a
weighted set S ⊂ Rd with weight w : S → R≥0, such that rP (C) ≤ (1+ ε) · rS(C) holds for every
C ∈ Cα(S). Define ErrAR(S) := supC∈Cα(S)

rP (C)−rS(C)
rS(C) to be the induced error measure.

Compared to Err(S), our new measure ErrAR(S) considers the ratio rS(C) for center sets instead of
their cost costz(S,C). We note that the norm term

∑
p∈P ∥ξp∥22 does not cause a sign change in the

ratio, i.e., rS(C) − rS(C
′) has the same sign as rP (C) − rP (C

′) for all C,C ′ ∈ C. This property
of the ratio aligns with that for sign changes in cost, which motivates this new measure ErrAR(·).
By definition, we note that S is an (α,ErrAR(S))-approximation-ratio coreset of P for any α ≥ 1,
where ErrAR(S)) does not decrease as α increases. Also, a β-approximate center set C ∈ Cα(S) of
S must be a β(1+ε)-approximate center set of P , which allows us to find an approximately optimal
center set of P from S (Claim 2.3). Parameter α controls the scale of the collection of restricted
center sets we consider, which allows us to quantify the different impacts of noise on center sets C
with different levels of cost costz(S,C). In practice, We can set α = 1 + O(ε) since there exist
fixed-parameter tractable (FPT) algorithms for (k, z)-CLUSTERING (Cohen-Addad et al., 2019).1
We remark that our new notion is independent of noise and can be easily extended to measure the
performance of coreset for other learning tasks like regression.

Claim 2.3 (Approximation-ratio coreset to an approximate solution) Let P ⊂ Rd be a dataset
of n points and ε, ε′ ∈ (0, 1), α ≥ α′ ≥ 1. Suppose S is an (α, ε)-approximation-ratio coreset of P
for (k, z)-CLUSTERING and C is an α′-approximate solution of S (α′ ≥ 1). Then we have C is an
α′(1 + ε)-approximate solution of P for (k, z)-CLUSTERING.

Both the coreset and approximation-ratio coreset exhibit the following composition property that
proves advantageous in constructing a merge-and-reduce framework for coreset generation in dis-

1Here, an FPT algorithm finds a (1 + ε)-approximate solution for (k, z)-CLUSTERING in time f(k, ε) ·
poly(n, d) where f(k, ε) may not be a polynomial function.
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tributed and streaming settings (Phillips, 2016; Braverman et al., 2016). For coreset, this compo-
sition property is known before; see e.g., (Har-Peled & Mazumdar, 2004, Observation 7.1) and
(Feldman et al., 2011, Section 3.2).

Claim 2.4 (Composition property) Let P ⊂ Rd be a dataset of n points and ε, ε′ ∈ (0, 1), α ≥ 1.
We have 1) Suppose S′ is an ε′-coreset of P for (k, z)-CLUSTERING and S is an ε-coreset of
S′ for (k, z)-CLUSTERING. Then S is an O(ε + ε′)-coreset of P . 2) Suppose S′ is an (α, ε′)-
approximation-ratio coreset of P for (k, z)-CLUSTERING and S is an ε-coreset of S′ for (k, z)-
CLUSTERING. Then S is an ( α

1+O(ε) , O(ε+ ε′))-approximation-ratio coreset of P .

3 THEORETICAL RESULTS

We study the k-MEANS problem in the main body and defer the results to (k, z)-CLUSTERING to
Appendix E. For simplicity, we use cost to replace cost2 in the following context.

Main result. Theorem 3.1 provides nearly tight error bounds for two measures Err(S) and ErrAR(S)

on a coreset S obtained from P̂ under the noise model I. The theorem offers a separation between
these two measures that can be verified empirically (Section 4), showing the effectiveness of our
new measure ErrAR(S) in the presence of noise. Due to certain technical difficulties, our results
rely on mild assumptions on data (Assumptions 1 and 2), which we will explain later.

Theorem 3.1 (Performance analysis for k-MEANS coreset under noise model I) Let ε, θ ∈ [0, 1]
and 1 ≤ α ≤ 1 + 1

k . Let P ⊂ Rd be an underlying dataset of size n satisfying Assumptions
1 and 2 on P . Suppose n ≫ k2 is sufficiently large. Let P̂ ⊂ Rd be an observed dataset
drawn from P under the noise model I with underlying parameter θ. Let S be an ε-coreset of

P̂ for k-MEANS. With probability at least 0.8, S is an O(ε + θnd
OPT +

√
θnd
OPT )-coreset and an(

α
1+O(ε) , O(ε+ θkd

OPT +
(1− 1

α+e−O(
√

kd)))θnd

OPT + (1− 1
α ))

)
-approximation-ratio coreset of P .

We emphasize that the presented theorem is an analytical finding that does not need the information
of the noise level θ, rather than an algorithmic one, and can be used to derive estimates of the quality
of a coreset produced by any algorithm in the noisy setting (see Lemma 3.4). Our result directly
implies the following corollary.

Corollary 3.2 ErrAR(P̂ ) = O( θkd
OPT ) when ε = 0, α = 1 and n ≤ eO(

√
kd)k.

By Claim 2.3, this corollary implies that the optimal k-MEANS center set Ĉ of P̂ is a (1+O( θkd
OPT ))-

approximate center set of P . This approximation ratio is tight by Theorem 3.3. In contrast, we

know that Err(P̂ ) = O( θnd
OPT +

√
θnd
OPT )-coreset of P , which only provides a guarantee that Ĉ is a

(1 + O( θnd
OPT +

√
θnd
OPT ))-approximate center set of P . Since θnd

OPT +
√

θkd
OPT ≫ θkd

OPT , we conclude

that ErrAR(P̂ ) gets a refined estimate on the quality of Ĉ than Err(P̂ ).

Another corollary of Theorem 3.1 is when ε = 0, α ≥ 1 + k
n + e−O(

√
kd) and θnd ≥ OPT, we

obtain that ErrAR(P̂ ) = O(
(1− 1

α )θnd

OPT ), which is also shown nearly tight by Theorem 3.3. This term
increases to at most O( θnd

OPT ) as α increases to +∞, which implies that Err(·) is always an upper
bound of ErrAR(·). This corollary indicates that the impacts of noise on the quality of center sets
with different levels of cost are indeed different.

The success probability 0.8 can be fixed to any δ < 1 by increasing the constant factor of error
measures Err(S) and ErrAR(S) hidden in O(·). For approximation-ratio coreset, the constraint
α ≤ 1 + 1

k is proposed to ensure that every C ∈ Cα(P̂ ) has the following structural property: for
every i ∈ [k], there must exist a center ci ∈ C ∩B(c⋆i ,

√
kai +

√
kd) (Lemma D.5).

Assumptions on data. Now we discuss the assumptions on P given in Theorem 3.1. By the
composition property (Claim 2.4), we only need to give bounds for measures Err(P̂ ) and ErrAR(P̂ ),
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which requires a quantitatively analysis on the values of cost(P̂ , C) over all center sets C. However,
noise may change the assignments to centers in a center set C from P to P̂ , i.e., the closest center of
every pair p and p̂ in C may be different. The change in assignments raises difficulties in computing
cost(P̂ , C). To bypass this, a natural idea is to introduce assumptions about data.

One common way is to assume an underlying generative distribution for data points, e.g., Gaussian
mixture model (Feldman et al., 2011; Huang et al., 2021). For instance, we can assume each point
p ∈ P is i.i.d. drawn from a Gaussian mixture model

∑
i∈k

1
kN(µi, 1) where all µi ∈ Rd are far

away from each other. Then the assignments between P and P̂ are likely to be the same. However,
this distributional assumption may be too strong since we only need its structural properties.

Now we provide our assumptions on data. Let C⋆ := {c⋆1, . . . , c⋆k} ⊂ Rd be the optimal k-MEANS

center set of P and OPT := cost(P,C⋆) be the optimal k-MEANS cost. Let P1, . . . , Pk ⊂ Rd be
a partition of P where each Pi contains ni points p ∈ P whose closest center in C⋆ is c⋆i (breaking
ties arbitrarily). For every i ∈ [k], let ai := maxp∈Pi

d(p, c⋆i ) denote the radius of Pi. Then we have
Pi ⊂ B(c⋆i , ai) where B(c⋆i , ai) is the ball centered at c⋆i of radius ai. For every i ∈ [k], we define
OPTi := cost(Pi, c

⋆
i ) to be the cost of Pi w.r.t. center set C⋆. Then OPT =

∑
i∈[k] OPTi. We first

give a balancedness assumption on P :
maxi∈[k] OPTi

mini∈[k] OPTi
= O(1) and maxi∈[k] ni

mini∈[k] ni
= O(1). (1)

This assumption requires both the contribution OPTi and the size ni of every cluster Pi are at the
same level, which has also been considered in the clustering literature (Bradley et al., 2000; Huang
et al., 2023a). We also assume that P1, . . . , Pk are well separated:

∀1 ≤ i < j ≤ k, d(c⋆i , c
⋆
j ) ≥ Ω(

√
k) · (ai + aj +

√
d). (2)

The assumption of well-separated clusters implies that each cluster Pi is far away from other clus-
ters, whose idea has been widely considered in previous works (Han et al., 2012; Har-Peled &
Rogge, 2021). Intuitively, Assumptions 1 and 2 ensure that every approximate solution C ∈ C is
“close” to C⋆ and the assignments to centers of such C between P and P̂ are similar.

Theorem 3.1 is nearly tight. For 1-MEANS, we show the bounds in Theorem 3.1 are nearly tight
for all datasets P by the following theorem, whose proof can be found in Appendix D.2.

Theorem 3.3 (Lower bound for 1-MEANS coreset under noise model I) Let ε, θ ∈ [0, 1], α ≥ 1

be constant. Let P ⊂ Rd be an underlying dataset of size n ≥ 1 and P̂ ⊂ Rd be an observed
dataset drawn from P under the noise model I with underlying parameter θ. Suppose the variance
of each Dj (j ∈ [d]) is exactly θ. With probability at least 0.8, P̂ is an Ω( θnd

OPT )-coreset and a
(1,Ω( θd

OPT ))-approximation-ratio coreset of P for 1-MEANS.

