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ABSTRACT

Diffusion-based generative models generate samples by mapping noise to data via
the reversal of a diffusion process that typically consists of independent Gaussian
noise in every data coordinate. This diffusion process is, however, not well suited
to the fundamental task of molecular conformer generation where the degrees of
freedom differentiating conformers lie mostly in torsion angles. We, therefore,
propose Torsional Diffusion that generates conformers by leveraging the definition
of a diffusion process over the space Tm, a high dimensional torus representing
torsion angles, and a SE(3) equivariant model capable of accurately predicting
the score over this process. Empirically, we demonstrate that our model outper-
forms state-of-the-art methods in terms of both diversity and precision of gener-
ated conformers, reducing the mean minimum RMSD by respectively 31% and
17%. When compared to Gaussian diffusion models, torsional diffusion enables
significantly more accurate generation while performing two orders of magnitude
fewer inference time-steps.

1 INTRODUCTION

Molecules are identified by their molecular graph, i.e., a set of atoms and the covalent bonds between
them. However, it is the set of structures that the graph realizes when embedded in 3D space, called
conformers, that determine many of its properties. Molecular conformer generation—predicting an
ensemble or distribution over 3D conformers for a given molecular graph—is, therefore, a funda-
mental problem in computational chemistry. Existing approaches consist of methods that sample
from the underlying potential energy surface, which are accurate but slow; or approaches leveraging
chemical heuristics, which are fast but significantly less accurate.

Deep generative models have been explored for molecular conformer generation in the hopes of
combining high accuracy with fast sampling. GeoMol (Ganea et al., 2021) recently demonstrated
competitive performance with a message-passing neural network and a custom parameterization and
assembly procedure. Diffusion generative models (Ho et al., 2020; Song et al., 2021), which learn to
reverse a stochastic process transforming the data distribution into noise, have also shown promise
on this task (Shi et al., 2021; Luo et al., 2021; Xu et al., 2021b). In particular, GeoDiff (Xu et al.,
2021b) uses an SE(3) equivariant score model to reverse a diffusion process which adds independent
Gaussian noise to each atomic coordinate in Euclidean space. Sampling thus consists of denoising a
point cloud where atoms are in random initial positions irrespective of the molecular graph. A large
number (T = 5000) of such denoising steps are needed to accurately generate a conformer from
such a point cloud.

We argue that this approach of diffusing Euclidean coordinates is ill-suited for molecular conformer
generation, where bond lengths and angles can be determined very quickly and relatively accurately
from the graph alone, and the difference between possible conformers lies largely in the torsion
angles (Axelrod & Gomez-Bombarelli, 2020). Instead, we learn to reverse a diffusion that occurs
only over these torsion angle coordinates. This has the effect of significantly reducing the dimen-
sionality of the sample space; the molecules in GEOM-DRUGS, a common conformer generation
dataset (Axelrod & Gomez-Bombarelli, 2020), have, on average, n = 46.2 atoms, corresponding to
a 3n-dimensional Euclidean space, but only m = 8.65 torsion angles of rotatable bonds.
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However, m torsion angle coordinates define not a Euclidean space, but rather an m-dimensional
torus Tm. Thus, we first formulate the forward diffusion, score-matching, reverse diffusion and
denoising procedures over the torus Tm. The theoretical extension of diffusion modeling to non-
Euclidean manifolds was developed very recently by De Bortoli et al. (2022). We build upon their
work to present, to the best of our knowledge, the first extension of diffusion models to a real-world
non-Euclidean domain.

Learning a neural network score model over the input space Tm presents its own challenges. The di-
mensionality of this space varies between molecular graphs, and all the information about the molec-
ular graph would have to be made available to the score model. Additionally, there is no canonical
way to define the torsion angle coordinate about each bond. To circumvent these difficulties, we
instead formulate a torsion update about a particular bond as a geometric (i.e., SE(3)-equivariant)
property of a 3D point cloud, and use 3D-equivariant networks to directly predict these properties
from a point cloud R3n representation of the conformer.

By combining diffusion over a torus with a novel equivariant score model over point clouds,
we achieve state-of-the-art results on the standard GEOM-DRUGS dataset (Axelrod & Gomez-
Bombarelli, 2020). Moreover, we generate samples using only 20 denoising steps—more than two
orders of magnitude fewer than the Euclidean diffusion approach employed by GeoDiff.

