
OPT2024: 16th Annual Workshop on Optimization for Machine Learning

Learning Morphisms with Gauss-Newton Approximation for Growing
Networks

Neal Lawton NLAWTON@USC.EDU

Aram Galstyan GALSTYAN@ISI.EDU

Greg Ver Steeg GREG.VERSTEEG@UCR.EDU

Information Sciences Institute

Abstract
An appealing method for Neural Architecture Search (NAS) is based on growing networks via small
local changes to the network’s architecture called network morphisms. These methods start with a
small seed network and progressively grow the network by adding new neurons in an automated
way. However, efficiently determining the best way to grow the network remains a challenge. Here
we propose a NAS method for growing a network which uses a Gauss-Newton approximation of
the loss function to efficiently learn and evaluate candidate network morphisms. We then optimize
this approximate loss function to efficiently learn morphism parameters. We compare our method
with similar NAS methods for CIFAR-10 and CIFAR-100 classification tasks, and conclude our
method learns similar quality or better architectures at a smaller computational cost.

1. Introduction

Neural Architecture Search (NAS), which seeks to automate the architectural design of neural net-
works, has become a central problem in machine learning research [7]. Researchers often ad-
vance state-of-the-art by carefully designing novel network architectures for specific problems, e.g.,
ResNets [12] for image classification and transformers [37] for natural language processing.

There are many different optimization methods for performing NAS, such as evolutionary meth-
ods [5, 29, 32], reinforcement learning methods [9, 41, 42], and pruning methods[8, 11, 25]. An-
other unique category of methods for NAS is growing methods [3, 10, 18, 22, 24, 36, 39]. Growing
methods begin with a small seed architecture, then progressively grow a larger, more complex ar-
chitecture by repeatedly applying small parameterizable local changes to the network’s architecture
called network morphisms. To grow a network, we must choose which morphisms to apply as well
as the parameters for those morphisms. However, this optimization problem is challenging to solve
at scale, when there are many possible morphisms to consider.

In this paper, we propose a method for learning and evaluating morphism parameters quickly
and efficiently. Our method utilizes a Gauss-Newton approximation of the loss function to estimate
the decrease in loss resulting from applying each morphism. We then optimize this loss to learn
and evaluate morphism parameters. We use this method to design a NAS algorithm that iteratively
applies network morphisms to progressively grow a network architecture.

We compare our method with other NAS methods on CIFAR-10 and CIFAR-100 classification
tasks [20]. We present promising experiments that demonstrate that our method grows networks
with similar or better parameter-accuracy tradeoff compared to similar methods.

© N. Lawton, A. Galstyan & G.V. Steeg.



GROWING NETWORKS WITH GAUSS-NEWTON

x

y

z

win

wout

=⇒

x

y1 y2

z

win + θ win − θ

1
2wout

1
2wout

(a) Channel splitting morphism

x

y

z

win

wout

=⇒

x

y

z

win − θ

wout

(b) Channel pruning morphism

Figure 1: Network morphisms. Square nodes represent convolutional layers, circular nodes repre-
sent convolutional channels.

2. Related Work

Pruning methods [8, 11, 25, 26] have become popular for shrinking large, high-performing net-
works down to much smaller networks without sacrificing test accuracy. One-shot methods [30]
are similar: they simplify NAS by constraining the search space to subgraphs of a large trained
network. These methods are much less computationally expensive than reinforcement learning and
evolutionary methods, but still require training a large network.

The computational inexpensiveness of growing progressively larger networks has been exploited
for NAS [10, 22, 33] and for training fixed networks [17]. Growing networks via network mor-
phisms has previously been used in combination with reinforcement learning [2] and evolutionary
NAS methods [6]. In contrast, we use network morphisms to view NAS as a continuous opti-
mization problem, similar to other differentiable architecture search methods [23, 27, 34]. Unlike
Net2Net [4], which applies network morphisms with random parameters, we build upon a recent
line of work [24, 38–40] that has made progress in efficiently learning and evaluating morphisms.

We use a Gauss-Newton approximation to estimate the decrease in the loss achieved by applying
a network morphism. Bayesian optimization NAS methods [16, 19, 22, 28] also try to estimate the
performance of new networks without training them. However, these methods use the performance
of previously seen networks to predict the performance of future unseen networks, while our pre-
dictions are made independently of previously seen networks. In fact, our technique is more similar
to [21] in which the authors use a diagonal approximation of the Hessian to estimate the change in
the loss when pruning neurons.

