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ABSTRACT

With the number of Alzheimer’s patients reaching 5 million in 2014
according to the U.S. Center for Disease Control and Prevention, in-
creasing emphasis has been placed on identifying and understanding
its precursor condition, Mild Cognitive Impairment (MCI). MCI is
characterized by subtle but abnormal cognitive decline and is chal-
lenging to detect without formal testing. Neuropsychologists use
paper-and-pencil tests such as the Trail-Making Test (TMT) for diag-
nosis, and ongoing research places importance on high-granularity
sketch data from digital TMTs. We present SmartStrokes, a digital
TMT app designed to simulate the paper-and-pencil testing experi-
ence on a tablet and stylus. Our contribution frames the principles of
digital sketch recognition and Human-Computer Interaction (HCI)
into the existing neuropsychological test, outlining the creation of
a pair of classification models that identify MCI on an individual
segmented line basis. Such a per-line classification method which
could provide localized sketching behavior indicative of MCI. We
also present an interface for the digital TMT and a refinement of line
segmentation algorithms from previous research to better distinguish
between the actions that a participant takes when completing the
exam.

Index Terms: Applied computing—Health Informatics; Human-
centered computing—Human computer interaction; Human-
centered computing—Tablet computers

1 INTRODUCTION

The U.S. Center for Disease Control and Prevention has reported 5
million Alzheimer’s patients in 2014, with the expected number to
more than double to 13.9 million by 2060. Due to advancements
in interventions aimed at mild-to-moderate cases of Alzheimer’s
disease, neuropsychologists have placed an increasing emphasis
on early detection of Mild Cognitive Impairment (MCI) to better
preserve quality of life [4, 20, 34]. A clinical neuropsychologist typi-
cally conducts paper-and-pencil cognitive examinations on a patient
to help detect MCI. This process is historically laborious, requires
multiple rounds of testing, and frequently requires non-standardized
subjective analysis of a patient’s subtle behavioral patterns. Digitiz-
ing these clinical examinations, specifically the Trail-Making Test
among them, has allowed researchers to attempt to aid the diagno-
sis process by employing machine learning for behavioral analysis.
Existing work in this space has not yet fully leveraged recognition
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Figure 1: A sample completed test in our SmartStrokes app. The
interface is designed to be as close as possible to an actual paper-
and-pencil test

techniques used in digital sketch recognition, particularly research
that links sketching with cognition. In particular, the application of
HCI principles to detect MCI via digitized testing interfaces in the
context of neuropsychology is a topic we believe has not yet fully
explored. Our contribution presented in this paper is to integrate HCI
and digital sketch recognition into the domain of neuropsychology
to deliver more granular recognition on a digitized TMT. We analyze
and classify individual test segments rather than the more traditional
method of one determination for an entire test. We also discuss the
limitations and potential avenues for future research that surfaced
during the completion of this research.

1.1 Mild Cognitive Impairment

The characteristics of MCI were initially established as part of the
Global Deterioration Scale (DGS) [47], defining it as a syndrome
where an individual’s cognitive decline is greater than expected for
their age [24, 48]. It is considered to be a precursor to more severe
cognitive decline that may advance into dementia, with Alzheimer’s
in particular being likely. The existence of MCI in itself, however,
is not indicative that cognitive will necessarily decline further, as
the cognition of many MCI patients never develops into dementia.
Additionally, unlike these more severe forms of cognitive decline,
MCI does not severely impact one’s daily quality of life [64] and can
thus be challenging to diagnose. This means that often the signs are



Figure 2: Sample of traditional paper-and-pencil versions of Trail-
Making Test B

subtle and can be easily dismissed as expected decline in executive
function for an individual’s age. MCI itself is characterized as not
having a significant impact on daily activities, and may not manifest
in a noticeable way for years, making it difficult to definitively
diagnose and track.

In cases where MCI does worsen, the characteristics of severe
cognitive decline can vary depending on background and genetic
conditions particular to the patient. Reisberg et al. [47] specifies the
emergence of “behavioral disturbances”, neurological abnormalities,
electrophysiological changes, motor deficits, balance and coordina-
tion deficits, and general active daily living activity deficits. With an
increase in life expectancy correlating to a rise in the prevalence of
dementia and Alzheimer’s disease, research attention has turned to
the successful identification of MCI and how existing tools can be
improved to assist.

1.2 Trail-Making Test
Clinicians have historically relied on paper-and-pencil neuropsycho-
logical examinations as one of the primary methods to diagnose MCI.
These typically involve a series of simple tasks for an individual to
complete, and have been shown to be sensitive to the same cognitive
functions affected by MCI through several decades of research [6].
We focus on Trail-Making Test, a connect-the-dots task that tests
executive function and active memory. Initially conceived as a test
to assess general intelligence, the TMT is known to be sensitive to
cognitive decline and possible early signs of dementia. Currently the
Trail-Making Test is widely used in neuropsychologists’ test battery
to assess for various signs of cognitive decline, including MCI [59].
The switching between numbers and letters found in the TMT-B
relies on frontal lobe function [12, 26, 29, 40, 53], and is one of the
primary reasons for the sensitivity of the test to MCI.

The test consists of two separate connect-the-dots tasks. The
participant is handed a piece of paper with a series of labeled dots
printed on it, and are handed a pen or pencil with which to connect
the dots. The A variant of this test consists of a participant connect-
ing dots in ascending numerical order (1, 2, 3, and so on), while the
B variant of the test requires connecting dots alternating between
numbers and letters in ascending order (1, A, 2, B, and so on). The

Figure 3: The Montreal Cognitive Assessment (MoCA). Image cour-
tesy of mocatest.org [36]

participant is typically asked to complete the test as a pair, starting
with variant A and immediately followed by variant B. Multiple
layouts of these tests exist and are used when a clinician wishes to
test the participant more than once, since a different arrangement
of labeled dots is necessary to avoid the learning effect. Dot layout
has been observed to directly affect time to completion on healthy
populations [5]. Participants are asked to not lift their pen or pencil
whenever possible, or when they connect to the wrong dot and must
return to the previous dot.

Assessment of Trail-Making Tests is primarily done in two ways:
comparing the test score with established normative data, and the
qualitatively observed behavior of a participant as the test is being
completed. The test score is calculated as the test’s time to com-
pletion rounded to the nearest whole number. The fact that a score
is reported as a single numerical value necessitated the qualitative
observation, and over the decades clinicians have devised multiple
methods for assessing a participant’s performance as they complete
the test. Colored pencils, video recordings, and observing behaviors
from sitting posture to the way the patient holds their pen are just
some of the qualitative observations made by clinicians.