2 RELATED WORK

Molecular conformer generation is a fundamental problem in computational chemistry. Ab initio
metadynamics-based methods are considered gold-standards but are too computationally demanding
for most applications. Programs such as CREST (Pracht et al., 2020) use various heuristics to
reduce the number of energy evaluations, but still require an average of 90 core hours (Axelrod &
Gomez-Bombarelli, 2020) to sample the conformers of a single drug-like molecule. In order to make
large molecular screening possible, several rule-based methods such as RDKit ETKDG (Riniker &
Landrum, 2015) and OMEGA (Hawkins et al., 2010) have been developed, offering significantly
faster but less accurate conformer generation. Machine learning approaches (Ganea et al., 2021; Xu
et al., 2021b;a; Luo et al., 2021; Shi et al., 2021), have been developed with the goal of combining
the accuracy of ab initio methods with the speed of rule-based methods.

Torsion angle molecular dynamics refers to the range of molecular dynamics methods (Ryckaert
et al., 1977; Stein et al., 1997; Chen et al., 2005) using torsion angles instead of Cartesian coordinates
as degrees of freedom. This significantly simplifies the potential energy landscape allowing for
longer-time steps in numerical integration. However, TAMD methods have the disadvantage that the
Lagrange equations of motions with torsion angles are more complex than Newton’s in Euclidean
space and naive approaches have a complexity cubic in the size of the system (Mazur & Abagyan,
1989; Mazur et al., 1991). Our method is inspired by these approaches but circumvents the difficulty
of solving the equations of motion by considering the score directly in torsional space.

3 TORSIONAL DIFFUSION

In Torsional Diffusion, we leverage that the bond lengths and angles (collectively local structures)
are already predicted to high accuracy by fast and standard methods such as RDKit, and that gen-
erating the torsion angles around rotatable bonds is the main difficulty of conformer generation.
We, therefore, develop a diffusion-based generative model over torsion angles. During training, the
model is presented with ground-truth conformers with their torsion angles randomly perturbed (to
varying scales) and learns to reverse these perturbations. During inference, our model takes as input
a conformer with local structures predicted by RDKit and random torsion angles, and successively
updates the torsions to generate a new conformer.

In Section 3.1, we formulate the constrained diffusion process over conformers. We find that the tor-
sions are most naturally coordinates on a high-dimensional torus, so in Section 3.2 we describe how
the continuous-time diffusion model framework transfers to data distributions on the torus. How-
ever, instead of defining a score model with inputs on the torus, we build a neural network whose
inputs are conformers viewed as point clouds, but whose outputs for each bond are scores on the
torus. In Section 3.3 we discuss the implications of this juxtaposition in terms of the symmetries
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required of the model, and in Section 3.4 we describe our architecture which satisfies these symme-
tries. Finally, in Section 3.5, we discuss the distributional shift that results from naively training on
conformers with ground truth local structures but generating conformers starting from RDKit local
structures, and our strategy for resolving this distributional shift.

Throughout the exposition, we consider a bond rotatable if severing the bond creates two connected
components of G, each of which has at least two atoms. Notably, this definition excludes torsion
angles in rings / cycles, which are constrained geometrically and cannot be diffused independently.
It includes, however, double bonds which are often considered constrained by cis/trans isomerism. It
also includes bonds to methyl, hydroxyl, or amine groups, whose torsions affect only the placements
of hydrogens.

3.1 CONFORMER DIFFUSION

A molecule is a graph G = (V, E) ∈ G with atoms v ∈ V and (undirected) bonds e ∈ E . A
conformer of a molecule is an assignment V 7→ R3 of each atom to a point in 3D-space, defined
up to global rototranslation. For notational convenience, we suppose there is an ordering of nodes
such that we can regard such a mapping as a vector in R3n where n = |V|; because our formulation
and models never make use of this ordering, they are manifestly permutation equivariant. Then a
conformer c ∈ CG can be regarded as a set of vectors in R3n equivalent under the group action of
SE(3): c = {g(x) | g ∈ SE(3)} for some x ∈ R3n.

