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Figure 1: Refine-by-Align. Given a generated image (with artifacts), a free-form mask indicating
the artifacts region in the generated image, and a high-quality reference image containing important
details such as identity logo or font, our model can automatically refine the artifacts in the gener-
ated image by leveraging the corresponding details from the reference. The proposed method could
benefit various applications (e.g., DreamBooth (Ruiz et al., 2023a) for text-to-image customization,
IDM-VTON (Choi et al., 2024) for virtual try-on, AnyDoor (Chen et al., 2023) for object composi-
tion, and Zero 1-to-3++ (Shi et al., 2023b) for novel view synthesis.

ABSTRACT

Personalized image generation has emerged from the recent advancements in gen-
erative models. However, these generated personalized images often suffer from
localized artifacts such as incorrect logos, reducing fidelity and fine-grained iden-
tity details of the generated results. Furthermore, there is little prior work tackling
this problem. To help improve these identity details in the personalized image
generation, we introduce a new task: reference-guided artifacts refinement. We
present Refine-by-Align , a first-of-its-kind model that employs a diffusion-based
framework to address this challenge. Our model consists of two stages: Align-
ment Stage and Refinement Stage, which share weights of a unified neural net-
work model. Given a generated image, a masked artifact region, and a reference
image, the alignment stage identifies and extracts the corresponding regional fea-
tures in the reference, which are then used by the refinement stage to fix the ar-
tifacts. Our model-agnostic pipeline requires no test-time tuning or optimization.
It automatically enhances image fidelity and reference identity in the generated
image, generalizing well to existing models on various tasks including but not

→This work was done while the author was an intern at Adobe Research.
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limited to customization, generative compositing, view synthesis, and virtual try-
on. Extensive experiments and comparisons demonstrate that our pipeline greatly
pushes the boundary of fine details in the image synthesis models. Project page:
https://song630.github.io/Refine-by-Align-Project-Page/

1 INTRODUCTION

Generative models (Goodfellow et al., 2014; Karras et al., 2019; He & Aliaga, 2024; 2023) for
image synthesis (Ho et al., 2020; Rombach et al., 2022; Peebles & Xie, 2023; Podell et al., 2023;
Luo et al., 2023b) have made significant advancement. Moreover, the traditional task of reference-
guided image generation (Sheng et al., 2022; 2023; 2024) has been enabled by recent diffusion
models (DM), where a text and/or visual prompt is provided and the subject object is generated
in a specified novel context. This ability has been widely applied to applications such as subject
customization (Ruiz et al., 2023a), object composition (Chen et al., 2023), novel view synthesis (Shi
et al., 2023b) and virtual try-on (Choi et al., 2024). While these works seek generation in a single
step, in practice undesired blemishes, detail omissions, and blurriness may occur in the generated
images. These localized unpleasant anomalies are typically called artifacts as perceived by human
eyes (e.g., ”artifacts” row in Figure 1 (Zhang et al., 2023b)). The artifacts reduce image fidelity and
the overall prompt-alignment quality of the synthesized images. Thus, a localized refinement tool to
remove or reduce artifacts is beneficial.

Recently, a few limited approaches to artifact detection and refinement have been presented.
PAL (Zhang et al., 2023b) presents an early work in this area that trains an artifact detection model
in a supervised end-to-end manner using input images with artifacts and corresponding ground truth
images. The detected artifacts can be partially removed using a pre-trained image inpainting tool. As
PAL identifies, the artifacts are typically very small and irregular-shaped (Appendix Fig. 8), which
further complicates the refinement process. PAL ameliorates artifacts but struggles with diversity
of artifact refinement. Lack of diversity is also observed in RealisHuman (Wang et al., 2024a) that
focuses on artifacts in human hands and faces, and the SynArtifact (Cao et al., 2024) using vision-
language model and reinforcement learning for artifact annotation and removal. In general, none
of these methods are able to provide a controllable and predictable artifact refinement output with
free-form support automatically to precisely preserve the original identity details.