These measures taken highlight the notion that the behavior a
participant exhibits during the test is just as important, if not more so,
as the single time-to-completion reported score. The subtle nature
of MCI, however, has historically meant that clinicians rely on their
own expertise and experience for qualitative observations. Most
recent advancements to digital sketching technology have made it
feasible for these tests to be assessed with much higher granularity
than in previous decades, but research aiming to capitalize on this
feasibility is limited.

1.3 The Montreal Cognitive Assessment
The Montreal Cognitive Assessment (MoCA) is among the most
widely used assessment protocols for gauging an individual’s cog-
nitive function. It consists of various short tasks, both written and
verbal, aimed at testing various functions of a person’s cognition
and is frequently administered as a triage to help determine whether



a patient requires further diagnosis and possible treatment, and is
also frequently used to determine whether patients have symptoms
of MCI [39]. Originally developed in 1995 by Ziad Nasreddine [23],
it has since been the subject of various validation studies [26, 57].
Normative data for the MoCA has been collected and analyzed for
patients of various populations [38, 54], diseases [11, 45], cognitive
states [11, 25], and post-trauma conditions [21, 60]. The primary
conditions that it has been validated for include MCI, Alzheimer’s
disease and Parkinson’s Disease dementias [14,39,57], and has been
shown to be more sensitive to MCI-related decline than other exami-
nations such as the Mini-Mental State Examination (MMSE) [49].
Hobson describes that the MoCA can assess cognitive domains
including but not limited to “Visuospatial/Executive, Naming, Mem-
ory, Attention, Language, Abstraction, Delayed Recall and Orienta-
tion (to time and place)” [23].

The MoCA is frequently used in tandem with other neuropsy-
chological examinations for ensuring that its results are consistent
across various other examinations such as the Trail-Making Test. In
effect, one might consider performance of the MoCA and the TMT
to be correlated, such that exceptionally well or poor performance
of one test is likely to lead to poor performance in the other. Indeed,
a brief TMT-B appears in the MoCa as one of the tasks [26], and
they both test of the same frontal lobe function.

2 RELATED WORK

2.1 Cognition in Digital Sketch Recognition
One of the prevalent methods of digital sketch recognition is through
the analysis of sketches as “gestures” comprising of geometric prop-
erties of sketches. This includes but is not limited to line length,
speed, acceleration, line straightness, and various trigonometric
properties of line strokes. Individual features were calculated in
early efforts from Rubine et al. [50, 51], and later expanded by Sta-
hovich et al. [10,27,55], Long et al. [31], Paulson et al. [43,44], and
Alamudum et al. [3]. Digitial sketch recognition initially leveraged
machine learning to afford developers tools to recognize simple geo-
metric shapes. Shape recognition expanded to alphabets, scaffolded
recognition to identify components of complex composite shapes,
and entire sketches. Machine learning algorithms have allowed these
analyses to be made feasible over a large corpus, resulting in models
that are able to distinguish between objects depending on subtle
changes in sketching behavior.

An increasingly common application of digital sketch recognition
does not identify the shapes drawn, but rather characteristics of those
who draw them. Kim et al. identified strong correlations between
sketching behavior and early cognitive development in infants [28].
Davis et al. [63] and Muller et al. [37] similarly has focused on cog-
nitive decline by analyzing sketches from Clock-Drawing tests [58].
Zham et al. identified the presence of Parkison’s disease through
the way a participant drew spirals with a smart-pen [63]. Digital
variants on existing neuropsychological tests are numerous, with
various proposed systems designed for test automation, diagnosis
assistance, or self-administration [7, 18, 52, 62]

2.2 Digitized Trail-Making Tests
Multiple computerized variations on the Trail-Making Test have
been developed and studied [22]. Drapeau et al. noted the clear
difference in performance between a paper-and-pencil TMT and
a digitized version completed with a computer mouse [16]. Jager
et al. directly studied differences in performances between paper-
and-pencil and computerized neuropsychological tests [15]. Smith
et al. explored the possibility of implementing several cognitive
testing tools with mobile technology [56]. Prange et al. uses a large
amount of digital sketch recognition features to classify participants
as “healthy” or “suspicious” [46] but does not heavily anchor the
features on neuropsychological and HCI principles nor is there
a granular per-line analysis made beyond determining whether a

Figure 4: Test analysis interface of SmartStrokes, demonstrating line
deviation and separation of search and travel lines on a completed
test

line connects two dots. More specifically in the tele-health space,
Brehmer et al. contextualized the challenges and considerations to be
taken with implementing computerized neuropsychological exams at
home where there could be interruptions [9]. More novel research in
this includes the work of Lara-Garduno et al. who presents a touch-
based novel neuropsychological examination based on the TMT [30].
With the advancement and increasing affordability of pen and touch
technology and mobile computing, interest turned to digitizing these
tests to simulate the original pen-and-paper experience.

One of the most recent attempts at digitizing the Trail-Making
Test and leveraging machine learning to aid in the diagnosis process
comes from the work of Dahmen et al. [13]. This work involved
the use of a tablet and stylus to re-create the Trail-Making Test and
a user study consisting of (N=54) older adult participants. Digital
sketches were used as traning data to predict two types of assessment:
that same participant’s scores of the Telephone Interview for Cogni-
tive Status (TICS) [8] and Frontal Assessment Battery (FAB) [17]
performance scores, and the prediction of a participant’s condition
as “healthy” or “neurologic”. Prediction of a participant’s condition
using features mostly focusing on dwell-time yielded accuracies
ranging from 44% and 67%. Predictions were done on a per-test
basis using feature averages rather than localizing or segmenting
lines.

2.3 Proposed Contribution
Our proposed contribution presents an interface that collects digital
sketch that that is then used to create a classification model to distin-
guish between MCI and healthy participants on a per-line basis. It
builds on existing work from Dahmen et al. [13], which in its con-
clusion states the belief that the high-granularity digital sketch data
from a digitized version of the TMT could provide higher-granularity
analysis. Per-line classification would offer two advantages: 1) tar-
geting individual lines for classification of MCI could give a more
localized assessment of individual dots that challenged the partici-
pant, and 2) building a classification model that analyzes sketches on
a per-line basis could allow generalizability for more layouts, since
as previously mentioned the TMT frequently needs a wide variety
of dot layouts to avoid the learning effect.