Moreover, assuming 1 − 1
α ≫ 1

n , we have that P̂ is an (α,Ω(
(1− 1

α )θnd

OPT ))-approximation-ratio
coreset of P for 1-MEANS, with probability at least 0.3.

The bounds in this theorem can be easily extended to general k-MEANS: Consider a dataset P
contains k copies P1, . . . , Pk that are extremely well separated, e.g., d(c⋆i , c

⋆
j ) → +∞ for every

1 ≤ i < j ≤ k. In this case, each cluster Pi is assigned to a unique center in C with a finite
cost cost(P,C) – clusters are independent from each other. By calculations, we have that P̂ is
an Ω( θnd

OPT )-coreset, a (1,Ω( θd
OPT ))-approximation-ratio coreset, and an (α,Ω(

(1− 1
α )θnd

OPT )) (when
1− 1

α ≫ k
n ) of P for k-MEANS. Thus, Theorem 3.1 is nearly tight in the worst case.

Guiding the selection of coreset size. We discuss how to apply our theoretical results to guide the
selection of coreset size for any algorithm in the presence of noise, whose relation is summarized in
the following lemma. The correctness is simply guaranteed by Claim 2.4.

Lemma 3.4 (Selection of coreset size in the presence of noise) Let A be a coreset algorithm
that constructs an ε-coreset of P̂ for (k, z)-CLUSTERING of size A(ε) (ε ≥ 0). Suppose that P̂
is an ε′-coreset (or (α, ε′)-approximation-ratio coreset) for (k, z)-CLUSTERING of P (ε′ > 0 and
α ≥ 1). Then setting the coreset size to A(ε′) achieves an O(ε′)-coreset (or ( α

1+O(ε′) , O(ε′))-
approximation-ratio coreset) for (k, z)-CLUSTERING of P , and these errors can not be improved
by increasing the coreset size.
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As a corollary together with Theorem 3.3, if we apply the coreset algorithm of Cohen-Addad et al.
(2022) which constructs an ε-coreset for k-MEANS of size Õ(k1.5ε−2), the selection of the coreset
size should be at most Õ

(
k1.5·OPT2

θ2n2d2

)
for the coreset measure and at most Õ

(
k1.5·OPT2

θ2d2

)
for the

approximation-ratio measure. Our empirical results support this observation; see discussions in
Section 4. In addition, we believe the choice of coreset strategy does not significantly impact the
performance, due to the independent and directionally random nature of our noise models.

Proof overview of Theorem 3.1. By the composition property (Claim 2.4), the key is to study the
relation of P̂ and P ; summarized by the following lemma.

Lemma 3.5 (Analysis of P̂ ) With probability at least 0.8, P̂ is an O( θnd
OPT+

√
θnd
OPT )-coreset and an(

α,O( θd
OPT +

(1− 1
α+e−O(

√
kd))θnd

OPT + (1− 1
α ))

)
-approximation-ratio coreset of P for k-MEANS.

Theorem 3.1 is a direct corollary of Claim 2.4 and Lemma 3.5 by simply compositing errors. Hence,
it remains to prove Lemma 3.5 and we give a proof sketch. We first prove for the case of k = 1,
whose key idea is summarized by the following claim that analyzes the cancellation manner of noise.

Claim 3.6 (Error analysis for 1-MEANS) For 1-MEANS, we have 1) EP̂

[∑
p∈P ∥ξp∥22

]
= θnd

and VarP̂

[∑
p∈P ∥ξp∥22

]
= O(θnd2); 2) With probability at least 0.95, supc∈Rd

|
∑

p∈P ⟨ξp,p−c⟩|
cost(P,c) =

O

(√
θd

OPT

)
; 3) The optimal solution of P̂ is µ(P̂ ) := c⋆ + 1

n

∑
p∈P ξp, and ∥

∑
p∈P ξp∥2 =

O(
√
θnd) with probability at least 0.95.

This claim primarily relies on certain concentration properties of the terms
∑

p∈P ∥ξp∥22 and∑
p∈P ⟨ξp, p − c⋆⟩, which is guaranteed by the Bernstein condition. Finally, we extend the anal-

ysis to general k ≥ 1. The main idea is to show that under Assumptions 1 and 2, the assignments
between P and P̂ to any center set C ∈ Cα(P̂ ) are close enough (Lemma D.6).

Our proof has a byproduct that it is difficult to construct an o( θd
OPT )-coreset S for k-MEANS of P

from P̂ ; see details in Appendix D.3.

4 EMPIRICAL RESULTS

This section presents empirical results that support our theoretical findings with different noise mod-
els. We investigate how the measures Err(S) and ErrAR(S) changes as the size |S| and the noise
level varies, providing evidence for the validity of our theoretical analysis.

Setup. We consider the k-MEANS clustering problem on Adult (Kohavi & Becker, 1996) and
Bank (Moro et al., 2014) dataset from UCI machine learning repository. The Adult dataset con-
sists of 48842 data points and each data has 6 features. The Bank dataset consists of 41188 data
points and each data has 10 features.2 We set k = 10 for the k-MEANS clustering problem and
study noise models I and II with both Gaussian and Laplace noise (Section 2) on Adult and Bank
datasets. Under the noise model I, we perturb the original dataset P with the noise levels θ ranging
from [0.02, 0.04, 0.08, 0.2, 0.4, 0.8] and get the perturbed dataset P̂ . Under the noise model II, we
do the same thing to get P̂ with the noise levels σ2 also ranging from [0.02, 0.04, 0.08, 0.2, 0.4, 0.8].
Then, we compute coreset S with different sizes ranging from 500 to 5000 on the perturbed dataset
P̂ .3 Finally, we measure and compare the performances of the coresets S with respect to the origi-
nal dataset P under different measurements (defined in the following paragraph). For every dataset,
every noise model, and every noise level, we repeat the above procedures 20 times.

2We drop the categorical features and only keep the continuous features for clustering.
3We utilize the coreset algorithm presented in Feldman & Langberg (2011). It is worth noting that the

choice of coreset algorithm can be arbitrary since our primary focus is on performance analysis rather than
reducing the size of the coreset.
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Figure 1: The empirical errors Êrr(S) and ÊrrAR(S) versus the noise level (θ or σ2) plot for coreset
S with different sizes. The solid lines in each figure represent the coreset measure Êrr(S), and
the dashed lines represent the approximation-ratio measure ÊrrAR(S). We show the results from
Bank dataset, and Figures 1a to 1d denote the noise models I, II with Gaussian and Laplace noise
respectively.

Table 1: Empirical errors Êrr(S) and ÊrrAR(S) under different noise models, coreset sizes, and
datasets (Bank and Adult). We fix the noise level θ = σ2 = 0.2. We repeat each setting 20 times,
and provide the mean and the standard deviation (in the subscript) of the empirical errors.

(a) Results for Bank dataset.

Size Model I, Gaussian Model II, Gaussian Model I, Laplace Model II, Laplace
Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S)

500 0.4130.04 0.0830.02 0.4280.04 0.0880.02 0.4100.05 0.0970.03 0.4300.05 0.0840.02

1000 0.4180.04 0.0570.02 0.4130.03 0.0570.02 0.4310.03 0.0640.02 0.4190.04 0.0540.01

2000 0.3940.02 0.0370.01 0.4040.02 0.0350.01 0.3950.03 0.0390.01 0.4070.02 0.0350.01

3000 0.3860.02 0.0330.01 0.4050.02 0.0330.01 0.3910.02 0.0270.01 0.3980.02 0.0310.01

4000 0.3800.02 0.0310.01 0.3930.02 0.0270.01 0.3850.02 0.0290.02 0.3910.02 0.0280.01

5000 0.3800.02 0.0290.01 0.3910.01 0.0250.01 0.3800.02 0.0270.01 0.3910.02 0.0260.01

(b) Results for Adult dataset.

Size Model I, Gaussian Model II, Gaussian Model I, Laplace Model II, Laplace
Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S)

500 0.3700.05 0.0790.02 0.3590.05 0.1010.03 0.3610.04 0.0820.03 0.3550.04 0.1010.03

1000 0.3450.04 0.0360.01 0.3510.04 0.0630.02 0.3340.04 0.0440.02 0.3510.03 0.0550.02

2000 0.3520.03 0.0230.01 0.3420.02 0.0430.02 0.3430.03 0.0280.01 0.3440.03 0.0350.01

3000 0.3430.03 0.0160.01 0.3410.02 0.0300.01 0.3450.02 0.0190.01 0.3400.02 0.0230.01

4000 0.3400.02 0.0120.01 0.3470.02 0.0230.01 0.3430.02 0.0110.00 0.3430.02 0.0250.01

5000 0.3420.02 0.0100.01 0.3410.02 0.0250.01 0.3420.02 0.0120.01 0.3450.02 0.0180.01

Performance measurements. Given a weighted set of data S ⊆ P̂ , we denote two measures Êrr(S)
and ÊrrAR(S) to estimate the performance guarantees under the coreset and approximation-ratio
coreset notions respectively. We randomly sample 500 k-center sets C1, . . . , C500 and set

Êrr(S) := max1≤i≤500
|cost(S,Ci)−cost(P,Ci)|

cost(P,Ci)

as a proxy of the Err(S) parameter in the coreset definition. To compute ÊrrAR(S), we first apply
KMeans++ algorithm (Arthur & Vassilvitskii, 2007) implemented by scikit-learn (Pedregosa et al.,
2011) to find a solution C⋆ on the original dataset P and CS on the coreset S. Then, we define

ÊrrAR(S) :=
cost(P,CS)
cost(P,C⋆) − 1

as a proxy of the ErrAR(S) parameter when α = 1 in the approximation-ratio coreset definition.
Both heuristics are commonly used in the coreset literature (Huang et al., 2019; Baker et al., 2020;
Huang et al., 2022a).

Performance analysis. Figure 1 and Table 1 summarize our empirical results. Figure 1 shows the
relation between the empirical errors Êrr(S), ÊrrAR(S) and the noise level (θ or σ2) for coreset S
with different sizes on Bank dataset. Table 1 summarizes empirical errors at a fixed noise level
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θ = σ2 = 0.2 on both Bank and Adult datasets. Then we discuss our empirical findings from
Figure 1 and Table 1.