Our main approach is to leverage the identity detail info in the reference-image to guide the refine the
artifacts. This provides a locally-controllable output (i.e., we specify the desired refinement), works
for arbitrarily-shaped artifacts, preserves the identity and background in the provided generated im-
age, and is applicable to multiple image generation approaches. As shown in Fig. 1, we provide
reference-guided artifacts refinement: Given a generated image with marked artifact regions, and
a reference image (containing a reference object), our model refines the artifacts by transferring
corresponding details from the reference image to the artifact regions in the originally generated
image. Our reference-guided approach shares insights with many reference-based image customiza-

Figure 2: Comparisons of our region-matching method with keypoint matching. We utilize
DIFT (Tang et al., 2023) and DHF (Luo et al., 2023a) to perform keypoint matching from the ar-
tifacts region (10 points are sampled along the artifacts contour) to the reference. DIFT and DHF
often fail to find the accurate corresponding region; in addition, they have trouble in distinguish-
ing between repeating patterns such as (a)(c). In contrast, our method is more robust. The results
demonstrate that artifacts alignment is a non-trivial process.
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tion models (Song et al., 2023; Chen et al., 2023; Yang et al., 2023), but those models overlooked
the accurate region-alignment between reference image and artifact region. In Fig. 2, SOTA models
specialized on finding correspondences may fail on key point matching for arbitrary-shaped regions.

Our approach proceeds in two stages (Fig. 3). (1) Alignment Stage: we design a novel alignment
algorithm (Algorithm 1) for arbitrarily-shaped regional feature matching which utilizes the artifact
regions to query corresponding features from the reference image. In particular, the best match is
obtained by maximizing the spatial correlation between DM-captured cross-attention maps of both
artifact region and the reference image. (2) Refinement Stage: we train a diffusion model to use the
best matched features from the alignment stage to refine the artifact region and preserve identity. Our
model is trained in a self-supervised scheme and we demonstrate its application to artifacts generated
by various generative models. Quantitative and qualitative comparisons (i.e., using several well-
established metrics and a user study; Sec. 4.2, Sec. 4.3) show that in terms of detail and appearance
preservation our model outperforms all six baseline models (Paint-by-Example (Yang et al., 2023),
ObjectStitch (Song et al., 2023), AnyDoor (Chen et al., 2023), PAL (Zhang et al., 2023b), Cross-
Image Attention (Alaluf et al., 2024) and MimicBrush (Chen et al., 2024)).

Our contributions can be summarized as follows:

• A first-of-its-kind generative artifacts refinement framework supporting control via refer-
ence image specification, identity preservation, arbitrary artifact shapes, and good fidelity.

• A novel artifacts matching algorithm which matches arbitrarily-shaped artifacts to corre-
sponding patterns in the reference image.

• An effective reference-guided refinement strategy that ameliorates artifacts in a provided
generated image.

• A comprehensive benchmark, GenArtifactBench, consisting of artifacts generated by sev-
eral well-known models, reference images, and dense human annotations which can serve
to evaluate future efforts in this area.

