
AutoBool: Reinforcement-Learned LLM for Effective Automatic
Systematic Reviews Boolean Query Generation

Anonymous ACL submission

Abstract001

We present AutoBool, a reinforcement learn-002
ing (RL) framework that trains large lan-003
guage models (LLMs) to generate effective004
Boolean queries for medical systematic re-005
views. Boolean queries are the primary mecha-006
nism for literature retrieval in this domain and007
must achieve high recall while maintaining rea-008
sonable precision—a challenging balance that009
existing prompt-based LLM approaches often010
struggle to achieve. A major limitation in this011
space is the lack of ground-truth best Boolean012
queries for each topic, which makes supervised013
fine-tuning impractical. AutoBool addresses014
this challenge by leveraging RL to directly op-015
timize query generation against retrieval perfor-016
mance metrics, without requiring ideal target017
queries. To support this effort, we create and018
release the largest dataset of its kind: 65 588019
topics in total for training and evaluating the020
task of automatic Boolean query formulation.021

Experiments on our new dataset and two es-022
tablished datasets (CLEF TAR and Seed Col-023
lection) show that AutoBool significantly out-024
performs zero-shot prompting and matches or025
exceeds the effectiveness of much larger GPT-026
based models (e.g., GPT-4, O3) using smaller027
backbones. It also approaches effectiveness of028
expert-authored queries while retrieving 10–16029
times fewer documents. Ablation studies reveal030
the critical roles of model backbone, size, de-031
coding temperature, and prompt design. Code032
and data are available at https://anonymous.033
4open.science/r/AutoBool-B3E5/.034

1 Introduction035

Systematic reviews are essential tools in evidence-036

based medicine, providing comprehensive and un-037

biased summaries of scientific knowledge across038

medicine and social sciences. At the heart of these039

reviews lies a deceptively complex task: the for-040

mulation of Boolean search queries capable of re-041

trieving all relevant literature (high recall) with-042

out overburdening researchers with non-relevant re- 043

sults (high precision). A well-formulated Boolean 044

query directly affects the cost, efficiency, and re- 045

producibility of the review process. 046

Large language models (LLMs) have been 047

explored as tools for automatically generating 048

Boolean queries from an initial research ques- 049

tion or topic (Wang et al., 2023, 2025; Staudinger 050

et al., 2024). While conceptually easy to use, 051

prompt-based LLM methods have shown major 052

limitations—often retrieving far fewer relevant 053

studies than expert-crafted queries (low recall), 054

well below the thresholds typically required for 055

systematic reviews (e.g., 10–40% recall instead of 056

80–90%) (Wang et al., 2025). These limitations 057

highlight the need for new methods that go beyond 058

zero-shot prompting and instead are optimized to 059

generate queries based on retrieval effectiveness. 060

A natural alternative to prompting is supervised 061

fine-tuning on example queries. However, this is 062

impractical for Boolean query generation, where 063

no single ground-truth “best” query exists. Expert- 064

crafted queries are often inconsistent, and subopti- 065

mal (Scells and Zuccon, 2018). Further, existing 066

datasets are too small: overall fewer than 200 train- 067

ing pairs, many sourced from Cochrane (Kanoulas 068

et al., 2018; Wang et al., 2022c).1 069

We propose a reinforcement learning (RL) 070

framework called AutoBool to train LLMs for 071

Boolean query generation, enabling direct opti- 072

mization for retrieval effectiveness. Rather than 073

relying on handcrafted prompts or static templates, 074

our model learns to balance recall and precision 075

through feedback from real document retrieval. To 076

support this, we construct a large-scale training 077

dataset of 32 794 systematic reviews mined from 078

the PubMed Central (PMC) Open Access corpus, 079

and introduce a retrieval-grounded reward func- 080

1Cochrane does not support direct API access; prior work
translates these queries into MEDLINE format for PubMed
execution (Wang et al., 2025).
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tion aligned with the screening goals of systematic081

review creation. We further release a large-scale082

evaluation dataset comprising 32 794 topics with083

high-quality relevance labels—an order of magni-084

tude larger than prior benchmarks such as CLEF085

TAR and the Seed Collection,2 along with a smaller086

PubTemp set designed to be free from data leakage.087

Our experiments show that AutoBool-trained088

models substantially outperform prompt-based089

zero-shot baselines, narrow the gap with expert-090

crafted queries, and even exceed the performance091

of much larger commercial LLMs such as GPT-4o092

and O3 in high-recall retrieval scenarios, despite093

relying on significantly smaller backbones.094

2 Related Work095

Previous work on automated Boolean query for-096

mulation mainly followed two paradigms: The ob-097

jective method and the conceptual method (Scells098

et al., 2020b,a). The objective method aim to repli-099

cate known included studies by expanding on initial100

seed set of studies using techniques such as key-101

word co-occurrence, term frequency analysis, or102

relevance feedback (Hausner et al., 2012). These103

approaches typically prioritize recall but often sac-104

rifice interpretability and precision. In contrast,105

conceptual methods involve manually identifying106

key elements of the review question, such as popu-107

lation, intervention, and outcome, and converting108

them into structured Boolean expressions. While109

more interpretable and aligned with expert work-110

flows, conceptual methods require substantial man-111

ual effort and domain expertise (Clark, 2013).112

LLMs have recently been explored for automat-113

ing Boolean query generation from topic descrip-114

tions. While they can produce syntactically valid115

queries, they often require multiple attempts, and116

their recall remains well below that of expert-117

authored queries (Wang et al., 2025).118

These limitations highlight the need for trainable119

methods that move beyond static prompting. Su-120

pervised fine-tuning is not well-suited to Boolean121

query generation, as there is no single ground-truth122

“best” query per topic: expert-authored queries123

are manually refined, inconsistent, and often sub-124

optimal. RL offers a more flexible alternative125

by optimizing models based on task-level feed-126

back without requiring gold-standard targets. It127

has emerged as a promising approach for optimiz-128

ing LLMs on non-differentiable objectives such129

2Which contain 118 and 40 topics overall respectively.