Further, our proposed contribution uses the scores from the Mon-
treal Cognitive Assessment (MoCA) to detect MCI, whereas the
existing work from Dahmen uses the TICS and FAB to assess more



Figure 5: Separated travel and search lines. Travel lines are rotated to always face a top-to-bottom orientation.

advanced dementia. MCI is characterized as being much more subtle
in nature, meaning milder cases of MCI frequently result in sketch-
ing behavior that only slightly deviates from a healthy participant.
Our proposed solution achieves an accuracy similar to Dahmen’s
existing work, with the added advantages of offering classifications
on a more granular per-line basis, and classifying for a more subtle
degree of cognitive decline.

3 INTERFACE DESIGN

SmartStrokes is a digital testing suite focused on re-creating
commonly-used Trail-Making Test layouts for use on Microsoft
Surface Pro 4 devices. The Universal Windows Platform (UWP)
was chosen for reasons that include rapid development of a mobile-
style application on Windows devices, ease of exporting pen data
for analysis, and its firmware-level digital pen integration with Sur-
face Pen devices and allows us to easily extract pen pressure to
supplement our feature set.

The the system has two simultaneous end users: medical and
other personnel who proctor the exam (referred to in this paper as
“proctors”), and participants who complete the test (referred to as
“participants”). Every proctor is associated with individual proctor
IDs and every test is directly associated with each participant. All
participant data including completed tests can only be accessed from
within the app if the test proctor username and password is entered
at the login screen. Proctors have the option to export digital images
of the completed examinations at the conclusion of each test, at
which point the proctor should ensure proper data anonymization
practices such as ensuring the file names and location do not contain
identifiable information.

A total of 8 separate Trail-Making Test layouts were converted
into a digital format, comprising of 4 pairs of the A and B variations.
These Trail-Making Test layouts are among those that are generally
used by neuropsychologists when conducting these tests in their
practice. Dimensions of the white space were cropped to account
for the different aspect ratio between the Surface Pro 4 and a regular
8” 1/2 x 11” piece of paper, and the layout and size of the dots were
scaled accordingly. The test interface itself resembles a paper-and-
pen test as much as possible. This includes extending the drawing
canvas across the entire screen, beyond the black large rectangle
where the dots are placed; on a real piece of paper some partici-

pants may draw outside of the large rectangle despite it not being
advised to do so. Our intention with this interface is to capture the
same types of mistakes a participant might make with a traditional
pencil-and-paper modality. SmartStrokes also intentionally offers
no indication of visual feedback given to participants when the next
dot is connected in sequence. An earlier version of the test turned
correctly connected dots green, but experts advisors suggested that
feedback be only given in the case of a mistake since that is the
only scenario in which a clinician would intervene. Although testing
protocol dictates participants should only complete each pair once to
avoid the Learning Effect, SmartStrokes has the ability to test each
participant as many times as they wish on any arbitrary layout and
order to accommodate for any testing procedure.

Completed tests can be viewed at any time if the application is
signed into the proctor’s profile. The time-series sketching data
allows proctors to review each participant’s tests at their leisure
and can also choose to replay the test in real-time to qualitatively
review the participant’s performance. Additionally, SmartStrokes
can display color-coded visualizations of the sketch that include:
separation of travel and ‘Search actions during the test, pen speed,
pressure, location of “hesitation” regions, and line straightness.

SmartStrokes also assists in data analysis by performing feature
calculation of individual tests and outputting the anonymized data
into a local Comma-Separated Value file (CSV). Additionally, the
proctor can choose to automatically perform this calculation for ev-
ery test associated with that proctor. This allows proctors to conduct
data analytics by easily importing the CSV for rapid visualization
and machine-learning analytics tasks.

4 ANALYZING DIGITIZED TRAIL-MAKING TESTS

One of the significant challenges in analyzing the Trail-Making
Test is in the proper segmentation of the data. Although the task is
designed to result in simple straight lines, the ideal resulting sketch
consists of a singular line making 25 stops that change direction
each time. Analysis is further complicated by behaviors arising from
cognitive decline, most commonly involving repeated mistakes and
prolonged periods of searching for the next dot, hesitation, or doubt.

Complicated line drawings are frequently segmented in the digital
sketch recognition domain in order to properly characterize key ele-
ments in the sketch. The most appropriate domain-specific method



Figure 6: A clear example of the search Line difference between an
MCI participant and a healthy one. This discrepancy is usually the
result of the participant unable to locate the next dot in the sequence
for an extended period of time. Although the discrepancy is obvious
in this example, not all MCI participants exhibit this behavior, making
diagnosis challenging.

of line segmentation separates the lines in two different categories:
Search lines, and Travel lines; Search lines are all lines drawn
when the participant is looking for the next dot, and Travel lines are
the line segments where the participant is actively moving from one
dot to the next

The following two subsections outline the differences between
the two types of lines, what thresholds exist between the line seg-
mentation, and which sketching characteristics we believed would
be the most relevant to identifying MCI.

4.1 Search Lines

According to the protocol of Trail-Making tests as outlined by the
Compendium of Neuropsychological Examinations [59], partici-
pants are required to have their pen on the test at all times even when
not moving between dots. This is done for two reasons. The first is
that it is less likely that a participant loses their place if they do not
lift their pen as they search for their next dot. The second reason is
that this maximizes the data collected, since a participant who leaves
their pen on the paper as they search for the next dot almost always
results in randomized pen movements while they move their hand to
see the rest of the test. This kind of sketching is typically character-
ized by noisy, erratic movement that tends to meander around the
current dot as the participant searches for the next one. This is the
kind of line that we identify as a search line.

We define the beginning of a search line as the instant a participant
enters the next correct dot in the TMT sequence. We define the end
of the search line as the moment the participant identifies the next
dot and moves out of the area of the current dot. We complicate the
definition of the end of the search line beyond simply “outside of a
dot”, because of how participants behave when searching for a dot
for a long time; participants who meander around a dot for a long
time frequently move the pen inside and outside of the dot’s area as
they look for the next dot in the sequence. They may also stray away
from the dot before identifying the next one. For these reasons we
include an additional speed threshold outside of a dot’s area as the
end of the search line segment.

Healthy participants typically do not pause for long as they search
for the next dot in the sequence, with some participants not pausing
at all. Indeed, search lines from typical healthy participants are
usually shorter in length and have a single curve clearly detailing
the change in direction from the previous dot in the sequence to the
next with very little or no meandering behavior. MCI participants
or any other participants who find the TMT challenging typically
remain in this search state for longer, resulting in longer and more
erratic search line segments. Figure 6 shows such an example where

Figure 7: Four of the color-coded features and sketch properties that
SmartStrokes can display. Search and travel Lines are also used to
segment data for constructing the classificaton models

an MCI participants’ search state results in a significantly longer and
more meandering search line.