3. Method

3.1. Morphisms

A network morphism is a small change in a neural net’s architecture parameterized by θ so that when
θ = 0, the morphism is function-preserving, i.e., the input-output mapping of the neural network is
unchanged. In this paper, we consider several morphisms.

The first morphism we consider is a channel-splitting morphism that grows a network wider,
depicted in Figure 1(a)subfigure. For a convolutional channel y with input from a layer x with
incoming kernel parameters win and output to a layer z with outgoing kernel parameters wout, ap-
plying the channel-splitting morphism replaces the channel y with two channels y1 and y2, with
incoming kernel parameters win + θ and win − θ respectively, and each with outgoing kernel pa-

2



GROWING NETWORKS WITH GAUSS-NEWTON

rameters wout/2. If θ = 0, then this morphism duplicates the channel y without changing the
input-output mapping of the neural network; if θ ̸= 0, then this morphism replaces the feature de-
tected by y with two new feature detectors with parameters win + θ and win − θ. For example, if y
is an edge detector, then y1 and y2 may detect two similar edges with slightly different angles.

The second morphism we consider is a channel-pruning morphism, depicted in Figure 1(b)subfigure.
For a channel y with incoming kernel parameters win, applying the channel-pruning morphism sub-
tracts θ from win. If θ = 0, then the network is unchanged, but if θ = win, then the incoming kernel
parameters of y are zero, and the channel y can be pruned. The parameters of this morphism are not
learned, but instead are always chosen to be θ = win.

To apply a particular morphism, we must first choose values for the morphism’s parameters
θ. The best choice for the morphism’s parameters would maximally decrease the loss of the net-
work when the morphism is applied. However, these parameters are computationally prohibitive to
calculate exactly at scale.

3.2. Gauss-Newton Approximation

Instead, we can approximate the decrease in the loss function for each morphism. Each morphism
we consider is local, so that there exists a collection of network activations z such that the mapping
between the network input and any activation higher than z in the computational DAG is unchanged
for any choice of θ. Consider the expanded networks depicted in Figure 1. Denote ∆L(θ) the
change in the loss function after applying the morphism with parameters θ; ∆z(θ) the change in
z after applying the morphism with parameters θ; g the gradient of the loss function with respect
to z at θ = 0; and H the Hessian of the loss function with respect to z at θ = 0. Consider the
second-order approximation of the change in loss function with respect to z centered at θ = 0:

∆L(θ) ≈ ∆z(θ) · g + 1

2
∆z(θ)⊤H∆z(θ)

Computing the Hessian matrix of second derivatives in this approximation is computationally ex-
pensive. Instead, we can make a Gauss-Newton approximation of the Hessian matrix, where L̂ is
the current training loss:

H ≈ 1

2L̂
gg⊤

Plugging in this approximation yields:

∆L(θ) ≈ ∆z(θ) · g + 1

4L̂
(∆z(θ) · g)2

Recent work [38, 40] also uses a second-order approximation of the loss function to learn morphism
parameters. In that work, the authors make a second-order approximation of the loss function with
respect to θ. In contrast, we make a second-order approximation of the loss function with respect to
∆z(θ). Critically, because ∆z(θ) is a nonlinear function of θ, our Gauss-Newton approximation is
still a high-order approximation of ∆L(θ) with respect to θ.

3.3. Algorithm

Since ∆L(θ) is computed independently for each training mini-batch, we record an exponential
moving average of ∆L(θ) across mini-batches using a momentum hyperparameter to get a lower

3



GROWING NETWORKS WITH GAUSS-NEWTON

Figure 2: Network grown from a VGG-19 seed network by our algorithm for classifying CIFAR-
100. Here the network is at the end of its 15-th growth phase. Channels colored red will be
split with their learned channel-splitting morphism parameters in the next epoch; splitting
the reddest channels is estimated to give the highest loss-resource tradeoff. Channels
colored blue will be pruned in the next epoch; pruning the bluest channels is estimated to
give the highest loss-resource tradeoff.

variance estimate of the decrease in the loss function. We can then weigh the tradeoff for each
morphism between the estimated change in loss ∆L(θ) and the change in the number of parameters
introduced when applying the morphism. To quantify this tradeoff, we introduce a regularization
hyperparameter indicating the desired tradeoff between training loss and model size. Then we say
a morphism has a positive loss-resource tradeoff if

−∆L(θ) > λp∆Rp

where λp is a hyperparameter regularization constant on the model size and ∆Rp is the change in
the number of parameters resulting from applying the morphism. Given the exponential moving
average estimate of ∆L(θ), checking whether a morphism has positive loss-resource tradeoff takes
constant time.

