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Abstract

We present HIVE, an interactive dashboard that supports
exploration and interpretation of hyperbolic embeddings in
deep learning. Hyperbolic spaces naturally capture hier-
archical structure, yet existing visualization tools are either
designed for Euclidean geometry or remain static when cur-
vature is taken into account. HIVE closes this gap by of-
fering 2D projections in the Poincaré disk and integrating
configurable dimensionality-reduction algorithms for hy-
perbolic space, including CO-SNE and HoroPCA. From ex-
pert interviews, we distilled key analytic needs and realized
them in four interaction modes: compare, traverse, tree,
and neighbors. These modes enable real-time, multimodal
analysis through semantic hierarchy tracing, geodesic in-
terpolation, and projection comparison. A small but tar-
geted user study demonstrates that HIVE supports practi-
cal analysis and uncovers meaningful hyperbolic structure.
While currently limited to image and text embeddings, the
dashboard shows promise for broader applications, such
as reinforcement learning and graph discovery, highlight-
ing HIVE’s potential as a useful tool for future hyperbolic
learning scenarios. Source code and a demo are available
at https://github.com/thi jmenni jdam/HIVE.

1. Introduction

Hyperbolic geometry is increasingly adopted in deep learn-
ing for modeling hierarchical, tree-like, and other rela-
tional structures that Euclidean embeddings struggle to cap-
ture [4, 17]. Because volume in hyperbolic space grows
exponentially with radius, it naturally mirrors hierarchical
data [12]. Empirical studies further report gains in spa-
tial awareness, ambiguity resolution, and out-of-distribution
discrimination [7]. Visualizing these embeddings is not
only useful for uncovering the inner workings of hyperbolic
models but also lets practitioners verify that semantic hier-
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HIVE: Hyperbolic Interactive Visualization Explorer

Figure 1. Our system, HIVE, an interactive dashboard for ex-
ploring hierarchical structure in high-dimensional data. Users can
choose projections (HoroPCA or CO-SNE), and explore different
interaction modes (Compare, Traverse, Tree, and Neighbors). The
main view visualizes embeddings in hyperbolic space in the cen-
ter panel, while the right panel shows detailed information for se-
lected points.

archies and distances are preserved in the learned space.
Most existing visualization frameworks, however, are

designed for Euclidean spaces and are not well-suited to
represent the geometry and hierarchical structure of hyper-
bolic space. While visualizations compatible with hyper-
bolic space are mostly static and non-interactive, this limi-
tation restricts researchers’ ability to analyze and interpret
hyperbolic embeddings. The following research questions
are posed to assess whether a dashboard could address this
gap, which are answered using an insight-based evaluation
and structured survey:

* How well can an interactive dashboard support practical
exploration and analysis of high-dimensional hyperbolic
embeddings?

* To what extent could an interactive dashboard help users
gain meaningful insights into key properties of hyperbolic
learning?

To answer these questions, we conducted a requirements
analysis with machine-learning researchers working on hy-
perbolic representations. This process revealed three main



needs: (1) interactive exploration of global hierarchical
structure; (2) support for multiple projection methods; (3)
inspection of individual embeddings. Based on these re-
quirements, we built HIVE (Hyperbolic Interactive Visu-
alization Explorer), a dashboard that renders 2D projec-
tions in the Poincaré disk using two reduction algorithms,
CO-SNE [5] and HoroPCA [1], and offers four interaction
modes: compare, traverse, tree, and neighbors. These al-
low users to explore both the global and local structure of
hyperbolic spaces flexibly and intuitively. Figure 1 shows
the interface in tree mode and dual view, displaying the em-
beddings of both projection methods side by side. Our con-
tributions are:

¢ An interactive system for visualizing hyperbolic embed-
dings with multiple projection options and four modes of
interaction: compare, traverse, tree, and neighbors.

* An evaluation that combines insight-based analysis and a
structured user study.

* A modular open-source framework supporting dataset
switching, real-time updates, and rich user interaction.

2. Related work

Our work intersects hyperbolic representation learning and
interactive visual analytics, connecting advances in hyper-
bolic embeddings with the human-centered tools needed to
interpret them.

Hyperbolic representation learning Nickel and Kiela’s
[14] Poincaré embeddings first showed that the exponen-
tial volume growth of hyperbolic space is ideal for encod-
ing taxonomies and other hierarchies. A follow-up Lorentz
formulation retained this curvature-aware bias while im-
proving optimisation efficiency [15]. Since then, hyper-
bolic embeddings have advanced image classification and
uncertainty calibration [9], zero-shot recognition [11], and
vision-language retrieval. Examples include MERU [4],
HyCoCLIP [17], and HySAC for safe content modera-
tion [18]. These successes increase the demand for tools
that reveal the latent hierarchical structure of hyperbolic
spaces and allow researchers to verify model behavior. Ad-
dressing this need is the primary goal behind the develop-
ment of HIVE.

