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ABSTRACT

Natural data are often long-tail distributed over semantic classes. Existing recog-
nition methods tackle this imbalanced classification by placing more emphasis on
the tail data, through class re-balancing/re-weighting or ensembling over different
data groups, resulting in increased tail accuracies but reduced head accuracies.

We take a dynamic view of the training data and provide a principled model bias
and variance analysis as the training data fluctuates: Existing long-tail classifiers
invariably increase the model variance and the head-tail model bias gap remains
large, due to more and larger confusion with hard negatives for the tail.

We propose a new long-tailed classifier called RoutIng Diverse Experts (RIDE).
It reduces the model variance with multiple experts, reduces the model bias with
a distribution-aware diversity loss, reduces the computational cost with a dynamic
expert routing module. RIDE outperforms the state-of-the-art by 5% to 7% on
CIFAR100-LT, ImageNet-LT and iNaturalist 2018 benchmarks. It is also a uni-
versal framework that is applicable to various backbone networks, long-tailed al-
gorithms, and training mechanisms for consistent performance gains. Our code is
available at: https://github.com/frank-xwang/RIDE-LongTailRecognition.

1 INTRODUCTION

Real-world data are often long-tail distributed over semantic classes: A few classes contain many
instances, whereas most classes contain only a few instances. Long-tailed recognition is challenging,
as it needs to handle not only a multitude of small-data learning problems on the tail classes, but
also extreme imbalanced classification over all the classes.

There are two ways to prevent the many head instances from overwhelming the few tail instances in
the classifier training objective: 1) class re-balancing/re-weighting which gives more importance
to tail instances (Cao et al., 2019; Kang et al., 2020; Liu et al., 2019), 2) ensembling over different
data distributions which re-organizes long-tailed data into groups, trains a model per group, and
then combines individual models in a multi-expert framework (Zhou et al., 2020; Xiang et al., 2020).

We compare three state-of-the-art (SOTA) long-tail classifiers against the standard cross-entropy
(CE) classifier: cRT and τ -norm (Kang et al., 2020) which adopt a two-stage optimization, first rep-
resentation learning and then classification learning, and LDAM (Cao et al., 2019), which is trained
end-to-end with a marginal loss. In terms of the classification accuracy, a common metric for model
selection on a fixed training set, Fig. 1a shows that, all these existing long-tail methods increase the
overall, medium- and few-shot accuracies over CE, but decrease the many-shot accuracy.

These intuitive solutions and their experimental results seem to suggest that there is a head-tail per-
formance trade-off in long-tailed recognition. We need a principled performance analysis approach
that could shed light on such a limitation if it exists and provide guidance on how to overcome it.

Our insight comes from a dynamic view of the training set: It is merely a sample set of some underly-
ing data distribution. Instead of evaluating how a long-tailed classifier performs on the fixed training
set, we evaluate how it performs as the training set fluctuates according to the data distribution.
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All Many-shot Med-shot Few-shot
acc bias var acc bias var acc bias var acc bias var

CE 31.6 0.60 0.47 57.3 0.28 0.35 28.2 0.61 0.51 6.3 0.94 0.57
⌧ -norm 35.8 0.52 0.49 55.9 0.28 0.37 33.2 0.53 0.52 16.1 0.78 0.60
cRT 36.4 0.50 0.50 51.3 0.32 0.41 38.6 0.44 0.50 17.0 0.76 0.61
LDAM 34.4 0.53 0.51 55.1 0.28 0.38 31.9 0.53 0.54 13.9 0.81 0.63
RIDE + LDAM 40.5 0.50 0.42 60.5 0.28 0.30 38.7 0.50 0.44 20.1 0.74 0.52
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ABSTRACT

Natural data are often long-tail distributed over semantic classes. Existing recog-
nition methods tend to focus on tail performance gain, often at the expense of
head performance loss from increased classifier variance. The low tail perfor-
mance manifests itself in large between-class confusion and high classifier vari-
ance. We aim to reduce both the bias and the variance of a long-tailed classifier
by RoutIng Diverse Experts (RIDE). It has three components: 1) a shared archi-
tecture for multiple classifiers (experts); 2) a distribution-aware diversity loss that
encourages more diverse decisions for classes with fewer training instances; and
3) an expert routing module that dynamically assigns more ambiguous instances
to additional experts. With on-par computational complexity, RIDE significantly
outperforms the state-of-the-art methods by 5% to 7% on all the benchmarks in-
cluding CIFAR100-LT, ImageNet-LT and iNaturalist. RIDE is also a universal
framework that can be applied to different backbone networks and integrated into
various re-balancing or re-weighting methods for consistent performance gains.

1 INTRODUCTION

The natural data we encounter in practice often has a long tail distribution: A few classes contain
many instances, while most classes contain only a few instances. Learning discrimination among
them is challenging, as the few tail instances can be easily overwhelmed by many head instances.

Long-tailed recognition is usually handled either by class re-balancing/re-weighting strategies giving
more importance to tail instances (Cao et al., 2019; Kang et al., 2020; Liu et al., 2019), or by multi-
expert methods, where long-tailed data are separated into parts by their frequencies and models
focusing on individual parts are combined (Zhou et al., 2020; Xiang & Ding, 2020). However, all
these methods generally gain on tail classes at the cost of performance loss on head classes.

The state-of-the-art (SOTA) methods on iNaturalist (Van Horn et al., 2018) are cRT and ⌧ -norm
(Kang et al., 2020) and BBN (Zhou et al., 2020). The former belongs to the re-balancing type with a
two-stage optimization for learning a good representation and classifier, whereas the latter belongs
to the multi-expert type with two experts focusing on head and tail classes.