as factual accuracy, preference alignment, and re- 130

trieval quality (Zhang et al., 2020; Zhuang et al., 131

2025; Nguyen et al., 2024). Notably, Group Rela- 132

tive Policy Optimization (GRPO), a recently intro- 133

duced RL method, has shown strong performance 134

in LLM fine-tuning scenarios, including DeepSeek- 135

R1 (DeepSeek-AI et al., 2025; Guo et al., 2025). 136

3 Dataset Creation 137

To support both training and large-scale evaluation 138

of systematic review Boolean query generation, 139

we construct a new dataset based on full-text sys- 140

tematic reviews from the PubMed Central (PMC) 141

Open Access (OA) subset (U.S. National Library of 142

Medicine, 2003). This subset is license-compatible 143

with commercial use and substantially larger than 144

existing public benchmarks.3 145

3.1 Data Source and Extraction 146

We begin by extracting all articles labeled with 147

the publication type systematic review from 148

PubMed Central (PMC) Open Access (OA) sub- 149

set, resulting in a total of 75 676 systematic review 150

topics. For each topic, we parse the full PMC 151

XML and extract the PMIDs cited in the results 152

section. These cited references are treated as the 153

included studies (i.e., the gold-standard relevant 154

set) for that review. After filtering for availability 155

of cited PMIDs, we retain 65 600 usable topics. 156

3.2 Benchmark Integrity 157

To prevent data leakage from prior evaluation sets, 158

we manually remove any topics overlapping with 159

the CLEF TAR or Seed Collection (Kanoulas et al., 160

2018; Wang et al., 2022a). This resulted in the 161

exclusion of 12 topics, yielding a final dataset of 162

65 588 unique systematic reviews topics. 163

3.3 Temporal Train-Test Split 164

To prevent temporal leakage and better simulate 165

real-world deployment, we split the dataset chrono- 166

logically based on publication date: 167

• Training set: 32.794 topics published be- 168

tween 2000-07-06 and 2021-10-30. 169

• Test set: 32.794 topics published between 170

2021-10-31 and 2025-03-01. 171

• PubTemp (PubMed Temporal) Set: 1,000 172

randomly sampled topics published after 173

2024-11-01. 174
3Dataset will be made available on Huggingface.
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Figure 1: Overview architecture of dataset creation and AutoBool training.

This temporal split reflects real-world usage: an175

information specialist formulates a Boolean query176

to retrieve studies published up to that point. The177

model, trained only on earlier topics, must general-178

ize to future, unseen ones. Chronological partition-179

ing also supports continual evaluation, enabling180

future research on adapting to evolving terminol-181

ogy, intervention types, and publication trends.182

We introduce the PubTemp set to enable fair,183

out-of-distribution evaluation by ensuring topics184

were unseen during LLM pretraining. Since185

Qwen3 (the primary model used) has an October186

2024 knowledge cutoff,4 we select topics published187

after November 1, 2024, to minimize overlap. To188

keep evaluation feasible, we randomly sample 1000189

such topics to avoid the API time cost of issuing190

too many PubMed API queries and reducing the191

expense of evaluating commercial models (e.g.,192

generating queries for 1000 topics using O3 costs193

around $50). The PubTemp split will be released194

with our dataset to support reproducibility.195

4 Method196

We train an LLM to generate Boolean queries using197

GPRO to directly optimize retrieval effectiveness198

as detailed in Section 2. The central challenge in199

applying GRPO lies in designing an appropriate200

reward function. In the context of systematic re-201

views, the effectiveness of a Boolean query can be202

objectively evaluated by executing the query on a203

document collection (e.g., PubMed) and comparing204

the retrieved documents against a gold-standard set205

of included studies. This enables computation of206

retrieval metrics such as recall and precision which207

form the basis of the reward.208

4While there is no officially published knowledge cutoff
for Qwen3, we confirmed via direct model queries that its
knowledge extends up to October 2024.

4.1 Reward Design 209

The total reward consists of three components: for- 210

matting correctness, syntactic validity, and retrieval 211

effectiveness. 212

Formatting Reward. The formatting reward 213

Rformat checks whether the output follows expected 214

structural conventions (e.g., quoted terms, capital- 215

ized Boolean operators): 216

Rformat =

{
10 if format is correct
−10 otherwise

217

Validity Reward. The validity reward Rvalidity 218

ensures that the generated Boolean query can be 219

both syntactically parsed and successfully executed 220

in a retrieval system: 221

Rvalidity =

{
10 if query is valid
−10 if query is invalid

222

A query is considered valid if it passes two checks: 223

(1) it must be syntactically correct according to a 224

custom Boolean query parser that verifies structural 225

elements such as balanced parentheses and proper 226

use of logical operators; and (2) it must return at 227

least one result when executed via PubMed, and re- 228

turns fewer than a maximum threshold of 200 000 229

documents 5. Queries that fail either check are 230

treated as invalid and receive a penalty. 231

Retrieval Reward. The retrieval reward is de- 232

signed to support recall-oriented Boolean query 233

generation, reflecting the priorities of systematic 234

reviews: retrieve as many relevant studies as possi- 235

ble while minimizing screening burden. It balances 236

a direct reward for recall and a recall-modulated 237

reward for precision. 238

5This threshold is enforced to ensure query efficiency and
system responsiveness.
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The reward function satisfies three core proper-239