We use our Gauss-Newton approximation to design a NAS algorithm for growing networks,
summarized in Algorithm 1 in the appendix. Our algorithm alternates between a training phase and
a growing phase. In all our experiments, each phase lasts 20 epochs. In the training phase, the model
architecture is frozen while the model parameters are optimized to minimize the training loss. In
the growing phase, the model parameters are frozen while morphism parameters are optimized to
minimize our Gauss-Newton approximation of the loss. After morphism parameters are learned,
we compute each morphism’s loss-resource tradeoff. Then for each layer, we apply the top 30% of
morphisms local to that layer with positive loss-resource tradeoff.

4. Experiments

In all our experiments, we train with a batch size of 64 and use a simple data augmentation scheme
for CIFAR-10 and CIFAR-100: random horizontal flips and random crops with padding 4. In the
appendix, we present additional experiments evaluating the accuracy of our Gauss-Newton approx-
imation and the quality of our learned morphism parameters.

Here we compare our NAS algorithm end-to-end with other methods for learning architectures
for classifying CIFAR-10 and CIFAR-100. We experiment with different choices of the loss-
resource tradeoff hyperparameter to grow networks of many different sizes. We grow networks

4



GROWING NETWORKS WITH GAUSS-NEWTON

from one of two seed networks. The first is a VGG-19 network with 16 channels in each convolu-
tional layer. The second is a MobileNetV1 network with 32 channels in each convolutional layer. In
each experiment, we run our algorithm for a total of 30 training and growing phases. We optimized
model parameters using SGD with Nesterov momentum 0.9, weight decay 10−4, and a learning rate
that begins at 0.1 and decreases by a factor of 10 at epochs 300 and 450. We optimized morphism
parameters with Adam and a learning rate of 10−2. After our algorithm terminates, we reinitialize
the network’s model parameters and retrain the model from scratch to more accurately determine
the best test accuracy achievable for the learned architecture.

A visualization of a network grown by our algorithm from a VGG-19 seed network for classify-
ing CIFAR-100 is in Figure 2. It is worthwhile to point out that growing from a uniform-width seed
network, our algorithm naturally discovers that a unique, bottleneck-shaped architecture provides
the best loss-parameter tradeoff.

Next, we report the results for CIFAR-10 and CIFAR-100 classification tasks in Tables 1 and
2, respectively. We compare with other NAS methods as well as human-designed baselines. We
observe that our method produces networks with similar or better parameter-accuracy tradeoff at a
smaller computational cost. For example, a network we grew from a VGG-19 seed network using
λp = 3 × 10−7 achieved 5.6% test error on CIFAR-10 using only 1.2 million parameters, which
achieves lower test error with fewer parameters compared to [25], which pruned a VGG-19 model
down to 2.3 million parameters and achieved 6.2% test error. Similarly, a network we grew from a
MobileNetV1 seed network using λp = 3 × 10−7 achieved 25.9% test error on CIFAR-100 using
only 1.4 million parameters, which achieves lower test error with fewer parameters compared to
[12], a ResNet that achieves 27.2% test error with 1.7 million parameters.

Note that our method of growing from simple VGG-19 and MobileNetV1 networks with simple
channel splitting and pruning morphisms is not enough to outperform complex architectures like
those produced by NASNET. Architecture elements necessary for high performance, like residual
connections and squeeze-excite modules, make growing complicated because they force several
layers to have the same number of channels, disallowing us from splitting channels in different
layers independently. It may be possible to grow from these types of seed networks using more
complex morphisms that split channels in multiple layers jointly, but this is left for future work.

5. Conclusion

In this paper, we presented a neural architecture search method for growing a network with network
morphisms while training. We used a Gauss-Newton approximation of the loss to learn morphism
parameters and to estimate the change in the loss resulting from applying those morphisms. We
used the estimated change in loss to compute a loss-resource tradeoff for each morphism using
hyperparameters that regularized the number of parameters of the grown network. We compared our
method with state of the art NAS methods for classifying CIFAR-10 and CIFAR-100 and concluded
that our algorithm finds similar or better architectures at a smaller computational cost.