2 RELATED WORK

2.1 REFERENCE-GUIDED IMAGE EDITING

Reference-guided image editing has been a traditional task that has various applications, including
reference-guided super resolution (Zhang et al., 2019; Jiang et al., 2022), and guided inpainting or
outpainting (Zhou et al., 2021; Tang et al., 2024a). With the significant advancements in diffusion
models (DM) (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Rombach et al.,
2022; Ho & Salimans, 2022; Peebles & Xie, 2023; He et al., 2023; Huang et al., 2023) in text-to-
image (T2I) synthesis, there have been many works on subject-driven image editing. The notion of
using an additional reference image to guide image editing (e.g., (Ruiz et al., 2023a; Kawar et al.,
2023)) has led to a series of techniques (Ruiz et al., 2023b; Gal et al., 2022; Shi et al., 2023a; Kumari
et al., 2023; Liu et al., 2023b) using optimization to learn concepts. In spite of their high-fidelity
editing results, they usually require inference time fine-tuning or multiple subject images. Another
branch of works (Yang et al., 2023; Song et al., 2023; Chen et al., 2023; Zhang et al., 2024b; Li et al.,
2024; Xiong et al., 2024) replace the text embedding of T2I models with image embedding based on
CLIP or DINOv2 (Radford et al., 2021; Oquab et al., 2023; Song et al., 2024), which are tuning-free.
Subsequent works have extended the applications to image compositing (Lu et al., 2023; Wang et al.,
2024b; Avrahami et al., 2022; Sarukkai et al., 2024; Meng et al., 2021), novel view synthesis (Liu
et al., 2023a; Shi et al., 2023b; Liu et al., 2024b), instruction-guided editing (Pan et al., 2023; Yu
et al., 2024; Tang et al., 2022) via Large Language Models (Liu et al., 2024a; Zhang et al., 2024a)
or Vision-Language Models (He et al., 2024; Hua et al., 2024b;a; Tang et al., 2024c;b), and subject
swapping (Gu et al., 2023; 2024). However, they all face a critical challenge of controllability and
identity preservation of the original object.

2.2 CORRESPONDENCE MATCHING

Traditional methods use carefully-designed features (Bay et al., 2006; Lowe, 2004; Rublee et al.,
2011) or learning-based approaches (Aberman et al., 2018; Rocco et al., 2018; Seo et al., 2018;

3



Published as a conference paper at ICLR 2025

Figure 3: Overview of our framework. Top: During training, we train a DM for object completion,
guided by a reference image Ir. In alignment mode, the reference is a complete object, so the
model learns to locate the relevant region from the reference for object completion, thus maximizing
the spatial correlation in attention maps. In refinement mode, this region is directly provided as
reference. Bottom: During inference, the inputs include a generated image Ia with the artifacts
marked as Ma, and a reference object Ir. In the alignment stage, we perform cross-attention
alignment algorithm (see Alg. 1 and Fig. 4) to find the correspondence map M→. In the refinement
stage, M→ is used to find the region in Ir that corresponds to artifacts, which guides refining to Ia.

Simonyan et al., 2014) to establish correspondences. Recent work has shifted towards adapting dif-
fusion models. Tang et al. (2023); Luo et al. (2023a); Zhang et al. (2023a); Hedlin et al. (2023)
leverage the features maps or embeddings of pretrained DMs to predict correspondences. Appear-
ance transfer (Go et al., 2024; Chen et al., 2024; Alaluf et al., 2024) is a downstream application of
such task. However, they still suffer from the loss of fine-grained identity details from the reference.

2.3 LOCALIZATION AND REFINEMENT OF ARTIFACTS

It is challenging for the state-of-the-art models to capture intricate details, such as object textures
and human hands. In Zhang et al. (2023b), these artifacts are defined as implausible content or
display of unpleasant artifacts in specific regions of the image. Although artifacts are commonly
observed even in the leading generative models, few works have explored the topic of artifacts
detection and refinement. Recently, Zhang et al. (2023b) curate a human-annotated dataset for
artifact segmentation, train a segmentation model for artifact localization and a zoom-in inpainting
pipeline for refinement. Cao et al. (2024) classify the artifacts and fine-tune T2I DMs to reduce
artifacts. Specifically in handling artifacts on human body, Wang et al. (2024a) propose an approach
to refine artifacts in faces and hands. Concurrently, Chen et al. (2024) propose MimicBrush for
appearance transfer, which is a potential use for artifact refinement. However, none of these works
are designed to perform reference-guided artifacts refinement, thus lacks control. For the first time,
we provide a solution for guided artifacts refinement with fine-grained control.