ties: (1) recall must be prioritized, as high recall240

is essential in systematic reviews (Straube et al.,241

2021); (2) precision should matter more as re-242

call increases, since reducing irrelevant results be-243

comes valuable once coverage improves; and (3)244

early precision gains should be emphasized, as245

small improvements from very low precision levels246

bring significant practical benefit.247

To implement this, we apply two mechanisms:248

(1) weighting precision by rα to reduce its impact249

at low recall; and (2) applying a logarithmic trans-250

formation to increase sensitivity when precision is251

low. The resulting reward is:252

F (r, p) = M · r︸ ︷︷ ︸
recall reward

+M · rα · log1+s(1 + s · p)︸ ︷︷ ︸
precision reward

253

where r is recall, p is precision, s = 100 is a254

smoothing constant, α ≥ 0 controls precision255

weighting, and M is a global scaling factor.256

The complete retrieval reward is defined as:257

Rretrieval(r, p, |D|) =


−20 if |D| = 0

−5 if r = 0 ∧ p = 0

F (r, p) otherwise

258

The choice of α significantly influences retrieval259

behavior. When α = 0.5, the reward is weakly260

recall-oriented, allowing precision to contribute261

earlier in the learning process. At α = 1, the behav-262

ior becomes moderately recall-oriented, offering263

a balanced trade-off between recall and precision.264

Setting α = 2 results in a strongly recall-oriented265

reward, where precision only meaningfully con-266

tributes once high recall has been achieved.267

Total Reward. The final reward combines all268

components: Rtotal = Rformat +Rvalidity +Rretrieval269

4.2 Training Procedure270

We fine-tune a pretrained LLM using policy opti-271

mization to maximize Rtotal. At each training step,272

the model is prompted with a systematic review273

topic and generates a Boolean query. This query is274

executed on a document collection, and its reward275

is computed. Gradients from GRPO are used to276

update the model, encouraging generation of valid,277

well-structured, and high-recall queries over time.278

4.3 Prompting Strategies279

We investigate four prompting strategies, each de-280

signed to elicit different forms of reasoning. Two281

prompts—No Reasoning (N.R) and Free-text Rea-282

Table 1: Prompting strategies for Boolean query genera-
tion. Full templates are in Appendix A.1.

Prompt Type and Description

No Reasoning (N.R): Direct query generation with mini-
mal explanation or structure.

Free-text Reasoning (R): Includes a natural language
explanation before query generation.

Conceptual Reasoning (R-con): Uses structured decom-
position (Population, Intervention, Outcome) to scaffold
the query.

Objective Reasoning (R-obj): Simulates a relevant ab-
stract and extracts key terms empirically.

soning (R)—provide essential instructions about 283

what a Boolean query is, its components, require- 284

ments and how to use different search fields. 285

The other two—Conceptual Reasoning (R-con) 286

and Objective Reasoning (R-obj)—are inspired by 287

established paradigms in query formulation. These 288

prompts offer more structured, step-by-step guid- 289

ance on how to decompose the topic and construct 290

the query (Scells et al., 2020a,b). 291

Table 1 summarizes these strategies. Full prompt 292

templates are provided in Appendix A.1. 293

5 Experimental Setup 294

5.1 Retrieval and Evaluation Protocol 295

For all datasets, we use the PubMed Entrez API to 296

execute the generated Boolean queries and retrieve 297

candidate documents by matching on PMIDs (Say- 298

ers, 2010). This simulates a realistic literature 299

search workflow, allows us to evaluate query effec- 300

tiveness in a practical retrieval setting, and follows 301

standard methodology from previous work (Wang 302

et al., 2023, 2025). We apply the same query va- 303

lidity check protocol described in Section 4.1 to 304

detect and reject malformed queries. Queries that 305

fail this check are considered invalid, and the model 306

is prompted to regenerate until a valid query is pro- 307

duced, with a maximum of 10 attempts 6. This 308

validation process aligns with established evalua- 309

tion practices (Wang et al., 2025). 310

We evaluate effectiveness against gold-standard 311

included studies using metrics adopted in earlier 312

research (Wang et al., 2025). The primary eval- 313

uation metrics are recall, F3, and the percentage 314

of queries achieving recall above 80% and 90%. 315

These reflect the high-recall requirements of sys- 316

6We cap regenerations at 10 to avoid excessive API usage
and model inference.
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tematic reviews, where omissions of relevant stud-317