4.2 Travel Lines
Our parameters for defining travel lines are more straightforward, as
we define travel lines as the moment the participant begins to move
with intent to arrive at the next dot, and the travel line segment ends
when the next dot in the sequence is reached. When done correctly,
the travel line will be a single straight line from the previous dot
to the next. We implemented a pen speed threshold to identify this
“intent to move” to help us clearly delineate between a search line
outside of a dot’s area and the moment the participant moves toward
the next.

Every dot in a Trail-Making Test in sequence can be connected
with a single straight line. For that reason, participants who perform
well in the TMT usually have a series of travel lines drawn straighter
and without turning to change direction while moving from one dot
to the next. Participants who perform poorly sometimes stop in the
middle of a Travel line to either check their destination again or
change direction as they realize they are going to the wrong dot.

Sometimes, such participants stop entirely in the middle of travel
and begin a similar Search behavior to find the next dot. We call
all of these mid-travel stops or significant reduction in speed as
“hesitation”. While not every participant with MCI enters this state,
several instances of these hesitation states in one test is likely to
point to a poorly-performing examination.

5 DATA COLLECTION AND ANALYSIS

This subsection details the process by which TMT data collection
was conducted, and the sketch recognition features that were selected
and applied to a machine-learning classification model to detect
MCI.

5.1 Data Collection
37 participants were recruited for data collection and classifica-
tion purposes. Participants were screened and classified as MCI or
healthy based on scores from the Montreal Cognitive Assessment
(MoCA) [39], with the MoCA scores ranging from 0 to 30. The
inclusion criteria for participants were the following:

• Healthy subjects without MCI: Healthy older adults, normal
cognition. MoCA score is 26 or above. Subject group labeled
as “Healthy” for model classification purposes.

• Healthy subjects with MCI: Healthy older adults. MoCA
score is between 19 and 26. Subject group labeled as “MCI”
for model classification purposes.



Table 1: Participant demographics for user study. 95% confidence
interval for participant age is 71.43±2.41, for MoCA scores 24.54±0.91

Age
Range Male Female MCI Non-

MCI
Avg.
Age

Avg.
MoCA

55-59 1 1 0 2 57 26.5
60-64 1 5 1 5 63 26.5
65-69 5 2 5 2 67.7 23.9
70-74 3 5 4 4 71.5 25.5
75-79 4 5 7 2 76 23.3
80-84 2 0 1 1 82 25.5
85-89 2 1 3 0 85.7 21.3
Totals 18 19 21 16 71.43 24.54

• Exclusion criteria: Older adult subjects with a
MoCA score below 19; any history of severe med-
ical/neurological/psychiatric disease, including dia-
betes/hypertension; taking medication primarily targeting
central nervous system; any other condition at investigator’s
judgment that clearly demonstrates severe cognitive decline

Additional demographic information is available on Table 1.
All participants were recruited from a known pool of potential

candidates, doctor referrals to this study, as well as open calls for
participants via email. At the time of recruitment a pre-screening
was conducted to ensure that the participants were not situated
outside of the inclusion criteria. We administered a MoCA test to
each potential candidate and is graded afterwards. If the candidate
satisfied the inclusion criteria for one of the two possible categories
of “with MCI” or “without MCI”, a secondary visit was scheduled
was scheduled to start at 8 AM and participants were asked to return
as well-rested as possible.

At the time of the data collection procedure, all participants were
given two sets of Trail-Making. Each test set consisted of a Trails A
variant (numbers) and its accompanying Trails B variant (alternating
numbers and letters). Each of the two sets used different standard
dot layouts to eliminate a learning effect [35]. All participants were
given the same Microsoft Surface Pro 3 device with accompanying
Surface Pen to complete the digital tests. Participants were asked to
connect the dots in ascending order as per the instructions detailed
in the Compendium for Neuropsychological Examinations [59].

As SmartStrokes provides minimal feedback of mistakes so as to
simulate the paper-and-pencil test taking experience, the test proc-
tors similarly followed paper-and-pencil procedures that include
notifying the participant whenever a mistake was made, but the par-
ticipant is otherwise left to analyze the layout and make corrections
to mistakes. Participants were instructed to place their pen down
on the last correct labeled dot and try again. While we save the
lines that were drawn to connect incorrect dots, those lines are made
invisible in real-time while taking the test.

For the purposes of classification we refer to our subjects without
MCI as “healthy”, meaning subjects in the first category of partic-
ipants. However, we must highlight that our MCI participants are
not considered “unhealthy” by contrast. Indeed, MCI is considered
a precursor to severe conditions such as Alzheimer’s and dementia,
and people with this condition are still considered “healthy” by every
metric (see Section 1.1). In order to study the effects of a possible
change of sketching behaviors, however, we elected to consider the
two possible conditions as “healthy, without MCI”, and “healthy,
with MCI”.

5.2 Preprocessing
Several pre-processing steps are conducted on individual completed
examinations. Each test’s sketch data is separated by travel and

search lines according to the description in Section 4. Sketch data is
then resampled to uniform interspace S using the formula:

S =

√
(xm − xn)2 +(ym − yn)2

c
(1)

Where S is the new spacing between each sample, (xm,ym) is the
lower-right corner of the sketch (xn,yn) is the upper-left corner of
the sketch, and c is an empirically derived constant c = 40 that is
frequently used in the domain of digital sketch recognition for opti-
mal distance between samples that balances high enough granularity
for feature calculation with few enough samples for computational
efficiency.

Lastly, we implemented an additional key step in this process
by normalizing individual line rotation for travel lines. The cho-
sen features explained later in this section make significant use of
sketch direction, either as a per-sample basis or the entire line. In
more typical digital sketch recognition problems, features relating
to direction inform a participant’s style of drawing, or are directly
related to the type of shape that the participant intends to draw. The
Trail-Making Test, however, places all dots in pre-arranged locations
that strongly influences the direction of a correct line. This would
introduce a confounder, since differences between angles or sketch
direction would not be attributed to MCI but rather the layout of the
test’s dots. We normalize travel lines by rotating every line such
that the endpoint of the line is directly underneath the start point.
This allows us to still be able to leverage direction-related sketch
features to calculate characteristics like tremor, changes in direction
due to mistakes made, and other types of directionality affected by
the participant’s performance rather than the layout of the Trail-
Making Test. We are not aware of similar work in constructing a
Trail-Making Test classification model that employs this segmented
line direction normalization technique. To account for a physical
range of motion confounder, participants were observed to ensure
that they did not have physical difficulty in moving in a particular
direction. To that end we observed no difficulties in participants nor
did any participant report one themselves.

