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Abstract

Deep Multi-view Clustering (DMVC) stands out
as a widely adopted technique aiming at enhanced
clustering performance by leveraging diverse data
sources. However, the critical issue of vulnera-
bility to adversarial attacks is unexplored due to
the lack of well-defined attack objectives. To fill
this crucial gap, this paper is the first work to
investigate the possibility of adversarial attacks
on DMVC models. Specifically, we introduce
an adversarial attack with Generative Adversar-
ial Networks (GANs) with the aim to maximally
change the complementarity and consistency of
multiple views, thus leading to wrong cluster-
ing. Building upon this adversarial context, in
the realm of defense, we propose a novel Adver-
sarially Robust Deep Multi-View Clustering by
leveraging adversarial training. Based on the anal-
ysis from an information-theoretic perspective, we
design an Attack Mitigator that provides a founda-
tion to guarantee the adversarial robustness of our
DMVC models. Experiments conducted on multi-
view datasets confirmed that our attack framework
effectively reduces the clustering performance of
the target model. Furthermore, our proposed ad-
versarially robust method is also demonstrated
to be an effective defense against such attacks.
This work is a pioneer in exploring adversar-
ial threats and advancing both theoretical under-
standing and practical strategies for robust multi-
view clustering. Code is available at https:
//github.com/libertyhhn/AR-DMVC.
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1. Introduction
The increasing accumulation of real-world data from various
sources, coupled with diverse feature extractors, highlights
the critical role of multi-view learning (Fang et al., 2023).
Integrating varied features, ranging from heterogeneous data
to visual descriptors, for the same object has become pivotal.
In unsupervised scenarios, multi-view clustering (MVC)
has become an important tool aiming at the exploration of
complementary and consistent information between differ-
ent views to partition data samples (Huang et al., 2023c).
Traditional MVC techniques, including matrix factoriza-
tion (Huang et al., 2023a;b), spectral methods (Lu et al.,
2022), and subspace clustering (Cao et al., 2015), focus
on minimizing a predefined clustering objective function
using specific distance metrics. However, these methods
often underperform with high-dimensional data and demand
extensive computational resources (Yan et al., 2021).

To overcome these limitations, early deep clustering models
utilized deep neural networks for dimensionality reduction,
facilitating more efficient clustering (Wang et al., 2015;
Huang et al., 2019). This evolution has led to significant ad-
vancements in deep multi-view clustering (DMVC), where
state-of-the-art models now consistently outperform tradi-
tional methods on various benchmarks (Hassani & Khasah-
madi, 2020; Lin et al., 2023; Cui et al., 2023). Despite the
demonstrated effectiveness of DMVC models across diverse
domains, its vulnerability to adversarial attacks has not been
well understood and explored yet. This issue is particularly
prominent in safety-critical applications, where real-world
data often faces threats from adversarial entities determined
to deceive or disrupt machine learning models (Madry et al.,
2018; Croce & Hein, 2020). Thus, our work is motivated
by the first scientific question Q1: How to effectively attack

DMVC models?

When facing attacks, it is equally important to study the
adversarial robustness of the models. However, there is
little research on the adversarial robustness of DMVC mod-
els. Although a series of adversarial DMVC algorithms (Li
et al., 2019; Zhou & Shen, 2020; Wang et al., 2023) has
been studied, they are not related to adversarial attack and
defense of DMVC. Its primary focus has been on addressing
clustering challenges with clean multi-view data and does
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not thoroughly investigate the model’s adversarial robust-
ness. Therefore, our study is also motivated by the second
scientific question: Q2: How to develop a robust DMVC

model to defend the attack?

We re-emphasize that, despite extensive research exploring
multi-view clustering methods from various perspectives,
there has been a notable absence of prior investigations into
the systematic handling of adversarial attacks and defense
mechanisms designed specifically for DMVC models. This
research gap has left existing DMVC models exposed to
potential attacks, rendering them susceptible to clustering
failures and undermining their overall reliability. Our objec-
tive is to address this gap by introducing adversarial attacks
within the multi-view data space based on a well-defined
adversarial threat strategy, while also developing a robust
DMVC model under adversarial training paradigm for de-
fensive purposes. In essence, our study aims to underscore
the critical need for the development of adversarially robust
DMVC models, emphasizing their practical utility across
various applications. In summary, our contributions to ad-
dressing the above questions include:

1. We first formulate the adversary’s goal for DMVC
models and subsequently develop the adversarial attack
framework based on GANs for DMVC models. Our
method addresses the potential of multi-view model
attacks for the first time, leveraging the distinct charac-
teristics of the DMVC model to design targeted com-
plementary and consistent attack strategies.

2. To defend against adversarial attack, we analyze the
attack scenario and integrate DMVC with adversarial
training to improve its robustness, which is a novel Ad-
versarially Robust Deep Multi-View Clustering method
(AR-DMVC).

3. Formalizing the problem of adversarially robust multi-
view learning through an Information-Theoretic Per-
spective, we propose a new objective (AR-DMVC-
AM) with an explicit regularizer aiming to mitigate
attacks by minimizing the mutual information between
the adversarial examples and clustering assignments.

4. We perform a thorough empirical evaluation and com-
parisons with the state-of-the-art deep multi-view clus-
tering models on diverse benchmark datasets, including
RegDB, NoisyFashion, NoisyMNIST, and PatchedM-
NIST. Our experimental analysis demonstrates the ef-
fectiveness of our adversarial attack and defense meth-
ods across various models and datasets.

Notations. {xv
1, · · · ,xv

n}Vv=1 denotes multi-view data of V
views sampled from the input data distribution X . � denotes
the perturbations. z and a denote the learned representa-
tion and clustering assignment, respectively. x̃, z̃ and ã

denote the adversarial examples, representation, and cluster-
ing assignment, respectively. k · k denotes the `2-norm of a
vector.