For a given G, a conformer c ∈ CG can be defined in terms of intrinsic coordinates: chirality tags
z ∈ {D, L}k where k is the number of chiral centers, a set L ∈ LG of local structures, i.e., bond
lengths and angles (which lie on a manifold given by geometric constraints), and some parameter-
ization of the torsions around each bond. The chirality z is given as part of the identification of
the molecule, and we assume L can be accurately predicted by standard methods; therefore we are
concerned with conformer diffusion of the torsions only, conditioned on fixed G, z, L. Typically,
torsions are specified in terms of dihedral angles; i.e., the torsion around bond BC is given by
the (oriented) dihedral angle between planes ABC,BCD, where A,D are respectively neighbors
of B,C. However, this requires a choice of neighbors A,B, and furthermore changes sign when
considering the bond in the reverse direction CB. We argue that requiring such a choice of neigh-
bors and directions forces an unnatural asymmetry into the learning task, even if the choice is itself
learned as in Ganea et al. (2021).

We instead propose a more natural and geometric parameterization of torsion by considering CG
as a space acted on by the group SO(2)m, where m is the number of freely rotatable bonds. The
group SO(2)m acts upon CG in the following manner. Suppose there is an ordering of rotable bonds
Erot = (e1, . . . , em).1 Then the group element g with an element corresponding to rotation θ in the
ith position, and all other entries equal to the identity, acts upon a conformer c by modifying the
torsion angle around bond ei by θ in the following manner: if (a, b) are the bonded atoms and xa, xb
are their positions, then

c′ = g(c) ⇐⇒ ∃x ∈ c,x′ ∈ c′. x′
V(a) = xV(a) x′

V(b) = R

(
xb − xa
||xb − xa||

θ, xb

)
xV(b) (1)

where xV(a) is the positions of atoms on the same side of the bond as a, and R(θ, xb) ∈ SE(3) is
the rotation by Euler vector θ about xb. This definition does not depend on choice of edge direction
since c is defined only up to global action of SE(3). More informally, rotating bond ei = (a, b) by
θ means a relative rotation of xV(a) and xV(b) where the difference in rotation vectors θb − θa is θ
times the unit vector in the direction xb − xa. This definition is clearly indifferent to edge direction
and is illustrated visually in Figure 1. The action of a generic action in SO(2)m is then given by
sequentially applying the torsion updates for each rotatable bond; they are independent and thus
respect the commutative group structure.

Having defined this group action, if we assume that for given G, z, L that there is a canonical
conformer c∗G(z, L) ∈ CG, then for any c ∈ CG we can identify the group action g ∈ SO(2)m

that takes c∗G to c with c itself, i.e., there is an isomorphism g ↔ g(c∗G(z, L)). We can thus lift
the space of conformers for given G, z, L to the group SO(2)m, which is itself isomorphic to the

1We never make direct use of this ordering so our diffusion and model remain permutation equivariant.
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Figure 1: Torsion updates around a single bond. Rotations are shown in red and Euler vectors in
green. Two equivalent torsion updates (among many possible) are shown for a positive, null, and
negative torsion update, emphasizing the importance of relative rotations only.

m-torus: SO(2)m ∼= Tm ∼= [−π, π)m. The coordinates on the torus then provide the sought-
after parameterization of torsion, which we denote T ∈ Tm. The assembly of 3D coordinates
from intrinsic coordinates z, L, T is thus a bijection: FG : {D, L}k × L × Tm ↔ CG. With this
parameterization, for any fixed z, L, a diffusion over Tm maps to a diffusion on the corresponding
subset of CG.

It may appear that the choice of c∗G(z, L) is important but ambiguous. However, a change in the
choice of c∗G(z, L) merely corresponds to a shift in origin on the m-torus, translating the original
and diffused data distributions but not otherwise changing the diffusion process. Importantly, the
training and sampling routines also do not depend on the choice of coordinate origins, since we
construct our model to operate directly on conformation space CG. Thus, the canonical conformer
c∗G(z, L) may be regarded as merely a formal and notational device to assist the definition of a
coordinate system (and hence diffusion) over the space of intrinsic coordinates, but itself without
any practical implications.