ies can critically undermine review quality. As sec-318

ondary metrics, we report precision, the average319

number of documents retrieved (to measure screen-320

ing effort), the average number of regenerations per321

query, and the success rate under 10 attempts—to322

capture robustness and generation stability beyond323

recall-focused evaluation.324

5.2 Model Variants325

Our primary experiments are conducted using mod-326

els from the Qwen3 family (Yang et al., 2025). Un-327

less otherwise specified, all trained AutoBool Mod-328

els are based on Qwen3-4B, which serves as the de-329

fault backbone throughout our main results. These330

models are fine-tuned using our reward-driven train-331

ing framework (Section 4.1) to optimize for sys-332

tematic review retrieval effectiveness. GRPO is333

applied to guide query generation behavior based334

on retrieval performance signals. At inference time,335

we use the same prompt as during training and336

fix the decoding temperature to 0.6, following the337

Qwen3 recommendations (Yang et al., 2025).338

5.3 Evaluation Datasets339

We evaluate our models on three datasets: the Pub-340

Temp set, and two established benchmarks: the341

CLEF TAR collection (Kanoulas et al., 2018) and342

the Seed Collection (Wang et al., 2022a).343

We follow prior work (Wang et al., 2025) in344

using the CLEF TAR 2017 and 2018 subsets (72345

topics total) and the Seed Collection (40 topics).346

Each topic is defined by experts and paired with347

a manually curated set of relevant studies. These348

benchmarks have been widely adopted for evalu-349

ating automatic Boolean query generation in the350

context of systematic review automation (MacFar-351

lane et al., 2022; Kusa et al., 2023; Wang et al.,352

2022b; Stevenson and Bin-Hezam, 2023; Lee and353

Sun, 2018).354

5.4 Training Parameters355

All models are trained using the GRPO RL algo-356

rithm with a retrieval-based reward. We adopt357

LoRA-based parameter-efficient fine-tuning and358

use the vLLM backend in colocated mode. For359

each prompt, the model generates 4 completions,360

which are evaluated to compute reward scores. We361

use an effective batch size of 16 via gradient accu-362

mulation. Prompt and completion length limits are363

768/1024 tokens for non-reasoning prompts and364

1024/3072 for reasoning-based prompts. Unless365

otherwise noted, we set the training temperature to 366

1.2; its effect on performance is analyzed in Sec- 367

tion 7. Full training hyperparameters are listed in 368

Appendix 4. 369

6 Results 370

Table 2 summarizes the evaluation results on the 371

PubTemp set. We observe that reinforcement learn- 372

ing substantially improves Boolean query genera- 373

tion performance, especially in recall-critical set- 374

tings like systematic reviews. 375

6.1 Effectiveness of Reinforcement Learning 376

Compared to zero-shot prompting baselines using 377

the same base model (Qwen3-4B), all RL trained 378

AutoBool models achieve substantially higher ef- 379

fectiveness across all prompt types and primary 380

evaluation metrics. In particular, recall improves 381

dramatically: top-performing models achieve an 382

average recall of 0.70, with approximatly 35% of 383

queries retrieving more than 90% of relevant doc- 384

uments. In contrast, zero-shot models achieve at 385

most 0.35 average recall, with only 6.5% of queries 386

exceeding the 90% recall threshold. 387

On secondary metrics, AutoBool models im- 388

prove precision under the N.R and R-obj prompts, 389

but slightly reduce precision under R and R-con. 390

All trained models retrieve more documents than 391

their zero-shot counterparts: an expected tradeoff 392

when optimizing for recall. However, this increase 393

in retrieved set size remains reasonable (well un- 394

der 1000 on average), and does not significantly 395

increase screening burden compared to the gains in 396

comprehensiveness. 397

Training also improves generation stability. Au- 398

toBool models exhibit consistently higher success 399

rates (near 100%) and require fewer regenerations 400

than zero-shot baselines, indicating more reliable 401

formatting and syntactic validity—driven by our 402

structured reward components. 403

Comparison with Larger GPT-Based Models. 404

Compared to significantly larger GPT-based mod- 405

els (GPT-4O and O3) 7, AutoBool—despite us- 406

ing a much smaller model—achieves higher recall 407

and a higher percentage of queries exceeding high- 408

recall thresholds (e.g., 80% and 90%). Regenera- 409

tion and success rates are also comparable across 410

models. While AutoBool slightly lags behind in 411

precision and F3, the average number of retrieved 412

7Number of Parameters In Trillions
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Table 2: Effectiveness of LLM-generated Boolean queries on the PubTemp set. Bold indicates the best result
for each model within a setting; Underlined indicates the overall best across all models. (O3 model has no N.R
capability as reasoning was enabled by default using API.)

Setting Model Prompt Recall F3 Recall
>80%

Recall
>90%

Precision Avg
Retrieved

Avg
Regen %Success

Z
er

o-
sh

ot

GPT-4O N.R 0.3591 0.1758 12.40 7.10 0.1074 251.32 1.15 99.60
GPT-4O R 0.3937 0.1653 14.30 9.00 0.0913 326.20 1.09 99.80
GPT-4O R-con 0.4387 0.1491 15.90 9.40 0.0642 440.45 1.04 99.90
GPT-4O R-obj 0.2530 0.0988 5.30 3.10 0.0742 359.00 1.20 99.80

O3 R 0.6868 0.2039 44.80 31.80 0.0611 551.54 1.69 98.20
O3 R-con 0.6483 0.2106 38.60 26.20 0.0690 499.48 1.19 99.70
O3 R-obj 0.5153 0.1293 22.70 14.70 0.0510 603.10 1.21 100.00

Qwen3-4B N.R 0.0098 0.0074 0.00 0.00 0.0175 64.72 7.93 25.60
Qwen3-4B R 0.0681 0.0429 0.70 0.60 0.0640 105.13 3.86 84.40
Qwen3-4B R-con 0.3458 0.0824 11.60 6.50 0.0402 514.11 1.29 99.60
Qwen3-4B R-obj 0.0676 0.0212 1.40 1.10 0.0233 306.53 2.89 93.80

A
ut

oB
oo

l
(α

=
0
.5

)
W

ea
k

R
.O Qwen3-4B N.R 0.6791 0.1386 42.70 30.80 0.0392 677.31 1.12 98.80

Qwen3-4B R 0.6112 0.1223 33.60 21.70 0.0345 678.80 1.04 99.60
Qwen3-4B R-con 0.5202 0.1052 22.80 14.30 0.0388 654.57 1.11 99.80
Qwen3-4B R-obj 0.6495 0.0987 39.10 25.50 0.0263 743.89 1.10 99.40

A
ut

oB
oo

l
(α

=
1

)
M

od
R

.O Qwen3-4B N.R 0.7036 0.1195 47.10 32.30 0.0300 732.49 1.17 98.40
Qwen3-4B R 0.5453 0.1346 27.90 16.50 0.0496 586.01 1.06 99.70
Qwen3-4B R-con 0.5262 0.1066 26.30 16.80 0.0372 636.19 1.06 100.00
Qwen3-4B R-obj 0.6540 0.1094 39.70 26.70 0.0293 738.34 1.04 99.90

A
ut

oB
oo

l
(α

=
2

)
H

ea
vy

R
.O Qwen3-4B N.R 0.6948 0.1209 45.30 30.80 0.0306 724.15 1.11 98.90

Qwen3-4B R 0.5602 0.1344 30.00 18.40 0.0472 588.21 1.07 99.60
Qwen3-4B R-con 0.5911 0.0887 31.40 20.40 0.0281 739.69 1.09 99.80
Qwen3-4B R-obj 0.6878 0.1024 44.80 31.30 0.0245 773.01 1.06 99.70

