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Abstract

We present HIVE, an interactive dashboard that supports001
exploration and interpretation of hyperbolic embeddings in002
deep learning. Hyperbolic spaces naturally capture hier-003
archical structure, yet existing visualization tools are ei-004
ther designed for Euclidean geometry or remain static when005
curvature is taken into account. HIVE closes this gap by006
offering 2D projections in the Poincaré disk and integrat-007
ing configurable dimensionality-reduction algorithms, in-008
cluding CO-SNE and HoroPCA. From expert interviews we009
distilled four analytic needs and realized them in four in-010
teraction modes—comparison, traversal, tree, and neigh-011
bors. These modes enable real-time, multimodal analysis012
through semantic hierarchy tracing, geodesic interpolation,013
and projection comparison. A hybrid user study demon-014
strates that HIVE supports practical analysis and uncov-015
ers meaningful hyperbolic structure. While currently lim-016
ited to image and text embeddings, the dashboard shows017
promise for broader applications, such as reinforcement018
learning and graph discovery, highlighting HIVE’s poten-019
tial as a useful tool for future hyperbolic learning scenar-020
ios. Source code is available at https://anonymous.021
4open.science/r/multimedia-9FF0.022

1. Introduction023

Hyperbolic geometry is increasingly adopted in deep learn-024
ing for modeling hierarchical, tree-like, and other rela-025
tional structures that Euclidean embeddings struggle to cap-026
ture [4, 17]. Because volume in hyperbolic space grows027
exponentially with radius, it naturally mirrors hierarchical028
data [12]. Empirical studies further report gains in spa-029
tial awareness, ambiguity resolution, and out-of-distribution030
discrimination [7]. Visualizing these embeddings is not031
only useful for uncovering the inner workings of hyperbolic032
models but also lets practitioners verify that semantic hier-033
archies and distances are preserved in the learned space.034

Most existing visualization frameworks, however, are035

Figure 1. Our system, HIVE, an interactive dashboard for ex-
ploring hierarchical structure in high-dimensional data. Users can
choose projections (HoroPCA or CO-SNE), and explore different
interaction modes (Compare, Traverse, Tree, and Neighbors). The
main view visualises embeddings in hyperbolic space in the cen-
tre panel, while the right panel shows detailed information for se-
lected points.

designed for Euclidean spaces and are not well-suited to 036
represent the geometry and hierarchical structure of hyper- 037
bolic space. While visualizations compatible with hyper- 038
bolic space are mostly static and not interactive, limiting 039
researchers’ ability to analyze and interpret hyperbolic em- 040
beddings. The following research questions are posed in 041
order to assess whether a dashboard could address this gap, 042
which are answered using an insight-based evaluation and 043
structured survey: 044

• How well can an interactive dashboard support practical 045
exploration and analysis of high-dimensional hyperbolic 046
embeddings? 047

• To what extent could an interactive dashboard help users 048
gain meaningful insights into key properties of hyperbolic 049
learning? 050

To answer these questions, we conducted a requirements 051
analysis with machine-learning researchers working on hy- 052
perbolic representations. This process revealed three main 053
needs: (1) interactive exploration of global hierarchical 054
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structure; (2) support for multiple projection methods; and055
(3) inspection of individual embeddings. Based on these056
requirements, we built HIVE (Hyperbolic Interactive Vi-057
sualization Explorer), a dashboard that renders 2D projec-058
tions in the Poincaré disk using two reduction algorithms,059
CO-SNE [5] and HoroPCA [1], and offers four interaction060
modes: comparison, traversal, tree, and neighbors. These061
allow users to explore the global and local structure of hy-062
perbolic spaces in a flexible and intuitive manner. Figure 1063
shows the interface. Our contributions are:064

• An interactive system for visualizing hyperbolic embed-065
dings with multiple projection options and four core fea-066
tures: comparison, traversal, tree, and neighbors.067

• A hybrid evaluation that combines insight-based analysis068
and a structured user study.069

• A modular open-source framework supporting dataset070
switching, real-time updates, and rich user interaction.071

2. Related work072

Our work intersects hyperbolic representation learning and073
interactive visual analytics, connecting advances in hyper-074
bolic embeddings with the human-centered tools needed to075
interpret them.076

2.1. Hyperbolic representation learning077

Nickel and Kiela’s Poincaré embeddings first showed that078
the exponential volume growth of hyperbolic space is079
ideal for encoding taxonomies and other hierarchies [14].080
A follow-up Lorentz formulation retained this curvature-081
aware bias while improving optimisation efficiency [15].082
Since then, hyperbolic embeddings have advanced im-083
age classification and uncertainty calibration [9], zero-shot084
recognition [11], and vision–language retrieval. Examples085
include MERU [4], HyCoCLIP [17], and HySAC for safe086
content moderation [18]. These successes increase the de-087
mand for tools that expose the latent hierarchical structure088
of hyperbolic spaces and allow researchers to verify model089
behaviour.090