3.2 SCORE MODELLING ON Tm

We now turn to formulating diffusion modelling on the m-torus. In Euclidean diffusion models, the
data distribution x(0) ∈ Rd is the initial distribution for a diffusion process

dx = f(x, t) dt+ g(t) dw t ∈ (0, 1) (2)

which transforms x(0) into (approximately) a simple Gaussian x(1). A neural network trained to
model the score∇x log pt(x) enables sampling from the reverse diffusion,

dx = f(x, t) dt− g2(t)∇x log p(x, t) dt+ g(t) dw̄ (3)

which transforms samples from the simple Gaussian x(1) into the data distribution x(0) (Song et al.,
2021; Anderson, 1982). Access to the diffusion kernel p(x(t) | x(0)) for all times t is sufficient to
train a score model sθ(x, t) via denoising score matching; and for sampling the reverse diffusion via
the Euler-Maruyama solver. We refer to Song et al. (2021) for further details.

The continuous diffusion model formulation can also be applied with relatively few modifications
to compact Riemannian manifolds (De Bortoli et al., 2022). If dw is redefined as Brownian motion
on the manifold, then equation 3 continues to hold, where the score is now an element of the tangent
space ∇x log p(x, t) ∈ TxM . That is, sampling from a geodesic random walk that discretizes the
reverse SDE correctly recovers the original data distribution x(0). While a number of subtleties
exist for diffusion on general manifolds, we focus on Tm and refer interested readers to De Bortoli
et al. (2022) for the general case.

A common choice of diffusion process is the rescaled Brownian motion given by f(x, t) = 0, g(t) =√
d
dtσ

2(t) where σ2(t) is the variance of the heat kernel p(x(t) | x(0)) and is the main parameter of
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the diffusion. Specifically, we use an exponential diffusion σ2(t) = σ2
min(σ

2
max/σ

2
min)

t as in Song &
Ermon (2019). We transfer this SDE to Tm by redefining dw to be the Brownian motion on the torus
Tm viewed as the quotient space Rm/2πZm. Hence, the heat kernel on Tm is a simple wrapping of
the heat kernel on Rm; that is, for any x(t),x(0) ∈ [−π, π)m, we have

p(x(t) | x(0)) ∝
∞∑

d∈Zm

exp

(
−||x(t)− x(0) + 2πd||2

2σ2(t)

)
(4)

Because the space is compact, for sufficiently large σ(1), the prior distribution x(1) approaches a
uniform distribution (De Bortoli et al., 2022) over Tm.

For training via denoising score matching, we compute the scores of this kernel via a numerical ap-
proximation and match in the tangent spaces TxM , which are isomorphic to Rm. For sampling, we
first sample from a uniform prior over the torsions. Then, the Euler-Maruyama solver is generalized
to Riemannian manifolds in terms of a geodesic random walk (De Bortoli et al., 2022), which in the
case of the torus simplifies as the wrapping of the Euler-Maruyama random walk on Rm.

3.3 SCORE EQUIVARIANCE

We now desire a score model which maps from CG to the tangent space of Tm, which is isomorphic
to Rm. We, therefore, use an SE(3)-equivariant score model (Geiger et al., 2020) conditioned on
the input graph sG : R3n 7→ Rm, which can be viewed as a function over CG since for any c ∈ CG
and any x,x′ ∈ c, we have sG(x) = sG(x

′).

An additional symmetry arises from the fact that the underlying physical energy is invariant (or ex-
tremely nearly so) under parity inversion (Quack, 2002); thus our learned density should respect
pG(−c) = pG(c) where −c = {−x | x ∈ c}. In terms of intrinsic coordinates, the chirality and
local structures transform under parity inversion as z 7→ −z, L 7→ L. To see how the torsions T
transform, suppose that the canonical conformer function is exactly equivariant under parity inver-
sion: c∗G(−z, L) = −c∗G(z, L). We also need the following proposition:
Proposition 1. For g ∈ SO(2)n, c ∈ CG, and with the action of g on CG defined previously, we
have −g(c) = (−g)(−c).

Proof. It suffices to consider an action on a single bond as in equation 1. c′ = −g(c) implies

∃x ∈ c,x′ ∈ c′. x′
V(a) = −xV(a) x′

V(b) = −
[
R

(
xb − xa
||xb − xa||

θ, xb

)
xV(b)

]
(5)

On the other hand, c′ = (−g)(−c) implies

∃x ∈ c,x′ ∈ c′. x′
V(a) = −xV(a) x′

V(b) = R

(
xb − xa
||xb − xa||

θ,−xb
)(
−xV(b)

)
(6)

Since the two conditions are the same, we have −g(c) = (−g)(−c).