Interactive visual analytics for embeddings Multime-
dia analytics combines visualization, human interaction,
and analytical routines to explore complex model represen-
tations [24]. The MM4AI agenda frames such tools as a
means for human-Al teaming [8, 20, 23]. Concrete systems
include ReVACNN, which lets users steer CNN training in
real time [2], and a dashboard for probing transformer at-
tention [10].

Figure 2. Two common models of hyperbolic space [15]. Top: the
Lorentz (hyperboloid) model represents points on the upper sheet
of a two-sheeted hyperboloid. Bottom: the Poincaré disk model
maps the same geometry inside the unit disk. Both models de-
scribe identical hyperbolic structures but use different coordinate
systems and reveal different visual properties.

Generic embedding viewers, such as Embedding Projec-
tor [21], Embedding Atlas [19], and WizMap [22], sup-
port scalable navigation but assume Euclidean geometry.
Conversely, browser-based hyperbolic graph viewers render
geodesic layouts yet target only graph topology and offer
limited interaction [13]. None of these tools provides inter-
active, multimodal exploration of high-dimensional hyper-
bolic embeddings.

HIVE fills this gap by combining projection methods for
hyperbolic space with four dedicated interaction modes that
let users analyze both global hierarchies and local neighbor-
hoods in real time.

3. Background

This section outlines the key concepts that underlie our sys-
tem. First, we review hyperbolic geometry. Next, we dis-
cuss two projection methods that form the basis of our vi-
sualization approach.

3.1. Hyperbolic space

The Poincaré ball is the most convenient model for visual-
ization. It represents d-dimensional hyperbolic space as the
open unit ball in R%:

D'={peR¥:pl+-. - +pi<1}.

In this model, the geodesics (shortest paths) are circular arcs
that meet the boundary orthogonally. Although distances,
areas, and volumes are distorted relative to Euclidean space,



the model is conformal, so angles are preserved. This prop-
erty makes it well-suited to visualizing hierarchical struc-
ture.

The hyperboloid, or Lorentz, model embeds d-
dimensional hyperbolic space in R+ as:

Ha={p€R™" :pf —(pi+ - +p3) =1 po>0},
With geometry defined by the Lorentz product:

pogq=pogo— (P11 + -+ Paqa)-

Because isometries can be expressed linearly, distances and
geodesics have simple closed forms, giving the model good
numerical stability for optimization [15]. The hyperboloid
can be projected to the Poincaré ball using stereographic
projection, recovering conformality.

3.2. Hyperbolic projection methods

HoroPCA extends principal component analysis from Eu-
clidean to hyperbolic space [1]. Standard PCA relies on
linear projections and therefore ignores negative curvature.
HoroPCA instead projects data onto horospheres, surfaces
orthogonal to a point at infinity within the Poincaré ball,
naturally preserving hyperbolic geometry. Many hyperbolic
models output embeddings in the Lorentz representation, so
we first map them to the Poincaré ball; this conversion pre-
serves geometry while improving interpretability in two di-
mensions.

CO-SNE adapts the t-SNE algorithm to hyperbolic space
[5]. Where t-SNE minimizes the Kullback—Leibler diver-
gence between pairwise similarities in Euclidean space,
CO-SNE measures similarity with hyperbolic distance in-
side the Poincaré ball, thereby maintaining the hierarchi-
cal relationships encoded by curvature. As with HoroPCA,
embeddings are transferred to the Poincaré ball before opti-
mization.

4. Methodology

This section outlines the methodological components of
HIVE, the system architecture, and the interaction modes
that enable detailed inspection of the embedding space.

4.1. Requirements Analysis

We first conducted a requirements analysis with researchers
in the field to develop a tool supporting meaningful explo-
ration of hyperbolic representations. The identified core re-
quirements led directly to the following key features: (1) in-
teractive exploration of the two-dimensional Poincaré disk,
enabling complementary views of hyperbolic geometry;
(2) configurable projection methods, such as CO-SNE and
HoroPCA, facilitating structural comparisons between em-
bedding techniques; and (3) capabilities for selecting single
or multiple embeddings for detailed analysis. Additionally,
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Figure 3. HIVE processing pipeline. Samples are embedded in
hyperbolic space, reduced to two dimensions, and rendered for
interactive exploration.

researchers emphasized the utility of a traversal tool that
allows users to view the intermediate embeddings between
two selected projected points, assisting in comprehending
transitions within hyperbolic embedding spaces. These in-
sights significantly guided the design and implementation
of HIVE.