2.2. Interactive visual analytics for embeddings091

Multimedia analytics combines visualisation, human inter-092
action, and analytical routines to explore complex model093
representations [24]. The MM4AI agenda frames such tools094
as a means for human–AI teaming [8, 20, 23]. Concrete sys-095
tems include ReVACNN, which lets users steer CNN train-096
ing in real time [2], and a dashboard for probing transformer097
attention [10].098

Generic embedding viewers, such as Embedding Projec-099
tor [21], Embedding Atlas [19], and WizMap [22], sup-100
port scalable navigation but assume Euclidean geometry.101
Conversely, browser-based hyperbolic graph viewers render102
geodesic layouts yet target only graph topology and offer103

limited interaction [13]. None of these tools provide inter- 104
active, multimodal exploration of high-dimensional hyper- 105
bolic embeddings. 106

HIVE fills this gap by combining projection methods for 107
hyperbolic space with four dedicated interaction modes that 108
let users analyze both global hierarchies and local neighbor- 109
hoods in real time. 110

3. Background 111

This section outlines the key concepts that underlie our sys- 112
tem. First, we review hyperbolic geometry. Next, we in- 113
troduce two projection methods that form the basis of our 114
visualization approach. 115

Figure 2. Two common models of hyperbolic space [15]. Top:
the Lorentz (hyperboloid) model represents points on the upper
sheet of a two-sheeted hyperboloid. Bottom: the Poincaré disk
model maps the same geometry inside the unit disk. Both models
describe identical hyperbolic structure but use different coordinate
systems and reveal different visual properties.

3.1. Hyperbolic space 116

The Poincaré ball is the most convenient model for visual- 117
ization. It represents d-dimensional hyperbolic space as the 118
open unit ball in Rd: 119

Dd = { p ∈ Rd : p21 + · · ·+ p2d < 1 }. 120

In this model the geodesics (shortest paths) are circular arcs 121
that meet the boundary orthogonally. Although distances, 122
areas, and volumes are distorted relative to Euclidean space, 123
the model is conformal, so angles are preserved. This prop- 124
erty makes it well suited to visualizing hierarchical struc- 125
ture. 126

The hyperboloid, or Lorentz, model embeds d- 127
dimensional hyperbolic space in Rd+1 as 128

Hd = { p ∈ Rd+1 : p20 − (p21 + · · ·+ p2d) = 1, p0 > 0 }, 129
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with geometry defined by the Lorentz product130

p ◦ q = p0q0 − (p1q1 + · · ·+ pdqd).131

Because isometries can be expressed linearly, distances and132
geodesics have simple closed forms, giving the model good133
numerical stability for optimization. The hyperboloid can134
be projected to the Poincaré ball using stereographic pro-135
jection, recovering conformality.136

3.2. Hyperbolic projection methods137

HoroPCA extends principal component analysis from Eu-138
clidean to hyperbolic space [1]. Standard PCA relies on139
linear projections and therefore ignores negative curvature.140
HoroPCA instead projects data onto horospheres, surfaces141
orthogonal to a point at infinity within the Poincaré ball,142
naturally preserving hyperbolic geometry. Many hyperbolic143
models output embeddings in the Lorentz representation, so144
we first map them to the Poincaré ball; this conversion pre-145
serves geometry while improving interpretability in two di-146
mensions.147

CO-SNE adapts the t-SNE algorithm to hyperbolic space148
[5]. Where t-SNE minimizes the Kullback–Leibler diver-149
gence between pairwise similarities in Euclidean space,150
CO-SNE measures similarity with hyperbolic distance in-151
side the Poincaré ball, thereby maintaining the hierarchi-152
cal relationships encoded by curvature. As with HoroPCA,153
embeddings are transferred to the Poincaré ball before opti-154
mization.155

4. Methodology156

This section outlines the methodological components of157
HIVE, the system architecture, and the interaction modes158
that enable detailed inspection of the embedding space.159

4.1. Requirements Analysis160

We first conducted a requirements analysis with researchers161
in the field to develop a tool supporting meaningful explo-162
ration of hyperbolic representations. The identified core163
requirements led directly to the following key features:164
(1) interactive exploration of the two-dimensional Poincaré165
disk, enabling complementary views of hyperbolic geome-166
try; (2) configurable projection methods, such as CO-SNE167
and HoroPCA, facilitating structural comparisons between168
embedding techniques; and (3) capabilities for selecting169
single or multiple embeddings for detailed analysis. Ad-170
ditionally, researchers emphasized the utility of a traversal171
tool that includes original sample representations for in-172
termediate embeddings, assisting users in comprehending173
transitions within hyperbolic embedding spaces. These in-174
sights significantly guided the design and implementation175
of HIVE.176