2. Related Works
2.1. Deep Multi-view Clustering

Deep learning architectures have become widely used in the
field of MVC, leading to the emergence of the Deep MVC
subfield. The classic framework for DMVC is implemented
using architectures based on adversarial networks (Xu et al.,
2019; Li et al., 2019; Zhou & Shen, 2020), and autoen-
coders (Xu et al., 2021; Lin et al., 2023; Huang et al., 2023c).
More recently, SOTA DMVC models have shifted from
using prior approaches to employing self-supervised and
contrastive learning methods for clustering (Trosten et al.,
2021; Pan & Kang, 2021; Lin et al., 2022; Liu et al., 2023;
Xu et al., 2023a). Techniques created in this specific area
have demonstrated cutting-edge clustering accuracy, far sur-
passing conventional methods that do not utilize deep learn-
ing (Trosten et al., 2023). While there are existing methods
focusing on robust multi-view clustering algorithms (Yang
et al., 2020; Zeng et al., 2023), their primary emphasis is on
robustness to incomplete multi-view data, and the model’s
inherent fragility to the well-designed perturbations is not
considered. Meanwhile, although there have been related
works dedicated to analyzing the trustworthiness of multi-
view models (Han et al., 2021; Tang & Liu, 2022; Zhang
et al., 2023), they only considered the internal missing or
damaged data and did not take into account the model being
attacked by adversarial samples.

2.2. Adversarial Clustering

The emergence of adversarial attacks on clustering algo-
rithms has sparked significant interest, particularly consid-
ering their widespread utilization in computer security sys-
tems. The inaugural exploration of clustering algorithms
in the context of adversarial attacks was undertaken in
(Skillicorn, 2009; Dutrisac & Skillicorn, 2008; Crussell &
Kegelmeyer, 2015). In these seminal works, the authors
delved into the impact of adversarial samples on miscluster-
ing, highlighting the phenomenon of these samples gravi-
tating towards the boundary of clustering centers, thereby
generating new fringe clusters. Building on this founda-
tion, (Biggio et al., 2013; 2014) approached the adversarial
clustering problem from a theoretical standpoint, presenting
two distinct attack strategies: poisoning and obfuscation.
The former aims to compromise system availability, while
the latter seeks to undermine system integrity. Addition-
ally, (Chhabra et al., 2020) extended the understanding of
adversarial samples to encompass metric-based clustering
methods, such as K-Means clustering and Ward’s cluster-
ing algorithms, demonstrating their existence and potential

2



Adversarially Robust Deep Multi-View Clustering: A Novel Attack and Defense Framework

impact.

Different from the existing clustering algorithm, deep clus-
tering methodologies predominantly focus on minimizing
reconstruction loss, aiming to enhance the discriminative
nature of the target embedding space, which plays a pivotal
role in determining clustering quality. Despite these efforts,
embedded features are remarkably susceptible to small per-
turbations, leading to divergent clustering outcomes. (Yang
et al., 2020) introduced an adversarial attack strategy for
manipulating clustering results, complemented by an ad-
versarial training algorithm. (Park et al., 2021) leveraged
pseudo-labels generated by existing clustering algorithms to
retrain deep clustering models, thus the robustness and clus-
tering performance can be further enhanced. (Chhabra et al.,
2022) devised a black-box attack utilizing GANs to gener-
ate adversarial samples based on the query output of deep
clustering models. More recently, a robust fair clustering
framework has been crafted to safeguard against poisoned
samples that could skew the fairness of the clustering pro-
cess (Chhabra et al., 2023).

However, DMVC methods have not yet been subjected to
such adversarial attacks. We believe this is due to the in-
creased difficulty of attacks for multiple views simultane-
ously compared to attacks for single-view data alone (e.g.
(Chhabra et al., 2022)). Unlike (Chhabra et al., 2022)’s
single-view focus, our work extends to multi-view cluster-
ing, not just by summation over views but by leveraging
inter-view complementarity and consistency. Our tailored
loss functions specifically address the multi-view challenge,
enabling more effective adversarial perturbations. Mean-
while, when an attack occurs, how to develop a novel ad-
versarial defense algorithm against malicious attacks is an
important issue—a dimension entirely absent in (Chhabra
et al., 2022). Due to the unsupervised nature of DMVC,
directly applying adversarial training techniques is challeng-
ing (Dong et al., 2020). Our work operates within the same
domain but distinguishes itself from existing works in sev-
eral ways: (1) we tackle the formidable challenge of adver-
sarial attacks in DMVC models. The intrinsic properties of
multi-view data, such as complementarity and consistency
across different views, usually confer heightened robust-
ness to clustering outcomes; (2) we introduce the concept
of DMVC methods with adversarial training, providing a
novel approach to enhance the security and robustness of
multi-view models.

3. Attack: Adversaries to DMVC Models
DMVC, a methodology that harnesses multiple data perspec-
tives to enhance sample grouping, has garnered increasing
attention in the contemporary data-driven landscape. In this
context, ensuring the robustness of DMVC models against
adversarial attacks is of paramount importance, as it is es-

sential to preserve trust in clustering outcomes and amplify
the practical utility of MVC models across a diverse range
of real-world scenarios. To embark on this investigation,
we first establish a clear understanding of the adversary’s
objectives within the multi-view setting:

Definition 3.1. (Adversary’s Goal) The attack aims to
introduce minimal perturbations to images used as input
for the MVC model while staying within a defined noise
threshold. This intentional perturbation is designed to cause
misclustering of these samples by the model, leading to a
notable decrease in performance, as quantified by various
evaluation metrics.