documents remains within a practical range (typi-413

cally 586–773, compared to 500–603 for O3 and414

251–440 for GPT-4O) indicating only a modest in-415

crease in screening effort. These results highlight416

the effectiveness of retrieval-driven RL training in417

generating high-recall Boolean queries, even under418

constrained model capacity.419

Effect of Prompt Type. Under zero-shot settings,420

the R-con prompt generally yields the highest re-421

call and F3 scores (except for F3 in GPT-4o and422

recall in O3), this suggests that structured reasoning423

aids query formulation when no retrieval feedback424

is available. However, this advantage diminishes425

after training. For trained AutoBool models, the No426

Reasoning prompt consistently achieves the best427

recall and high-recall threshold performance across428

all settings, while reasoning-based prompts tend to429

yield higher precision.430

We hypothesize two complementary explana-431

tions for these trends. First, RL enables the model432

to internalize task-specific structure and discover its433

own optimized generation strategy, which may di-434

verge from human-designed decomposition frame-435

works. Second, Boolean queries are inherently436

interpretable and self-contained: their logic is fully437

encoded through syntax and operators. As such, 438

requiring the model to verbalize intermediate rea- 439

soning may introduce unnecessary constraints or 440

verbosity once it has learned to generate effective 441

queries end-to-end. 442

Nonetheless, reasoning-based prompts consis- 443

tently yield higher success rates and require fewer 444

regenerations than No Reasoning, even after train- 445

ing. This suggests that intermediate reasoning may 446

still offer robustness benefits in more difficult sys- 447

tematic review topics, where generating a valid and 448

well-formed Boolean query is especially challeng- 449

ing. In these cases, explicit reasoning may help the 450

model maintain syntactic and semantic integrity 451

under ambiguity or complexity. 452

Which α Value Should Be Used? We analyze 453

the effect of the α parameter in the retrieval reward, 454

which adjusts the emphasis on recall over precision. 455

In structured reasoning-based prompts (R-con, 456

R-obj), increasing α consistently improves recall, 457

as intended. In contrast, results are more mixed 458

for less-structured prompts: α = 1 yields the high- 459

est recall with N.R, while α = 0.5 performs best 460

with R. For F3, α = 1 generally achieves the best 461

performance across prompts, except in N.R, where 462

6



α = 0.5 outperforms. Overall, α = 1 offers the463

most balanced trade-off between recall and preci-464

sion, making it a strong default. Its effects are also465

more stable in structured prompts, where recall466

improves more predictably with higher α.467

6.1.1 Generalization on Existing Datasets468

To assess generalization, we evaluate our trained469

models on two established systematic review470

benchmarks: CLEF TAR and the Seed Collection471

(Table 5 and Table 6 in Appendix). Both datasets472

are relatively small and publicly available, raising473

potential concerns around bias and data leakage.474

CLEF TAR. AutoBool generalizes well, obtain-475

ing substantially higher recall and recall-threshold476

metrics than its zero-shot counterparts. It is also477

more effective than larger models like GPT-4O and478

O3 in recall. With α = 1 and the No Reasoning479

prompt, AutoBool almost matches the recall of480

expert-crafted queries (within 1%) while retrieving481

17 times fewer documents; yielding improved F3,482

higher precision, and reduced screening effort. It is483

also more effective than the O1 model from Wang484

et al. (2025) in both recall and F3, highlighting the485

benefits of RL optimization.486

Seed Collection. A similar pattern holds. While487

AutoBool underperforms expert-written queries, it488

significantly outperforms zero-shot baselines and489

the O1 model from Wang et al. (2025). These490

results demonstrate that retrieval-aware training491

enables robust Boolean query generation—even492

when trained on a single corpus.493

7 Ablation Studies494

We conduct ablation experiments to assess the im-495

pact of model size, training-time temperature, and496

backbone choice on retrieval performance under497

our reinforcement learning framework. All models498

are trained on the same data and reward function,499

with α = 1 unless otherwise specified.500

7.1 Effect of Backbone Size501

To understand the impact of backbone model size502

on retrieval performance, we evaluate Qwen3 mod-503

els at four parameter sizes (1.7B, 4B, 8B, and 14B),504

each trained with the same reinforcement learning505

setup. As shown in Figure 2, increasing model size506

leads to a consistent improvement in F3, reflecting507

better overall balance between recall and precision.508

However, this comes with a trade-off: recall and509

recall-threshold metrics (Recall > 80%, Recall >510

Table 3: Impact of Backbone model on the effectiveness
of Boolean query generation across prompt types on the
PubMed Temporal-Cutoff set.

Model Prompt Recall F3 Recall
>80%

Recall
>90%

Q
w

en
3-

8B

N.R 0.7116 0.1304 47.90 32.80
R 0.4716 0.1360 20.80 13.20
R-con 0.4928 0.1167 22.50 14.40
R-obj 0.5097 0.1376 19.50 12.30

L
la

m
a3

.1
-8

B N.R 0.7380 0.1035 53.00 38.00
R 0.7375 0.0999 54.20 39.70
R-con 0.7165 0.1006 48.60 34.00
R-obj 0.7291 0.1075 51.40 36.60

90%) tend to decrease slightly as model size in- 511

creases. This suggests that larger models may learn 512

to generate more screening-efficient queries, re- 513

trieving fewer documents with higher precision, 514

but at the cost of slightly missing additional rele- 515

vant studies. 516

These findings highlight the importance of align- 517

ing model scale with task priorities. For high- 518

recall applications like systematic reviews, smaller 519

models (e.g., 4B) may be preferable due to their 520

stronger recall performance. In contrast, larger 521

models (e.g., 8B or 14B) may be more appropriate 522

when minimizing screening effort is critical and 523

slight recall reductions are acceptable. 524

7.2 Impact of Temperature 525

At training time, the generation temperature con- 526

trols sampling diversity: higher values promote 527

more varied outputs, while lower values encourage 528

more deterministic decoding during training for the 529

same topic. To assess its effect on retrieval effec- 530

tiveness, we evaluate AutoBool models at three gen- 531

eration temperatures: 0.6, 0.9, and 1.2. As shown 532

in Figure 3, increasing temperature consistently 533

improves all primary metrics. This indicates that 534

more diverse generations help the model explore 535

effective query formulations, resulting in broader 536

coverage and higher-quality retrieval. 537

7.3 Effect of Backbone Model 538

To examine how the backbone model affects 539

performance, we compare two similarly sized 540

models—Qwen3-8B and LLaMA3.1-8B—trained 541

with identical reinforcement learning procedures 542

across the same prompts. As shown in Table 3, 543

LLaMA3.1-8B consistently outperforms Qwen3- 544

8B across all primary recall metrics. Notably, 545
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Figure 2: Effect of model size on the effectiveness of Boolean query generation across prompt types on the PubMed
Temporal-Cutoff set, all result based on Qwen3 based Models.
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Figure 3: Effect of reinforcement learning training temperature value on the effectiveness of Boolean query
generation across prompt types on the PubMed Temporal-Cutoff set, all result based on Qwen3-4B Model.