We analyze the performance of a long-tail classifier in terms of bias and variance with respect to
fluctuations in the training set: We randomly sample CIFAR100 (Krizhevsky, 2009) according to a
long-tailed distribution a few times, train a model each time, and then estimate the per-class bias and
variance of the classifier.
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(a) Comparisons of the mean accuracy, per-class bias and variance of baselines and our RIDE method. Better
(worse) metrics than the distribution-unaware cross entropy (CE) reference are marked in green (red).

(b) Histograms of the largest softmax score of the other classes (the hardest negative) per instance.

Figure 1: Our method RIDE outperforms SOTA by reducing both model bias and variance. a)
These metrics are evaluated over 20 independently trained models, each on a random sampled set of
CIFAR100 with an imbalance ratio of 100 and 300 samples for class 0. Compared to the standard
CE classifier, existing SOTA methods almost always increase the variance and some reduce the tail
bias at the cost of increasing the head bias. b) The metrics are evaluated over CIFAR100-LT Liu
et al. (2019). LDAM is more likely to confuse the tail (rather than head) classes with the hardest
negative class, with an average score of 0.59. RIDE with LDAM can greatly reduce the confusion
with the nearest negative class, especially for samples from the few-shot categories.

Consider the training data D as a random variable. The prediction error of model h on instance x
with output Y varies with the realization of D. The expected variance with respect to variable D
has a well-known bias-variance decomposition:

Error(x;h) = E[(h(x;D)− Y )2] = Bias(x;h) + Variance(x;h) + irreducible error(x). (1)

For the above L2 loss on regression h(x)→ Y , the model bias measures the accuracy of the pre-
diction with respect to the true value, the variance measures the stability of the prediction, and the
irreducible error measures the precision of the prediction and is irrelevant to the model h.

Empirically, for n random sample sets of data, D(1), . . . , D(n), the k-th model trained on D(k)

predicts y(k) on instance x, and collectively they have a mean prediction ym. For the L2 regression
loss, the model bias is simply the L2 loss between ym and ground-truth t=E[Y ], whereas the model
variance is the variance of y(k) with respect to their mean ym:

L2 regression loss: L(y; z) = (y − z)2 (2)

mean prediction: ym =
1

n

n∑
k=1

y(k) = arg min
z
ED[L (h(x); z)] (3)

model bias: Bias(x;h) = (ym − t)2 =L (ym; t) (4)

model variance: Variance(x;h) =
1

n

n∑
k=1

(
y(k) − ym

)2
=ED[L (h(x); ym)]. (5)

As shown on the above right, these concepts can be expressed entirely in terms of L2 loss L. We can
thus extended them to classification (Domingos, 2000) by replacing L with L0-1 for classification:

0-1 classification loss: L0-1(y; z) = 0 if y = z, and 1 otherwise. (6)

The mean prediction ym minimizes
∑n
k=1 L0-1

(
y(k); ym

)
and becomes the most often or main pre-

diction. The bias and variance terms become L0-1(ym; t) and 1
n

∑n
k=1 L0-1(y(k); ym) respectively.

We apply such bias and variance analysis to the CE and long-tail classifiers. We sample CIFAR100
(Krizhevsky, 2009) according to a long-tail distribution multiple times. For each method, we train
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a model per long-tail sampled dataset and then estimate the per-class bias and variance over these
multiple models on the balanced test set of CIFAR100-LT Liu et al. (2019). Fig. 1a shows that:

1. On the model bias: The head bias is significantly smaller than the tail bias, at 0.3 vs. 0.9 for
CE. All the existing long-tail methods reduce the overall bias by primarily reducing the tail bias.
However, the head-tail bias gap remains large at 0.3 vs. 0.8.

2. On the model variance: All the existing long-tail methods increase the model variance across
all class splits, with a slight reduction in the medium-shot variance for cRT.

That is, existing long-tail methods reduce the model bias for the tail at the cost of increased model
variance for all the classes, and the head-tail model bias gap remains large.

We conduct further statistical analysis to understand the head-tail model bias gap. We examine the
largest softmax score in the other classes of {c : c 6= t}, where t is the ground-truth class of an
instance. The smaller this hardest negative score is, the less the confusion, and the lower the model
bias. Fig. 1b shows that there is increasingly more and larger confusion from the head to the tail.

Guided by our model bias/variance and confusion pattern analysis, we propose a new long-tail clas-
sifier with four distinctive features: 1) It reduces the model variance for all the classes with multiple
experts. 2) It reduces the model bias for the tail with an additional distribution-aware diversity loss.
3) It reduces the computational complexity that comes with multiple experts with a dynamic expert
routing module which deploys another trained distinctive expert for a second (or third, ...) opinion
only when it is called for. 4) The routing module and a shared architecture for experts of reduced
complexity effectively cut down the computational cost of our multi-expert model, to a level that
could be even lower than the commonly adopted baseline with the same backbone.

Our so-called RoutIng Diverse Experts (RIDE) not only reduces the model variance for all the
classes, but also significantly reduces the model bias for the tail classes and increases the mean
accuracies for all class splits, all of which existing long-tail methods fail to accomplish.

RIDE delivers 5%∼7% higher accuracies than the current SOTA methods on CIFAR100-LT,
ImageNet-LT (Liu et al., 2019) and iNaturalist (Van Horn et al., 2018). RIDE is also a universal
framework that can be applied to different backbone networks for improving existing long-tail algo-
rithms such as focal loss (Lin et al., 2017), LDAM (Cao et al., 2019), τ -norm (Kang et al., 2020).