4.2. System Architecture

HIVE in its current form visualizes two hierarchical mul-
timodal datasets: GRIT [6] and ImageNet-1K [3]. Each
image and text sample is embedded with a configurable en-
coder; the current implementation uses HyCoCLIP [17].

The encoder produces a high-dimensional representation
in the Lorentz model, which is converted to the equivalent
Poincaré-ball form. HIVE then applies two curvature-aware
reduction techniques, HoroPCA and CO-SNE, mapping the
high-dimensional points to two-dimensional coordinates in-
side the Poincaré disk. These 2D projections form the basis
for all interactive views. Figure 3 shows the full HIVE pro-
cessing pipeline.

4.3. Dashboard Design

The dashboard consists of three panels, as shown in Fig-
ure |: a configuration panel on the left, a central visualiza-
tion area, and a detail panel on the right. In the configuration
panel, users can select the dataset, projection method, inter-
action mode, and optionally enable Dual View. All selec-
tions made in this panel directly determine what is shown in
the central visualization area. When Dual View is enabled,
the central panel displays two projection methods side by
side. These views are fully linked as clicking a point in one
panel automatically highlights the corresponding point in
the other, enabling direct visual comparison. The content of
the detail panel varies depending on the selected interaction
mode.

4.4. Interaction Modes

The four interaction modes: compare, traverse, tree, and
neighbors allow distinct ways for users to explore and an-
alyze the embedding space. Each mode reconfigures the
dashboard to support a specific analytical intent.



Compare Users can simultaneously visualize and analyze
up to five selected embeddings, each shown with its associ-
ated image or textual description. This allows direct explo-
ration and comparison of the embedding space, as shown in
Figure 4a.

Neighbors Users select a point to inspect its k nearest
neighbors. Given a dataset D = {x1,...,xn}, a query
point x, and an arbitrary distance function d, the nearest
neighbors are defined as:

NN (z) = arg top,, {d(z,x;) | z; € D},

where arg top,, selects the k& points with the smallest dis-
tances to x. The distance function d can be Euclidean, hy-
perbolic, or another metric. The rightmost panel highlights
the images or texts of these neighbors, enabling users to as-
sess spatial and semantic proximity. An example of a point
and its corresponding neighbors is shown in Figure 4b.

Tree Users visualize hierarchical relationships around a
selected embedding, showing parent and child connections
in the semantic taxonomy. In this mode, the right panel ren-
ders the local hierarchy, displaying both textual and visual
context for the selected point, its parent, and its children.
The tree visualization makes explicit the relationships be-
tween abstract and concrete concepts, where nodes closer
to the origin should represent higher-level semantics. Fig-
ure 4c shows an example hierarchy for a class in ImageNet.

Traversal Users can create paths between two embed-
dings in Lorentz space, interpolating intermediate points
along the shortest geodesic. Given two points s,t € L",
intermediate points are computed using logarithmic map-
ping at the origin, following formulas presented in [17].
After exponential mapping back to hyperbolic space, each
interpolated point is matched to its nearest neighbor using
the same nearest-neighbor retrieval method defined above.
Duplicate matches are removed, resulting in a discrete ap-
proximation of the geodesic path. The length of the path is
configurable through the left panel. The detail panel visual-
izes the sampled sequence, with each intermediate embed-
ding linked to its original sample and metadata. Figure 4d
demonstrates an example traversal with a path of length 3.

5. Evaluation

Evaluating multimedia analytics systems requires balanc-
ing qualitative insight with quantitative assessment. As ar-
gued by North [16], insight-based evaluation captures rich,
open-ended user interactions, while benchmark-driven as-
sessments provide structured metrics. Building on this prin-
ciple, we adopt an evaluation approach consisting of two

(a) Compare mode displays selected embeddings
along with their associated samples for direct inspec-
tion.

(b) Neighbors mode highlights the & nearest neigh-
bors of a selected point based on hyperbolic distance.
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(c) Tree mode visualizes local hierarchical structure
around a selected embedding, showing parent and
child relationships.
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(d) Traverse mode visualizes a geodesic path between
two selected embeddings. Intermediate points are

sampled along the geodesic and matched to their near-
est neighbors in the dataset.

Figure 4. The four interaction modes in HIVE, each combining a
central visualization panel with a context-sensitive detail panel.



Table 1. Average Likert-scale scores for each evaluation aspect.
Scores range from 1 (strongly disagree) to 5 (strongly agree).