Gap between Êrr(S) and ÊrrAR(S). First from Figure 1 and Table 1, we observe that there is a
significant gap between Êrr(S) and ÊrrAR(S), under different noise models with different noise
levels θ and different sizes |S|. In particular, for a fixed noise level such as θ = 0.2 in Table 1,
the approximation-ratio measure ÊrrAR(S) exhibits larger variablility compared to vanilla coreset
measure Êrr(S) for different coreset sizes (see the changes in the columns of Table 1). It indicates
that ÊrrAR(S) measures the quality of a center set that we can obtain from S on P better under the
noisy data setting. These observations match our theoretical findings in Theorem 3.1.

The effect of different coreset sizes. As presented in Table 1, both Êrr(S) and ÊrrAR(S) initially
decrease and then stabilize as the coreset size |S| increases. For example, in the case of the Bank
dataset under the noise model II with Gaussian noise, Êrr(S) decreases from 0.428 to 0.404 as
|S| increases from 500 to 2000, and then remains around 0.4 as |S| continues to increase to 5000.
This observation provides empirical evidence for our theoretical findings that the performance of
the coreset is mainly affected by the noise when the size |S| is sufficiently large. Therefore, this
observation can assist in guiding the selection of appropriate coreset sizes for noisy datasets.

The effect of different noise/variance levels. When increasing θ under the noise model I or increasing
σ2 under the noise model II, both Êrr(S) and ÊrrAR(S) increase no matter the type of the noise (see
Figures 1a–1d). We also observe that these lines are similar across all Figures 1a–1d. This similarity
may arise from the same variance of noise ξp,j for both noise models I and II with Gaussian and
Laplace noises when θ = σ2,4 indicating that variance of noise (or noise level) is the main parameter
that determines both Err and ErrAR. Additionally, we observe that ÊrrAR(S) exhibits a relatively
small increase even when the noise level θ is significantly larger (40 times larger in our experiments,
from 0.02 to 0.8), indicating the robustness of the optimal solution CS in the presence of noise.

Additional empirical results. We also conduct experiments for different choices of k, examine
whether Assumptions 1 and 2 hold on both Bank and Adult datasets, and report the changes
of the total sensitivity under the noise model I. See Section F for these empirical results.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we investigate the efficacy of coresets for clustering in the presence of noise. We
show that the prior measure to assess the quality of a coreset may be too strong for noisy data and
propose a new performance measure. We provide a quantitative analysis of both measures under
mild assumptions on data. The theoretical results verify the effectiveness of the new notion in being
able to better capture the impact of noise on different center sets, compared to the prior measure.
The empirical observations support the theoretical results and show that the variance of noise is the
main factor that determines the quality of a coreset. This work provides guidance for selecting the
coreset size for any algorithm in the presence of noise, which contributes to the broader field of
machine learning in the context of noisy data.

One limitation is that Theorem 3.1 relies on (mild) assumptions on data and it is an interesting
direction to investigate to what extent our results hold without any assumptions. Such a result would
require one to handle multiple possible ways to assign points from P to centers in center sets and
to deal with the inconsistency in assignments between P and P̂ . Another future work is to expand
our analysis to encompass additional noise models, for instance, which may not be independent.
It would also be interesting to study the influence of adversarial noise. Another area to explore is
the influence of noise on coresets in other learning tasks such as regression and classification. It
would be also intriguing to examine connections between coresets and other notions of robustness
for clustering.

4Recall that under the noise model I, the variance of ξp,j is θ for every point p ∈ P and feature j ∈ [d]
when Dj is a Gaussian distribution or a Laplace distribution with variance 1. In contrast, the variance of ξp,j
under the noise model II is σ2.
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A ADDITIONAL RELATED WORK

Coresets for clustering. There exists a substantial body of work focused on constructing coresets
for (k, z)-CLUSTERING in various metric spaces, including Euclidean metrics, doubling metrics,
shortest path metrics on graphs, and general discrete metrics (Har-Peled & Mazumdar, 2004; Feld-
man & Langberg, 2011; Feldman et al., 2013; Braverman et al., 2016; Huang et al., 2018; Cohen-
Addad et al., 2021; 2022; Huang et al., 2023b). Researchers have also studied another notion called
weak coresets for clustering problems (Munteanu & Schwiegelshohn, 2018; Cohen-Addad et al.,
2021; Danos, 2021; Huang et al., 2023a), that only restrict to O(1)-approximate solutions on core-
sets. However, it is worth noting that there is no significant advantage in terms of coreset size when
using weak coresets over regular ones.

Clustering with noise. The problem of clustering in the presence of noise has been extensively
studied for several decades. Within the existing literature, two main settings have emerged. The first
setting considers the noise in the data as being generated according to a specific distribution (Dave,
1993; Garc’ia-Escudero et al., 2008). The second assumes that the noise is generated adversarially,
albeit with a limited number of adversaries (Balcan et al., 2008; Ben-David & Haghtalab, 2014;
Balcan & Liang, 2016; Kushagra et al., 2016; 2017). In our work, we primarily focus on the setting
that assumes the noise is generated from a known distribution.

The study of noisy clustering can be broadly categorized into two directions. The first direction
involves developing methods to measure the robustness of clustering algorithms in the presence
of noise (Dave, 1991; Hampel, 1971; Hennig, 2008). These methods highlight the vulnerability
of traditional algorithms with a fixed number of clusters (Ackerman et al., 2013; Hennig, 2008).
The second direction focuses on designing robust clustering algorithms that can effectively handle
noisy data (Cuesta-Albertos et al., 1997; Dave, 1993; Ben-David & Haghtalab, 2014; Kushagra
et al., 2017). Within this direction, there exists a related problem called robust clustering, where
the clustering process allows for the omission of certain ”outlier” points (Charikar et al., 2001;
Chen, 2008; Gupta et al., 2017; Schelling & Plant, 2018; Friggstad et al., 2019; Roizman et al.,
2019; Statman et al., 2020). In our work, we are primarily aligned with the first direction, as our
main focus is on analysis, and the coreset guarantees we provide can be viewed as a measure of
robustness.

B OBSTACLES STATED IN SECTION 2

We provide more details on the three obstacles as stated in Section 2. Consider a simple example
of 1-MEANS in R, i.e., k = d = 1. Let P ⊂ R consist of a collection P− of n

2 points at -1
and a collection P+ of n

2 points at 1. The optimal center is c⋆ = 0 and OPT = n. Obviously,
S = {−1, 1} with w(−1) = w(1) = n

2 is a 0-coreset of P for 1-MEANS. Let P̂ ⊂ R be an
observed dataset drawn from P under the noise model II with each Dj = N(0, 1). Additionally,
note that cost(P,−1) = cost(P, 1) = 2n, i.e., c = −1 and c = 1 are two 2-approximate solutions
of P .

Obstacle 1: Prior coreset guarantees do not work. By construction, the data distribution of P̂
is close to the following: each noisy point p̂ ∈ P̂ is i.i.d. drawn from a certain Gaussian mixture
model 1

2N(−1, 1) + 1
2N(1, 1). Then

EP̂ [cost(P̂ , 0)] = n · EX∼N(0,1)[(1 +X)2] = 2n.

Recall that cost(S, 0) = cost(P, 0) = n. Thus, S is even not a 0.9-coreset of P̂ for 1-MEDIAN
instead of a 0-coreset.

In conclusion, introducing noise adds additional difficulties to the previous analysis of coreset in the
noiseless setting. Even the clustering cost of the optimal solution of P can have a significant change.
One can quickly check that if we add a much larger noise, e.g., N(0, 10) to each point, cost(P̂ , 0)
will grow very fast. Intuitively, we expect to obtain a quantitative analysis of the impact of noise,
which should depend on noise parameters.
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Obstacle 2: How to quantify the impact of noise. To quantify the effect of noise, a direct idea
is to apply the well-studied coreset measure, i.e., to compute maxc∈R

|cost(P̂ ,c)−cost(P,c)|
cost(P,c) . Let ξp =

p̂− p be the noise vector of p. By simple computation, we have

cost(P̂ , c)− cost(P, c) =
∑
p∈P

∥ξp∥22 + 2
∑
p∈P

⟨ξp, p− c⟩. (3)

It is not hard to verify that the first term
∑

p∈P ∥ξp∥22 concentrates on n. Then the main issue is
to bound the second term 2

∑
p∈P ⟨ξp, p − c⟩. A naive approach is to bound each inner product

⟨ξp, p− c⟩ separately, i.e.,

2
∑
p∈P

⟨ξp, p− c⟩ ≤
∑
p∈P

∥ξp∥22 + ∥p− c∥22 = cost(P, c) +
∑
p∈P

∥ξp∥22 ≈ cost(P, c) + n,

which leads to the following upper bound

max
c∈R

|cost(P̂ , c)− cost(P, c)|
cost(P, c)

≈ max
c∈R

cost(P, c) + 2n

cost(P, c)
= 3.

This computation only shows that P̂ is a 3-coreset of P .

Consider the general case that P ⊂ Rd under the noise model I, we note that this idea leads to a
bound cost(P, c) +

∑
p∈P ∥ξp∥2 ≈ cost(P,C) + θnd. Then we can only obtain an upper bound

Err(P̂ ) ≤ 1+ 2θnd
OPT , which is far from tight since noise may cancel with each other. Hence, the under-

standing of the cancellation manner of noise is important for quantifying its impact. By Claim 3.6,
we will see a tight bound of the term 2

∑
p∈P ⟨ξp, p− c⟩, leading to Err(P̂ ) ≤ O( θnd

OPT ).