2 RELATED WORKS

Few-shot learning. To generalize from small training data, meta-learning (Bertinetto et al., 2016;
Ravi & Larochelle, 2017; Santoro et al., 2016; Finn et al., 2017; Yang et al., 2018) and data aug-
mentation/generation are two most studied approaches (Chen et al., 2019; Schwartz et al., 2018;
Zhang et al., 2019; Liu et al., 2018). Matching Network (Vinyals et al., 2016) and Prototypical Net-
work (Snell et al., 2017) learn discriminative features that can be transferred to new classes through
meta-learners without big training data. Hariharan & Girshick (2017), Wang et al. (2018) and Liu
et al. (2018) utilize samples from a generative model to augment the training data. However, few-
shot learning relies on balanced training data, whereas long-tail recognition has to deal with highly
imbalanced training data, e.g., from hundreds in the head to a few instances in the tail.

Re-balancing/re-weighting. A direct approach to achieve sample balance is to under- or over-
sample training instances according to their class sizes (He & Garcia, 2009). Another option is
data augmentation, where additional samples are generated to supplement tail classes, sometimes
directly in the feature space (Liu et al., 2020; Chu et al., 2020; Kim et al., 2020). Re-weighting
modifies the loss function and puts larger weights on tail classes (Lin et al., 2017; Cui et al., 2019;
Cao et al., 2019; Wu et al., 2020) or randomly ignoring gradients from head classes (Tan et al.,
2020). However, both sample-wise and loss-wise balancing focus on tail classes, resulting in more
sensitivity to fluctuations in the small tail classes and thus much increased model variances (Fig. 1a).

Knowledge transfer. OLTR (Liu et al., 2019) and inflated memory (Zhu & Yang, 2020) use memory
banks to store and transfer mid- and high-level features from head to tail classes, enhancing feature
generalization for the tail. However, this line of work (Liu et al., 2019; Zhu & Yang, 2020; Kang
et al., 2020; Jamal et al., 2020; Wang et al., 2017) usually does not have effective control over the
knowledge transfer process, often resulting in head performance loss.
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Ensembling and grouping. One way to counter imbalance is to separate training instances into
different groups based their class sizes. Models trained on individual groups are ensembled together
in a multi-expert framework. BBN (Zhou et al., 2020) adaptively fuses two-branches that each focus
on the head and the tail respectively. LFME (Xiang et al., 2020) distills multiple teacher models into
a unified model, each teacher focusing on a relatively balanced group such as many-shot classes,
medium-shot classes, and few-shot classes. BBN and LFME still lose head performance and overall
generalizability, as no expert has a balanced access to the entire dataset.

Our RIDE is a non-traditional ensemble method. 1) Its experts have shared earlier layers and
reduced later channels, less prone to small tail overfitting. 2) Its experts are jointly optimized. 3)
It deploys experts on an as-needed basis for individual instances with a dynamic expert assignment
module. 4) It reaches higher accuracies with a smaller model complexity and computational cost.

3 RIDE: ROUTING DIVERSE DISTRIBUTION-AWARE EXPERTS

We propose a novel multi-expert model (Fig. 2) with shared earlier layers fθ and n independent
channel-reduced later layers Ψ = {ψθ1 , ..., ψθn}. They are jointly optimized at Stage 1 and dynam-
ically deployed with a learned expert assignment module at Stage 2. At the inference time, all the
m active experts are averaged together in their logits for final ensemble softmax classification:

p = softmax

(
1

m

m∑
i=1

ψθi (fθ(x))

)
. (7)

Softmax of the average logits is equivalent to the product of individual classification probabilities,
which approximates their joint probability if individual experts makes independent decisions.

Experts with a shared early backbone and reduced later channels. Consider n independent
experts of the same convolutional neural network (CNN) architecture. Since early layers of a CNN
tend to encode generic low-level features, we adopt the common practice in transfer learning and
have all the n experts share the same backbone fθ. Each expert retains independent later layers ψθi ,
i = 1,. . . ,n. To reduce overfitting to small training data in the tail classes, we reduce the number
of filter channels in ψθi , e.g., by 1/4. All these n experts are trained together on long-tailed data
distribution-aware diversity loss LD-Diversify and classification loss LClassify, such as CE and LDAM.

Individual expert classification loss. One way to combine multiple experts is to apply the classifi-
cation loss to the aggregated logits of individual experts. While this idea works for several recently
proposed multi-expert models (Zhou et al., 2020; Xiang et al., 2020), it does not work for our shared
experts: Its performance is on-par with an equal-sized single-expert model. Let L denote the classi-
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Figure 2: RIDE learns experts and their router in two stages. a) We first jointly optimize multiple
experts with individual classification losses and mutual distribution-aware diversity losses. b) We
then train a router that dynamically assigns ambiguous samples to additional experts on an as-needed
basis. The distribution of instances seen by each expert shows that head instances need fewer experts
and the imbalance between classes gets reduced for later experts. At the test time, we collect the
logits of assigned experts to make a final decision. c) RIDE outperforms SOTA methods (i.e. LFME
(Xiang et al., 2020) for CIFAR100-LT, LWS (Kang et al., 2020) for ImageNet-LT and BBN (Zhou
et al., 2020) for iNaturalist) on all the benchmarks.
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fication loss (e.g. CE) over instance x and its label y. We call such an aggregation loss collaborative:

Lcollaborative(x, y) = L

(
1

n

n∑
i=1

ψθi (fθ(x)) , y

)
(8)

as it leads to correlated instead of complementary experts. To discourage correlation, we require
each expert to do the job well by itself. Such an aggregation loss is essentially an individual loss,
and it contributes a large portion of our performance gain in most of our experiments:

Lindividual(x, y) =

n∑
i=1

L (ψθi (fθ(x)) , y) . (9)