3 METHOD
The proposed artifacts refinement framework, Refine-by-Align , is shown in Fig. 3. Formally, we
define the task of artifacts refinement conditioned on a reference image as following: Let Ia →
RH↑W↑3 be an image with artifacts generated by any reference-guided generation model, Ma →
RH↑W be a user provided artifacts mask, Ir → RH↑W↑3 be the segmented reference object image;
we train a Diffusion Model (DM)-based refinement model R to generate a refined image I→

a
:

I→
a
= R(Ia,Ma, Ir) → RH↑W↑3 (1)

Ideally in I→
a

, the refined area I→
a
↑Ma should be consistent with the background and preserve the

identity from the reference object Ir; the whole image I→
a

should appear natural and artifacts-free.
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Figure 4: Top: Visualization of our cross-attention alignment algorithm. The artifacts mask is used
to extract the spatial correlations between the artifacts and the reference; the output of this algorithm,
the correspondence map, indicates the region in the reference that corresponds to the artifacts area.
Middle and Bottom: Correspondence maps across different transformer layers and timesteps.

Figure 5: Running the cross-attention alignment algorithm on GenArtifactBench to find the best
combination of timestep t and transformer layer l. Left: mIoU across all timesteps, averaged over
all layers and images; Right: mIoU across all layers, averaged over all timesteps and images.

However, directly using Ir as the visual guidance may cause significant degradation. Hence, an
optimal correspondence mask M→ is necessary for an optimized input reference as Ir ↑ M→ for
better guidance. To tackle this task, we created a two stage approach R: the Alignment Stage and
the Refinement Stage, which share the weights of a single unified neural network model. In the
alignment stage, the artifacts region Ia ↑Ma is used as the query to localize the optimal correspon-
dence region mask M→ in Ir. In the refinement stage, Ir ↑ M→ is fed into DINOv2 (Oquab et al.,
2023) encoder to extract expressive visual features, guiding the local generation process to eliminate
the artifacts while ensuring identity preservation.

Our design is motivated by two key observations:

• Refine by localization: As summarized in (Zhang et al., 2023b), generative artifacts occurs more
frequently around tiny object details such as logos, texts and other complex textures. However,
these areas have higher fidelity when such details are prominent in the image. Based on this
observation, we assume that the fidelity can be improved by performing a local generation guided
by a local region from the reference.

• Align via cross-attention: As demonstrated in Hertz et al. (2022), the appearance of the generated
image depends on the interaction between the pixels to the text embedding, which occurs in cross
attention layers. Similarly, when replacing the text embedding with image embedding, we assume
that spatial correspondence exists between the generated image and the image embedding.

Based on the above observations, we review cross-attention and prove that the spatial correspon-
dence exists in Sec. 3.2; the algorithm to align Ia ↑ Ma to the corresponding local region in Ir is
explained in Sec. 3.3. Sec. 3.4 describes the two training modes. Sec. 3.5 describes the inference.
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Algorithm 1 Optimal Cross-Attention Alignment (refer to Fig. 4 for visualization)
Input: Target image I , resized artifacts mask Ma → Rd↑d, reference image Ir, DINOv2 encoder ω,
the refinement model R, the ground truth correspondence mask Mgt on Ir.
Parameter: The diffusion time steps T , total number of transformer block L in R, the noisy image
resolution d in latent space.
Output: Optimal correspondence mask M→ (for Ir).

1: E ↓ MLP(ω(Ir)); E → R256↑768 . . . . . . . . . . . . . . . . . . . . . . . . . . . .# Get reference embedding
2: zT ↔ N (0, I); Zero array ! → RT↑L

3: for t = T ↗ 1, · · · , 0 do
4: for l = 0, · · · , L↗ 1 do
5: At,l ↓ R(zt, t,E); At,l → R(d↑d)↑256 . . . . . # Extract cross-attention map at l-th block
6: M t,l =

∑
i,j
(Ma ↘At,l[i, j, :]) . . . . . . . . . . . . . . . . . . . . .# 2D correspondence mask on Ir