5



GROWING NETWORKS WITH GAUSS-NEWTON

Method Type Reference Error Params Reachable GPU time
(%) (Millions) (days)

SOTA
AmoebaNet-A [32] 3.3 3.2 3150

NASNET-A [42] 3.4 3.3 2000
Large-scale Evolution [31] 5.4 5.4 2600

Morphisms

NASH [5] 5.2 19.7 ✓ 1.0
Slimming [25] 6.2 2.3 ✓ -

Firefly [39] 6.2 1.9 ✓ -
Net2Net [4] 6.5 3.9 ✓ 2.1

Human-Designed

DenseNet [15] 3.5 25.6 N/A
VGG-19 Baseline [35] 6.3 20.0 ✓ N/A

ResNet [14] 6.4 1.7 N/A
MobileNetV1 Baseline [13] 6.6 3.2 ✓ N/A

Ours

Seed VGG-19, λp = 3× 10−7 5.6 1.2 ✓ 0.7
Seed VGG-19, λp = 1× 10−6 6.5 0.6 ✓ 0.5

Seed MobileNetV1, λp = 3× 10−8 5.8 0.8 ✓ 1.0
Seed MobileNetV1, λp = 3× 10−7 6.0 0.5 ✓ 1.0
Seed MobileNetV1, λp = 1× 10−6 6.2 0.4 ✓ 0.7

Table 1: Classification performance of various architectures on CIFAR-10

Method Type Reference Error Params Reachable GPU time
(%) (Millions) (days)

SOTA
Large-scale Evolution [31] 23.0 40.4 -

SMASH [1] 22.1 4.6 -

Morphisms
NASH [5] 23.4 22.3 ✓ 1.0

Slimming [25] 26.5 5.0 ✓ -

Human Designed

DenseNet [15] 17.2 25.6 N/A
Resnet [12] 27.2 1.7 N/A

VGG-19 Baseline [35] 27.6 20.1 ✓ N/A
MobileNetV1 Baseline [13] 28.7 3.3 ✓ N/A

Ours

Seed VGG-19, λp = 3× 10−7 27.2 2.2 ✓ 0.7
Seed VGG-19, λp = 6× 10−7 28.0 1.6 ✓ 0.6

Seed MobileNetV1, λp = 1× 10−6 27.2 0.8 ✓ 0.8
Seed MobileNetV1, λp = 6× 10−7 26.9 1.3 ✓ 1.0
Seed MobileNetV1, λp = 3× 10−7 25.9 1.4 ✓ 1.0

Table 2: Classification performance of various architectures on CIFAR-100

6



GROWING NETWORKS WITH GAUSS-NEWTON

References

[1] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model
architecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

[2] Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient architecture search
by network transformation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[3] Arnav Chavan, Deepak Gupta, et al. Beyond uniform scaling: Exploring depth heterogeneity
in neural architectures. arXiv preprint arXiv:2402.12418, 2024.

[4] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowl-
edge transfer. arXiv preprint arXiv:1511.05641, 2015.

[5] Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter. Simple and efficient architecture
search for convolutional neural networks. arXiv preprint arXiv:1711.04528, 2017.

[6] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural archi-
tecture search via lamarckian evolution. arXiv preprint arXiv:1804.09081, 2018.

[7] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019. URL http://jmlr.org/
papers/v20/18-598.html.

[8] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

[9] Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang Wang. Autogan: Neural architecture
search for generative adversarial networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3224–3234, 2019.

[10] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi.
Morphnet: Fast & simple resource-constrained structure learning of deep networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages 1586–
1595, 2018.

[11] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

7

http://jmlr.org/papers/v20/18-598.html
http://jmlr.org/papers/v20/18-598.html


GROWING NETWORKS WITH GAUSS-NEWTON

[14] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks
with stochastic depth. In European conference on computer vision, pages 646–661. Springer,
2016.

[15] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely con-
nected convolutional networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4700–4708, 2017.

[16] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: Efficient neural architecture search
with network morphism. arXiv preprint arXiv:1806.10282, 5, 2018.

[17] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[18] Ryan King and Bobak Mortazavi. Growing representation learning. arXiv preprint
arXiv:2110.08857, 2021.

[19] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve
prediction with bayesian neural networks. 2016.

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[21] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pages 598–605, 1990.

[22] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In
Proceedings of the European conference on computer vision (ECCV), pages 19–34, 2018.

[23] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055, 2018.

[24] Qiang Liu, Lemeng Wu, and Dilin Wang. Splitting steepest descent for growing neural archi-
tectures. arXiv preprint arXiv:1910.02366, 2019.