LLaMA3.1-8B achieves the highest recall across546

all prompt types, with especially strong results un-547

der the N.R prompt (0.7380 recall, 53.00% Recall >548

80%) and R prompt (0.7375 recall, 54.20% Recall549

> 80%). In contrast, Qwen3-8B yields generally550

higher F3, suggesting it may be more efficient in551

reducing screening effort.552

Consistent with findings on Qwen models,553

LLaMA3.1 also performs best under the No554

Reasoning prompt, indicating that post-training,555

simpler prompting leads to more effective gener-556

ation. Reasoning-based prompts tend to degrade557

recall performance, though they may still offer ben-558

efits in terms of robustness or interpretability.559

Overall, these results highlight that backbone560

differences among decoder-only LLMs can signifi-561

cantly influence learning dynamics under reinforce-562

ment optimization, particularly in how recall and563

efficiency are balanced during query generation.564

8 Conclusion565

We present AutoBool, a reinforcement learning566

framework for training language models to gen-567

erate high-quality Boolean queries for systematic568

reviews. We also release PubTemp: a real-world569

dataset of reviews significantly larger than existing570

training and evaluation resources.571

AutoBool provides scalable training by optimis-572

ing directly for retrieval effectiveness using genera-573

tion preference. This overcomes a major limitation 574

of supervised fine-tuning: the need for ground-truth 575

Boolean queries, which not available in large quan- 576

tities for the task of systematic reviews. 577

AutoBool substantially improves recall and ro- 578

bustness over zero-shot method with the same back- 579

bone, and matches or exceeds much larger mod- 580

els (GPT-4o and O3). Reinforcement learning 581

enhances both retrieval effectiveness and gener- 582

ation stability: trained models consistently achieve 583

higher recall, broader recall-threshold coverage, 584

and stronger success rates. These improvements 585

generalize to external benchmarks like CLEF and 586

the Seed Collection, highlighting the transferability 587

of retrieval-aware optimization. 588

Ablation studies reveal several key insights. 589

Larger models improve F3 but can slightly reduce 590

recall. Backbone choice matters: LLaMA outper- 591

forms Qwen at the same scale. Higher decoding 592

temperatures improve retrieval, likely by increasing 593

query diversity. Notably, No Reasoning prompts 594

consistently yield the best performance after train- 595

ing, though reasoning-based prompts still help in 596

more challenging cases. 597

Together, these findings establish AutoBool as 598

a scalable, flexible and high-performing solution 599

for automated Boolean query generation, balancing 600

comprehensiveness, efficiency, and reliability for 601

evidence-based search. 602
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9 Limitations603

While our findings demonstrate the effectiveness604

of AutoBool in generating high-recall Boolean605

queries with relatively small language models, sev-606

eral limitations remain.607

First, we are currently limited to fine-tuning608

open-source models with moderate sizes (e.g., up609

to 14B parameters). Although AutoBool out-610

performs much larger commercial LLMs (e.g.,611

GPT-4o, O3) in recall, prior work suggests that612

larger models may better support reasoning-based613

prompts and produce higher-quality queries. Due614

to GPU memory constraints, we are unable to fine-615

tune such models, limiting our ability to explore616

how retrieval-aware training scales with model617

size—particularly in prompt-sensitive settings. Sec-618

ond, while LLaMA3.1 models achieved higher re-619

trieval effectiveness in our experiments, their RL620

training was significantly less stable than Qwen3.621

We observed abrupt collapses in average reward622

during training that often did not recover, pre-623

venting reliable replication and leading us to fo-624

cus on Qwen-based models for core experiments.625

Third, as with most RL-fine-tuned LLMs, Auto-626

Bool exhibits stochastic behavior during training627

due to non-deterministic generation and moderate-628

temperature decoding. This can introduce minor629

variance across runs and affect reproducibility at630

the query level, though overall performance trends631

remain consistent.632

Future work could improve training stability for633

architectures like LLaMA and investigate the root634

causes of instability. Access to larger and more635

robust open-source models may further enhance636

AutoBool’s effectiveness and generalizability.637

A Appendix638

A.1 Prompt Template639

We design four prompt templates to investigate how640

different reasoning styles influence Boolean query641

generation performance:642

• No Reasoning (N.R): A simple prompt that643

directly asks the model to generate a Boolean644

query from a review topic without explanation.645

(See Table 4)646

• Free-text Reasoning (R): Allows the model647

to reason freely before producing a final query,648

enabling unstructured decomposition. (See649

Table 5)650

• Conceptual Reasoning (R-con): Guides the 651

model to map the topic into structured ele- 652

ments like Population, Intervention, and Out- 653

come before forming the query. (See Table 6) 654

• Objective Reasoning (R-obj): Encourages 655

the model to extract explicit inclusion criteria 656

and convert them into Boolean syntax. (See 657

Table 7) 658

These templates serve as both zero-shot prompt- 659

ing strategies and scaffolds for reinforcement learn- 660

ing. Their comparative impact is analyzed through- 661

out our experiments. 662

A.2 Model Tunning 663

Parameter Value

Adapter type LoRA
LoRA rank (r) 16
LoRA alpha 32
LoRA dropout 0.05
Quantization bf16
Attn implementation flash-attention-2
Effective batch size 16
Learning rate 1e-5
Generation temperature 0.6
# Generations / prompt 4
Prompt length (non-reasoning) 768 / 1024 tokens
Prompt length (reasoning-based) 1024 / 3072 tokens
Reward functions Format, Validity, Retrieval
Inference engine vLLM (colocate mode)
Optimizer backend DeepSpeed
# Epochs 1

Table 4: Training hyperparameters used for GRPO-
based Boolean query generation.

A.2.1 Result on CLEF and Seed 664

We report detailed evaluation results for Auto- 665

Bool on two widely used external benchmarks for 666

Boolean query generation: CLEF TAR (Table 5) 667

and the Seed Collection (Table 6). Both tables com- 668

pare AutoBool against zero-shot prompting base- 669

lines using the same underlying model (Qwen3- 670

4B), commercial LLMs (GPT-4O, O3), and manu- 671

ally written expert queries when available. These 672

benchmarks provide insights into AutoBool’s gen- 673

eralization ability when deployed beyond its train- 674

ing distribution. 675

CLEF TAR. AutoBool demonstrates strong gen- 676

eralization across all primary metrics. It substan- 677

tially improves recall over zero-shot baselines and 678

also outperforms commercial LLMs such as GPT- 679

4O and O3 on recall and high-recall coverage (Re- 680

call > 80%, Recall > 90%). Notably, when using 681

the No Reasoning prompt and α = 1, AutoBool 682
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System Message

You are an expert systematic review information specialist.
You are tasked to formulate a systematic review Boolean query in response to a research topic. The final Boolean query must
be enclosed within <answer> </answer> tags. Do not include any explanation or reasoning.