7: !t,l ↓ mIoU(M t,l,Mgt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . # Calculate mIoU
8: end for
9: end for

10: t→, l→ ↓ argmaxt,l(!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .# Find optimal t and l
11: return M→ ↓ M t

→
,l
→

3.1 DIFFUSION MODEL

We leverage the architecture of AnyDoor (Chen et al., 2023) and IMPRINT (Song et al., 2024) as
the backbone of our refinement network. It is based on the Stable Diffusion (Rombach et al., 2022)
model, which contains three major components: the variational autoencoder (VAE) to code images
into latent embeddings z, the U-Net backbone R parameterized by ε for sequentially denoising dif-
fusion steps on z by Gaussian noise ϑ, and a text encoder for guidance injection. We replace the text
encoder by a vision encoder ω based on a pretrained DINOv2 (Oquab et al., 2023) to enable visual
prompt guidance by a reference image Ir → RH↑W↑3 of a subject. In particular, the conditional
embedding ω(Ir) will be utilized for optimization of loss functions on artifact refinement:

Lartifact = Ez,Ir,ω↓N (0,I),t

[
≃ϖ↗Rε (zt, t,ω (Ir))≃22

]
(2)

where zt is the latent embedding at time step t. R is trained to iteratively denoise zT to z0.

3.2 SPATIAL CORRESPONDENCE IN ENCODER-BASED CUSTOMIZATION MODELS

Our vision encoder ω based on DINOv2 is employed to extract the image embedding from the
reference object, which is then fed to the cross attention layers of the U-Net backbone. Its ViT
backbone divides the input image into 16⇐ 16 square patches, thus the encoded ω(Ir) is a sequence
of 256 tokens and can be mapped back to 2D space with original spatial information as followed:

E = ω(Ir);E → R256↑d
ω

(3)
In each attention layer, ω(Ir) is projected to the key k = ϱk(E) and the value v = ϱv(E) by the
linear projections ϱk and ϱv . Meanwhile, the noisy image encoded by VAE to latent embedding
zt is projected to the query q = ϱq(zt). Specifically, zt → Rd↑c, where d → {64, 32, 16, 8} is
the resolution of the extracted image features at different depth of layers, and c is the number of
channels. zt also contains spatial information. Altogether, cross attention map A is calculated as:

A = softmax(qkT );A → R(d↑d)↑256 (4)

Intuitively, A measures the similarity between q and k, and A[x,y,k] stores the amount of informa-
tion flow from the kth reference token to the latent pixel at (x, y) (Xiao et al., 2023). Therefore,
through cross attention, A effectively encodes the interaction between the noisy image and the ref-
erence embedding connected by spatial correlations.

3.3 THE ALIGNMENT ALGORITHM

Although the cross attention map A encodes the spatial correlations between Ia and Ir, two chal-
lenges remain in identifying M→: (1) given A, accurately locating the region in the reference image
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that corresponds to the free-form artifacts Ia↑Ma; (2) finding the optimal correspondence map M→

from the numerous maps M t,l of all possible combinations of diffusion timesteps t and transformer
layers l. Aiming at these two challenges, we present our cross-attention alignment algorithm,
shown as pseudo code in Algorithm 1, and visualized in the top part of Fig. 4.

Optimal Cross-Attention Alignment
Since zt is obtained by encoding a partially noisy version of Ia (see Sec. 3.4), each pixel Ia[i, j] can
be mapped to its spatial correspondence in zt. Given that A encodes the correlation between the
noisy image zt and the reference tokens E (discussed in Sec. 3.2), it can be concluded that any pixel
Ia[i, j] can find its match in E via A.

For the correspondence map of Ir at diffusion timestep t and transformer layer l, we accomplish this
by aggregating all pixels belonging to the artifacts:

M t,l =
∑

i,j

(Ma ↘A[i, j, :]) (5)

where the Hadamard product is calculated between the artifacts mask and the cross-attention map.
Intuitively, the 2D correspondence map M t,l measures the similarity between all reference tokens
and the artifacts pixels. To obtain the optimal M→, some post-processing needs to be applied on
M t,l. Refer to Sec. A.4 for more details.