4.2. System Architecture 177

HIVE in its current form visualizes two hierarchical mul- 178
timodal datasets: GRIT [6] and ImageNet-1K [3]. Each 179
image and text sample is embedded with a configurable en- 180
coder; the current implementation uses HyCoCLIP [17]. 181

The encoder produces a high-dimensional representation 182
in the Lorentz model, which is converted to the equivalent 183
Poincaré-ball form. HIVE then applies two curvature-aware 184
reduction techniques, HoroPCA and CO-SNE, mapping the 185
high-dimensional points to two-dimensional coordinates in- 186
side the Poincaré disk. These 2D projections form the basis 187
for all interactive views. Figure 3 shows the full HIVE pro- 188
cessing pipeline. 189

Figure 3. HIVE processing pipeline. Samples are embedded in
hyperbolic space, reduced to two dimensions, and rendered for
interactive exploration.

4.3. Interaction Modes 190

The four interaction modes shown in Figure 4 provide dis- 191
tinct ways for users to explore and analyze the embedding 192
space. Each mode reconfigures the dashboard to support a 193
specific analytical intent. 194

Comparison Users can simultaneously visualize and an- 195
alyze up to five selected embeddings, each shown with its 196
associated image or textual description. This allows direct 197
comparison of embedding characteristics. 198

Neighbors Users select a point to inspect its local embed- 199
ding structure by retrieving its k nearest neighbors. Given 200
a dataset D = {x1, . . . , xN}, a query point x, and an arbi- 201
trary distance function d, the nearest neighbors are defined 202
as: 203

NNk(x) = arg topk {d(x, xi) | xi ∈ D} , 204

where arg topk selects the k points with the smallest dis- 205
tances to x. The distance function d can be Euclidean, hy- 206
perbolic, or another metric. The detail panel highlights the 207
images or texts of these neighbors, enabling users to assess 208
spatial and semantic proximity. 209

Tree Users visualize hierarchical relationships around a 210
selected embedding, showing parent and child connections 211
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in the semantic taxonomy. In this mode, the right panel ren-212
ders the local hierarchy, displaying both textual and visual213
context for the selected point, its parent, and its children.214
The tree visualization makes explicit the relationships be-215
tween abstract and concrete concepts, with nodes closer to216
the origin representing higher-level semantics. Figure 5a217
shows an example hierarchy for a class in ImageNet.218

Traversal Users can create paths between two embed-219
dings in Lorentz space, interpolating intermediate points220
along the shortest geodesic. Given two points s, t ∈ Ln,221
intermediate points are computed using logarithmic map-222
ping at the origin, following formulas presented in [17].223
After exponential mapping back to hyperbolic space, each224
interpolated point is matched to its nearest neighbor using225
the same nearest-neighbor retrieval method defined above.226
Duplicate matches are removed, resulting in a discrete ap-227
proximation of the geodesic path. The detail panel visual-228
izes the sampled sequence, with each intermediate embed-229
ding linked to its original sample and metadata. Figure 5b230
demonstrates a typical traversal, showing a progression of231
images along the path.232

Figure 4. Interaction modes in the HIVE system. Users can ex-
plore the embedding space through four main modes: Compare,
Traverse, Tree, and Neighbors.

(a) Fish tree. A visual and tex-
tual hierarchy for the class tench,
showing the WordNet label, defi-
nition, and a set of representative
images at different semantic lev-
els.

(b) Traversal. A path through the
hyperbolic embedding space is illus-
trated via selected points and asso-
ciated images, showing classes (e.g.,
snake, bird, chameleon) are con-
nected along the embedding mani-
fold.

Figure 5. Overview of tree and traversal. (a) A class-specific hi-
erarchy for the fish category ”tench” (b) A traversal through the
hyperbolic embedding space with corresponding image previews.

5. Evaluation 233

Evaluating multimedia analytics systems requires balanc- 234
ing qualitative insight with quantitative assessment. As ar- 235
gued by North [16], insight-based evaluation captures rich, 236
open-ended user interactions, while benchmark-driven as- 237
sessments provide structured metrics. Building on this prin- 238
ciple, we adopt a hybrid evaluation approach consisting of 239
two complementary components: (1) an insight-based eval- 240
uation to explore user interaction and reflection, and (2) a 241
structured Likert-scale survey to quantify perceptions of us- 242
ability. 243

5.1. Likert-Scale Survey 244

We conducted a structured Likert-scale survey with four 245
participants to quantify user perceptions of Usefulness, 246
Quality of Visualization, and User Experience. The full 247
survey is provided in the supplementary material. Each di- 248
mension was measured using multiple items on a five-point 249
Likert scale (1 = Strongly Disagree, 5 = Strongly Agree). 250
Results are summarized in Table 1. 251

Table 1. Average Likert-scale scores for each evaluation aspect.
Scores range from 1 (strongly disagree) to 5 (strongly agree).