Aspect Mean Score
Usefulness 4.5
Quality of Visualization 4.8
User Experience 4.7
Overall Average 4.7

complementary components: (1) an insight-based evalua-
tion to explore user interaction and reflection, and (2) a
structured Likert-scale survey to quantify perceptions of us-
ability. Due to the specialized nature of hyperbolic learning,
we limited our evaluation to a small but targeted group of
five expert users with relevant domain experience.

5.1. Likert-Scale Survey

We conducted a structured Likert-scale survey to quantify
user perceptions of Usefulness, Quality of Visualization,
and User Experience. The full survey is provided in the
supplementary material. Each dimension was measured us-
ing multiple items on a five-point Likert scale (1 = Strongly
Disagree, 5 = Strongly Agree). Results are summarized in
Table 1.

The survey indicates that participants evaluated the dash-
board very positively across all aspects. Quality of Visu-
alization received the highest score (4.8), highlighting the
clarity and expressiveness of the visual components. User
Experience (4.7) suggests the interface was intuitive and re-
sponsive, while Usefulness (4.5) reflects the perceived value
for exploring hyperbolic embeddings.

Participants were also invited to provide open-ended
feedback. Visualization of the tree structure was particu-
larly appreciated, and users found the traversal feature valu-
able for revealing hierarchical relationships.

5.2. Insight-Based Evaluation

An insight-based evaluation was performed with the same
participants. After a brief introduction to the dashboard,
participants explored the system freely without predefined
tasks. They then reflected on what they learned about the
embedding space and provided informal feedback, which
also inspired ideas for further use cases.

A key shared observation was the difference between
projection methods: participants noted that CO-SNE of-
ten produced more coherent neighborhoods than HoroPCA.
Another consistent finding was the global spatial arrange-
ment of modalities as text embeddings appeared near the
center of the Poincaré disk, while image embeddings were
positioned near the boundary. This indicates that the HyCo-
Clip model [17] successfully captured the greater generality
of text compared to the specificity of images.

Both the tree and traversal features were received pos-
itively. Tree mode helped validate semantic hierarchies
and quickly reveal non-hierarchical structures in the em-
beddings, while traversal mode supported the inspection
of intermediate representations. In some cases, partici-
pants noted semantic inconsistencies in the resulting trees
or traversals, reinforcing the dashboard’s value as a diag-
nostic tool for identifying problematic embeddings.

5.3. Suggested Improvements

Evaluation feedback highlighted several directions for fu-
ture development. Participants consistently recommended
additional features and dataset support to enhance the dash-
board’s utility for research.

Suggestions included visualizing entailment cones to
better reveal local structure in hyperbolic space, as this
is more relevant than standard neighbor retrieval in non-
Euclidean geometry. Another frequently requested im-
provement was support for loading and visualizing custom
or larger datasets. Larger datasets would also enhance the
usefulness of traversal mode, which relies on a higher den-
sity of embeddings to generate meaningful paths between
points.

6. Conclusion

This work addressed the lack of dedicated tools for explor-
ing and interpreting hyperbolic embeddings. By conducting
a requirements analysis with researchers, we identified the
need for interactive, multimodal visualization tools that sur-
pass the limitations of static hyperbolic plots and Euclidean-
focused dashboards. This motivated the development of
HIVE, a modular dashboard that enables the analysis of
high-dimensional hyperbolic embeddings through various
projection methods and interaction modes. HIVE supports
both global and local structure analysis with its comparison,
traversal, tree, and neighbors functionalities.

To evaluate HIVE, we formulated two research ques-
tions. The first, concerning the effectiveness of an in-
teractive dashboard for practical exploration and analysis
of high-dimensional hyperbolic embeddings, was assessed
through a structured Likert-scale survey. The results indi-
cated high ratings for usefulness, visualization quality, and
user experience, suggesting that the tool is effective and in-
tuitive for practical analysis.

The second research question focused on the extent to
which the dashboard facilitates meaningful insights into the
properties of hyperbolic learning. An insight-based evalua-
tion showed that participants were able to interpret semantic
structures in the embedding space, such as the global ar-
rangement of modalities and the hierarchical relationships
between general and specific embeddings. These findings
suggest that HIVE enables users to uncover important as-
pects of hyperbolic learning.



While current insights are closely linked to the dash-
board’s main use case, visualizing semantic structure in
multimodal hyperbolic embeddings, participants also iden-
tified several promising directions for future applications.
These suggestions highlight HIVE’s broader potential for
supporting a variety of research scenarios. To realize this
potential, further extensions are needed to accommodate
new datasets and analytical tasks. In summary, our eval-
uation on a small but targeted group of experts suggests that
HIVE provides a robust foundation for the exploration of
hyperbolic embeddings and offers a valuable starting point
for future developments in this area.
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