In the realm of DMVC models, particularly the widely
adopted contrastive-based ones (Xu et al., 2022; Trosten
et al., 2023), their fundamental objective is to acquire con-
cise multi-view representations that enhance clustering ef-
fectiveness. Consequently, our role as attackers involves
undermining the model’s clustering performance by strate-
gically targeting the learned multi-view representations.
Specifically, our aim is to ensure that the representation
C (xv + �) obtained after the attack is maximally dissimilar
to the representation zv obtained before the attack. The
optimization for the multi-view attack is thus outlined as
follows:

VX

v=1

NX

i=1

max
�

kzvi � C (xv
i + �)k2 s.t. k�k2  ✏, (1)

where the C represents the deep multi-view clustering model,
i denotes the index of individual data points within the
dataset, and ✏ is imposed to prevent the adversarial sample
from having excessive noise and to maintain its realism
for human observers. Considering the characteristics of
multi-view learning, attack models should aim to maximize
disruption to multi-view learning models by targeting both
complementarity and consistency. Based on this premise,
we propose the following definition:

Definition 3.2. (Attacking Multi-view Complementarity
and Consistency) The complementarity in multi-view learn-
ing refers to the uniqueness of view-specific representations
zv for each view xv, while consistency pertains to shared
properties in the multi-view consensus representation. A
successful attack method disrupts both complementarity and
consistency when it induces noticeable differences between
the pre-attack and post-attack states of learned view-specific
representations and the consensus representation through
the target model.

Based on Definition 3.2, our attack model incorporates
two specific objective functions La-com and La-con to disrupt
multi-view complementarity and consistency, respectively.
These functions strategically introduce perturbations into
the learned representations, compromising both aspects of
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the multi-view clustering model. Specifically, we introduced
an attack objective function La-com that targets the unique
complementary information within each view. Motivated
by GANs, this objective function is formulated as follows:

La-com :=
VX

v=1

Exv kCv (xv)� Cv (xv + G (xv))k2 , (2)

where Cv (xv + G (xv)) represents the learned view-
specific representation post the attack and G denotes the
generator model to generate the adversarial perturbation �
for a given input image xv . Secondly, considering the inher-
ent consistency properties of multi-view data, we devised an
additional attack objective function La-con aimed at under-
mining the consistency information across multiple views,
as follows:

La-con :=E{xv}v
kC({xv}v)�C ({xv+G (xv)}v)k2 . (3)

In addition, the restriction on the adversarial noise norm can
be succinctly reformulated as follows:

Lconstraint :=
VX

v=1

Exv

h
min

n
✏� kG (xv)k2 , 0

oi
. (4)

Moreover, we utilize the vanilla minimax GAN loss (Good-
fellow et al., 2014) as follows:

L :=
VX

v=1

Exv[log(D(xv))+log(1�D (xv+G (xv)))]. (5)

Finally, combining Eq. 2 to 5, we formulate a saddle-point
problem to train the Generator G and Discriminator D:

max
D

min
G

L� µ1La-com � µ2La-con � µ3Lconstraint, (6)

where µ1, µ2, µ3 are hyper-parameters to control trade-off.
In Eq. 6, the Generator G creates adversarial perturbations
on the input examples to mimic real data and disrupt DMVC,
while the Discriminator D attempts to distinguish real from
generated adversarial examples. This leads to a competition
where G aims to generate more realistic adversarial exam-
ples, and D tries to improve its ability to detect adversaries.
This ongoing contest drives the evolution of both G and D,
with the ultimate goal of making G’s adversarial examples
indistinguishable from real data to D. Subsequently, we
use these adversarial examples as inputs for the pre-trained
DMVC model to obtain representations post-attack. In sum-
mary, Algorithm 1 describes how to attack DMVC models.
Remark 3.3. If we solely attack the complementarity of
multiple views (i.e., optimizing only Eq. 2), we may fail
to disrupt the final learned consensus representation, poten-
tially yielding identical results before and after the attack.
Similarly, if we exclusively target the consistency of multi-
ple views (i.e., optimizing only Eq. 3), we cannot ensure that

Algorithm 1 Algorithm for Attacking DMVC
Input: The target model C, unlabeled training set A, total
training epochs E, batch size B, adversarial budget ✏ > 0,
hyperparameters µ1, µ2 and µ3.
Output: The target model’s clustering results, the trained
GAN attack models.
Initialize parameters of GANs.
for e = 0 to E � 1 do

for batch m = 1, . . . , [|U |/B] do
Sample a minibatch Bm from U .
Query the pre-attack and post-attack representations
through Cv (xv), C ({xv}v), Cv (xv + G (xv)) and
C ({xv + G (xv)}v).
Update G and D by optimizing Eq. 6.

end for
end for

each view has been adequately attacked, potentially affect-
ing only a subset of views. Therefore, our model is rational,
as it ensures that each view is attacked while preserving a
consensus representation of changes.

4. Defense: Adversarially Robust DMVC
4.1. Basic DMVC Model

In recent years, there has been a burgeoning interest in multi-
view learning employing contrastive learning (CL) (Trosten
et al., 2023; Xu et al., 2023a). This approach is valuable as it
can extract significant information from multi-view data and
generate a succinct representation conducive to clustering.
In this section, we present a straightforward DMVC model
designed with CL. The conventional CL loss (Chen et al.,
2020) formulation for a positive pair (zui , zvi ) is expressed
as follows:

LCL :=
VX

v=1

VX

u=1

� log
exp

⇣
s(uv)ii

⌘

P
s02Neg(zu

i ,z
v
i )

exp (s0)
, (7)

where s(uv)ii = 1
⌧

(zu
i )

>zv
i

kzu
i kkzv

i k
represents the cosine similar-

ity between the embeddings zui and zvi , and ⌧ is a hyper-
parameter set to 0.1 in all experiments. In addition, the
set Neg (zui , z

v
i ) is the set of similarities of negative pairs

for the positive pair, which consists of s(uv)ij , s(uu)ij , and
s(vv)ij , for all j 6= i. Then, the consensus representation
of the multi-view embeddings {zvi }Vv=1 is modeled as their
weighted sum,i.e., z⇤i =

PV
v=1 !

vzvi , where {!v}Vv=1 are
trainable parameters.