Distribution-aware diversity loss. The individual classification loss and random initialization lead
to diversified experts with a shared backbone. For long-tailed data, we add a regularization term to
encourage complementary decisions from multiple experts. That is, we maximize the KL-divergence
between different experts’ classification probabilities on instance x in class y over a total of c classes:

diversity loss: LD-Diversify(x, y; θi) =
−1

n− 1

n∑
j=1,j 6=i

DKL

(
p(i)(x, y)‖p(j)(x, y)

)
(10)

KL divergence: DKL(p‖q) =

c∑
k=1

pk log

(
pk
qk

)
(11)

classification by θi : p(i)(x, y) = softmax
([

ψθi (fθ(x))1
T1

...
ψθi (fθ(x))c

Tc

])
. (12)

We vary the temperature T (or concentration) (Hadsell et al., 2006; Wu et al., 2018) applied to class
k’s logit ψθi(fθ(x))k: For class k with nk instances, the smaller the nk, the lower the temperature
Tk, the more sensitive the classification probability p is to a change in the feature ψ. Specifically,

class-wise temperature: Tk = α

(
βk + 1−max

j
βj

)
(13)

normalized class size: βk = γ · nk
1
c

∑c
s=1 ns

+ (1− γ). (14)

T scales linearly with the class size, ensuring βk = 1, Tk = α for a balanced set. This simple
adaptation allows us to find classifiers of enough complexity for the head and enough robustness
for the tail: On one hand, we need strong classifiers to handle large sample variations within head
classes; on the other hand, such classifiers are prone to overfit small training data within tail classes.
We adapt the temperature only after the CNN network is trained for several epochs and the feature
is stabilized, similar to the training scheme for deferred reweighting (Cao et al., 2019).

Joint expert optimization. For our n experts θ1, . . . , θn with a shared backbone θ, we optimize
their individual classification losses (LClassify = L, any classification loss such as CE, LDAM, and
focal loss) and their mutual distribution-aware divergency losses, weighted by hyperparameter λ:

LTotal(x, y) =

n∑
i=1

(LClassify(x, y; θi) + λ · LD-Diversify(x, y; θi) ) . (15)

Since these loss terms are completely symmetrical with respect to each other, the n experts learned
at Stage 1 are equally good and distinctive from each other.

Routing diversified experts. To cut down the test-time computational cost that comes with multiple
experts, we train a router at Stage 2 to deploy these (arbitrarily ordered) experts sequentially on an
as-needed basis. Assume that the first k experts have been deployed for instance x. The router takes
in the image feature and the mean logits from the first to the k-th expert, and makes a binary decision
yon on whether to deploy the k + 1-th expert. If the k-th expert wrongly classifies x, but one of the
rest n−k experts correctly classifies x, ideally the router should switch on, i.e., output yon = 1, and
otherwise yon = 0. We construct a simple binary classifier with two fully connected layers to learn
each router. Each of the n−1 routers for n experts has a shared component to reduce the feature
dimensions and an individual component to make decisions.
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Specifically, we normalize the image feature fθ(x) (for training stability), reduce the feature dimen-
sion (to e.g. 16 in our experiments) by a fully connected layer W1 which is shared with all routers,
followed by ReLU and flattening, concatenate with the top-s ranked mean logits from the first to k-
th expert 1

k

∑k
i=1 ψθi(fθ(x)), project it to a scalar by W

(k)
2 which is independent between routers,

and finally apply Sigmoid function S(x) = 1
1+e−x to get a continuous activation value in [0,1]:

router activation: r(x) = S

(
W

(k)
2

[
flatten · ReLU

(
W1

fθ(x)
‖fθ(x)‖

)
1
k

∑k
i=1 ψθk(fθ(x))|top-s-components

])
. (16)

The router has a negligible size and compute, where s ranges from 30 for CIFAR100 to 50 for
iNaturalist (8,142 classes). It is optimized with a weighted variant of binary CE loss:

LRouting(r(x), yon) = −ωon yon log (r(x))− (1− yon) log (1− r(x)) (17)

where ωon controls the easiness to switch on the router. We find ωon = 100 to be a good trade-off
between classification accuracy and computational cost for all our experiments. At the test time, we
simply threshold the activation with 0.5: If r(x) < 0.5, the classifier makes the final decision with
the current collective logits, otherwise it proceeds to the next expert.

Optional self-distillation. While existing long-tail classifiers such as BBN Zhou et al. (2020) and
LFME Xiang et al. (2020) have a fixed number of experts, our method could have an arbitrary
number of experts to balance classification accuracy and computation cost. We can optionally apply
self-distillation from a model with more (6 in our setting) experts to the same model with fewer
experts for further performance gain (0.4%∼0.8% for most experiments). We choose knowledge
distillation (Hinton et al., 2015) by default. Implementation details and comparisons with various
distillation algorithms such as CRD (Tian et al., 2019) are investigated in Appendix Section A.2.

4 EXPERIMENTS

We experiment on major long-tailed recognition benchmarks and various backbone networks.

1. CIFAR100-LT (Cao et al., 2019): CIFAR100 is sampled by class per an exponential decay across
classes. We choose imbalance factor 100 and ResNet-32 (He et al., 2016) backbone.

2. ImageNet-LT (Liu et al., 2019): Multiple backbone networks are experimented on ImageNet-
LT, including ResNet-10, ResNet-50 and ResNeXt-50 (Xie et al., 2017). All backbone networks
are trained with a batch size of 256 on 8 RTX 2080Ti GPUs for 100 epochs using SGD with
an initial learning rate of 0.1 decayed by 0.1 at 60 epochs and 80 epochs. See more details and
results on other backbones in Appendix.

3. iNaturalist 2018 (Van Horn et al., 2018): It is a naturally imbalanced fine-grained dataset with
8,142 categories. We use ResNet-50 as the backbone and apply the same training recipe as for
ImageNet-LT except batch size 512, as in (Kang et al., 2020).