[25] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In Proceedings of the
IEEE international conference on computer vision, pages 2736–2744, 2017.

[26] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the
value of network pruning. arXiv preprint arXiv:1810.05270, 2018.

[27] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture opti-
mization. arXiv preprint arXiv:1808.07233, 2018.

[28] Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing and training
deep architectures. arXiv preprint arXiv:1704.08792, 2017.

8



GROWING NETWORKS WITH GAUSS-NEWTON

[29] Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian Reid. Fast neural architecture search of
compact semantic segmentation models via auxiliary cells. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9126–9135, 2019.

[30] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In International Conference on Machine Learning, pages 4095–
4104. PMLR, 2018.

[31] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In International
Conference on Machine Learning, pages 2902–2911. PMLR, 2017.

[32] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for
image classifier architecture search. In Proceedings of the aaai conference on artificial intel-
ligence, volume 33, pages 4780–4789, 2019.

[33] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[34] Richard Shin, Charles Packer, and Dawn Song. Differentiable neural network architecture
search. 2018.

[35] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[36] Ruilin Tong. Growing neural network with shared parameter. arXiv preprint
arXiv:2201.06500, 2022.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[38] Dilin Wang, Meng Li, Lemeng Wu, Vikas Chandra, and Qiang Liu. Energy-aware neural ar-
chitecture optimization with fast splitting steepest descent. arXiv preprint arXiv:1910.03103,
2019.

[39] Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu. Firefly neural architecture descent: a general
approach for growing neural networks. Advances in Neural Information Processing Systems,
33, 2020.

[40] Lemeng Wu, Mao Ye, Qi Lei, Jason D Lee, and Qiang Liu. Steepest descent neural archi-
tecture optimization: Escaping local optimum with signed neural splitting. arXiv preprint
arXiv:2003.10392, 2020.

9

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


GROWING NETWORKS WITH GAUSS-NEWTON

[41] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-wise neural
network architecture generation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2423–2432, 2018.

[42] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable archi-
tectures for scalable image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8697–8710, 2018.

10



GROWING NETWORKS WITH GAUSS-NEWTON

Appendix A. Algorithm Pseudocode

Algorithm 1: Growing networks with Gauss-Newton
Data: Dataset D, model M , phase length nphase
for t = 1, . . . , nphase do

foreach mini-batches {ds} ∈ D do
Compute mini-batch loss L = M({ds});
Compute all ∇wL with backprop;
SGD step model parameters w;

end
end
for t = 1, . . . , nphase do

foreach mini-batches {ds} ∈ D do
Compute all ∆L(θ) and ∇θL with backprop;
Update exponential moving average of ∆L(θ);
SGD step morphism parameters θ;

end
end
foreach top 30% morphisms with positive tradeoff do

Apply morphism;
end

Appendix B. Gauss-Newton Approximation Accuracy

Here we evaluate the accuracy of our Gauss-Newton approximation of the loss. We begin by con-
structing a VGG-19 model for CIFAR-10 and equip it with channel-splitting morphisms, one for
each channel in each convolutional layer in the network. We trained the VGG-19 model with SGD
with learning rate 0.1 for 20 epochs while holding morphism parameters constant. Then we up-
dated morphism parameters with Adam with learning rate 10−2 for 20 epochs while updating the
exponential moving average estimate of ∆L using momentum hyperparameter 64

50000 × 1
2 so that

our estimate of ∆L is approximately an average over the last 2 epochs. We then computed the true
change in loss achieved by each morphism with its current parameters by applying each morphism
to construct an independent expanded network and evaluating that expanded network on the test
dataset. We then compared our exponential moving average estimate of ∆L with the true value.

The results are depicted in Figure 3. Each circle represents a single channel-splitting morphism
in the specified layer. There are 64 channels in the first layer of the VGG-19 model, and 512
channels each in the 9-th and last layers. The figure plots our exponential moving average estimate
of ∆L against the true ∆L computed via brute force. If our method were 100% accurate, all circles
would lie on the grey dashed lines.