In recent developments, the Deep Divergence-Based Cluster-
ing (DDC) module has been incorporated into various SOTA
Deep Clustering models (Trosten et al., 2023). Thus, the
fusion of views is achieved through a meticulously weighted

4



Adversarially Robust Deep Multi-View Clustering: A Novel Attack and Defense Framework

summation, followed by the application of the DDC cluster-
ing module to cluster the amalgamated representations. We
provide a detailed composition of DDC in the Appendix A.1.
Subsequently, we formulate a basic model termed Con-
trastive Learning-based Multi-view Clustering (CL-MVC),
outlined as follows:

LCL-MVC (xu
i ,x

v
i ; ✓) := LCL + LDDC, (8)

where ✓ denotes the parameter of the network. Although
many CL-based MVC models have been designed to im-
prove clustering accuracy, as mentioned in our related works
analysis, our focus in this article is to explore attacks and
defenses against multi-view models. Hence, we opt not to
incorporate intricate regularization model frameworks as
the fundamental structure.

4.2. Adversarial Training in Multi-view Setting

To ensure the effectiveness of adversarial training, we took
into account the consistency of attack structures across
different views. Unlike traditional single-view or super-
vised adversarial training methods, attacks from distinct
views may deceive the DMVC model into different targets.
We note that attacks lacking alignment across views may
weaken their effectiveness. For instance, attacks in the first
view might try to mislead the model into categorizing them
as the first category, while attacks in the second view may
seek to have the model classify them as the second cate-
gory. In our paper, we focus on the worst-case scenario,
i.e., disparate adversarial multi-view data may result in one
consistent embedding. To achieve this goal, we introduce
the contrastive loss for the adversarial multi-view data:

LCL-MVC (x̃u
i , x̃

v
i ; ✓)

where (x̃u
i , x̃

v
i ) = argmax

x̃u
i 2B✏[x

u
i ]

x̃v
i 2B✏[x

v
i ]

LCL (x̃
u
i , x̃

v
i ; ✓) , (9)

where x̃u
i and x̃v

i are adversarial data for the uth and vth
views, respectively, B✏[x] = {x0 2 X | d1 (x,x0)  ✏} are
the closed ball of radius ✏ > 0 centered at x 2 X , and
(X , d1) denotes the input space X with the infinity distance
metric d1 (x,x0) = kx� x0k1. In our approach, we adopt
the widely used projected gradient descent (PGD) (Zhang
et al., 2019) within the ✏-balls centered at xu

i and xv
i to

generate the adversarial data.
Remark 4.1. Note that maintaining a consistent attack em-
bedding in adversarial training is crucial for effective de-
fense against attacks. Our empirical findings highlight that
a weaker consistency attacks regularization in adversarial
training typically leads to a more vulnerable model. These
results further indicate that the DMVC model is challenging
to defend the adversarial perturbation.

Combing with Eq. 8, the objective function for adversarial

training is given by

LAR-DMVC = LCL-MVC (xu
i ,x

v
i ; ✓)

+ �LCL-MVC (x̃u
i , x̃

v
i ; ✓)

where (x̃u
i , x̃

v
i ) = argmax

x̃u
i 2B✏[x

u
i ]

x̃v
i 2B✏[x

v
i ]

LCL (x̃
u
i , x̃

v
i ; ✓) ,

(10)

where � is a hyperparameter. By minimizing the above
loss function, an adversarially robust DMVC model can
be obtained since it simultaneously learns the succinct rep-
resentation for clustering, as well as the consistent attack
information from adversarial data.

The objective function LAR-DMVC shares some similarities
with CL techniques in adversarial pre-trained models (Jiang
et al., 2020; Luo et al., 2023; Xu et al., 2023b). However,
there are fundamental distinctions between our approach
and theirs. Firstly, while adversarial contrastive learning
focuses on pre-training models, our method is an end-to-
end clustering framework, that introduces different learning
objectives. Secondly, our method tackles the challenges of
multi-view clustering problems where input data are entirely
disparate, making it more complex compared to single-view
input.

4.3. Attack Mitigator for Adversarial Training

Minimizing the objective function LAR-DMVC yields the fi-
nal clustering assignments predicted by the clean data and
adversarial data as a and ã, respectively. However, a critical
question persists: does the clustering assignment generated

by adversarial data retain the adversarial information in x̃?

In this part, we answer this question from the information-
theoretic perspective (Federici et al., 2020), and show that
the adversarial attack can be eliminated through a simple
and effective regularizer. We first introduce the conditional
mutual information to measure the information between the
adversarial input and the corresponding predictive clustering
assignment, i.e.,

I (x̃; ã | x) . (11)

This conditional mutual information serves to quantify the
information shared between adversarial data and clustering
assignment when observing the clean data. Essentially, it
measures the preservation of adversarial information in the
clustering assignment. Therefore, reducing this conditional
mutual information ensures the mitigation of the adversarial
impact of perturbations in x̃. However, direct minimization
of the conditional mutual information is rather complicated.
In the subsequent theorem, we illustrate that it can be upper-
bounded in a more simplified formulation.
Theorem 4.2. Given clean data x and adversarial data x̃
and their corresponding cluster assignments a and ã, and

let the KL divergence between p (ã | x̃) and p (a | x):

LAM := DKL (p (ã | x̃) kp (a | x)) . (12)
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Then, the conditional mutual information in Eq. 11 is upper-

bounded:

I (x̃; ã | x)  LAM. (13)

Therefore, as shown in Theorem 4.2, we can minimize the
mutual information in Eq. 11 by minimizing its upper bound.
To conserve space, please refer to the Appendix A.2 for
detailed proofs.