CIFAR100-LT Results. Table 1 shows that RIDE outperforms SOTA by a large margin on
CIFAR100-LT. The average computational cost is even about 10% less than baseline models with
two experts as in BBN. RIDE surpasses multi-expert methods, LFME (Xiang et al., 2020) and BBN
(Zhou et al., 2020), by more than 5.3% and 6.5% respectively.

Focal loss CE
LDAM cRT

-norm
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Figure 3: RIDE is a universal framework that
can be extended to various long-tail recognition
methods and obtain a consistent top-1 accuracy
increase. RIDE is experimented on CIFAR100-
LT and applied to various training mechanisms.
By using RIDE, cross-entropy loss (without any
re-balancing strategies) can even outperforms
previous SOTA method on CIFAR100-LT. Al-
though higher accuracy can be obtained using
distillation, we did not apply it here.
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Table 1: RIDE achieves the state-of-the-art results on CIFAR100-LT without sacrificing the per-
formance of many-shot classes like all previous methods. Compared with BBN (Zhou et al., 2020)
and LFME (Xiang et al., 2020), which also contain multiple experts (or branches), RIDE (2 experts)
outperforms them by a large margin with fewer GFlops. The relative computation cost (averaged on
testing set) with respect to the baseline model and absolute improvements against SOTA (colored in
green) are reported. † denotes our reproduced results with released code. ‡ denotes results copied
from (Cao et al., 2019) and the imbalance ratio is 100.

Methods MFlops All Many Med Few
Cross Entropy (CE) ‡ 69.5 (1.0x) 38.3 - - -
Cross Entropy (CE) † 69.5 (1.0x) 39.1 66.1 37.3 10.6
Focal Loss ‡ (Lin et al., 2017) 69.5 (1.0x) 38.4 - - -
OLTR † (Liu et al., 2019) - 41.2 61.8 41.4 17.6
LDAM + DRW (Cao et al., 2019) 69.5 (1.0x) 42.0 - - -
LDAM + DRW † (Cao et al., 2019) 69.5 (1.0x) 42.0 61.5 41.7 20.2
BBN (Zhou et al., 2020) 74.3 (1.1x) 42.6 - - -
τ -norm † (Kang et al., 2020) 69.5 (1.0x) 43.2 65.7 43.6 17.3
cRT † (Kang et al., 2020) 69.5 (1.0x) 43.3 64.0 44.8 18.1
M2m (Kim et al., 2020) - 43.5 - - -
LFME (Xiang et al., 2020) - 43.8 - - -
RIDE (2 experts) 64.8 (0.9x) 47.0 (+3.2) 67.9 48.4 21.8
RIDE (3 experts) 77.8 (1.1x) 48.0 (+4.2) 68.1 49.2 23.9
RIDE (4 experts) 91.9 (1.3x) 49.1 (+5.3) 69.3 49.3 26.0

Table 2: RIDE achieves state-of-the-art results on ImageNet-LT (Liu et al., 2019) and obtains
consistent performance improvements on various backbones. The top-1 accuracy and computational
cost are compared with the state-of-the-art methods on ImageNet-LT, with ResNet-50 and ResNeXt-
50 as the backbone networks. Results marked with † are copied from (Kang et al., 2020). Detailed
results on each split are listed in appendix materials.

Methods ResNet-50 ResNeXt-50
GFlops Acc. (%) GFlops Acc. (%)

Cross Entropy (CE) † 4.11 (1.0x) 41.6 4.26 (1.0x) 44.4
OLTR † (Liu et al., 2019) - - - 46.3
NCM (Kang et al., 2020) 4.11 (1.0x) 44.3 4.26 (1.0x) 47.3
τ -norm (Kang et al., 2020) 4.11 (1.0x) 46.7 4.26 (1.0x) 49.4
cRT (Kang et al., 2020) 4.11 (1.0x) 47.3 4.26 (1.0x) 49.6
LWS (Kang et al., 2020) 4.11 (1.0x) 47.7 4.26 (1.0x) 49.9
RIDE (2 experts) 3.71 (0.9x) 54.4 (+6.7) 3.92 (0.9x) 55.9 (+6.0)
RIDE (3 experts) 4.36 (1.1x) 54.9 (+7.2) 4.69 (1.1x) 56.4 (+6.5)
RIDE (4 experts) 5.15 (1.3x) 55.4 (+7.7) 5.19 (1.2x) 56.8 (+6.9)

RIDE as a universal framework. Fig. 3 shows that RIDE consistently benefits from better loss
functions and training processes. Whether the model is trained end-to-end (focal loss, CE, LDAM)
or in two stages (cRT, τ -norm, cosine), RIDE delivers consistent accuracy gains. In particular, RIDE
with a simple cosine classifier, which we constructed by normalizing the classifier weights and
retraining them with a long-tail re-sampling strategy (similar to cRT), achieves on-par performance
with the current SOTA methods. Fig. 3 also shows that two-stage methods are generally better than
single-stage ones. Nevertheless, since they require an additional training stage, for simplicity, we
use the single-stage LDAM as the default LClassify in RIDE throughout our remaining experiments.

ImageNet-LT Results. Table 2 shows that RIDE outperforms SOTA, LWS and cRT, by more than
7.7% with ResNet-50. ResNeXt-50 is based on group convolution (Xie et al., 2017), which di-
vides all filters into several groups and aggregates information from multiple groups. ResNeXt-50
generally performs better than ResNet-50 on multiple tasks. It provides 6.9% gain on ImageNet-LT.

iNaturalist 2018 Results. Table 3 shows that RIDE outperforms current SOTA by 6.3%. Surpris-
ingly, RIDE obtains very similar results on many-shots, medium-shots and few-shots, ideal for long
tailed recognition. Current SOTA method BBN also uses multiple experts; however, it significantly
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Table 3: RIDE outperforms previous state-of-the-art methods on challenging iNaturalist 2018
(Van Horn et al., 2018) dataset, which contains 8,142 classes, by a large margin. Relative im-
provements to SOTA result of each split (colored with gray) are also listed, with the largest boost
from few-shot classes. Compared with previous SOTA method BBN, which also contains multi-
ple “experts”, RIDE achieves more than 20% higher top-1 accuracy on many-shot classes. Results
marked with † are from BBN (Zhou et al., 2020) and Decouple (Kang et al., 2020). BBN’s results
are from the released checkpoint.