In particular, it follows that −g(c∗G(z, L)) = (−g)(c∗G(−z, L)). However, given the assembly
function FG defined previously, this is just −FG(z, L, T ) = FG(−z, L,−T ). Thus we see that
T 7→ −T under parity inversion.

Since an invariant density corresponds to an equivariant score, we need sG(FG(T, L, z)) =
−sG(FG(−T, L,−z)), which implies sG(x) = −sG(−x). Thus, the score model must be in-
variant under SE(3) but equivariant under parity inversion of the input point cloud—i.e., it must
output a set of pseudoscalars. While there exist a number of GNN architectures which are SE(3)
equivariant (Jing et al., 2021; Satorras et al., 2021), they are unable to produce pseudoscalar outputs
and hence cannot satisfy the desired symmetry. The problem formulations therefore calls for the use
of equivariant tensor-product based networks (Thomas et al., 2018; Geiger et al., 2020).

3.4 SCORE NETWORK ARCHITECTURE

Overview To perform the torsion score prediction under these symmetry constraints we design a
novel architecture formed by three components: an embedding layer, a series ofK interaction layers
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and a pseudotorque layer. The pseudotorque layer produces pseudoscalar torsion scores τg for every
rotatable bond. Following the notation from Thomas et al. (2018), we represent the node representa-
tions as V (k,l,p)

acm a dictionary with keys the layer k, rotation order l and parity p that contains tensors
with shapes [|V|, nl, 2l + 1] corresponding to the indices of the node, channel and representation
respectively. We use the e3nn library (Geiger et al., 2020) to implement our architecture.

Embedding layer In the embedding layer, we build a radius graph (V, Ermax
) around each atom

on top of the original molecular graph and generate initial scalar embeddings for nodes V (0,0,0)
a and

edges eab combining chemical properties, sinusoidal embeddings of time ϕ(t) (Vaswani et al., 2017)
and, for the edges, a radial basis function representation of their length µ(rab) (Schütt et al., 2017):

Ermax = E ⊔ {(a, b) | rab < rmax}

eab = Υ(e)(feab||µ(rab)||ϕ(t)) ∀(a, b) ∈ Ermax

V (0,0,0)
a = Υ(v)(fa||ϕ(t)) ∀a ∈ V

where Υ(e) and Υ(v) are learnable two-layers MLPs, rab is the Euclidean distance between atoms a
and b, rmax = 5Å is the distance cutoff, fa are the chemical features of atom a, fab are the chemical
features of bond (a, b) if it was part of E and 0 otherwise.

Interaction layers The interaction layers are based on E(3)NN (Geiger et al., 2020) convolu-
tional layers. At each layer, for every pair of nodes in the graph, we construct messages using tensor
products of the current irreducible representation of each node with the spherical harmonic represen-
tations of the normalized edge vector. These messages are themselves irreducible representations,
which are weighted channel-wise by a scalar function of the current scalar representations of the
two nodes and the edge and aggregated with Clebsch-Gordan coefficients.

At every layer k, for every node a, rotation order lo, and output channel c′:

V
(k,lo,po)
ac′mo

=
∑

lf ,li,pi

∑
mf ,mi

C
(lo,mo)
(li,mi)(lf ,mf )

1

|Na|
∑
b∈Na

∑
c

ψ
(k,lo,lf ,li,pi)
abc Y

(lf )
mf (r̂ab) V

(k−1,li,pi)
bcmi

with ψ(k,lo,lf ,li,pi)
abc = Ψ

(k,lo,lf ,li,pi)
c (eab||V (k−1,0,1)

a ||V (k−1,0,1)
b )

where the outer sum is over values of lf , li, pi such that |li − lf | ≤ lo ≤ li + lf and (−1)lf pi = po,
C indicates the Clebsch-Gordan coefficients (Thomas et al., 2018), Na = {b | (a, b) ∈ Emax} the
neighborhood of a and Y the spherical harmonics. The rotational order of the nodes representations
lo and li and of the spherical harmonics of the edges (lf ) are restricted to be at most 2. All the
learnable weights are contained in Ψ, a dictionary of MLPs that compute per-channel weights based
on the edge embeddings and scalar features of the outgoing and incoming node.