4.4. Overall Adversarial Training Framework

By incorporating adversarial contrastive-based multi-view
clustering loss (Eq. 10) with Attack Mitigator (Eq. 12), the
objective function of the proposed method is formulated as
follows:

LAR-DMVC-AM = LCL-MVC (xu
i ,x

v
i ; ✓)

+ �LCL-MVC (x̃u
i , x̃

v
i ; ✓)

+ �DKL (p (ã | x̃) kp (a | x))
where (x̃u

i , x̃
v
i ) = argmax

x̃u
i 2B✏[x

u
i ]

x̃v
i 2B✏[x

v
i ]

LCL (x̃
u
i , x̃

v
i ; ✓) .

(14)

Here � parameterizes the AM regularization (see Figure 1
for framework illustration). In addition, the final cluster
label Yi = argmaxai. The learning algorithm of AR-
DMVC-AM is presented in Algorithm 2.

1f

2f

1x

CL-MVC AM CL-MVC

KL ( ( | ) || ( | ))D p pa x a x

: Original Multi-view Data : Adversarial  Multi-view Data : Encoder

Supported by
Theorem 4.2

2x

2x

: Visible Images : Infrared Images
1x 2x

1x

: PGD

Figure 1. The framework diagram of AR-DMVC-AM utilizing a
two-view dataset (RegDB) as an example.

5. Experimental Results
For evaluation, we utilize the following four benchmark
multi-view datasets: RegDB (Nguyen et al., 2017), Noisy-
Fashion, NoisyMNIST, and PatchedMNIST (Trosten et al.,
2023). We provide detailed information about the dataset
in the Appendix A.3. For all datasets, we randomly split
50% of the data for training and the remaining 50% for
testing. We employ the training set to train our adversar-
ial defense models and subsequently evaluate their perfor-
mance on the testing set, comparing them with other open-
source models. For the comparison methods, we take into

Algorithm 2 Algorithm of Training AR-DMVC-AM
Input: Unlabeled training set U , total training epochs
E, learning rate, batch size B, adversarial budget ✏ > 0,
hyperparameters � and �.
Output: The pre-trained model.
Initialize parameters of the model.
for e = 0 to E � 1 do

for batch m = 1, . . . , [|U |/B] do
Sample a minibatch Bm from U .
Compute x̃ via Eq. 9.
Sample ã ⇠ p (ã | x̃) and a ⇠ p (a | x) .
Update ✓ by minimizing the problem in Eq. 14.

end for
end for

consideration several SOTA open source deep multi-view
clustering models, including EAMC (Zhou & Shen, 2020),
SiMVC/CoMVC (Trosten et al., 2021), Multi-VAE (Xu
et al., 2021), AECoDDC/InfoDDC (Trosten et al., 2023)
and SEM (Xu et al., 2023a). We offer detailed network
structures for CL-MVC and GAN in Appendix A.4.

5.1. Attacking Results

Table 1 displays the pre-attack (original images) and post-
attack (adversarial images) performance for each of the pre-
viously described models and datasets on three clustering
metrics (ACC, NMI, ARI). In the table, we emphasized the
results of each attacked method in italics and highlighted the
best-performing method on the same dataset after the attack
in bold. For all the results, note that the GAN network pro-
duces consistent results without any variation since it creates
the same constant noise for a given input. The table reveals
that the model’s results have experienced varying degrees
of decrease after the attack, indicating that our suggested at-
tack architecture has effectively targeted the deep multi-view
clustering approaches. Notably, our method outperforms all
other models in terms of post-attack data, underscoring the
effectiveness of our robust model in mitigating attacks.

View 1

View 2

Original Data
Pre-attack

Adversarial 
Data

Post-attack

RegDB Dataset NoisyMNIST Dataset

View 1

View 2

Figure 2. Adversarial samples generated by our attack on RegDB
and NoisyMNIST dataset (correspond to EAMC).
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Table 1. Pre-attack (PRE) and post-attack (POST) performance for deep multi-view clustering models on four datasets.

MODEL
REGDB NOISYFASHION NOISYMNIST PATCHEDMNIST

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

EAMC PRE 0.64 0.86 0.62 0.57 0.70 0.52 0.74 0.88 0.75 0.62 0.17 0.20
(CVPR’20) POST 0.33 0.57 0.23 0.30 0.20 0.11 0.25 0.11 0.06 0.53 0.13 0.15

SIMVC PRE 0.56 0.86 0.54 0.54 0.53 0.37 0.91 0.94 0.90 0.79 0.44 0.49
(CVPR’21) POST 0.30 0.61 0.24 0.30 0.25 0.13 0.29 0.20 0.12 0.49 0.13 0.12

COMVC PRE 0.45 0.73 0.38 0.69 0.71 0.59 0.99 0.99 0.99 0.81 0.48 0.52
(CVPR’21) POST 0.25 0.47 0.14 0.40 0.35 0.25 0.31 0.20 0.13 0.61 0.20 0.21

MULTI-VAE PRE 0.47 0.76 0.40 0.64 0.66 0.54 0.84 0.89 0.82 0.76 0.41 0.45
(ICCV’21) POST 0.43 0.71 0.33 0.47 0.43 0.30 0.46 0.39 0.28 0.51 0.19 0.16

AECODDC PRE 0.43 0.72 0.36 0.78 0.78 0.70 0.99 0.99 0.99 0.65 0.21 0.29
(CVPR’23) POST 0.23 0.46 0.13 0.39 0.39 0.23 0.24 0.11 0.06 0.46 0.11 0.10

INFODDC PRE 0.26 0.58 0.20 0.46 0.42 0.26 0.78 0.86 0.75 0.61 0.28 0.67
(CVPR’23) POST 0.22 0.50 0.11 0.25 0.19 0.10 0.33 0.22 0.14 0.53 0.13 0.15

SEM PRE 0.40 0.67 0.30 0.85 0.85 0.79 0.62 0.61 0.42 0.48 0.26 0.22
(NEURIPS’23) POST 0.33 0.63 0.21 0.31 0.30 0.14 0.21 0.11 0.07 0.45 0.16 0.14