A grid search over all possible t, l values is performed on our proposed benchmark (see Sec. 4.1) and
evaluated using mIoU. The results are shown in Fig. 5, demonstrating that the optimum combination
is t = 24 and l = 9. However, during test time, we choose t = 0, l = 9 to accelerate the inference.
Detailed comparisons can be found in Sec. 4.4.

3.4 TRAINING

For training, we implement two modes sharing weights of the same model, where the only difference
lies in the inputs. In both modes, we train the U-Net, and the MLP connecting DINOv2 and U-Net.

Alignment Mode
To maximize the spatial correlations contained in the cross-attention maps, we design a fully self-
supervised training scheme. The idea behind the construction of training pairs is: Use a complete
reference object to guide object completion, forcing the model to learn to identify the corresponding
local region from the reference.

We use Pixabay (Song et al., 2023) with panoptic segmentation labels as the training dataset. Fol-
lowing the aforementioned idea, given a Pixabay image Io and an object mask Mo, we start by
applying a random mask generator G to sample a free-form artifacts mask Ma = G(Mo) within
Mo. We then design color perturbation S and affine transformations T on Io ↑Mo to simulate the
lighting and view changes in the real world: Ir = S(T (Io ↑Mo)). In this mode, the artifacts image
Ia = Io ⇐ (1↗Mo) and the perturbed reference Ir are used as the inputs, and Io is the target.

Refinement Mode
In this mode, it is assumed that the local region corresponding to the artifacts is already given from
the original reference, which is used as Ir to guide the inpainting of the incomplete object.

Our training data consists of Pixabay and MVObj, a manually annotated dataset where an object
appears in multiple images with different contexts and views. MVObj is added since our pertur-
bations S, T are not sufficient to simulate non-rigid or 3D pose changes. 1) When dealing with a
Pixabay image, we obtain the partial reference using the artifacts mask: Ir = S(T (Io ↑ Ma)); 2)
when processing a pair of MVObj images (Io1, Io2,Mo1,Mo2), Io1 ↑ erode(Mo1) is used as the
reference, and Io2 ↑ 1↗ (erode(Mo2)) is the input artifacts image Ia, where the mask is eroded.

We then adopt the zoom-in inpainting strategy from Zhang et al. (2023b), cropping around Ia and
perform inpainting on the zoom-in patch.

3.5 INFERENCE

Inference is performed in two stages, corresponding to the above two modes. In the alignment stage,
given Ia,Ma, Ir, our fine-tuned model R follows Alg. 1 and produces the correspondence map
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Table 1: Quantitative Comparison with the baseline models on GenArtifactBench. PbE (Paint-
by-Example) and OS (ObjectStitch) are finetuned on our training set; the local regions (instead of
the complete reference) are provided to PbE, OS and AnyDoor. Our method outperforms the other
baselines in fidelity. Since CLIP-T only captures high-level semantics, it cannot accurately measure
the detail preservation. We show additional comparisons in Tab. 2 and Fig. 6.

Categories Methods CLIP-T ⇒ CLIP-I ⇒ DINO-I ⇒

Reference-guided inpainting
Paint-by-Example→ 23.5938 80.7500 58.7625
ObjectStitch→ 24.4844 83.9375 72.6152
AnyDoor 25.0625 83.4375 71.3398

Text-guided inpainting PAL 25.8906 81.5000 53.8117

Appearance transfer Cross-Image Attention 23.2500 80.2500 56.7892
MimicBrush 25.0156 85.0625 67.6194
Ours 25.4063 86.6250 75.3135

M→. Note that the grid search is skipped and R only proceeds one timestep, directly producing the
optimal correspondence map M→ at timestep 0 and layer 9. The local region that corresponds to the
artifacts can be extracted from the reference as Ir ↑M→.