Pseudotorque layer The final part of our architecture is a pseudotorque layer that predicts a pseu-
doscalar score τg for each rotatable bond g from the per-node outputs of the interaction layers. For
every rotatable bond, we construct a tensor-valued filter, centered on the bond, from the tensor prod-
uct of the spherical harmonics with a l = 2 representation of the bond axis. Since the parity of the
l = 2 spherical harmonic is even, this representation does not require a choice of bond direction. The
filter is then used to convolve with the representations of every neighbor on a radius graph, and the
products which produce pseudoscalars are passed through odd-function (i.e., with tanh nonlinearity
and no bias) dense layers to produce a single prediction.

For all rotatable bonds g = (g0, g1) ∈ Erot and b ∈ V , let rgb and r̂gb be the magnitude and direction
of the vector connecting the center of bond g and b.

Eτ = {(g, b) | g ∈ Er, b ∈ V, rgb < rmax} egb = Υ(τ)(µ(rgb))

T
(lo,po)
gbmo

=
∑

mg,mr,lr:po=(−1)lr

C
(lo,mo)
(2,mg)(lr,mr)

Y (2)
mf

(r̂g) Y
(lr)
mr

(r̂gb)

τg =
∑

l,pf ,pi:pfpi=−1

∑
mo,mi

C
(0,0)
(l,mf )(l,mi)

1

|Ng|
∑
b∈Ng

∑
c

γ
(l,pi)
gcb T

(l,pf )
gbmf

V
(K,l,pi)
bcmi
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Algorithm 1: Conformer matching
Input: true conformers of G [c1, ...cK ]
Output: approximate conformers for training [ĉ1, ...ĉK ]

generate local structures [L̂1, ...L̂K ] with RDKit;
for (i, j) in [1,K]× [1,K] do

ctemp = von Mises matching(ci, L̂j);
cost[i,j] = RMSD(ci, ctemp);

assignment = linear sum assignment(cost);
for i← 1 to K do

j = assignment[i];
ĉi = differential evolution(ci, L̂j , RMSD);

with γ(l,pi)
gcb = Γ(l,pi)

c (egb||V (K,0,0)
b ||V (K,0,0)

g0 + V (K,0,0)
g1 )

where Υ(τ) and Γ are MLPs with learnable parameters and Ng = {b | (g, b) ∈ Eτ}.

3.5 SAMPLING AND CONFORMER MATCHING

Sampling conformers At inference time, in order to use the Torsional Diffusion on a molecular
graph G with chirality z, we first need to access an estimate sample L̂ containing a set of local
structures from LG. This estimate can be done with high accuracy with rule-based methods; in
particular, we use RDKit ETKDG (Riniker & Landrum, 2015) to produce a conformer whose local
structure we refer to as L̂. We then sample uniformly random initial conformations in the toroidal
space defined by this local structure L̂ by randomly changing each of its torsion angles by U [−π, π].
Samples from the trained model are then generated by performing 20 steps of reverse diffusion on
each of these conformers.

Conformer matching At training time, if we directly diffuse the ground truth conformers, the
model would have access to the exact local structures when learning to match the denoising scores.
Our experiments show that this disparity between training and inference of having exact or estimated
local structures (L versus L̂) causes a distributional shift that hurts the model at inference time. We
bridge this shift at training time by a preprocessing procedure that we refer to as conformer matching.

The essence of this procedure is that we substitute each ground truth conformer c with a synthetic
conformer ĉwith the same chirality z, but with local structures L̂ sampled by RDKit—thus available
at testing time—and made as similar as possible to c. That is, we use RDKit to generate L̂ and change
torsion angles T̂ to minimize RMSD(c, ĉ). Naively, we could sample L̂ ∼ L | G, z from RDKit
independently for each ground truth conformer. However, this nullifies any possible dependence
between L and T that could serve as a potential training signal. Instead, we recognize that the
distributional shift induces a domain adaptation problem that can be solved by matching the RDKit
and ground truth distributions in an optimal sense as follows.