5.3 Feature Calculation
5.3.1 Rubine Features
We implemented a combination of digital sketch recognition features
known to yield accurate models in similar research projects. The first
set of 13 features introduced by Rubine et al., abbreviated as “Rubine
features” [50]. The 13 features were first introduced alongside a
recognition technology named GRANDMA (Gesture Recognizers
Automated in a Novel Direct Manipulation Architecture), a toolkit
that sought to provide end users with the ability to train any gesture
for recognition using a click-and-drag interface. The Rubine features
themselves have since then been implemented in various sketch
recognition projects that can gauge not only the type of shape that
is drawn, but also the cognitive state of the participant who drew
them. Rubine features f1 and f2 specify the cosine and sine features
of the first few samples, usually limited to the first two samples as
was done in our implementation. The bounding box diagonal of
the entire gesture is analyzed as features f3 and f4. The distance
in pixels between the first and the last point is specified in feature
f5. The difference between the first and last point of a gesture is
analyzed through features f6 cosine and f7 sine between the start
and end points, the total length of the gesture is calculated for f8, and
the total angle traversed is f9. Three total summations are calculated,
with f9 being the total angle traversed over the course of the gesture,
f10 being the sum of the absolute value of the angle per mouse point
that does not take into account direction, and f11 being the sum of
the square of the value of f9. The square of the maximum speed
achieved in the gesture is f12, and the last feature f13 is the total
duration of the gesture, measured in milliseconds. The calculations
for the Rubine features are provided on Table 2.



Table 2: Rubine features f1 through f13. Let ∆xp = xp+1 − xp, and
∆yp = yp+1 − yp, and ∆tp = tp+1 − tp

Rubine Features
f1 =

x2−x0√
(x2−x0)2+(y2−y0)2

f8 = ∑
P−2
p=1

√
∆x2

p +∆y2
p

f2 =
y2−y0√

(x2−x0)2+(y2−y0)2
f9 = ∑

P−2
p=1 θp

f3 =
√

(xmx − xmn)2 +(ymx − ymn)2 f10 = ∑
P−2
p=1 |θp|

f4 = arctan ymax−ymin
xmax−xmin

f11 = ∑
P−2
p=1 θ 2

p

f5 =
√

(xp−1 − x0)2 +(yp−1 − y0)2 f12 = maxP−2
p=0

∆x2
p+∆y2

p

∆t2
p

f6 =
(xp−1−x0)

f5
f13 = tP−1 − t0

f7 =
(yp−1−y0)

f5

θp = arctan ∆xp∆yp−1−∆xp−1∆yp
∆xp∆xp−1+∆yp∆yp−1

The Rubine features represent the various geometric properties of
any given gesture. They can measure speed, curvature, direction at
the start and ends of the gesture, total time taken, and the properties
of the total area (referred to by Rubine as the “bounding box”) of any
particular gesture. These features offer an alternative to template-
matching recognition in that they do not require a point-for-point
comparison, but rather are geometric calculations of the gestures
themselves. Although these have been used mostly for recognizing
gestures, their frequent use in recognizing shapes provides us with
an opportunity for analysis of cognitive impairment.

5.3.2 Fitts’ and Steering Law Features

We leverage principles from Fitts’ Law by calculating that law’s
Index of Difficulty [32]:

IDF = log2
2D
W

(2)

Fitts’ Law was originally conceived as a method to quantify complex-
ity [19] and has has been widely used in HCI research, particularly
UI navigation tasks [33]. Fitts’ Law is rooted in tracing lines across
distances between targets and measures that task’s complexity into
measures of performance, which we believe could be leveraged to
help identify task performance.

A related feature we use is the more recent variant, the Steering
Law. The Steering Law assesses the difficulty of a participant navi-
gating a pointer through a path with a set width [1, 2]. For a generic
tunnel C, and a width W(s) along the path, the Steering Law’s Index
of Difficulty IDS is:

IDS =
∫

C

ds
W (s)

(3)

For our purposes, we use a straight path of length L and a constant
with W as defined by Pastel et al. [41], which reduces IDS to:

IDS =
L
W

(4)

By using the participant’s input lines as the basis for calculating
W, we essentially create a form of performance index using the
Steering Law. For the Trail-Making Test, a narrower line width W is
straighter and effectively more difficult to recreate. We integrated
this metric as a feature for the classification model to test whether a
participant with MCI would create lines with a generally lower IDS.
We also scaled and averaged IDF and IDS as a separate feature to
explore a possible combination of the two. It is reported in Table 3
as fittsSteering.

Figure 8: The traditional application of the Steering Law is on top, with
W and L being predetermined. Our use of Steering Law, on bottom,
creates a simple tunnel with W based on the total “width” of the pen
trajectory.

5.3.3 Additional Behavioral Features
Hesitation is a feature that we briefly discussed in section – as a
feature unique to travel lines. It characterizes the prevalence of stop-
and-go motion for participants who start connecting a dot but stop or
slow down significantly while inside a travel state. Hesitation begins
when the pen slows down to an empirically-derived speed of 0.4
over five consecutive sampled points, and our calculated feature is
distance the pen traveled while the pen remains in this state. The pen
exits this state when at least five consecutive sampled points have
a speed above 0.4. This threshold was determined when observing
participants during pilot studies, where we sought to capture the
most accurate subset of drawn lines during the time that participants
hesitated when observing the need to change direction. The threshold
was refined over a series of iterations to most accurately capture the
hesitation state. If the pen enters Hesitation state multiple times
inside a single travel line, the total distance across all of these states
is reported for the one travel line

Line Ratio is a feature meant to normalize the length of a partic-
ipant’s drawn line. We believe the length of the line is important
to understand how confident and accurate the lines were connected,
since meandering behaviors and course correction would naturally
result in a longer line than a straight line drawn directly from dot to
dot. However, a drawn line will also be longer if the correct dots are
placed further apart. The Trail-Making Test is explicitly designed
to place dots a variety of distances from each other to measure a
participant’s ability to identify dots that might be further away from
their immediate location. To take relative line length into account
we divide the total distance drawn from one dot to the next by the
theoretical “perfect” line drawn from one dot to the next. The closer
the number is to 1, the closer to “perfect” this distance becomes and
the better a participant performs. The formula for Line Ratio Rln is
found below, where (xn,yn) is the final sampled dot of the input line:

Rln =

√
(xn − x0)2 +(yn − y0)2

∑
n
i=0

√
(xi − xi−1)2 +(yi − yi−1)2

(5)

Pen Lift Time is the amount of time during each segment that
the participant lifts their pen. Although participants are required to
leave their pen on the tablet at all times as per the instructions of the
Trail-Making Test, some participants still absent-mindedly lift the
pen when searching for a dot or when correcting a mistake. This
feature is intended to capture the behavior of both of these scenarios



to explore a possible correlation with MCI.
Pen Pressure Average and Pen Pressure Standard Deviation are

features pertaining to the pressure that a participant places on the pen
as they complete the test. We wanted to explore the possibility that
a participant places more pressure on the tablet if they are unsure of
their trajectory or if the test is difficult for them to complete.