Obstacle 3: Prior notion of coreset is too strong. Let ĉ denote the optimal center of P̂ . By
Equation 3, we observe that the change cost(P̂ , c)− cost(P, c) can be large up to Ω(n), indicating
that Err(P̂ ) ≥ 1. This measure is large and only implies that ĉ is a 2-approximate solution of P .
However, since the cost difference on the right-side of Equation 3 contains a norm term

∑
p∈P ∥ξp∥22

for all centers c ∈ C, we claim that the measure Err(P̂ ) may not be sufficient to capture the quality of
ĉ on P : rP (ĉ) =

cost(P,ĉ)
OPT . Consider the case that cost(P̂ , c)− cost(P, c) ≈ n for all centers c ∈ R,

which actually holds by Claim 3.6. Given an arbitrary center c ∈ R with cost(P, c) − OPT ≪ n,
we have

rP̂ (c) =
cost(P̂ , c)

cost(P̂ , ĉ)
=

cost(P̂ , c)

cost(P, ĉ) + n
≤ cost(P̂ , c)

cost(P, c⋆) + n
<

cost(P̂ , c)

cost(P, c)
≤ 1 + Err(P̂ ),

which implies that the relative gap of the ratio rP̂ (ĉ)

rP (ĉ) can be more stable under noise compared to the

cost cost(P̂ ,c)
cost(P,c) . Specifically, by simple calculation, we know that ĉ = 1

n

∑
p∈P ξp, which ensures that

|ĉ− c⋆| = O(
√

1
n ). Then cost(P, ĉ) = n+O(1) which implies that ĉ is a (1+O( 1n ))-approximate

solution of P .

By this observation, the coreset measure Err(P̂ ) is too strong for evaluating the quality of center sets
in the presence of noise, specifically for ĉ. This motivates us to propose the new notion of coreset
(Definition 2.2) that considers ratio instead of cost. Interestingly, our theoretical results in Theo-
rem 3.1 demonstrate a quantitative distinction between the measures of coreset and approximation-
ratio coreset, which verifies the weakness of coreset measure in the presence of noise.

C MISSING DETAILS IN SECTION 2

C.1 DISCUSSION ON THE BERNSTEIN CONDITION

We provide more information on the Bernstein condition. Specifically, we show that it is very
general and covers sub-gaussian distributions and sub-exponential distributions.

17



Under review as a conference paper at ICLR 2024

We call D a sub-gaussian distribution if there exists some constant K > 0 such that for any t > 0,

Pr
X∼D

[|X| ≥ t] ≤ 2e−
t2

K2 ;

and call D a sub-exponential distribution if there exists some constant K > 0 such that for any
t > 0,

Pr
X∼D

[|X| ≥ t] ≤ 2e−t/K .

Note that a Gaussian distribution is sub-gaussian and a Laplace distribution is sub-exponential.
Moreover, we have the following well-known fact.

Lemma C.1 (Moment bounds (Vershynin, 2018, Sections 2.5 and 2.7)) If D is a sub-gaussian
distribution, there exists some constant K > 0 such that for all integers i ≥ 1,

EX∼D[|X|i]1/i ≤ K
√
i.

If D is a sub-exponential distribution, there exists some constant K > 0 such that for all integers
i ≥ 1,

EX∼D[|X|i]1/i ≤ Ki.

This lemma actually implies that both sub-gaussian and sub-exponential distributions satisfy the
Bernstein condition by combining with Stirling’s approximation i! ≈

√
2πi · ( ie )

i.

Note that distributions with heavy tails may not satisfy Bernstein condition, e.g., Pareto distribution,
log-normal distribution, and student’s t-distribution.

C.2 MISSING PROOFS IN SECTION 2

Proof of Claim 2.3: Approximation-ratio coreset to an approximate solution. By Defini-
tion 2.2, we have α′ ≥ costz(S,C)

minC′∈C costz(S,C′) ≥ costz(P,C)
(1+ε)·OPT , which implies that costz(P,C) ≤

α′(1 + ε) · OPT.

Proof of Claim 2.4: Composition property. Suppose S′ is an ε′-coreset of P . For every center
set C ∈ C, we have

costz(S,C) ∈ (1± ε) · costz(S′, C) (by assumption of S)

∈ (1± ε) · (1± ε′) · costz(P,C) (by assumption of S′)

∈ (1± 2ε± 2ε′) · costz(P,C),

which implies that S′ is a 2(ε+ ε′)-coreset of P .

Next, suppose S′ is an (α, ε′)-approximation-ratio coreset of P . For every C ∈ C such that C is an
α′-approximate solution of S with α′ ≤ α

1+O(ε) , we have

costz(S
′, C)

minC′∈C costz(S′, C ′)
≤ (1 +O(ε)) · costz(S,C)

minC′∈C costz(S,C ′)
(by assumption of S)

≤ (1 +O(ε)) · α′ (by defn. of C)

≤ α,

which implies that C is at most an α-approximate solution of S′. Then we have

rS(C) ≥ costz(S
′, C)

(1 +O(ε)) ·minC′∈C costz(S′, C ′)
(by assumption of S)

≥ rP (C)

(1 +O(ε)) · (1 + ε′)
(by assumption of S′)

≥ rP (C)

(1 +O(ε+ ε′))
,

which completes the proof.
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D MISSING DETAILS IN SECTION 3

D.1 PROOF OF LEMMA 3.5: ANALYSIS OF P̂

In this section, we prove Lemma 3.5, which is the main lemma for Theorem 3.1. The proof is
divided into two parts: the proof for the coreset guarantee, and the proof for the approximation-ratio
coreset guarantee. For each part, we first prove for the case of k = 1 and then show how to extend
to general k ≥ 1.

1. Proof for Err(·) for 1-MEANS. We first prove Claim 3.6 by Claim D.1 and Lemma D.2. Note
that the third property of Claim 3.6 is a direct corollary.

Claim D.1 (Statistics of cost difference) For any center c ∈ Rd, we have

cost(P̂ , c)− cost(P, c) =
∑
p∈P

∥ξp∥22 + 2
∑
p∈P

⟨ξp, p− c⟩.

Moreover, we have

• EP̂

[∑
p∈P ∥ξp∥22

]
= θnd and VarP̂

[∑
p∈P ∥ξp∥22

]
= O(θnd2);

• EP̂

[∑
p∈P ⟨ξp, p− c⟩

]
= 0 and VarP̂

[∑
p∈P ⟨ξp, p− c⟩

]
= θ · cost(P, c).

Proof: We have cost(P̂ , c)−cost(P, c) =
∑

p∈P d2(p̂, c)−d2(p, c) =
∑

p∈P ∥ξp∥22+2⟨ξp, p−
c⟩. For the first error term

∑
p∈P ∥ξp∥22, we have EP̂

[∑
p∈P ∥ξp∥22

]
= θn · Ex∼N(0,Id)

[
∥x∥22

]
=

θnd, and

VarP̂

∑
p∈P

∥ξp∥22


= n ·Varξp

[
∥ξp∥22

]
= n ·

(
Eξp

[
∥ξp∥42

]
− Eξp

[
∥ξp∥22

]2)
= n ·

(
θ ·VarT∼χ2(d) [T ] + θ · Ex∼N(0,Id)

[
∥x∥22

]2 − θ2 · Ex∼N(0,Id)

[
∥x∥22

]2)
= θn · (2d+ d2 − θd2)

≤ 3θnd2.

where χ2(d) represents the chi-square distribution with d degrees of freedom, whose variance is
known to be 2d Miller (2017).

For the second error term
∑

p∈P ⟨ξp, p− c⟩, its expectation is obvious 0 and we have

VarP̂

∑
p∈P

⟨ξp, p− c⟩

 =
∑
p∈P

Varξp [⟨ξp, p− c⟩]

=
∑
p∈P

Eξp

[
⟨ξp, p− c⟩2

]
= θ ·

∑
p∈P

∥p− c∥22

= θ · cost(P, c).

□
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By Claim 3.6, it suffices to prove that

sup
c∈Rd

∣∣∣∑p∈P ∥ξp∥22 + 2
∑

p∈P ⟨ξp, p− c⟩
∣∣∣

cost(P, c)
≤ O

(
θnd

OPT
+

√
θd

OPT

)
. (4)

By Claim 3.6 and Chebyshev’s inequality, we directly have that
∑

p∈P ∥ξp∥22 ≤ O(θnd) happens
with probability at least 0.95. For the second error term 2

∑
p∈P ⟨ξp, p − c⟩, we provide an upper

bound by the following lemma, which strengthens the second property of Claim 3.6.

Lemma D.2 With probability at least 1− 0.05δ for 0 < δ ≤ 1, the following holds

sup
c∈Rd

|
∑

p∈P ⟨ξp, p− c⟩|
cost(P, c)

= O

(√
θd

δOPT

)
.

Proof: Let X = | {p ∈ P : ξp ̸= 0} | be a random variable. When θn ≤ 0.01δ, we have
Pr[X = 0] = (1− θ)n ≥ 1− 0.02δ.

Conditioned on the event that X = 0, we have

sup
c∈Rd

|
∑

p∈P ⟨ξp, p− c⟩|
cost(P, c)

= 0,

which completes the proof.

In the following, we analyze the case that θn > 0.01δ. Let E be the event that ∥
∑

p∈P ξp∥2 ≤
O(
√

θnd/δ). We have the following claim:
Pr [E] ≥ 1− 0.02δ. (5)

Note that E[X] = θn and hence, Pr[X ≤ 100θn/δ] ≥ 1 − 0.01δ by Markov’s inequality. Hence,
we only need to prove Pr [E | X ≤ 100θn/δ] for Claim 5. Also note that

∑
p∈P ξp has the same

distribution as N(0, X · Id). Then by (Vershynin, 2018, Theorem 3.1.1),

Pr

∥∑
p∈P

ξp∥2 ≤ 10
√

θnd/δ +O(
√
θn/δ) | X ≤ 100θn

 ≥ 1− 0.01δ.

Thus, we prove Claim 5.

In the remaining proof, we condition on event E. Fix an arbitrary center c ∈ Rd and let l = ∥c−c⋆∥2.
By the optimality of c⋆, it is well known that

cost(P, c) = cost(P, c⋆) + n · ∥c− c⋆∥22 = OPT+ nl2.