AR-DMVC PRE 0.55 0.84 0.48 0.68 0.69 0.56 0.99 0.99 0.99 0.83 0.52 0.58
(OURS) POST 0.42 0.66 0.31 0.54 0.48 0.33 0.90 0.79 0.80 0.65 0.34 0.36

AR-DMVC-AM PRE 0.54 0.85 0.50 0.69 0.73 0.59 0.99 0.99 0.99 0.81 0.46 0.52
(OURS) POST 0.52 0.79 0.42 0.67 0.67 0.55 0.93 0.85 0.85 0.74 0.35 0.40

In Figure 2, we visualize the original clean images and ad-
versarial samples obtained by our attack methods on EAMC.
For the RegDB dataset, we observe that the adversarial
images retain similarity to the clean images while being
significantly different from the targeted class. In the case of
the NoisyMNIST dataset, the image from view 2, generated
by adding Gaussian noise to the original image, appears
slightly blurry after incorporating adversarial perturbations.
However, we posit that the human eye can still discern the
original category. In addition, we present a substantial quan-
tity of adversarial images produced by our attack model in
Appendix A.7.

We also demonstrate confusion matrices for the AECoDDC
and our method (AR-DMVC-AM) on dataset NoisyMNIST
in Figure 3. The horizontal axis denotes the category of clus-
tering results, the vertical axis indicates the correct category,
and the diagonal values represent the number of correctly
clustered categories. By comparing Figures 3(a) and 3(b),
it is evident that AECoDDC incorrectly clusters all num-
bers except for 1 after the attack. This discrepancy may be
attributed to the simplicity of the number 1, making it less
susceptible to attacks. From Figures 3(c) and 3(d), despite
a slight decrease after the attack, our method maintained
commendable performance, demonstrating its robustness
to adversarial perturbations. We illustrate the confusion
matrices for the other methods in the Appendix A.5 due to
limited space.

5.2. Evaluation of Robustness Transferability

As illustrated in Table 2, we can observe that AR-DMVC-
AM significantly enhances AR-DMVC’s robustness against
adversarial attacks and demonstrates improved generaliza-
tion to other datasets. This underscores the efficacy of
AM regularization in augmenting robustness transferability
against incremental data.

5.3. Hyperparameters Analysis

Concerning the adversarial attack hyperparameters in Eq. 6,
we adhere to the configuration outlined in (Chhabra et al.,
2022), and the values of µ1, µ2, and µ3 are set to 5, 5, and
1, respectively. Regarding ✏, the assigned values are 0.2 for
RegDB, 0.15 for NoisyFashion, 0.3 for NoisyMNIST, and
0.3 for PatchedMNIST. In this subsection, we first explore
the impact of varying the noise penalty parameter ✏ on the
extent to which the attack degrades the performance of the
DMVC models, as depicted in Table 3. It is evident that as
the ✏ threshold increases, the efficacy of the attack escalates
while the performance of the models diminishes. Mean-
while, our proposed adversarial defense method consistently
preserves better clustering results, further substantiating its
efficacy in ensuring adversarial robustness.

In Eq. 14, the trade-off coefficient � is introduced to regulate
varying levels of the strength of adversarial training, while �
is incorporated to govern the contribution of predictive con-
sistency in our framework. As depicted in Figure 4(a), we
vary both coefficients within the range from 0.001 to 1000
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(a) Pre-attack (AECoDDC) (b) Post-attack (AECoDDC) (c) Pre-attack (AR-DMVC-AM) (d) Post-attack (AR-DMVC-AM)

Figure 3. Confusion matrices illustrating the effect of the attack for the AECoDDC and AR-DMVC-AM models on the NoisyMNIST.

Table 2. Adversarial robustness transferability of AR-DMVC and
AR-DMVC-AM on NoisyFashion and NoisyMNIST under four
distinct conditions. D1 ! D2 denotes training and testing are exe-
cuted on the different datasets, i.e., D1 and D2. NoisyFashion(0-4)
means that we use the 0-4 classes in NoisyFashion for training or
testing, and so on.

D1 ! D2 MODEL ACC NMI

NOISYFASHION(0-4) AR-DMVC 0.40 0.18
! NOISYFASHION(5-9) AR-DMVC-AM 0.52 0.34

NOISYFASHION(5-9) AR-DMVC 0.35 0.10
! NOISYFASHION(0-4) AR-DMVC-AM 0.40 0.15

NOISYMNIST(0-4) AR-DMVC 0.40 0.17
! NOISYMNIST(5-9) AR-DMVC-AM 0.41 0.19

NOISYMNIST(5-9) AR-DMVC 0.40 0.15
! NOISYMNIST(0-4) AR-DMVC-AM 0.40 0.16

NOISYFASHION(0-4) AR-DMVC 0.36 0.14
! NOISYMNIST(0-4) AR-DMVC-AM 0.40 0.20

NOISYFASHION(5-9) AR-DMVC 0.35 0.10
!NOISYMNIST (5-9) AR-DMVC-AM 0.37 0.15

NOISYMNIST(0-4) AR-DMVC 0.42 0.24
! NOISYFASHION(5-9) AR-DMVC-AM 0.44 0.29

NOISYMNIST(5-9) AR-DMVC 0.32 0.10
! NOISYFASHION(0-4) AR-DMVC-AM 0.36 0.10

and report the clustering results tested under post-attack
conditions. We can conclude that a stronger intensity of
adversarial training, indicated by relatively large parame-
ters (optimal at � = 100), results in better defense against
attacks. The parameter � exhibits relative stability, and thus,
we consistently set it to 1 in all experiments. From Fig-
ure 4(b), it can be observed that AR-DMVC-AM reaches
a stable state at epoch 30. Consequently, we set the epoch
to 30 in our experiments under attack. Owing to space
constraints, we provide the hyperparameter results for the
remaining datasets in Appendix A.6.

Table 3. ACC versus perturbation parameters ✏ varies within the
range of 0.1 to 0.3.