We complete the feature set by adding a few sets from existing
sketch and gesture recognition literature. We implemented 11 fea-
tures from Long et al. [31] as a supplement to the Rubine features
for general-purpose sketch recognition. Alamudun et al. [3] applied
Rubine and Long features and added two direction-based features to
help with saccade detection in an eye-tracking task, but have we be-
lieve can also be implemented as general-purpose sketch recognition
as well. Finally, Paulson et al. introduced two features, normalized
distance between direction extremes (NDDE) and direction change
ratio (DCR), as general-purpose sketch recognition features that we
also included for this study [42, 43].

5.4 Model Construction
Because Trail-Making Test behavior is characterized by the distinct
actions of travelling to the next line and searching for the next, we
decided to produce two separate classification models to explore
the possibility of either being more indicative of MCI and compare
their performance. Additionally, because the actions yield different
behaviors, not all features were applicable for both types of actions.
For example, line direction is important for travel lines to identify
incorrect line deviation after we normalize travel lines as shown in
Fig. 5. However, search lines cannot be normalized since direction
at entry and at exit of a dot, even for healthy participants, depends
heavily on the test layout itself. Table 3 lists every feature initially
integrated into the feature set, and the subscripts next to the feature
names indicate which were chosen for the models.

Some features were also removed from search and travel classi-
fication models due to a high collinearity value (> 0.90). Fig. 11
shows the collinearity heatmap of the remaining features that were
used for both search and travel lines. Further, all values were nor-
malized between 0 and 1.

Every segmented line from the 149 tests is included and is given
the label according to the participant’s cognitive state (MCI or
healthy). 3,490 search lines and an equal number of travel lines
were used for their respective classification models.

Models were constructed according to a 90/10 split for a 10-fold
cross-validation. The models were trained and evaluated according
to the two labels of MCI or healthy assigned during the screen-
ing phase of the study. We used 7 binary classification models to
compare performance.

5.5 Prediction of MoCA Scores
Participant labels of “healthy, without MCI” and “healthy, with MCI”
essentially is dividing participants between two broad categories
of MoCA scores. Section 5.1 specifies the categories are a MoCA
score of 26 and above for “healthy, without MCI” and between 19
and 26 for “healthy, with MCI”. This in effect means our classifi-
cation attempts to predict a wide range of the MoCA scores of the
participants. However, we also sought to more directly predict the
MoCA score in a more granular fashion as part of the data analysis
of this study.

Our approach to MoCA score prediction is similar to the pre-
diction of broad categories in that we are using the same training
and classification features, and the same 90/10 split for 10-fold
cross-validation. The similarity also extends to the training and clas-
sification being performed on the individual lines, and the F1-score
and accuracy being calculated on how closely each line is being
predicted to the actual MoCA score associated with that line’s entire
test. This is distinct from other methods of classification that seek to
analyze the entire page and create a single prediction. We believe

Figure 9: Box plot of amount of features chosen for Recursive Feature
Elimination (search lines).

Figure 10: Box plot of amount of features chosen for Recursive Fea-
ture Elimination (travel lines).

that participants of Trail-Making Test do not perform evenly through
the entirety of the test; while they might perform well for a few
dots, a single dot might prove to be difficult for participants to find.
Indeed, several participants from our empirical observations who
performed poorly would find certain dots easy while finding others
significantly more difficult. Our wish to capture this particular type
of behavior is the reason behind our use of the segmented lines. We
believe per-line sketch analysis and predictions might yield a novel
insight into the participants’ behavior. Because the original scoring
system was conceived at a time when granular sketch analysis was
not possible, we believe per-line analysis can provide a more granu-
lar and complete picture of a participant’s behavior during the test.
Prediction was trained and tested on both the Travel and the Search
models.

We performed recursive feature elimination (RFE) on the Travel
and Search Models to determine the top-ranking features that can
be included in a logistic regression to predict the MoCA scores.
The number of features ideal for both was determined to be 6 since
that is the number of features where the accuracy plateaus for both
Search and Travel models. The features selected for the Search and
Travel models are listed in Table 4, and the box plot depicting the
comparison of feature selection to accuracy is shown in Figures 9
and 10.

A logistic regressor with an iteration of limit of n = 100000
was employed for both models to predict the MoCA scores based
on the features selected by the RFE. We then used a repeated K-
Fold cross-validator, with a 90/10 split repeated 3 times for a total
of 30 comparisons in the calculation of the predictors. To gauge
the performance of the predictions being made, we calculated the
average Mean Absolute Error (MAE) and the Root Mean Squared



Table 3: Classification features. Model describes whether the feature was used for the model for classification of travel (T) or search (S) lines.
Some features were excluded due to high collinearity and/or were inappropriate for a specific model. fittsSteering is a scaled and averaged
combination of the features fitts and steering.

Name Model Name Model Name Model Name Model

rubine1 T rubine10 avgPressure T+S openness T+S
rubine2 T rubine11 stdevPressure T+S boundBoxArea
rubine3 T+S rubine12 T+S avgSpeed T+S logArea T+S
rubine4 T+S rubine13 T+S stdevSpeed T+S rotRatio T+S
rubine5 S fitts aspect lengthLog T+S
rubine6 steering T+S curviness T+S aspectLog T+S
rubine7 lineRatio T relativeRot T+S fittsSteering
rubine8 S hesitation T densityMetric1 ndde T
rubine9 T+S penLiftTime T+S densityMetric2 T+S dcr

Table 4: Features chosen by Recursive Feature Elimination to directly
predict MoCA scores.

Search Model RFE Features Travel Model RFE Features
aspectLog avgPressure
avgPressure avgSpeed
avgSpeed rubine12
logArea rubine13
rubine11 stdDevPressure
stdDevPressure steering

Error (RMSE) of the predicted vs. the actual MoCa test scores for all
of the lines. In this prediction algorithm all of the segmented lines
of test and training participants have been labeled their respective
MoCA scores. Although MoCA is not typically labeled on a per-line
basis, our experiment is to determine whether such a prediction can
be accurately made on per-line granularity. MAE and RSME were
both used to help determine the mean error between the predictions
of the logistic regressions. Both of the Travel and Search prediction
algorithms had RSME and MAE as well as their standard deviation
calculations and are shown in Table 5.