Note that |
∑

p∈P ⟨ξp, p − c⟩| ≤ |
∑

p∈P ⟨ξp, p − c⋆⟩| + |
∑

p∈P ⟨ξp, c − c⋆⟩|. By Claim 3.6 and
Chebyshev’s inequality, we have

Pr
P̂
[|
∑
p∈P

⟨ξp, p− c⋆⟩| ≥ 10
√

θ · OPT/δ] ≤ θ · cost(P, c⋆)
(10
√
θ · OPT/δ)2

= 0.01δ. (6)

We also have

|
∑
p∈P

⟨ξp, c− c⋆⟩| ≤ ∥
∑
p∈P

ξp∥2∥c− c⋆∥ (Cauchy-schwarz)

≤ O(l ·
√
θndδ)

(7)

Combining with Inequalities 6 and 7, we conclude that

|
∑

p∈P ⟨ξp, p− c⟩|
cost(P, c)

≤ O

(
l ·
√

θnd/δ

OPT+ nl2

)
≤ O

(√
θd

δOPT

)
,

happens with probability at least 0.95, which completes the proof of Lemma D.2. □

Overall, Inequality 4 holds with probability at least 0.9, which implies that P̂ is an O( θnd
OPT+

√
θd

OPT )-
coreset of P for 1-MEANS.
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2. Proof for Err(·) for k-MEANS. Note that we only need to prove the following lemma.

Lemma D.3 With probability at least 0.8, P̂ is an O( θnd
OPT + θ

√
θnd
OPT )-coreset of P for k-MEANS.

Proof: By Claim 3.6, we have that with probability at least 0.8,
∑

p∈P ∥ξp∥22 = O(θnd), which
we assume happens in the following. Fix a k-center set C ∈ C. It suffices to prove that

|cost(P,C)− cost(P̂ , C)| ≤ O(
θnd

OPT
+ θ

√
θnd

OPT
) · cost(P,C). (8)

By the triangle inequality, we know that for each p ∈ P , |d(p, C)−d(p̂, C) ≤ ∥ξp∥2, which implies
that |d2(p, C)− d2(p̂, C)| ≤ ∥ξp∥22 + 2∥ξp∥2 · d(p, C). Thus, we have

|cost(P,C)− cost(P̂ , C)|
cost(P,C)

≤
∑

p∈P ∥ξp∥22 + 2∥ξp∥2 · d(p, C)

cost(P,C)

≤ O(
θnd

OPT
) +

2
∑

p∈P ∥ξp∥2 · d(p, C)

cost(P,C)
(by assumption)

≤ O(
θnd

OPT
) +

2
√
(
∑

p∈P ∥ξp∥22) · (
∑

p∈P d2(p, C))

cost(P,C)
(Cauchy-Schwarz)

≤ O(
θnd

OPT
) +

√
O(θnd)

cost(P,C)
(by assumption)

≤ O

(
θnd

OPT
+

√
θnd

OPT

)
, (Defn. of OPT)

which completes the proof of Inequality 8. □

3. Proof for ErrAR(·) for 1-MEANS. Now we prove the approximation-ratio coreset guarantee.
Let µ(P̂ ) denote the mean point of P̂ . Let ÔPT denote the optimal 1-MEANS value of P̂ . We have
the following well-known properties of 1-MEANS:

1. µ(P̂ ) = c⋆ + 1
n ·
∑

p∈P ξp;

2. ÔPT = cost(P̂ , µ(P̂ ));

3. for every c ∈ Rd, cost(P, c) = OPT+ n · ∥c− c⋆∥22;

4. for every α-approximate solution c ∈ Rd of P̂ , we have ∥µ(P̂ )− c∥2 =

√
(α−1)ÔPT

n .
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By the above properties, we also have

ÔPT = cost(P̂ , µ(P̂ ))

=
∑
p̂∈P̂

∥p̂− µ(P̂ )∥22

=
∑
p∈P

∥p+ ξp − c⋆ − 1

n
·
∑
q∈P

ξq∥22

=
∑
p∈P

∥p− c⋆∥22 + 2⟨ξp, p− c⋆⟩+ ∥ξp −
1

n
·
∑
q∈P

ξq∥22

− 2

n
· ⟨
∑
p∈P

ξp,
∑
p∈P

p− c⋆⟩

= OPT+
∑
p∈P

∥ξp∥22 −
1

n
∥
∑
p∈P

ξp∥22 + 2
∑
p∈P

⟨ξp, p− c⋆⟩ − 2

n
· ⟨
∑
p∈P

ξp,
∑
p∈P

p− c⋆⟩

≤ OPT+
∑
p∈P

∥ξp∥22 + 2
∑
p∈P

⟨ξp, p− c⋆⟩+ 2

n
· ∥
∑
p∈P

ξp∥2 · ∥
∑
p∈P

p− c⋆∥2.

We first claim that with probability at least 0.99,

ÔPT ≤ OPT+O(
√
θd · OPT+ θnd) ≤ O(OPT+ θnd). (9)

By Claim D.1, we know that
∑

p∈P ∥ξp∥22 concentrates on θnd. By Lemma D.2, we know that

|
∑
p∈P

⟨ξp, p− c⋆⟩| ≤ cost(P, c⋆) ·O(

√
θd

OPT
) = O(

√
θd · OPT).

We also note that EP̂

[∑
p∈P ξp

]
= 0 and

VarP̂

∥∑
p∈P

ξp∥2

 ≤ EP̂

∥∑
p∈P

ξp∥22


= EP̂

∑
p∈P

∥ξp∥22


= θnd,

(10)

which implies that ∥
∑

p∈P ξp∥2 is O(
√
θnd) with probability at least 0.999. Thus, we have that

with probability at least 0.995,

2

n
· ∥
∑
p∈P

ξp∥2 · ∥
∑
p∈P

p− c⋆∥2 ≤ 2

n
·O(

√
θnd) ·

√
n · OPT ≤ O(θd · OPT).

Overall, we prove Inequality 9.

By Definition 2.2, it suffices to prove that for any (1 + α)-approximate solution c ∈ Rd of P̂ , the
following inequality holds:

rP (C)− rP̂ (C)

rP̂ (C)
=

n · ∥c⋆ − c∥22 · ÔPT− n · ∥µ(P̂ )− c∥22 · OPT
OPT · cost(P̂ , c)

≤ O

(
θd

OPT
+

(1− 1
α )θnd

OPT
+ (1− 1

α
)

)
.

(11)
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Assuming Inequality 9 holds and letting β = rP̂ (c) ∈ [1, α], we have

n · ∥c⋆ − c∥22 · ÔPT− n · ∥µ(P̂ )− c∥22 · OPT
OPT · cost(P̂ , c)

≤ n · ∥c⋆ − c∥22 · ÔPT
OPT · β · ÔPT

≤ 2n · (∥c⋆ − µ(P̂ )∥22 + ∥µ(P̂ )− c∥22)
β · OPT

≤
2∥
∑

p∈P ξp∥22
n · OPT

+
2(β − 1) · ÔPT

β · OPT
(µ(P̂ ) = c⋆ +

1

n
·
∑
p∈P

ξp)

≤ O(
θd

OPT
) + 2(β − 1) · O(OPT+ θnd)

β · OPT
, (Ineq. 9)

≤ O(
θd

OPT
+

(1− 1
β )θnd

OPT
+ (1− 1

β
))

≤ O(
θd

OPT
+

(1− 1
α )θnd

OPT
+ (1− 1

α
)), (β ≤ α)

which verifies Inequality 11. Hence, we complete the proof of Lemma 3.5 for k = 1.

4. Proof for ErrAR(·) for k-MEANS. Finally, we show how to extend to general k ≥ 1. Let
C⋆ ∈ C denote an optimal solution for k-MEANS of P . First, similar to the 1-MEANS setting, we
have the following guarantee on the optimal clustering cost of P̂ .

Lemma D.4 (Bounding ÔPT) With probability at least 0.9, we have for all i ∈ [k]

cost(P̂i, ĉi) ≤ OPTi +O
(
θnidk +

√
θdk · OPTi

)
≤ 1.5OPTi +O(θnidk).

Besides, we also have with high probability

ÔPT ≤
∑
i

cost(P̂i, ĉi) ≤ OPT+O(θnd+
√
θd · OPT)

Proof: Recall that we use Pi to denote the data clustered to ci in P , where ci is the i-th center in
the optimal cluster of P . We use P̂i to denote the points in Pi with presence of the noise, and ĉi to
denote the mean of Pi.

Similar to the 1-MEANS setting (Claim 3.6), we have the following decomposition of the error

cost(P̂i, ĉi)− cost(Pi, ci) =
∑
p∈Pi

∥ξp∥22 + 2
∑
p∈Pi

⟨ξp, p− ci⟩.

Besides, we have the following variance of the error terms

• E
P̂i

[∑
p∈Pi

∥ξp∥22
]
= θnid and Var

P̂i

[∑
p∈Pi

∥ξp∥22
]
= O(θnid

2);

• E
P̂i

[∑
p∈Pi

⟨ξp, p− ci⟩
]
= 0 and Var

P̂i

[∑
p∈Pi

⟨ξp, p− ci⟩
]
= θ · OPTi.

From Lemma D.2 by choosing δ = 1/k, we know that with probability at least 1− 0.05/k, we have

sup
c∈Rd

|
∑

p∈Pi
⟨ξp, p− ci⟩|

cost(Pi, ci)
= O

(√
θdk

OPTi

)
.

Besides from Chybeshev’s inequality, we also have
∑

p∈Pi
∥ξp∥2 ≤ O(θnidk) happens with

probability at least 1− 0.05/k. Then we conclude the proof by applying union bound on i ∈ [k]. □

Then given the well-seperated data assumption, we have the following.
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Lemma D.5 (Structural property of Cα(P̂ )) Given 1 ≤ α ≤ 1 + 1
k . For every C ∈ Cα(P̂ ) and

every i ∈ [k], there must exist a center c ∈ C such that c ∈ B(c⋆i , O(
√
kai +

√
kd)).

Proof: Denote P ′
i = P̂i∩B(c⋆i +O(

√
kd)) as the points in P̂i within the ball B(c⋆i , ai+O(

√
kd)).

We first show that, with high probability, for all 1 ≤ i ≤ k, |P̂i| ≥ 0.5ni. Note that for fixed p, we
have E∥ξp∥2 = θd and Var∥ξp∥2 = θd2. Thus by Chebyshev’s inequality,

Pr
[
∥ξp∥2 > 4d

]
≤ Pr

[
∥ξp∥2 − θd > 3d

]
≤ θd2

9d2

≤ θ/9.