Methods GFlops All Many Medium Few
CE † 4.14 (1.0x) 61.7 72.2 63.0 57.2
CB-Focal † 4.14 (1.0x) 61.1 - - -
OLTR 4.14 (1.0x) 63.9 59.0 64.1 64.9
LDAM + DRW † 4.14 (1.0x) 64.6 - - -
cRT 4.14 (1.0x) 65.2 69.0 66.0 63.2
τ -norm 4.14 (1.0x) 65.6 65.6 65.3 65.9
LWS 4.14 (1.0x) 65.9 65.0 66.3 65.5
BBN 4.36 (1.1x) 66.3 49.4 70.8 65.3
RIDE (2 experts) 3.67 (0.9x) 71.4 (+5.1) 70.2 (+1.2) 71.3 (+0.5) 71.7 (+5.8)
RIDE (3 experts) 4.17 (1.0x) 72.2 (+5.9) 70.2 (+1.2) 72.2 (+1.4) 72.7 (+6.8)
RIDE (4 experts) 4.51 (1.1x) 72.6 (+6.3) 70.9 (+1.9) 72.4 (+1.6) 73.1 (+7.2)
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Figure 4: Compared to SOTAs, RIDE improves top-1 accuracy on all three splits (many-/med-/few-
shot). The absolute accuracy differences of RIDE (blue) over iNaturalist’s current state-of-the-
art method BBN (Zhou et al., 2020) (left) and ImageNet-LT’s current state-of-the-art method cRT
(Kang et al., 2020) (right) are shown. RIDE improves the performance of few- and medium-shots
categories without sacrificing the accuracy on many-shots, and outperforms BBN on many-shots by
a large margin.

decreases the performance on many-shots by about 23%. RIDE is remarkable at increasing the
few-shot accuracy without reducing the many-shot accuracy.

Comparing with SOTAs on iNaturalist and ImageNet-LT. As illustrated in Fig. 4, our approach
provides a comprehensive treatment to all the many-shot, medium-shot and few-shot classes, achiev-
ing substantial improvements to current state-of-the-art on all aspects. Compared with cRT which
reduces the performance on the many-shot classes, RIDE can achieves significantly better perfor-
mance on the few-shot classes without impairing the many-shot classes. Similar observations can be
obtained in the comparison with the state-of-the-art method BBN (Zhou et al., 2020) on iNaturalist.

Contribution of each component of RIDE. RIDE is jointly trained with LD-Diversify and LClassify,
we use LDAM for LClassify by default. Table 4 shows that the architectural change from the original
ResNet-32 to the RIDE variant with 2 ∼ 4 experts contributes 2.7% ∼ 4.3% gain. Applying the
individual classification loss instead of the collaborative loss brings 1.5% gain. Adding the diversity
loss further improves about 0.9%. The computational cost is greatly reduced by adding the dynamic
expert router. Knowledge distillation from RIDE with 6 experts obtains another 0.6% gain. All these
components deliver 7.1% gain over baseline LDAM.

Impact of the number of experts. Fig. 5 shows that whether in terms of relative or absolute
gains, few-shots benefit more with more experts. For example, the relative gain is 16% vs. 3.8% for
few-shots and many-shots respectively. No distillation is applied in this comparison.
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Table 4: Ablation studies on the effectiveness of each component on CIFAR100-LT. LDAM is
used as our classification loss. The first 3 RIDE models only have architectural change without
changes in training method. The performance without LIndividual checked indicates directly applying
classification loss onto the final model output, which is the mean expert logits. This is referred to
as collaborative loss above. In contrast, if LIndividual if checked, we apply individual loss to each
individual expert. The difference between collaborative loss and individual loss is described above.
By adding the router module, the computational cost of RIDE can be significantly reduced, while the
accuracy degradation is negligible. Knowledge distillation step is optional if further improvements
are desired. Various knowledge distillation techniques are compared in the appendix.

Methods #expert LIndividual LD-Diversify Router distill GFlops Acc. (%)
LDAM + DRW 1 42.0

RIDE

2 1.1x 44.7 (+2.7)
3 1.5x 46.1 (+4.1)
4 1.8x 46.3 (+4.3)
4 X 1.8x 47.8 (+5.8)
4 X X 1.8x 48.7 (+6.7)
4 X X X 1.8x 49.3 (+7.3)
4 X X X X 1.3x 49.1 (+7.1)
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Figure 5: # experts vs. top-1 accuracy for each
split (All, Many/Medium/Few) of CIFAR100-
LT. Compared with the many-shot split, which
is 3.8% relatively improved by adding more ex-
perts, the few-shot split can get more benefits,
that is, a relative improvement of 16.1%.
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Figure 6: The proportion of the number of ex-
perts allocated to each split of CIFAR100-LT.
For RIDE with 3 or 4 experts, more than half of
many-shot instances only require one expert. On
the contrary, more than 76% samples of few-shot
classes require opinions from additional experts.

The number of experts allocated to each split. Fig. 6 shows that instances in few-shots need more
experts whereas most instances in many-shots just need the first expert. That is, low confidence in
tail instances often requires the model to seek a second (or a third, ...) opinion.