6 RESULTS

6.1 Accuracy Metrics of MCI Prediction
The main results of model performance are reported on Table 6,
meant to report on how well a classification model trained and tested
on travel lines and search lines independently is able to identify
whether the author of those lines had MCI or was a healthy par-
ticipant. A total of eight different classification models, listed in
the Classifier column on the table, were trained with the features
listed in section 5.3. Results are reported for both the search line
model and the travel line model, and we report the models’ accuracy,
F1-score, precision, and recall. For both travel and search lines,
Table 6 shows that the best performing models were created using a
Random Forest classifier. Additionally, pressure-related features had
among the highest feature importances when analyzing drop-column
importances for the random-forest classifiers.

6.2 Accuracy Metrics of MoCA Score Prediction
Two sets of metrics can be reported for the MoCA score prediction:
the results of Recursive Feature Elimination and how the number of
features affects the prediction accuracy, and the results of the average
MAE and RSME of the predictions made on the test data. Prediction
of the MoCA, as opposed to the prediction of MCI, is non-binary
and more of a continuous set of data in nature. For this exercise
we allowed fractions of numbers to be predicted, since our chief
method of comparison is the calculation of RSME and MAE. Small
discrepancies in MoCA scoring due to the inclusion of non-whole

Table 5: Root Mean Squared Error (RSME) and Mean Absolute Error
(MAE) of predicted points of MoCA scores.

Travel Lines Search Lines
Error Metric Average Std. Dev Average Std. Dev

RSME 3.325 0.132 3.315 0.134
MAE 2.415 0.110 2.406 0.105

fractions would be minor, if that were the chief difference between
predicted and actual scores. The accuracy metrics are reported in
Table 5.

6.3 Discussion

6.3.1 Mild Cognitive Impairment

One of the primary challenges in detecting MCI is the inherently
subtle nature of changes. Research such as that of Zhang et al. [64]
outline difficulties in formalizing behaviors that correlate signif-
icantly with the manifestation of MCI in the Trail-Making Test.
Depending on the severity of cognitive decline and multiple factors
in how MCI affects each participant, they may not find the TMT
specifically that challenging. For that reason, it is generally believed
that the TMT, while proven sensitive to MCI in many cases, is not
alone the only tool needed to reliably detect MCI.

The results from the accuracy metrics of the travel and search
lines supports the notion that detecting subtle levels of MCI is in-
herently challenging if only analyzing one test. In several of our
observed cases, participants who we classified as just under our MCI
threshold based on their MoCA score completed the test in a similar
manner as a typical healthy participant. In these cases a clinical
neuropsychologist would continue testing their patient with several
other kinds of exams or use the Trail-Making Test to primarily to
identify other conditions of cognitive decline. This differs from other
digital sketch recognition problems where the exhibited behaviors
are not subtle by nature, or if the goal is to differentiate between
discrete shapes. Models for those problems typically result in much
higher accuracy and F1-scores (closer to > 0.9) since the labels are
more cleanly delineated.

Overall, we believe the results present a meaningful contribution
on the analysis of MCI through the TMT, largely due to the analysis
and model construction on a per-line basis. Our implementation
refined steps to segment the sketches by integrating speed thresholds
to identify when the participant has found the next dot in the process.
Whereas previous work in analyzing digitized TMT sketch data
tends to average behaviors over an entire test, we sought to leverage
the high-granularity nature of sketch data to provide analysis on
individual lines. Our contribution also extends to the normalization



Figure 11: Feature collinearity for both search and travel lines. Features with collinearity above 0.9 were removed from the model

of line direction and total length to avoid differences between lines
that are due to the TMT individual dot locations. The key is to
eliminate potential confounders introduced by the fact that the TMT
stimulates all participants to change line directions and total line
length. We chose not to map a “perfect” line for each of the different
segments to gauge performance, since Trail-Making Test layouts
are numerous and clinicians frequently use modified versions for
their own purposes. We sought to create a classification model that
would work regardless of the dot layout to avoid creating a model
that only works on that specific layout. Ultimately we sought to
explore whether segmented lines could individually be labeled as
MCI or healthy with at least similar performance as existing work.

A popular method for creating behavioral models is in the lever-
aging of deep learning techniques such as neural networks. These
techniques are becoming more prevalent due to its ease of deploy-
ment for large datasets and higher efficacy in classification. However,
we did not believe these techniques appropriate for this experiment
for two primary reasons. The first is due to the necessity of collect-
ing a considerably larger dataset for the creation of a classification
algorithm using deep learning techniques. Challenges related to the
proper collection of data for this experiment are explained in the fol-
lowing section. The second reason is due to the lack of explainability
in deep learning techniques. While it would be possible to produce
a more accurate behavioral model provided we acquire a consid-
erably larger dataset, we would be unable to explain to a clinician
which behaviors of the participant are responsible for the conclusion
they are likely to have MCI. We believe that behavioral analysis in
these types of domains should be usable to domain experts, thus
motivating the manual creation of features to explain behavior.

We believe these results to be of interest in the HCI community,
primarily due to the inherent nature of linking a cognitive examina-
tion with the analysis afforded by a high-granularity data collection
protocol. In particular, the creation of an Index of Performance
of sorts for the Steering Law (see Fig. 8) proved useful enough in
both the search and travel line prediction models. For this particular
project this calculation was different enough from Fitts’ existing
Index of Performance to warrant its inclusion as its own feature, and
is potentially something that could be implemented to UX research.
Indeed, we hope the results and explanations of the TMT can allow
HCI researchers to see the TMT as a decades-old UI navigation task,
and that the same principles and techniques that led to the creation

of the Fitts’ and Steering Laws can be applied to a digital TMT.

6.3.2 Montreal Cognitive Assessment Score Prediction
As previously mentioned, MAE and RSME outlined in Table 5
show our predictions for MoCA scores, both search and travel lines
possessing a Mean Absolute Error of around 2.4 on average and a
Root Mean Squared error of around 3.3. Essentially, regardless of
whether the travel lines or search line data and features were used to
predict the MoCA score of that individual user, the resulting error
remained consistent. Although MoCA scores range from 0 to 30,
our study ethics protocol prevented us from conducting research on
participants with scores below 19 as previously mentioned, reducing
the range of scores available to us to train and test on to between
19 and 30. The error rates reported implicitly become wider due to
this range of scores being reduced, but we believe the reported MAE
and RSME values still are small enough to be of interest to report.
Overall, the scores suggest that the feature set presented in this
paper can be used to predict MoCA scores based on a participants’
digitized TMT sketch data.