Thus for a single point p ∈ Pi, with probability at most 1/9, p̂ /∈ B(c⋆i + O(
√
kd)). Then with

Chernoff bound, as long as ni ≥ O(log k), we have

Pr [|P ′
i | ≤ ni − 0.5ni] ≤ exp

(
−δ2µ/(2 + δ)

)
,

where δ = 0.5ni/µ − 1 and µ ≤ θ ∗ ni/9. By computation, we have δ ≥ 4.5/θ − 1, and δµ =
0.5ni − µ ≥ 0.35ni. Thus

exp
(
−δ2µ/2

)
≤ exp (−δµ/2) ≤ exp(0.35ni) ≤ 0.01,

as long as ni = O(log k). Thus we know that with high probability, for all 1 ≤ i ≤ k, |P̂i| ≥ 0.5ni.

Next we prove the lemma by contradiction. For simplicity, we denote γ ≥ maxi,j
OPTi

OPTj
+maxi,j

ni

nj
,

which is bounded by some constant. Assume that for all 1 ≤ j ≤ k, |P̂j | ≥ 0.5nj , but
C ∩ B(c⋆i , 4

√
k
√
γai + O(

√
kd)) = ϕ. Let P ′ ⊆ P̂i denote the collection of points within

B(c⋆i , 4
√
k
√
γai +O(

√
kd)). We have

cost(P ′, C) ≥ 0.5ni · (3
√
k
√
γai +O(

√
kd))2

≥ 4.5ni(kγa
2
i +O(

√
kd))

≥ 4.5kγOPTi +O(nikd)

≥ 4.5OPT+O(nikd).

Note that from Lemma D.4, we have with high probability, for every j ∈ [k], we have

cost(P̂j , ĉj) ≤ 1.5OPTj +O(θnjdk),

and

ÔPT ≤
∑
i

cost(P̂i, ĉi) ≤ OPT+O(θnd+
√
θd · OPT).

Thus with high probability,

cost(P̂ , C)

ÔPT
≥ cost(P ′, C)

ÔPT
≥ 4.5OPT+O(nikd)

OPT+O(nkd)
≥ 1 + α,

which concludes the proof. □

Lemma D.6 (Controlling assignment difference between P and P̂ ) For any C satisfies for all i,
there exists ci ∈ C ∩B(c⋆i , O(

√
kai +

√
kd)), we have with high probability (say 0.99)∑

i

cost(P̂i, ci)− cost(P̂ , C) = exp
(
−O(

√
kd)
)
· θn.
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Proof: We first compute the expectation for a fixed C

EP̂

[∑
i

(cost(P̂i, ci)− cost(P̂ , C))

]
.

For simplicity, we use Bi to denote the ball B(c⋆i , O(
√
kai +

√
kd)). Note that if for p ∈ P̂i and

p ∈ Bi,
∥p− ci∥ < ∥p− cj∥,∀j ̸= i.

Thus, we only need to consider the points such that p /∈ ∪iBi.

Note that since ξp satisfies Bernstein condition if ξp ̸= 0, we have

Pr [|ξp| ≥ t|ξp ̸= 0] ≤ 2 exp

(
− t2

2(1 + bt)

)
,∀t > 0.

Thus we have for large enough t (larger than b),

Pr [|ξp| ≥ t|ξp ̸= 0] ≤ 2 exp (−O(t)) .

Then we can decompose the cost as

E

[∑
i

cost(P̂i, ci)− cost(P̂ , C)

]

≤
∑
i

ni · θ ·
∫
O(

√
kai+

√
kd)

(
O(

√
kai +

√
kd) + t

)2
ρ(ξp = t)dt

≤
∑
i

ni · θ ·
∫
O(

√
kai+

√
kd)

4t2ρ(ξp = t)dt.

Note that ∫
(Γ−1)ai+O(

√
kd)

t2ρ(ξp = t)dt = E[X] =

∫ ∞

0

Pr[X ≥ s]ds,

where X = 0 when t ≤ (Γ− 1)ai +O(
√
kd) and X = t2 otherwise. Note that when s ≤

((Γ− 1)ai +O(
√
kd))2, Pr[X ≥ s] ≤ exp

(
−O((Γ− 1)ai +O(

√
kd))

)
and when s > ((Γ −

1)ai +O(
√
kd))2, we have

Pr[X > s] ≤ exp
(
−O(

√
s)
)
.

Also note that∫
exp
(
−o(

√
s)
)
ds = −O(1) · exp

(
−O(

√
x)
)
· (
√
x+O(1)) + Constant.

Thus we have

E[X] ≤ O(1) · exp
(
−O((Γ− 1)ai +O(

√
kd))

)
· (O((Γ− 1)ai +O(

√
kd)) +O(1)) = o(

1

kd
).

Then we complete the proof by applying Markov’s inequality. □

Now we can finish our proof for the ErrAR(·) guarantee in Lemma 3.5.

Proof: [of ErrAR(·) guarantee in Lemma 3.5] It suffices to show that for any solution C, we have
with high probability

rP (C)− rP̂ (C)

rP̂ (C)
=

cost(P,C)
OPT − cost(P̂ ,C)

ÔPT

cost(P̂ ,C)

ÔPT

≤ O(
θd

OPT
+
(1− 1

α + exp
(
−O(

√
kd)
)
)θnd

OPT
+(1− 1

α
).

Note that with high probability, we have

ÔPT ≤
∑
i

cost(P̂i, ĉi) ≤ OPT+O(θnd+
√
θd · OPT). (12)
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Thus we can assume that Eq. 12 holds. Thus, we have

ÔPT ≤ O(OPT+ θnd).

Besides, since Lemma D.5 holds with high probability, we can also assume that for every i ∈ [k],
there exists c ∈ C such that c ∈ B(c⋆i , O(

√
kai +

√
kd)), and we denote ci ∈ C such that ci ∈

B(c⋆i ,Γai + O(
√
kd)). Note that from the assumption on data, we know that B(c⋆i , O(

√
kai +√

kd)) ∩ B(c⋆j , O(
√
kai +

√
kd)) = ϕ, for all i ̸= j, and thus ci is well-defined. Besides, we also

know that for all p ∈ Pi, ∥p− ci∥ ≤ ∥p− cj∥ for all j ̸= i.

Then denote β = rP̂ (c) ∈ [1, α], we have

rP (C)− rP̂ (C)

rP̂ (C)

≤ cost(P,C)− OPT

βOPT

=

∑k
i=1(cost(Pi, ci)− cost(Pi, c

⋆
i )

βOPT

=

∑
i∈[k] ni · ∥c⋆i − ci∥2

β
∑

i∈[k] cost(Pi, c⋆i )

≤

∑k
i=1

(
2ni · (∥c⋆i − µ(P̂i)∥22 + ∥µ(P̂i)− ci∥22)

)
β ·
∑

i∈[k] cost(Pi, c⋆i )

≤
∑

i
1
ni
2∥
∑

p∈Pi
ξp∥22

β · OPT

+
2(
∑

i cost(P̂i, ci)− cost(P̂ , C) + cost(P̂ , C)−
∑

i cost(P̂i, µ(P̂i))

β ·
∑

i∈[k] cost(Pi, c⋆i )

≤ O(
θkd

OPT
) +

2 exp
(
−O(

√
kd)
)
θdn

β ·
∑

i∈[k] cost(Pi, c⋆i )
+

2(β − 1)ÔPT

β ·
∑

i∈[k] cost(Pi, c⋆i )

≤ O(
θkd

OPT
) + 2(β − 1) · O(OPT+ θnd)

β · OPT
++

2 exp
(
−O(

√
kd)
)
θdn

βOPT
, (Ineq. 9)

≤ O(
θkd

OPT
+

(1− 1
β + exp

(
−O(

√
kd)
)
)θnd

OPT
+ (1− 1

β
))

≤ O(
θkd

OPT
+

(1− 1
α + exp

(
−O(

√
kd)
)
)θnkd

OPT
+ (1− 1

α
)). (β ≤ α)

Thus we conclude the proof of Theorem 3.1.

□

D.2 PROOF OF THEOREM 3.3: ERROR LOWER BOUNDS FOR 1-MEANS CORESET

We only consider c⋆ for the coreset error. By Claim 3.6 and Lemma D.2, we observe that∑
p∈P ∥ξp∥22 is highly concentrated at its expectation θnd, which implies that with probability at

least 0.8,
cost(P̂ , c⋆)− cost(P, c⋆) = Ω(θnd).

Consequently, P̂ is an Ω( θnd
OPT )-coreset of P .

For the error of approximation-ratio coreset, we first recall that

ÔPT = OPT+ (1− 1

n
)
∑
p∈P

∥ξp∥22 + 2
∑
p∈P

⟨ξp, p− c⋆⟩ − 2

n
· ⟨
∑
p∈P

ξp,
∑
p∈P

p− c⋆⟩.
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With probability 0.5, we have 2
∑

p∈P ⟨ξp, p − c⋆⟩ − 2
n · ⟨

∑
p∈P ξp,

∑
p∈P p − c⋆⟩ ≥ 0. Then

again by Claim 3.6, we conclude that
∑

p∈P ∥ξp∥22 = Θ(θnd) and ÔPT = OPT + Ω(θnd) with

probability at least 0.3. Next, we consider center c = µ(P̂ ) +

√
(α−1)·ÔPT

n · µ(P̂ )−c⋆

∥µ(P̂ )−c⋆∥2
. By the

proof of Lemma 3.5, we know that

cost(P̂ , c) = α · ÔPT,
i.e., c is an α-approximate solution of S. We also have

cost(P, c) = OPT+ n · ∥c− c⋆∥22

= OPT+ n ·

∥ 1
n
·
∑
p∈P

ξp∥2 +

√
(α− 1) · ÔPT

n

2

≥ OPT+
1

n
· ∥
∑
p∈P

ξp∥22 + (α− 1) · ÔPT,

and
cost(P, µ(P̂ )) = OPT+

1

n
· ∥
∑
p∈P

ξp∥22 = OPT+Θ(θd).