In the refinement stage, Ir ↑M→ is provided as the reference through DINOv2, guiding the refine-
ment of Ia via inpainting the artifacts region.

4 EXPERIMENT

4.1 EVALUATION BENCHMARK

Dataset. To provide insight on the appearance of generative artifacts and an effective evaluation of
our artifacts refinement approach, we present GenArtifactBench, the first benchmark for reference-
guided artifacts refinement (refer to the Appendix for examples), featuring:

• We generate images using four popular models: DreamBooth (Ruiz et al., 2023a), Zero123++ (Shi
et al., 2023b), AnyDoor (Chen et al., 2023) and IDM-VTON (Choi et al., 2024), covering real-
world applications of T2I customization, view synthesis, compositing and virtual try-on. Diverse
artifacts are shown in these images.

• We collect 146 generated images with notable artifacts, paired with 146 reference images of more
than 40 objects (from DreamBooth and Pixabay) and 27 garments (from Choi et al. (2021)).

• Human annotation of the artifacts, and the corresponding regions from the reference images.

Metrics. To measure the semantics and identity preservation of refined object, we utilize CLIP-
Image Score (Radford et al., 2021) and DINO Score (Oquab et al., 2023) to compute the similarity
between the refined region of the generated image and its corresponding region from the reference.
When calculating CLIP-Text Score, BLIP2 (Li et al., 2023) is used to generate captions. Since a
measurement of the overall quality is absent, we further conduct a user study.

Parameters. t = 0 and l = 9 are used in all the comparisons below.

4.2 QUANTITATIVE COMPARISONS

To demonstrate the effectiveness of our model, we compare our model with 6 baseline models (PbE
or Paint-by-Example (Yang et al., 2023), OS or ObjectStitch (Song et al., 2023), AnyDoor (Chen
et al., 2023), PAL (Zhang et al., 2023b), Cross-Image Attention (Alaluf et al., 2024) and Mim-
icBrush (Chen et al., 2024), which is a concurrent work) on GenArtifactBench using the aforemen-
tioned metrics. For fair comparison, PbE and OS are fine-tuned on our training dataset.

Quantitative comparisons are shown in Tab. 1, where the baselines are categorized into three classes.
Note that we provide the accurate reference regions for PbE, OS and AnyDoor, greatly reducing the
difficulty for these models. In terms of semantics preservation measured by CLIP-T, PAL shows a
slight advantage over our model; however, as illustrated in Fig.6, it fails to gain fine-grained control
over the details in local editing. This is because PAL is built on SDXL (Podell et al., 2023), which
is only performing inpainting following a high-level text description. CLIP-I and DINO score are

8



Published as a conference paper at ICLR 2025

Figure 6: Qualitative comparisons. Zoom in to view details. Note that the accurate reference
regions corresponding to the artifacts (not the complete reference) are provided to PbE, OS and
AnyDoor. In the second row of the references, we overlay the correspondence maps on them. Com-
pared with the baselines, our model not only preserves identity (most similar to the second row), but
also generate smooth and natural results where artifacts are significantly reduced.

computed only over the masked region. Our model outperforms all baseline models in details and
appearance preservation. Owning to our correspondence matching strategy, irrelevant feature is
removed and consequently the identity is significantly improved.

To take human perception into account as well as adding quality metrics, we conduct a user study on
Amazon Mechanical Turk. We design two questions to assess identity preservation and generation
realism, respectively. In each question, side-by-side comparisons are presented to the user: our
result alongside one selected from a baseline. It is important to note that the reference images remain
hidden from the user when assessing quality. Each question has 240 comparisons, and 720 votes are
collected from more than 150 workers. The user preference is reported in Tab. 2. The preference
rate demonstrates the superiority of our model over all baselines in both fidelity and realism.
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Table 2: User study. Results are user preference win rate (%). Two questions are designed to
measure identity preserving and realism; in each question the user is presented side-by-side results
of our model and a random baseline. For fairness, PbE and OS are fine-tuned on our training dataset.