5 SUMMARY

We take a dynamic view of training data and study long-tailed recognition with model bias and
variance analysis. Existing long-tail classifiers do not reduce head-tail model bias gap enough while
increasing model variance across all the classes. We propose a novel multi-expert model called
RIDE to reduce model biases and variances throughout. It trains partially shared diverse distribution-
aware experts and routes an instance to additional experts when necessary, with computational costs
comparable to a single expert. RIDE outperforms SOTA by a large margin. It is also a universal
framework that works with various backbones and training schemes for consistent gains.

Acknowledgments. This work was supported, in part, by Berkeley Deep Drive, US Government
fund through Etegent Technologies on Low-Shot Detection and Semi-supervised Detection, and
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A APPENDIX

A.1 DATASETS AND IMPLEMENTATIONS

We conduct experiments on three major long-tailed recognition benchmarks and different backbone
networks to prove the effectiveness and universality of RIDE:

1.CIFAR100-LT (Krizhevsky, 2009; Cao et al., 2019): The original version of CIFAR-100 con-
tains 50,000 images on training set and 10,000 images on validation set with 100 categories. The
long-tailed version of CIFAR-100 follows an exponential decay in sample sizes across different cat-
egories. We conduct experiment on CIFAR100-LT with an imbalance factor of 100, i.e. the ratio
between the most frequent class and the least frequent class.
To make fair comparison with previous works, we follow the training recipe of (Cao et al., 2019) on
CIFAR100-LT. We train the ResNet-32 (He et al., 2016) backbone network by SGD optimizer with
a momentum of 0.9. CIFAR100-LT is trained for 200 epochs with standard data augmentations (He
et al., 2016) and a batch size of 128 on one RTX 2080Ti GPU. The learning rate is initialized as 0.1
and decayed by 0.01 at epoch 120 and 160 respectively.

2.ImageNet-LT (Deng et al., 2009; Liu et al., 2019): ImageNet-LT is constructed by sampling a
subset of ImageNet-2012 following the Pareto distribution with the power value α = 6 (Liu et al.,
2019). ImageNet-LT consists of 115.8k images from 1,000 categories, with the largest and smallest
categories containing 1,280 and 5 images, respectively.
Multiple backbone networks are experimented on ImageNet-LT, including ResNet-10, ResNet-50
and ResNeXt-50 (Xie et al., 2017). All backbone networks are trained with a batch size of 256 on 8
RTX 2080Ti GPUs for 100 epochs using SGD with an initial learning rate of 0.1 decayed by 0.1 at
60 epochs and 80 epochs. We utilize standard data augmentations as in (He et al., 2016).

3.iNaturalist (Van Horn et al., 2018): The iNaturalist-2018 dataset is an imbalanced datasets with
437,513 training images from 8,142 classes with a balanced test set of 24,426 images. We use
ResNet-50 as the backbone network and apply the same training recipe as ImageNet-LT, except that
we use a batch size of 512.

A.2 ADDITIONAL EXPERIMENTS

Ablation study on distillation methods. Self-distillation step is optional but recommended if fur-
ther improvements (0.4%∼0.8% for most experiments) are desired. We apply distillation from
a more powerful model with more experts into a model with fewer experts. A simple way to
transfer knowledge is knowledge distillation (KD) (Hinton et al., 2015), which applies KD loss
(LKD = T 2DKL(~lteacher/T,~lexperti/T )) to match the distribution of logits of a teacher and a student.
We found that for teacher model with more experts using smaller distillation loss factor gives better
performance. We hypothesize that since we distill from the same teachers, giving large distillation
factor prevents the branches from becoming as diversified as it is able to. We also explored other
distillation methods, such as CRD (Tian et al., 2019), PKT (Passalis & Tefas, 2018), and SP (Tung
& Mori, 2019), and compared the differences in Table 5. Although adding other methods along with
KD may boost performance, the difference is small. Therefore, we opt for simplicity and use KD
only unless otherwise noticed.

Detailed results for ImageNet-LT experiments. We list details of our ResNet-50 experiments in
ImageNet-LT on Table 7. With 2 experts, we are able to achieve about 7% gain in accuracy with
computational cost about 10% less than baseline. In contrast to previous methods that sacrifice
many-shot accuracy to get few-shot accuracy, we improve on all three splits on ImageNet-LT. From
3 experts to 4 experts, we keep the same many-shot accuracy while increasing the few-shot accuracy,
indicating that we are using the additional computational power to improve on the hardest part of
the data rather than uniformly applying to all samples.

We also list our ResNet-10 and ResNeXt-50 experiments on Table 6 and 8, respectively, to compare
against other works evaluated on these backbones. Our method also achieves lower computational
cost and higher performance when compared to other methods.

Comparison with ensemble method. Since our method requires the joint decision from several
experts, which raw ensembles also do, we also compare against ensembles of LDAM in Fig.7 on
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Table 5: Comparison of different distillation methods. We transfer from a model based on
ResNet-32 with 6 experts to a model of the same type, except with fewer experts. We use CIFAR100-
LT for the following comparison. No expert assignment module is used in the following experi-
ments. Following the procedure for CRD (Tian et al., 2019), we also apply KD when we transfer
from a teacher to students with other distillation methods.