Combining with the above inequalities, we conclude that

rP (c) ≥
OPT+ 1

n · ∥
∑

p∈P ξp∥22 + (α− 1) · ÔPT
OPT

≥ α+
Ω((α− 1)θnd)− α

n · ∥
∑

p∈P ξp∥22
OPT

(ÔPT = OPT+Θ(θnd))

≥ α+
Ω((α− 1)θnd)−O(θd)

OPT
(∥
∑
p∈P

ξp∥22 = O(θnd))

≥ α+
Ω((α− 1)θnd)

OPT
(α− 1 ≫ 1

n
)

≥ α+Ω(
(α− 1)θnd

OPT
)

≥ (1 + Ω(
(α− 1)θnd

OPT
)) · rP̂ (c). (cost(P̂ , c) = α · ÔPT)

Hence, we conclude that P̂ is an (α,Ω(
(1− 1

α )θnd

OPT ))-approximation-ratio coreset of P for 1-MEANS,
which completes the proof.

D.3 TECHNICAL CHALLENGE FOR ROBUST k-MEANS CORESET

Now we show it is difficult to construct an o( θd
OPT )-coreset S for k-MEANS of P from P̂ under noise

model I. Let us first consider 1-MEANS. As demonstrated in the proof of Theorem 3.1, it becomes
apparent that the optimal center c⋆ undergoes a displacement 1

n

∑
p∈P ξp with norm approximately

Θ(
√

θd
n ) in a uniformly random direction when θ ≫ 1

n . Consequently, any coreset S constructed

by P̂ is likely to satisfy

∥µ(S)− c⋆∥2 = ∥ 1

w(S)
·
∑
p∈S

w(p) · p− 1

n

∑
p∈P

p∥2 ≥ Ω(

√
θd

n
). (13)

Next, we have the following lemma.

Lemma D.7 (Hardness of robust 1-MEANS coreset) Let S ⊂ Rd be a weighted dataset satisfying
Inequality 13 and µ(S) = 1

w(S)

∑
p∈S w(p) · p be the optimal center of S for 1-MEANS. There we

have cost(P, µ(S)) ≥ OPT+Ω(θd).

The above lemma shows that µ(S) is a 1 + Ω( θd
OPT )-approximate center of P , which impedes our

ability to construct a noise-robust coreset for arbitrary small ε > 0.
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Proof: [of Lemma D.7] By the proof of Lemma 3.5, we know that for every c ∈ Rd,

cost(P, c) = OPT+ n · ∥c⋆ − c∥22.

Letting c = µ(S), we have

cost(P, µ(S)) = OPT+ n · ∥c⋆ − µ(S)∥ ≥ OPT+Ω(θd),

by the assumption of the lemma. This completes the proof. □

E RESULTS FOR (k, z)-CLUSTERING CORESETS

In this section, we provide theoretical results for the (k, z)-CLUSTERING problem (Theorems E.1
and E.2). These results do not make assumptions on data and hence, the bounds for ErrAR(·) are
weaker than that of Theorem 3.1. Let C⋆ ∈ Rd denote an optimal solution of P . Let OPT denote the
optimal (k, z)-CLUSTERING value of the underlying dataset P . We first have the following theorem
under noise model I.

Theorem E.1 (Performance analysis for (k, z)-CLUSTERING coreset under noise model I) Let
ε, θ ∈ [0, 1] and z ≥ 1 be constant. Let P ⊂ Rd be an underlying dataset of size n ≥ 1 and
P̂ ⊂ Rd be an observed dataset drawn from P under the noise model I with underlying parameter
θ. Let S be an ε-coreset of P̂ for (k, z)-CLUSTERING. With probability at least 0.8, S is an

O(ε+ θndz/2

OPT + z

√
θndz/2

OPT )-coreset of P for (k, z)-CLUSTERING.

Moreover, there exists θ ∈ [0, 1] and a dataset P ⊂ Rd of size n such that with probability at
least 0.8, P̂ is an Ω( θnd

z/2

OPT )-coreset and an (+∞,Ω( θnd
z/2

OPT ))-approximation-ratio coreset of P for
(k, z)-CLUSTERING when k = n− 1.

By Definition 2.2, the theorem implies that for any α ≥ 1, ErrAR(S) = O(ε+ θndz/2

OPT + z

√
θndz/2

OPT ),
which is much weaker than that of Theorem 3.1. Further improving this bound is an interesting open
problem.

Proof: We first take k-MEANS as an example and then show how to extend to general (k, z)-
CLUSTERING.

Upper bound. The upper bound is already proved by Lemma D.3 in Theorem 3.1.

Worst-case lower bound. In symmetry, we only need to prove the lower error bound Ω( θnd
OPT ) for

approximation-ratio coreset. Let θ = 0.1, n = 10000 and k = n− 1. We first give the construction
of P : let P = {pi = 100nei : i ∈ [n]} ⊂ Rn where ei is the i-th unit basis in Rn. An optimal
solution C⋆ =

{
p1, . . . , pn−2,

pn−1+pn

2

}
, and hence, OPT = 10000n2.

Next, we consider P̂ . With probability at least 0.8, the following events hold:

1.
∑

p∈P ∥ξp∥22 = Θ(θnd);

2. for every p ∈ P , ∥ξp∥22 ≤ 10d log n.

Event 2 is due to noise model I, which ensures that PrP̂
[
∥ξp∥22 ≥ 10d log n

]
≤ 1

10n2 . Then by the
union bound, event 2 happens with probability at least 1 − 0.1n. Conditioned on these events, the
optimal solution Ĉ ∈ C of P̂ must consist of n − 2 points p̂ ∈ P̂ and the average of the remaining
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two points in P̂ . W.l.o.g., assume Ĉ =
{
p̂1, . . . , p̂n−2,

p̂n−1+p̂n

2

}
. Then we have

cost(P, Ĉ) ≥
∑

i∈[n−2]

∥p̂i − pi∥22 + OPT (Defn. of OPT)

≥ OPT+
∑
p∈P

∥ξp∥22 − 20d log n (Event 2)

≥ OPT+Θ(θnd)− 20d log n (Event 1)

≥ (1 + Ω(
θnd

OPT
)) · OPT, (θ = 0.1)

which implies that

cost(P, Ĉ)

cost(P,C⋆)
≥ 1 + Ω(

θnd

OPT
)

≥ (1 + Ω(
θnd

OPT
)) · cost(P̂ , Ĉ)

cost(P̂ , C⋆)
(Ĉ is optimal for P̂ ).

Thus, we complete the proof of Theorem 3.1 for k-MEANS.

Now we show how to extend to (k, z)-CLUSTERING coreset. For the upper bound, the main differ-
ence is that we have

|dz(p, C)− dz(p̂, C)| ≤ Oz

(
∥ξp∥z2 + ∥ξp∥2 · dz−1(p, C)

)
,

where Oz(·) hides constant factor 2O(z). Similar to Claim 3.6, we assume
∑

p∈P ∥ξp∥z2 ≤
Oz(θnd

z/2) by the Bernstein condition, which happens with probability at least 0.9. Then we have

|costz(P,C)− costz(P̂ , C)|
costz(P,C)

≤
Oz

(∑
p∈P ∥ξp∥z2 + ∥ξp∥2 · dz−1(p, C)

)
costz(P,C)

≤ O(
θnd

OPT
) +

Oz

(∑
p∈P ∥ξp∥2 · dz−1(p, C)

)
costz(P,C)

(by assumption)

≤ O(
θndz/2

OPT
) +

Oz

(
z

√
(
∑

p∈P ∥ξp∥z2)(
∑

p∈P dz(p, C))z−1
)

costz(P,C)
(Generalized Hölder inequality)

≤ O(
θnd

OPT
) + z

√
O(θndz/2)

costz(P,C)
(by assumption)

≤ O(
θnd

OPT
+

z

√
θndz/2

OPT
), (Defn. of OPT)

which completes the proof of the upper bound.

For the lower bound, the argument is almost identical to that of Theorem 3.1. The only difference is
that the events change to

1.
∑

p∈P ∥ξp∥z2 = Θ(θndz/2);

2. for every p ∈ P , ∥ξp∥z2 ≤ (10d log n)z/2.

Then the construction of Ĉ is the same and we still conclude that P̂ is an Ω( θnd
z/2

OPT )-(weak) coreset
of P for (k, z)-CLUSTERING.

□

Similarly, we give the following theorem for (k, z)-CLUSTERING under noise model II.
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(c) Noise I, Laplace
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(d) Noise II, Laplace

Figure 2: The empirical errors Êrr(S) and ÊrrAR(S) versus the noise level θ plot for coreset S with
different sizes. The solid lines in each figure represent the coreset measure Êrr(S), and the dashed
lines represent the weak coreset measure ÊrrAR(S). We show the results from Adult dataset, and
Figures 2a to 2d denote the noise models I, II with Gaussian and Laplace noise respectively.

Theorem E.2 (Performance analysis for (k, z)-CLUSTERING coreset under noise model II)
Let ε ∈ [0, 1], σ ≥ 0 and z ≥ 1 be constant. Let P ⊂ Rd be an underlying dataset of size
n ≥ 1 and P̂ ⊂ Rd be an observed dataset drawn from P under the noise model II with underlying
parameter θ. Let S be an ε-coreset of P̂ for (k, z)-CLUSTERING. With probability at least 0.8, S is

an O(ε+ σzndz/2

OPT + z

√
σzndz/2

OPT )-coreset of P for (k, z)-CLUSTERING.

Moreover, there exists a dataset P ⊂ Rd of size n such that with probability at least 0.8, P̂ is
an Ω(σ

zndz/2

OPT )-coreset and an (+∞,Ω(σ
zndz/2

OPT ))-approximation-ratio coreset of of P for (k, z)-
CLUSTERING when k = n− 1.

Proof: By a similar argument as that of Theorem E.1, we only need to prove the following prop-
erty:

EP̂

∑
p∈P

∥ξp∥22

 = Oz(σ
zndz/2), and VarP̂

∑
p∈P

∥ξp∥22

 = Oz(σ
2zndz),

which again holds by the Bernstein condition. □

F MORE EMPIRICAL RESULTS

In this section, we show more empirical results to corroborate our findings in Section 4.