MODEL NOISYMNIST PATCHEDMNIST
0.1 0.2 0.3 0.1 0.2 0.3

EAMC 0.72 0.44 0.23 0.45 0.51 0.49
SIMVC 0.91 0.41 0.29 0.72 0.72 0.49
COMVC 0.94 0.43 0.27 0.79 0.77 0.61
MULTI-VAE 0.85 0.55 0.47 0.56 0.53 0.51
AECODDC 0.93 0.39 0.24 0.50 0.50 0.44
INFODDC 0.77 0.31 0.33 0.80 0.69 0.65
SEM 0.44 0.24 0.20 0.52 0.54 0.58
AR-DMVC 0.99 0.99 0.54 0.82 0.62 0.49
AR-DMVC-AM 0.99 0.99 0.94 0.79 0.78 0.70

(a) NoisyFashion (b) NoisyFashion

Figure 4. (a) ACC versus parameters � and � of AR-DMVC-AM.
(b) The clustering results with respect to the epoch of AR-DMVC-
AM under attack.

6. Conslusion
In this paper, we present the first adversarial attack against
deep multi-view clustering models, which simultaneously
targets the complementarity and consistency of multiple
views through a GAN-based architecture. More importantly,
driven by the concern for adversarial fragility, we employ
adversarial training to bolster the adversarial robustness of
the DMVC model and propose Attack Mitigator regulariza-
tion to enhance the AR-DMVC. Empirically, comprehensive
experiments show that previous DMVC approaches fail to
detect and mitigate our adversarial attacks, whereas our pro-
posed methods are more robust against adversarial attacks.

Limitations Our work also has a few limitations: 1) Our
attack method requires indexing the representations learned
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from each view. While it can be applied to most current
DMVC models, it may not maximize its effectiveness for
methods that only learn unified representations; 2) Our AR-
DMVC-AM requires multiple backward propagations on all
training data to generate adversarial variants, followed by
training the model with these adversarial data. This process
is computationally expensive, particularly when dealing
with large-scale training sets. Developing a more efficient
and effective defense method is identified as part of our
future work.

Impact Statement
Our work addresses the critical need for robust defenses
against adversarial attacks in Deep Multi-View Clustering
(DMVC) models. By introducing an adversarially robust
framework, we aim to enhance model security and reliability,
providing a foundation for further research in this area.
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A. Appendix for Adversarially Robust Deep Multi-View Clustering: A Novel Attack and Defense
Framework

A.1. The detail of DDC

As introduced in (Trosten et al., 2021), DDC has three terms. The first term is used to ensure the clusters are separable, as
follows:

L1 =
k�1X

i=1

kX

j=i+1

✓
k
2

◆�1 Pn
a=1

Pn
b=1 aaiababj

pPn
a=1
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b=1 aaiababi

Pn
a=1

Pn
b=1 aajababj

(15)

where k denotes the number of clusters, ij = exp (�kz⇤i� z⇤jk2/
�
2�2

��
, and � is a hyperparameter. In our paper, � is

set to 15% of the median pairwise distance between hidden representations within a mini-batch, following the approach
outlined in (Trosten et al., 2021).

The second term promotes orthogonality among the cluster assignment vectors for different objects:

L2 =
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Finally, the third term constrains the cluster assignment vectors to be close to the standard simplex in Rk:
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where mij = exp
⇣
�kai � ejk2

⌘
, and ej is corner j of the standard simplex in Rk.

The final DDC clustering loss that we minimize is the sum of the above three terms:

LDDC = L1 + L2 + L3. (18)

A.2. Proof to Theorem 4.2

Proof. Given the clean data x and adversarial data x̃, consider their corresponding cluster assignments a and ã. The
definitions of mutual information and KL divergence yield

I (x̃; ã | x) = Ex̃,x⇠p(x̃,x)Ea⇠p(ã|x̃)


log

p (ã | x̃)
p (x̃ | x)

�

= Ex̃,x⇠p(x̃,x)Ea⇠p(ã|x̃)


log

p (ã | x̃) p (a | x)
p (a | x) p (ã | x)

�

= DKL (p (ã | x̃) kp (a | x))�DKL (p (a | x̃) kp (a | x))
 DKL (p (ã | x̃) kp (a | x)) .

(19)

This completes the proof.

A.3. The detail of dataset

Here, we provide details on the four datasets utilized in this paper:

1. RegDB (Nguyen et al., 2017) is collected from a pair of aligned cameras, comprising one in the visible spectrum and
another in the infrared spectrum. We randomly selected data from 50 individuals, treating each individual as a category,
and augmented each category to 100 samples using three different enhancement methods: grayscale, Gaussian noise
addition, and inversion.
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2. NoisyFashion/NoisyMNIST: a noisy variant of FashionMNIST/MNIST is employed, where the initial view encompasses
the original image, and the second view incorporates an image sampled from the same class as the first image, with the
Gaussian noise (Trosten et al., 2023).

3. PatchedMNIST is a subset of MNIST, encompassing the initial three digits, where three views are extracted as 7⇥ 7
non-overlapping patches from the original images (Trosten et al., 2023).

A.4. Network Architecture

We showcase the model framework for the proposed GAN attack model and CL-MVC as illustrated in Table 4 and Table 5.
The GAN attack model includes an adversarial perturbation generator and a discriminator for each view. The CL-MVC
comprises view-specific encoders and the DDC module.

Table 4. The network architecture of CL-MVC.

CNN Encoder DCC Module

Conv(64 × 3 × 3) Dense(100)
ReLU ReLU

Conv(64 × 3 × 3) BatchNorm
BatchNorm Dense(k)

ReLU Softmax
MaxPool(2 × 2)

Conv(64 × 3 × 3)
ReLU

Conv(64 × 3 × 3)
BatchNorm

ReLU
MaxPool(2 × 2)

Table 5. The network architecture of the GAN attack model.