For a molecule with K conformers, we first generate K random local structure estimates from RD-
Kit. To match with the ground truth local structures, we compute the cost of matching each true
conformer with each estimate (so a K2 cost matrix), where the cost is the best RMSD that can be
achieved by modifying the torsions of the RDKit conformer to match the ground truth one. In prac-
tice, we compute an upper bound to this optimal RMSD using the fast von Mises torsion matching
procedure proposed by Stärk et al. (2022). We find an optimal matching of true conformers c to
local structure estimates L̂ by solving the linear sum assignment problem over the approximate cost
matrix (Crouse, 2016). Finally, for each matched pair we find obtain the optimal ĉ by running a
differential evolution optimisation procedure over the torsion angles (Méndez-Lucio et al., 2021).
The complete assignment resulting from the linear sum solution guarantees that there is no distribu-
tional shift in the local structures seen during training and inference. This procedure is summarised
in Algorithm 1.
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Table 1: Performance of various methods on the GEOM-Drugs dataset test-set. Note that GeoDiff
originally used a different set of random splits, so we retrained it to evaluate on the splits from Ganea
et al. (2021)

Cov-R ↑ AMR-R ↓ Cov-P ↑ AMR-P ↓
Model Mean Med Mean Med Mean Med Mean Med

RDKit ETKDG 68.78 76.04 1.042 0.982 71.06 88.24 1.036 0.943
OMEGA 81.64 97.25 0.851 0.771 77.18 96.15 0.951 0.854
CGCF 54.35 56.74 1.248 1.224 24.48 15.00 1.837 1.829
GeoMol 82.43 95.10 0.862 0.837 78.52 94.4 0.933 0.856
GeoDiff 89.43 100 0.842 0.815 63.66 74.01 1.160 1.094
Torsional Diffusion (ours) 96.32 100 0.582 0.565 84.90 94.38 0.778 0.729

4 EXPERIMENTS

Dataset & evaluation We evaluate our method on the GEOM-DRUGS dataset (Axelrod &
Gomez-Bombarelli, 2020), which is composed of a total of 304k molecules each with an associ-
ated set of conformers obtained using CREST. In order to provide a fair comparison with previous
methods, we follow the filtering and splitting from Ganea et al. (2021) and use the same evaluation
metrics: Average Minimum RMSD (AMR) and Coverage (COV). These metrics are reported both
for Recall (R)—how many ground truth conformers are recovered with high accuracy, i.e., close
to a generated conformer—and Precision (P)—how many of the predicted conformers are of high
quality, i.e., close to a ground-truth conformer.

Baselines We compare our performance with a wide variety of existing methods. RDKit ETKDG
(Riniker & Landrum, 2015) is the most popular open-source method. OMEGA (Hawkins et al.,
2010; Hawkins & Nicholls, 2012) is a rule-based commercial package in continuous development.
GraphDG (Simm & Hernández-Lobato, 2019), GeoMol (Ganea et al., 2021), and GeoDiff (Xu et al.,
2021b) are recent machine learning approaches that have achieved competitive or state-of-the-art
performances.

Results & discussion The results presented in Table 1 show that our method outperforms all
previous methods on 6 out of the 8 evaluation metrics reducing by 31% the average minimum recall
RMSD and by 17% the precision RMSD of the previous state-of-the-art method. This highlights the
strength of the presented method and the high diversity obtainable with diffusion models (resulting
in significantly better recall performances). The advantage provided by the Torsional Diffusion
is evident when comparing it to the other method based on diffusion models, GeoDiff. GeoDiff
requires 5k inference steps, and therefore 5k score model evaluations, to obtain the results in Table
1. On the other hand, Torsional Diffusion is able to significantly outperform it with only 20 steps by
restricting the diffusion process in the subspace where most of the molecule’s flexibility lies.

5 CONCLUSION

We presented Torsional Diffusion, a novel method based on score-based diffusion models, to gener-
ate molecular conformers. We defined a diffusion process of the high dimensional torus representing
the space of possible torsion angles and the associated score-matching and reverse diffusion. Then,
we presented a SE(3)-equivariant model to predict the scores in the torsion angle distributions and a
preprocessing technique to bridge the inference distributional shift. Empirically, we obtain state-of-
the-art results on diversity and precision of generated conformers. Moreover, compared to previous
diffusion-based techniques on Euclidean spaces, we are able to generate conformers with two orders
of magnitude fewer time-steps.
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