More results on Adult dataset Figure 1 only shows the result on Bank dataset, and we show
similar figure in Figure 2 on Adult dataset. In Table 1, we fix the noise level θ = 0.1, and we
also show similar table for θ = 0.08 (Table 2) and θ = 0.8 (Table 3). All our empirical findings in
Section 4 still hold.

Experiment with different k We also show experiment results for different number of clusters k
(Figure 4 and 3) on Bank dataset. All our empirical findings in Section 4 still hold.

Data assumption results on real-world dataset We also test if the data assumption are satisfied
on real-world datasets. For a dataset D, we run the k-MEANS clustering algorithm on dataset D and
get the centers C and a partition of the dataset {P1, . . . , Pk} where Pi is clustered to ci ∈ C. We
compute OPTi = cost(Pi, ci) and ai = maxp∈Pi

∥p− ci∥. We then compute

rOPT := max
i,j

OPTi

OPTj
, ra := max

i,j

∥ci − cj∥
ai + aj

.

Here rOPT measures the maximum ratio between the cost of different clusters, and ra “upper
bounds” how separated the dataset is.

30



Under review as a conference paper at ICLR 2024

Table 2: The empirical errors Êrr(S) and ÊrrAR(S) under different noise models, different coreset
sizes, and different datasets (Bank and Adult). We fix the noise level θ = 0.08. We repeat each
setting 20 times, and we provide the mean and the standard deviation of the empirical errors.

(a) Results for Bank dataset.

Coreset
Size

Model I, Gaussian Model II, Gaussian Model I, Laplace Model II, Laplace
Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S)

500 0.1950.05 0.0760.02 0.1990.04 0.0830.03 0.2160.05 0.0790.02 0.1920.04 0.0750.02

1000 0.1800.02 0.0450.01 0.1830.03 0.0440.01 0.1680.03 0.0500.01 0.1800.02 0.0470.01

2000 0.1660.02 0.0350.01 0.1660.02 0.0300.01 0.1590.02 0.0380.01 0.1700.02 0.0280.01

3000 0.1660.02 0.0270.01 0.1620.01 0.0240.01 0.1530.02 0.0250.01 0.1670.02 0.0220.01

4000 0.1510.01 0.0290.01 0.1620.02 0.0220.01 0.1510.01 0.0260.01 0.1590.01 0.0210.01

5000 0.1500.01 0.0260.01 0.1520.01 0.0170.01 0.1440.01 0.0250.01 0.1520.01 0.0240.01

(b) Results for Adult dataset.

Coreset
Size

Model I, Gaussian Model II, Gaussian Model I, Laplace Model II, Laplace
Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S)

500 0.1700.04 0.0530.02 0.1850.04 0.0630.02 0.1800.04 0.0570.02 0.1650.04 0.0630.03

1000 0.1660.03 0.0300.02 0.1560.02 0.0330.02 0.1600.03 0.0320.02 0.1590.03 0.0310.01

2000 0.1510.02 0.0120.01 0.1450.02 0.0170.01 0.1490.03 0.0140.01 0.1530.02 0.0180.01

3000 0.1430.02 0.0080.01 0.1480.02 0.0160.01 0.1450.01 0.0120.01 0.1450.02 0.0140.01

4000 0.1480.02 0.0050.00 0.1450.01 0.0070.00 0.1430.02 0.0050.00 0.1450.01 0.0100.01

5000 0.1450.01 0.0040.00 0.1440.01 0.0070.01 0.1420.02 0.0040.00 0.1480.01 0.0060.00

Table 3: The empirical errors Êrr(S) and ÊrrAR(S) under different noise models, different coreset
sizes, and different datasets (Bank and Adult). We fix the noise level θ = 0.8. We repeat each
setting 20 times, and we provide the mean and the standard deviation of the empirical errors.

(a) Results for Bank dataset.

Size Model I, Gaussian Model II, Gaussian Model I, Laplace Model II, Laplace
Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S)

500 1.5890.06 0.2770.04 1.6050.06 0.3150.05 1.5860.07 0.2430.04 1.6110.06 0.2830.04

1000 1.5660.06 0.1690.03 1.5970.06 0.2010.03 1.6070.06 0.1530.02 1.5930.05 0.1780.03

2000 1.5800.06 0.1200.02 1.5800.05 0.1460.02 1.5970.06 0.1000.01 1.5780.05 0.1370.02

3000 1.5710.05 0.1020.01 1.5800.06 0.1280.02 1.5800.05 0.0900.02 1.5850.04 0.1020.02

4000 1.5830.04 0.0850.01 1.5820.06 0.1090.01 1.5760.04 0.0740.01 1.5870.05 0.0980.02

5000 1.5750.04 0.0810.02 1.5800.05 0.1020.02 1.5740.04 0.0690.01 1.5800.05 0.0890.01

(b) Results for Adult dataset.

Size Model I, Gaussian Model II, Gaussian Model I, Laplace Model II, Laplace
Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S) Êrr(S) ÊrrAR(S)

500 1.3590.09 0.3350.05 1.3470.08 0.4190.04 1.3580.12 0.2740.03 1.3730.07 0.3440.08

1000 1.3650.09 0.2520.04 1.3090.08 0.3210.05 1.3490.10 0.2090.04 1.3520.06 0.2660.04

2000 1.3720.08 0.2100.03 1.3140.05 0.2860.04 1.3350.07 0.1620.02 1.3320.07 0.1950.02

3000 1.3570.08 0.1810.02 1.3310.05 0.2460.02 1.3450.09 0.1490.01 1.3450.07 0.1810.01

4000 1.3650.09 0.1700.02 1.3320.05 0.2360.02 1.3320.08 0.1450.01 1.3480.05 0.1720.02

5000 1.3760.09 0.1640.02 1.3250.04 0.2160.03 1.3400.08 0.1360.01 1.3550.06 0.1650.01

We test rOPT and ra on Adult and Bank datasets, and test k-MEANSwith k = 5, 10, 15. For each
setting, we repeat the experiment with 10 times, and we report the mean and standard deviation in
Table 4.

From the result, we can observe that the Bank dataset is indeed balanced, since rOPT is not very
large, but the Adult dataset is not as balanced as Bank dataset. Besides, we find that the real-
world Adult and Bank datasets are not well-separated, since ra is very small. This suggests that
in reality, we might not need the data assumptions and the data assumption is only required for the
current theoretical analysis.

31



Under review as a conference paper at ICLR 2024

0.0 0.02 0.04 0.08 0.2 0.4 0.8
noise level 

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

em
pi

ric
al

 e
rro

r 

Err(S), |S| = 500
ErrAR(S), |S| = 500
Err(S), |S| = 1500
ErrAR(S), |S| = 1500
Err(S), |S| = 2500
ErrAR(S), |S| = 2500

(a) Noise I, Gaussian

0.0 0.02 0.04 0.08 0.2 0.4 0.8
noise level 2

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

em
pi

ric
al

 e
rro

r 

Err(S), |S| = 500
ErrAR(S), |S| = 500
Err(S), |S| = 1500
ErrAR(S), |S| = 1500
Err(S), |S| = 2500
ErrAR(S), |S| = 2500

(b) Noise II, Gaussian

0.0 0.02 0.04 0.08 0.2 0.4 0.8
noise level 

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

em
pi

ric
al

 e
rro

r 

Err(S), |S| = 500
ErrAR(S), |S| = 500
Err(S), |S| = 1500
ErrAR(S), |S| = 1500
Err(S), |S| = 2500
ErrAR(S), |S| = 2500

(c) Noise I, Laplace

0.0 0.02 0.04 0.08 0.2 0.4 0.8
noise level 2

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

em
pi

ric
al

 e
rro

r 

Err(S), |S| = 500
ErrAR(S), |S| = 500
Err(S), |S| = 1500
ErrAR(S), |S| = 1500
Err(S), |S| = 2500
ErrAR(S), |S| = 2500

(d) Noise II, Laplace

Figure 3: The empirical errors Êrr(S) and ÊrrAR(S) versus the noise level θ plot for coreset S with
different sizes. The solid lines in each figure represent the coreset measure Êrr(S), and the dashed
lines represent the weak coreset measure ÊrrAR(S). We show the results from Bank dataset with
5 number of clusters, and Figures 3a to 3d denote the noise models I, II with Gaussian and Laplace
noise respectively.
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Figure 4: The empirical errors Êrr(S) and ÊrrAR(S) versus the noise level θ plot for coreset S with
different sizes. The solid lines in each figure represent the coreset measure Êrr(S), and the dashed
lines represent the weak coreset measure ÊrrAR(S). We show the results from Bank dataset with
15 number of clusters, and Figures 4a to 4d denote the noise models I, II with Gaussian and Laplace
noise respectively.

Table 4: rOPT and ra on Adult and Bank datasets under different number of clusters k. For each
k, we repeat the experiment for 10 times. We report the mean and standard deviation.

Dataset
k

Adult Bank
k = 5 k = 10 k = 15 k = 5 k = 10 k = 15

rOPT 61.846.44 16.262.68 10.382.22 6.712.01 2.960.44 3.750.79
ra 1.260.00 1.670.01 1.940.15 0.320.05 0.590.06 0.840.04

Total sensitivity We also test how the total sensitivity Feldman & Langberg (2011) changes when
the noise level (θ or σ) changes. We calculate the total sensitivity on Bank dataset under noise
model I with Gaussian perturbation, with noise level ranging from γ = 0 to γ = 0.2. Table 5
summarizes the results. We find that the total sensitivity score decreases as the noise parameter θ
increases. Intuitively, this phenomenon may be caused by adding larger noise drives points more
”similar”

Table 5: total sensitivity on Bank dataset under noise model I with Gaussian perturbation, with
noise level ranging from γ = 0 to γ = 0.2. We found that the larger the noise level, the smaller the
total sensitivity.

total sensitivity(×105)
θ = 0 9.1

θ = 0.02 8.5
θ = 0.04 7.9
θ = 0.08 7.3
θ = 0.2 6.0
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