User Message

You are given a systematic review research topic, with the topic title "topic".
Your task is to formulate a highly effective Boolean query in MEDLINE format for PubMed.
The query should balance high recall (capturing all relevant studies) with reasonable precision (avoiding irrelevant results):
- Use both free-text terms and MeSH terms (e.g., chronic pain[tiab], Pain[mh]).
- Do not wrap terms or phrases in double quotes, as this disables automatic term mapping (ATM).
- Combine synonyms or related terms within a concept using OR.
- Combine different concepts using AND.
- Use wildcards (*) to capture word variants (e.g., vaccin* -> vaccine, vaccination):
- Terms must have >= 4 characters before the * (e.g., colo*)
- Wildcards work with field tags (e.g., breastfeed*[tiab]).
- Field tags limit the search to specific fields and disable ATM.
- Do not include date limits.
- Tag term using term field (e.g., covid-19[ti] vaccine[ti] children[ti]) when needed.
Only use the following allowed field tags:
Title: [ti], Abstract: [ab], Title/Abstract: [tiab]
MeSH: [mh], Major MeSH: [majr], Supplementary Concept: [nm]
Text Words: [tw], All Fields: [all]

Publication Type: [pt], Language: [la]
Output and only output the formulated Boolean query inside <answer></answer> tags. Do not include any explanation or
content outside or inside the <answer> tags.

Figure 4: No-reasoning prompt

System Message

You are an expert systematic review information specialist.
You are tasked to formulate a systematic review Boolean query in response to a research topic. Your reasoning process
should be enclosed within <think></think>, and the final Boolean query must be enclosed within <answer></answer> tags.
Do not include anything outside of these tags.

User Message

You are given a systematic review research topic, with the topic title "topic".
Your task is to generate a highly effective Boolean query in MEDLINE format for PubMed.
The query should balance high recall (capturing all relevant studies) with reasonable precision (avoiding irrelevant results):
- Use both free-text terms and MeSH terms (e.g., chronic pain[tiab], Pain[mh]).
- Do not wrap terms or phrases in double quotes, as this disables automatic term mapping (ATM).
- Combine synonyms or related terms within a concept using OR.
- Combine different concepts using AND.
- Use wildcards (*) to capture word variants (e.g., vaccin* -> vaccine, vaccination):
- Terms must have >= 4 characters before the * (e.g., colo*)
- Wildcards work with field tags (e.g., breastfeed*[tiab]).
- Field tags limit the search to specific fields and disable ATM.
- Do not include date limits.
- Tag terms using appropriate fields (e.g., covid-19[ti] vaccine[ti] children[ti]) when needed.
Only use the following allowed field tags:
Title: [ti], Abstract: [ab], Title/Abstract: [tiab]
MeSH: [mh], Major MeSH: [majr], Supplementary Concept: [nm]
Text Words: [tw], All Fields: [all]
Publication Type: [pt], Language: [la]
Output your full reasoning inside <think></think>.
Output the final Boolean query inside <answer></answer>.
Do not include any content outside these tags.

Figure 5: Free-text Reasoning prompt with <think> and <answer> outputs
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System Message

You are an expert systematic review information specialist.
Formulate a systematic review Boolean query using step-by-step reasoning inside <think> </think>, and output the final
query inside <answer> </answer>.

User Message

You are given a systematic review topic titled: "topic".
Construct a Boolean query using the conceptual method, based on domain logic and structured thinking.
Step 1: Identify 2–3 key concepts from the topic (e.g., Population, Intervention, Outcome).
Step 2: For each concept: - List related terms: synonyms, variants, relevant MeSH terms. - Prioritise specific, high-precision
terms.
Step 3: Create a Boolean block per concept: - Combine terms using OR - Use free-text terms and MeSH terms (e.g., chronic
pain[tiab], Pain[mh]) - Do not wrap terms or phrases in double quotes, as this disables automatic term mapping (ATM) -
Tag terms individually when needed (e.g., covid-19[ti] vaccine[ti] children[ti]) - Field tags limit search scope and disable
ATM
Step 4: Use wildcards (*) to capture word variants (e.g., vaccin* -> vaccine, vaccination): - Terms must have >= 4 characters
before the * (e.g., colo*) - Wildcards work with field tags (e.g., breastfeed*[tiab]).
Step 5: Combine all Boolean blocks using AND: ((Concept1_term1[tiab] OR Concept1_term2[tiab] OR Con-
cept1_termX[mh]) AND (Concept2_...))
Only use the following allowed field tags: Title: [ti], Abstract: [ab], Title/Abstract: [tiab] MeSH: [mh], Major MeSH:
[majr], Supplementary Concept: [nm] Text Words: [tw], All Fields: [all] Publication Type: [pt], Language: [la]
Output your full reasoning inside <think>...</think>
Output only the final Boolean query inside <answer>...</answer>
Do not include any content outside these tags.
Do not include date limits.

Figure 6: Conceptual-method prompt with <think> reasoning and <answer> output

achieves recall that is within 1% of expert-written683

queries, while retrieving 17× fewer documents.684

This trade-off leads to improved F3 and precision,685

indicating not only strong comprehensiveness but686

also a meaningful reduction in screening burden.687

AutoBool also surpasses the performance of the688

O1 model used in Wang et al. (2025), highlighting689

the advantage of retrieval-aware training via re-690

inforcement learning over static prompting-based691

generation.692

Seed Collection. Similar results are observed on693

the Seed Collection benchmark. While AutoBool694

does not fully match the performance of expert-695

authored queries in recall or F3, it consistently out-696

performs all zero-shot prompting baselines and the697

O1 model from Wang et al. (2025). The model698

demonstrates strong recall-oriented behavior while699

keeping the number of retrieved documents at a700

practical level, maintaining its advantage in terms701

of screening efficiency. The success rate remains702

close to 100%, indicating stable formatting and703

reliable generation.704

These results confirm that AutoBool generalizes705

effectively across different domains and collections,706

even though it was trained solely on PubMed data.707

The performance gains on CLEF and Seed further708

reinforce the value of reinforcement learning for709

robust and transferable Boolean query generation. 710
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System Message

You are an expert systematic review information specialist.
You are tasked to formulate a systematic review Boolean query step by step as a reasoning process within <think> </think>,
and provide the Boolean query formulated <answer> </answer>.