Aspect Mean Score

Usefulness 4.6
Quality of Visualization 4.8
User Experience 4.7

Overall Average 4.7

The survey indicates that participants evaluated the dash- 252
board very positively across all aspects. Quality of Visu- 253
alization received the highest score (4.8), highlighting the 254
clarity and expressiveness of the visual components. User 255
Experience (4.7) suggests the interface was intuitive and re- 256
sponsive, while Usefulness (4.6) reflects the perceived value 257
for exploring hyperbolic embeddings. 258

Participants were also invited to provide open-ended 259
feedback. Visualization of the tree structure was particu- 260
larly appreciated, and users found the traversal feature valu- 261
able for revealing hierarchical relationships. 262

5.2. Insight-Based Evaluation 263

An insight-based evaluation was performed with the same 264
participants. After a brief introduction to the dashboard, 265
participants explored the system freely without predefined 266
tasks. They then reflected on what they learned about the 267
embedding space and provided informal feedback, which 268
also inspired ideas for further use cases. 269

A key shared observation was the difference between 270
projection methods: participants noted that CO-SNE of- 271
ten produced more coherent neighborhoods than HoroPCA. 272
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Another consistent finding was the global spatial arrange-273
ment of modalities as text embeddings appeared near the274
center of the Poincaré disk, while image embeddings were275
positioned near the boundary. This was interpreted as re-276
flecting the greater generality of text compared to the speci-277
ficity of images.278

Both tree and traversal features were received positively.279
Tree mode helped validate semantic hierarchies and quickly280
spot misclassifications, while traversal mode supported ex-281
ploration of intermediate representations. In some cases,282
traversals or trees appeared semantically inconsistent, lead-283
ing participants to see the dashboard as a useful tool for284
diagnosing incorrect embeddings.285

5.3. Suggested Improvements286

Evaluation feedback highlighted several directions for fu-287
ture development. Participants consistently recommended288
additional features and dataset support to enhance the dash-289
board’s utility for research.290

Suggestions included visualizing entailment cones to291
better reveal local structure in hyperbolic space, since this292
is more relevant than standard neighbor retrieval in non-293
Euclidean geometry. Another frequently requested im-294
provement was the ability to load and visualize custom or295
larger datasets, such as scene composition.296

6. Conclusion297

This work addressed the lack of dedicated tools for explor-298
ing and interpreting hyperbolic embeddings. By conducting299
a requirements analysis with researchers, we identified the300
need for interactive, multimodal visualization tools that sur-301
pass the limitations of static hyperbolic plots and Euclidean-302
focused dashboards. This motivated the development of303
HIVE, a modular dashboard that enables the analysis of304
high-dimensional hyperbolic embeddings through various305
projection methods and interaction modes. HIVE supports306
both global and local structure analysis with its comparison,307
traversal, tree, and neighbors functionalities.308

To evaluate HIVE, we formulated two research ques-309
tions. The first, concerning the effectiveness of an in-310
teractive dashboard for practical exploration and analysis311
of high-dimensional hyperbolic embeddings, was assessed312
through a structured Likert-scale survey. The results indi-313
cated high ratings for usefulness, visualization quality, and314
user experience, suggesting that the tool is effective and in-315
tuitive for practical analysis.316

The second research question focused on the extent to317
which the dashboard facilitates meaningful insights into the318
properties of hyperbolic learning. An insight-based evalua-319
tion showed that participants were able to interpret semantic320
structures in the embedding space, such as the global ar-321
rangement of modalities and the hierarchical relationships322
between general and specific embeddings. These findings323

suggest that HIVE enables users to uncover important as- 324
pects of hyperbolic learning. 325

While current insights are closely linked to the dash- 326
board’s main use case—visualizing semantic structure 327
in multimodal hyperbolic embeddings—participants also 328
identified several promising directions for future applica- 329
tions. These suggestions highlight HIVE’s broader poten- 330
tial for supporting a variety of research scenarios. To real- 331
ize this potential, further extensions are needed to accom- 332
modate new datasets and analytical tasks. In summary, our 333
evaluation suggests that HIVE provides a robust foundation 334
for the exploration of hyperbolic embeddings and offers a 335
valuable starting point for future developments in this area. 336
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