Model Type #expert Distillation Method Accuracy (%)
Teacher 6 49.7

Student

2 No Distillation 46.6
2 KD (Hinton et al., 2015) 47.3
2 CRD (Tian et al., 2019) 47.5
2 PKT (Passalis & Tefas, 2018) 47.2
2 SP (Tung & Mori, 2019) 47.2
3 No Distillation 47.9
3 KD (Hinton et al., 2015) 48.4
3 CRD (Tian et al., 2019) 48.5
3 PKT (Passalis & Tefas, 2018) 48.3
3 SP (Tung & Mori, 2019) 48.7
4 No Distillation 48.7
4 KD (Hinton et al., 2015) 49.3
4 CRD (Tian et al., 2019) 49.0
4 PKT (Passalis & Tefas, 2018) 48.9
4 SP (Tung & Mori, 2019) 49.0
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Figure 7: Comparison between our method and
multiple LDAM models ensembled together. In
the figure, ensembles of LDAM start from 1 en-
semble (original LDAM) to 7 ensembles, and
RIDE starts from 2 experts to 4 experts. Our
method achieves higher accuracy with substan-
tially less computational cost compared to en-
semble method.

CIFAR100-LT. In the figure, even our method with 4 experts has less computational cost than the
minimum computational cost for the ensemble of 2 LDAM models. This indicates that our model
is much more efficient and powerful in terms of computational cost and accuracy than ensemble on
long-tailed datasets.
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Figure 8: t-SNE visualization of LDAM’s and our model’s embedding space of CIFAR100-LT. The
feature embedding of RIDE is more compact for both head and tail classes and better separated.
This behavior greatly reduces the difficulty for the classifier to distinguish the tail category.

t-SNE visualization. We also provide the t-SNE visualization of embedding space on CIFAR100-
LT as in Fig. 8. Compared with the baseline method LDAM, the feature embedding of RIDE is more
compact for both the head and tail classes and better separated from the neighboring classes. This
greatly reduces the difficulty for the classifier to distinguish the tail category.
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What if we apply RIDE to balanced datasets? We also conducted experiments on CIFAR100
to check if our method can achieve similar performance gains on balanced datasets. However, we
only obtained an improvement of about 1%, which is much smaller than the improvements observed
on the CIFAR100-LT. Compared with balanced datasets, long-tailed datasets can get more benefits
from RIDE.

Table 6: Top-1 accuracy comparison with state-of-the-art methods on ImageNet-LT (Liu et al.,
2019) with ResNet-10. Performance on Many-shot (>100), Medum-shot (≤100 & >20) and Few-
shot (≤20) are also provided. Results marked with † are copied from (Liu et al., 2019). Results with
‡ are from (Xiang et al., 2020).

Methods GFlops Many Medium Few Overall
Cross Entropy (CE) † 0.89 (1.0x) 40.9 10.7 0.4 20.9
Focal Loss † (Lin et al., 2017) 0.89 (1.0x) 36.4 29.9 16.0 30.5
Range Loss † (Zhang et al., 2017) 0.89 (1.0x) 35.8 30.3 17.6 30.7
Lifted Loss † (Oh Song et al., 2016) 0.89 (1.0x) 35.8 30.4 17.9 30.8
OLTR (Liu et al., 2019) 0.89 (1.0x) 43.2 35.1 18.5 35.6
LFME (Xiang et al., 2020) - 47.0 37.9 19.2 38.8
Many-shot only ‡ - 59.3
Medium-shot only ‡ - 35.9
Few-shot only ‡ - 14.3
RIDE (2 experts) 0.85 (1.0x) 57.5 40.8 26.9 45.3 (+6.5)
RIDE (3 experts) 0.97 (1.1x) 57.6 41.7 28.0 45.9 (+7.1)
RIDE (4 experts) 1.07 (1.2x) 58.5 42.4 27.7 46.6 (+7.8)

Table 7: Top-1 accuracy comparison with state-of-the-art methods on ImageNet-LT (Liu et al.,
2019) with ResNet-50. Performance on Many-shot (>100), Medum-shot (≤100 & >20) and Few-
shot (≤20) are also provided. Results marked with † are copied from (Kang et al., 2020).

Methods GFlops Many Medium Few Overall
Cross Entropy (CE) † 4.11 (1.0x) 64.0 33.8 5.8 41.6
NCM (Kang et al., 2020) - 53.1 42.3 26.5 44.3
cRT (Kang et al., 2020) 4.11 (1.0x) 58.8 44.0 26.1 47.3
τ -norm (Kang et al., 2020) 4.11 (1.0x) 56.6 44.2 27.4 46.7
LWS (Kang et al., 2020) 4.11 (1.0x) 57.1 45.2 29.3 47.7
RIDE (2 experts) 3.71 (0.9x) 65.8 51.0 34.6 54.4 (+6.7)
RIDE (3 experts) 4.36 (1.1x) 66.2 51.7 34.9 54.9 (+7.2)
RIDE (4 experts) 5.15 (1.3x) 66.2 52.3 36.5 55.4 (+7.7)

Table 8: Top-1 accuracy comparison with state-of-the-art methods on ImageNet-LT (Liu et al.,
2019) with ResNeXt-50. Performance on Many-shot (>100), Medum-shot (≤100 & >20) and
Few-shot (≤20) are also provided. Results marked with † are copied from (Kang et al., 2020).

Methods GFlops Many Medium Few Overall
Cross Entropy (CE) † 4.26 (1.0x) 65.9 37.5 7.7 44.4
NCM (Kang et al., 2020) - 56.6 45.3 28.1 47.3
cRT (Kang et al., 2020) 4.26 (1.0x) 61.8 46.2 27.4 49.6
τ -norm (Kang et al., 2020) 4.26 (1.0x) 59.1 46.9 30.7 49.4
LWS (Kang et al., 2020) 4.26 (1.0x) 60.2 47.2 30.3 49.9
RIDE (2 experts) 3.92 (0.9x) 67.6 52.5 35.0 55.9 (+6.0)
RIDE (3 experts) 4.69 (1.1x) 67.6 53.5 35.9 56.4 (+6.5)
RIDE (4 experts) 5.19 (1.2x) 68.2 53.8 36.0 56.8 (+6.9)
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