Identity → Realism →
Ours 70.83 Paint-by-Example→ 29.17 Ours 71.67 Paint-by-Example→ 28.33
Ours 55.83 ObjectStitch→ 44.17 Ours 56.67 ObjectStitch→ 43.33
Ours 57.50 AnyDoor 42.50 Ours 60.00 AnyDoor 40.00
Ours 74.17 Cross-Image Attention 25.83 Ours 83.33 Cross-Image Attention 16.67
Ours 61.67 PAL 38.33 Ours 71.67 PAL 28.33
Ours 60.00 MimicBrush 40.00 Ours 59.17 MimicBrush 40.83

4.3 QUALITATIVE RESULTS

Qualitative comparisons with the baseline models are shown in Fig. 6. The correspondence maps
obtained by our model are overlaid on the reference image, highlighting the local regions that match
the artifacts. When testing on PbE, OS and AnyDoor, these local regions (instead of the complete
reference objects) are directly provided as input. In particular, PbE, OS and PAL struggle in preserv-
ing the finer details from the reference. This is especially the case for complex patterns since they
only have high-level semantic control over the generation. AnyDoor can capture identity but fails to
generate smooth transition areas. MimicBrush, a concurrent work, is designed for reference-guided
local editing which shows superiorities over the other baselines; however, our model outperforms
MimicBrush in both realism and fidelity.

4.4 ABLATION STUDY

Diffusion timestep and transformer layer. To evaluate the accuracy of the correspondence maps
Mt,l, we ablate on all timesteps and layers t → {0, 1, ..., 49}; l → {0, 1, ..., 15}, and compute the
mIoU over all images from GenArtifactBench, which is shown in Fig. 4. We also show a 2D mIoU
figure on all combinations of t and l in the Appendix (Fig. 7), visualizing ! → RT↑L. To balance
between efficiency and accuracy, we choose t = 0, l = 9.

Comparisons with keypoint matching. We compare our alignment algorithm to keypoint matching
performance by two correspondence matching methods: DIFT (Tang et al., 2023) and DHF (Luo
et al., 2023a). Visual results are in Fig. 2. While baselines struggle with repeating or irregular
patterns, our alignment algorithm is more robust, with only a single query to locate the target region.
Furthermore, the alignment and refinement stages are integrated into a unified model.

Ablation on model design. To demonstrate the effectiveness of our architecture design, we compare
our full model with two settings (Tab. 3). 1) the model is only trained in the alignment mode, where
a complete object is used as the reference. When the irrelevant patterns have been removed from the
reference, identity preservation is significantly improved; 2) DINOv2 encoder is replaced by CLIP.
The comparison proves that CLIP fails to encode low-level details, thus losing identity.

5 LIMITATIONS, CONCLUSION AND FUTURE WORK

Table 3: Ablation Study on two model designs.
1) using a model which is only trained in the align-
ment mode to perform single stage artifacts refine-
ment; 2) DINOv2 is replaced by CLIP encoder.

CLIP-T → CLIP-I → DINO →
Single-stage 24.4375 84.5000 71.7609
CLIP-encoder 24.3750 84.3750 70.7714
Full 25.4063 86.6250 75.3135

We have shown a novel approach to artifact re-
finement via region alignment and reference-
guided generation. Our approach makes use
of a high-quality reference image to provide a
predictable and controllable refinement output,
that also preserves identity and transfers the de-
tails from the reference image to the input im-
age containing artifacts. Our method has been
compared to several baseline methods and has
shown consistently superior performance. As limitations, first, our method does not always work
well when there is a large disparity between the objects in the original input image and in the ref-
erence. Second, the accuracy of our alignment method is limited by the number of vision tokens,
where only 16⇐16 patches are used to represent an image. As future work, we would like to extend
our method to automate artifact detection and to incorporate the use of multiple reference images
and text-descriptions so as to obtain blended outputs.
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