Generator Discriminator

Conv(8 × 3 × 3) Conv(8 × 4 × 4)
InstanceNorm LeakyReLU(0.2)

ReLU Conv(16 × 4 × 4)
Conv(16 × 3 × 3) BatchNorm

InstanceNorm LeakyReLU(0.2)
ReLU Conv(32 × 4 × 4)

Conv(32 × 3 × 3) BatchNorm
InstanceNorm LeakyReLU(0.2)

ReLU Dense(1)
TransposeConv(16 × 3 × 3) Sigmoid

InstanceNorm
ReLU

TransposeConv(8 × 3 × 3)
InstanceNorm

ReLU
TransposeConv(input channel × 3 × 3)

Tanh

A.5. Additional Confusion Matrices

We provide the remaining 7 datasets’ confusion matrices results in Figure 5.
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(a) Pre-attack (EAMC) (b) Post-attack (EAMC) (c) Pre-attack (SiMVC) (d) Post-attack (SiMVC)

(e) Pre-attack (CoMVC) (f) Post-attack (CoMVC) (g) Pre-attack (Multi-VAE) (h) Post-attack (Multi-VAE)

(i) Pre-attack (InfoDDC) (j) Post-attack (InfoDDC) (k) Pre-attack (SEM) (l) Post-attack (SEM)

(m) Pre-attack (AR-DMVC) (n) Post-attack (AR-DMVC)

Figure 5. Confusion matrices illustrating the effect of the attack for the EAMC, SiMVC, CoMVC, Multi-VAE, InfoDDC, SEM, and
AR-DMVC models on the NoisyMNIST.

A.6. Hyperparameters Results

As shown in Figures 6-8, we provide the remaining hyperparameters results.

A.7. Visualising Generated Adversarial Images

We present sample adversarial images for all models across all datasets. The predominant cluster labels for each image are
displayed directly above the image. Additionally, we showcase the adversarial noise generated by our generators for each
individual sample.

A.7.1. REGDB

Please refer to Figures 9-17 for the RegDB dataset.
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(a) RegDB (b) RegDB

Figure 6. (a) ACC and NMI versus parameters � and � of AR-DMVC-AM. (b) The clustering results with respect to the epoch of
AR-DMVC-AM under attack.

(a) NoisyMNIST (b) NoisyMNIST

Figure 7. (a) ACC and NMI versus parameters � and � of AR-DMVC-AM. (b) The clustering results with respect to the epoch of
AR-DMVC-AM under attack.

(a) PatchedMNIST (b) PatchedMNIST

Figure 8. (a) ACC and NMI versus parameters � and � of AR-DMVC-AM. (b) The clustering results with respect to the epoch of
AR-DMVC-AM under attack.

A.7.2. NOISYFASHION

Please refer to Figures 18- 26 for the NoisyFashion dataset.

A.7.3. NOISYMNIST

Please refer to Figures 27- 35 for the NoisyMNIST dataset.

A.7.4. PATCHEDMNIST

Please refer to Figures 36- 44 for the PatchedMNIST dataset.
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Figure 9. EAMC (RegDB)
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Figure 10. SiMVC (RegDB)
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Figure 11. CoMVC (RegDB)
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Figure 12. Multi-VAE (RegDB)
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Figure 13. AECoDDC (RegDB)
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Figure 14. InfoDDC (RegDB)
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Figure 15. SEM (RegDB)
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Figure 16. AR-DMVC (RegDB)
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Figure 17. AR-DMVC-AM (RegDB)
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Figure 18. EAMC (NoisyFashion)
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Figure 19. SiMVC (NoisyFashion)
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Figure 20. CoMVC (NoisyFashion)
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Figure 21. Multi-VAE (NoisyFashion)
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Figure 22. AECoDDC (NoisyFashion)
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Figure 23. InfoDDC (NoisyFashion)
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Figure 24. SEM (NoisyFashion)

23



Adversarially Robust Deep Multi-View Clustering: A Novel Attack and Defense Framework

+

+

+

+

+

+

+

+

+

+

=

=

=

=

=

=

=

=

=

=

+

+

+

+

+

+

+

+

+

+

=

=

=

=

=

=

=

=

=

=

Figure 25. AR-DMVC (NoisyFashion)
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Figure 26. AR-DMVC-AM (NoisyFashion)
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Figure 27. EAMC (NoisyMNIST)
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Figure 28. SiMVC (NoisyMNIST)
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Figure 29. CoMVC (NoisyMNIST)
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Figure 30. Multi-VAE (NoisyMNIST)
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Figure 31. AECoDDC (NoisyMNIST)
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Figure 32. InfoDDC (NoisyMNIST)
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Figure 33. SEM (NoisyMNIST)
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Figure 34. AR-DMVC (NoisyMNIST)

28



Adversarially Robust Deep Multi-View Clustering: A Novel Attack and Defense Framework

+

+

+

+

+

+

+

+

+

+

=

=

=

=

=

=

=

=

=

=

+

+

+

+

+

+

+

+

+

+

=

=

=

=

=

=

=

=

=

=

Figure 35. AR-DMVC-AM (NoisyMNIST)

+

+

+

+

+

+

+

+

+

+

=

=

=

=

=

=

=

=

=

=

+

+

+

+

+

+

+

+

+

+

=

=

=

=

=

=

=

=

=

=

+

+

+

+

+

+

+

+

+

+

=

=

=

=

=

=

=

=

=

=

Figure 36. EAMC (PatchedMNIST)
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Figure 37. SiMVC (PatchedMNIST)
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Figure 38. CoMVC (PatchedMNIST)
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Figure 39. Multi-VAE (PatchedMNIST)
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Figure 40. AECoDDC (PatchedMNIST)
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Figure 41. InfoDDC (PatchedMNIST)
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Figure 42. SEM (PatchedMNIST)
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Figure 43. AR-DMVC (PatchedMNIST)
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Figure 44. AR-DMVC-AM (PatchedMNIST)
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