User Message

You are given a systematic review research topic, with the topic title "topic".
You need to simulate a Boolean query construction process using the objective method, which is grounded in domain
expertise and structured logic.
Step 1: Simulate a concise title and abstract (2–3 sentences) of a relevant and focused article clearly aligned with the topic.
This is a hypothetical but plausible example.
Step 2: Based on the simulated text, identify key informative terms or phrases that best represent the article’s core concepts.
Prioritise specificity and informativeness. Avoid overly broad or ambiguous terms.
Step 3: Categorise each term into one of the following: - (A) Health conditions or populations (e.g., diabetes, adolescents) -
(B) Treatments, interventions, or exposures (e.g., insulin therapy, air pollution) - (C) Study designs or methodologies (e.g.,
randomized controlled trial, cohort study) - (N/A) Not applicable to any of the above categories
Step 4: Using the categorised terms, build a Boolean query in MEDLINE format for PubMed: - Combine synonyms or
related terms within each category using OR - Use both free-text terms and MeSH terms (e.g., chronic pain[tiab], Pain[mh])
- Do not wrap terms or phrases in double quotes, as this disables automatic term mapping (ATM) - Tag each term
individually when needed (e.g., covid-19[ti] vaccine[ti] children[ti]) - Field tags limit the search to specific fields and disable
ATM
Step 5: Use wildcards (*) to capture word variants (e.g., vaccin* -> vaccine, vaccination): - Terms must have >= 4 characters
before the * (e.g., colo*) - Wildcards work with field tags (e.g., breastfeed*[tiab]).
Step 6: Combine all category blocks using AND: ((itemA1[tiab] OR itemA2[tiab] OR itemA3[mh]) AND (itemB1[tiab] OR
...) AND (itemC1[tiab] OR ...))
Only use the following allowed field tags: Title: [ti], Abstract: [ab], Title/Abstract: [tiab] MeSH: [mh], Major MeSH:
[majr], Supplementary Concept: [nm] Text Words: [tw], All Fields: [all] Publication Type: [pt], Language: [la]
Place your full reasoning (including simulated abstract, term list, classification, and query construction) inside
<think></think>.
Output the final Boolean query inside <answer></answer>.
Do not include anything outside the <think> and <answer> tags.
Do not include date restrictions.

Figure 7: Objective-method prompt with simulated article and structured reasoning in <think>
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Table 5: Effectiveness of LLM-generated Boolean queries on the CLEF TAR set. Bold indicates the best result
for each model within a setting; Underlined indicates the overall best across all models. Expert-Crafted refers to
results obtained by issuing the original Boolean queries from the dataset to PubMed. Best Wang et al. (2025)-O1
denotes the O1 model using the P3 prompt from Wang et al. (2025), which achieved the highest recall in that study.

Setting Model Prompt Recall F3 Recall
>80%

Recall
>90%

Precision Avg
Retrieved

Avg
Regen %Success

Z
er

o-
sh

ot

Expert Crafted 0.8458 0.0970 80.56 79.17 0.0206 14327.07 / 100.00
Best Wang et al. (2025)-O1 0.6545 0.1966 / / 0.1078 / / /

GPT-4O N.R 0.4258 0.2245 19.44 11.11 0.1275 389.74 1.01 100.00
GPT-4O R 0.4534 0.2160 22.22 16.67 0.1013 459.18 1.01 100.00
GPT-4O R-con 0.5283 0.2283 26.39 19.44 0.1080 535.54 1.00 100.00
GPT-4O R-obj 0.3498 0.1449 16.67 9.72 0.1139 422.67 1.07 100.00

O3 R 0.7454 0.3167 56.94 40.28 0.0879 663.10 1.58 98.61
O3 R-con 0.7270 0.3196 48.61 34.72 0.0928 627.35 1.18 100.00
O3 R-obj 0.5811 0.2157 25.00 13.89 0.0779 731.69 1.15 100.00

Qwen3-4B N.R 0.0255 0.0235 0.00 0.00 0.0608 59.00 6.39 41.67
Qwen3-4B R 0.1756 0.1246 2.78 0.00 0.1389 175.38 1.65 98.61
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Table 6: Effectiveness of LLM-generated Boolean queries on Seed Collection.. Bold indicates the best result for
each model within a setting; Underlined indicates the overall best across all models. Expert-Crafted refers to
results obtained by issuing the original Boolean queries from the dataset to PubMed. Best Wang et al. (2025)-O1
denotes the O1 model using the P3 prompt from Wang et al. (2025), which achieved the highest recall in that study

Setting Model Prompt Recall F3 Recall
>80%

Recall
>90%

Precision Avg
Retrieved

Avg
Regen %Success

Z
er

o-
sh

ot

Expert Crafted 0.7241 0.1869 57.50 25.00 0.0341 1416.55 / 100.00
Best Wang et al. (2025)-O1 0.5786 0.0852 / / 0.0523 / / /

GPT-4O N.R 0.3106 0.1073 2.50 2.50 0.0694 369.30 1.00 100.00
GPT-4O R 0.3330 0.1076 5.00 2.50 0.0317 426.77 1.05 100.00
GPT-4O R-con 0.3936 0.1262 2.50 0.00 0.0382 559.98 1.00 100.00
GPT-4O R-obj 0.2647 0.0847 7.50 2.50 0.0882 478.00 1.25 100.00

O3 R 0.7027 0.1142 47.50 25.00 0.0174 733.10 1.48 100.00
O3 R-con 0.6482 0.1336 30.00 15.00 0.0235 659.42 1.35 100.00
O3 R-obj 0.5411 0.1418 22.50 12.50 0.0424 653.65 1.12 100.00

Qwen3-4B N.R 0.0003 0.0000 0.00 0.00 0.0000 124.00 8.10 25.00
Qwen3-4B R 0.0306 0.0144 0.00 0.00 0.0327 170.43 4.35 75.00
Qwen3-4B R-con 0.3768 0.0567 10.00 10.00 0.0193 596.70 1.23 100.00
Qwen3-4B R-obj 0.0384 0.0113 0.00 0.00 0.0275 194.13 2.58 97.50
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