Challenges of the MoCA score prediction were similar to those
of predicting MCI, but were exacerbated by the labeling of a single
score point to every line. Per-dot line segmentation resulted in likely
an unbalanced training set, since a small subset of participants who
performend fairly well the MoCA could skew the training and test
sets considerably. This unevenness in MoCA distribution suggests
that a much larger and wider range of MoCA scores is needed
for accurate score prediction. As it stands, the Recursive Feature
Elimination for both models as shown in Figure ?? suggests that
even the optimal amount of chosen features yields only an accuracy
above 0.35 for the Search model and an accuracy of up to 0.30.
For this current version of the calculated features and those chosen
by the RFE, we believe that additional features and changes to the
existing ones would be necessary to increase the prediction accuracy.

At present the results for predicting MoCA scores are inconclu-
sive. The errors as reported in Table 5 might suggest an average error
of about 10% given the range of the MoCA scores to be from 0 to 30
points. The demographic data shown in Table 1 and discussed in sec-
tion 5.1 shows an average MoCA score of 24.54 for all participants
as well as the total overall criteria for inclusion of participants from
19 onward. Due to limitations on protocol safety, we are unable at
present to recruit and test for participants with more severe cognitive



Table 6: Classification metrics. Acc is accuracy, F1 is F1-score, Prec is precision. For both the travel lines and search lines models, n=3,490

Travel Lines Search Lines
Classifier Acc F1 Prec Recall Acc F1 Prec Recall

Majority 0.51 0.51 0.50 0.50 0.53 0.53 0.52 0.52
Gaussian Naive-Bayes 0.47 0.36 0.60 0.53 0.47 0.38 0.58 0.53

Decision Tree 0.59 0.59 0.58 0.58 0.60 0.60 0.59 0.59
K-Nearest Neighbor 0.60 0.60 0.59 0.59 0.58 0.58 0.57 0.57

Linear Regression 0.65 0.64 0.65 0.63 0.62 0.59 0.61 0.58
SVM 0.65 0.63 0.66 0.62 0.63 0.61 0.64 0.60
LDA 0.65 0.63 0.65 0.62 0.62 0.60 0.61 0.59

Random Forest* 0.67 0.73 0.67 0.80 0.66 0.72 0.68 0.77

impairment for participants who score below 19. This is largely due
to safety protocols requiring participants below that age to be accom-
panied by a guardian or healthcare official, since institutional review
boards consider severely cognitive impaired individuals who would
be unable to provide informed consent of their own volition. Follow-
ing the safety protocols fortunately does not impair significantly the
prediction of MCI vs. non-MCI populations since MCI participants
are still able to provide informed consent, but this does reduce the
efficacy of predicting MoCA performance as a continuous score. In
order to create a more accurate MoCA predictor, we will require a
larger corpus of data with a more even distribution of MoCA scores
such that the scores are more evenly distributed as per established
normative data. At present the inclusion of an MCI predictor did
somewhat limit the performance of a MoCA score predictor.

7 LIMITATIONS AND FUTURE WORK

One of the main challenges in building an accurate predictive behav-
ioral model is the creation of a new dataset for that specific purpose.
Despite the fact that the Trail-Making Test has been in use for sev-
eral decades, the granularity of digital data and the requirement of
a digital pen necessitated the creation of a new dataset. The preva-
lence of different Trails Test layouts and the small differences of
protocol that vary from clinician to clinician also necessitated a uni-
fied testing protocol. Accompanying this challenge is the laborious
recruitment process. Although the task is simple, the administration
of the MoCA and the proper administration of the Trail-Making Test
resulted in a slower rate of data collection that is typical of sketch
recognition tasks.

Currently, the age ranges of the Trail-Making Test’s normative
data, as found Tombaugh’s stratified normative data for paper-and-
pencil Trail Making Tests [61], divides the age range into 11 distinct
categories. Our normative data covers the latter 7 bins with our
participants ranging from 57 to 86 years of age. Since the focus
of this experiment is in identifying MCI among middle aged and
older individuals, the study focused on that age range. Future studies
will continue the data collection process to build a more complete
normative body of data across all age ranges. These might poten-
tially result in differing behaviors between patients with MCI from
different age ranges, but a solid body of data from those age ranges
is necessary for verification. We also aim to further expand on local-
izing areas that were difficult for participants with MCI, reporting
these lines on a UI-level in real time and evaluating a clinician’s
diagnosis experience with such an automated tool.

Although the system has two primary end users, the scope of this
paper focused on the participant. We aim to investigate the user
experience for proctors to deploy the system and use the predictions
in their diagnosis. Specifically we aim to gather feedback on the
experience of reporting the system’s findings, since the proctors have
access to a wide variety of sketch visualizations as mentioned in

Section 3. Reporting on predicting MCI and non-MCI participants
in addition to highlighting hesitation, line deviation, and visually
color-coding search and travel lines offers proctors a large range of
information and future work will investigate on the usefulness and
overall user experience. Additionally we would like to use other
peripherals for additional features such as heart rate sensors and
integrated eye-tracking solutions to create an even more feature-rich
data set that enhances participant behavior analysis.

Also of note is the fact that a protocol of collecting data on an
MCI population inherently removes a full range of ages and condi-
tions for normative data. This impacts the ability for a predictive
system to make an ML-based prediction of the actual MoCA score.
The prediction of the MoCA scores yielded relatively small error per-
centages but when taking into account the reduced range of MoCA
scores that were available for testing and training, we conclude
the results for direct prediction of exact MoCA scores are incon-
clusive despite being somewhat promising. We are considerably
more confident about the binary classification between non-MCI
and MCI populations precisely because the range of data and the
collection protocol yielded the most appropriate data for that kind of
classification. Future work will require a wider range of participants
with normative data closer to that of Tombaugh et al. [61]. We are
confident the digital sketch data from digital TMTs can be used to
make much more accurate predictions about the participants’ MoCA
scores if said data were available.

Subtle changes in behavior due to Mild Cognitive Impairment
continue to present significant challenges in identifying the earli-
est possible signs for conditions that may lead to dementia and
Alzheimer’s disease. Existing efforts to aid in this challenge high-
light the difficulty of finding the nuances in behavioral changes
present in a Trail-Making Test. However, with significant improve-
ments over previous efforts we present a solution that suggests
individual lines, regardless of their direction, can distinguish be-
tween MCI and Healthy with noticeably higher levels of accuracy.
We look forward to employing additional preprocessing methods,
features, and a larger digital sketch dataset to further improve on this
effort. We believe sketch data from the Trail-Making Test still has
the potential to yield insights into behavioral changes that are yet to
be discovered.
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