The figure shows that the Gauss-Newton approximation used by our algorithm is quite accurate.
This result by itself is significant. Other methods expend enormous computational resources trying
to estimate how the loss of a network changes when channels are added or removed from the net-

11



GROWING NETWORKS WITH GAUSS-NEWTON

6 5 4 3 2 1 0
Estimated L 1e 2

6

5

4

3

2

1

0

Tr
ue

 
L

1e 2 First Layer

(a)

1.2 1.0 0.8 0.6 0.4 0.2 0.0
Estimated L 1e 1

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 
L

1e 1 Layer 9

(b)

8 6 4 2 0
Estimated L 1e 2

8

6

4

2

0

Tr
ue

 
L

1e 2 Last Layer

(c)

Figure 3: Estimated versus actual decrease in loss for morphisms learned while holding model pa-
rameters constant.

work. This result shows that the change in loss can be approximated to a high degree of accuracy
using only statistics of the network, namely ∆z(θ) · g.

We also observe that the Gauss-Newton approximation seems to be most accurate for the layer
closest to the network output, and least accurate for the layer closest to the network input, though
the reason for this behavior is unclear.

We conclude that the Gauss-Newton approximation used by our algorithm estimates ∆L for
each morphism to a high degree of accuracy.

Appendix C. Learned Morphism Quality

Here we compare the quality of our learned morphisms to those learned via other methods. Another
method for learning morphism parameters is to apply the morphism to construct an expanded net-
work, then optimize the loss of the expanded network with respect to the morphism parameters. This
allows us to learn morphism parameters that minimize the loss rather than an approximation of the
loss, but is computationally expensive to scale when there are many morphisms under consideration.

Another method for choosing morphism parameters is to use the steepest descent direction as
in [38–40]. However, the steepest descent direction does not indicate the optimal scale for θ. To
approximately compute the optimal scale, we perform a line search along the steepest descent di-
rection, though this is computationally expensive.

We compare the true decrease in loss achieved by the morphism parameters learned by our
algorithm with the true decrease in loss achieved by the morphism parameters produced by the two
baselines described above. We do this for each of the possible 64 channel-splitting morphisms in
the first layer of the VGG-19 network trained in the previous experiment. The result is in Figure
4. Each 3-bar cluster plots the true decrease in loss achieved by the morphism parameters learned
by each method for the corresponding channel-splitting morphism. For ease of viewing, we have
sorted the channels with respect to the true decrease in loss achieved by the first baseline method.
Note that for some channels, none of the methods are able to find good morphism parameters. After
inspecting these features, we observe that at this point in training (epoch 20), those channels have
already “died” due to L2 weight regularization, so it is likely not possible to split such bad feature
detectors into two good feature detectors.

12



GROWING NETWORKS WITH GAUSS-NEWTON

0 8 16 24 32 40 48 56 64
Channel index

0.000

0.005

0.010

0.015

0.020

0.025

0.030
Tr

ue
 D

ec
re

as
e 

in
 L

os
s

Optimal
Gauss-Newton (Ours)
Steepest Descent + LS

Figure 4: Comparison of different morphism learning strategies. Each 3-bar cluster plots the true
decrease in loss achieved by the channel-splitting morphism learned by each method for
one of the 64 channels in the first layer of VGG-19.

From the figure, we observe that the morphisms learned by our method most often achieve a
greater decrease in loss than those learned by the steepest descent with line search baseline method.
We also observe that the true decrease in loss achieved by our learned morphisms most often comes
within a constant factor of the decrease achieved by the expensive network expansion baseline. We
observe this most often among the morphisms with the highest potential decrease in loss; this is
important, since these are the morphisms that will be selected by our algorithm to be applied to
grow the network. We conclude that our algorithm learns high quality morphisms, on par with the
expensive network expansion baseline method.

Appendix D. Gauss-Newton Approximation

In this section we review the justification for Gauss-Newton approximation. We begin by assuming
that the loss function is well-approximated by a least-squares problem in z, i.e., for some matrix A
and vector b,

L(z) ≈ 1

2
∥Az − b∥22

=
1

2
b⊤b− z⊤A⊤b+

1

2
zA⊤Az.

Denote the residual:

r = Az − b

13



GROWING NETWORKS WITH GAUSS-NEWTON

Note that L = 1
2r

⊤r. Denote the gradient and Hessian of the loss:

g = A⊤r H = A⊤A

Consider the change in the loss function when adding a quantity ∆z to z. Denote the change in loss:

∆L(∆z) ≡ L(z +∆z)− L(z)

= ∆z · g + 1

2
∆z⊤A⊤A∆z

= ∆z · g + 1

2
∆z⊤H∆z

In this paper, we write the Gauss-Newton approximation as

H ≈ 1

2L
gg⊤,

Theorem 1 (General Gauss-Newton Approximation) If ∆z = λ∆z∗ for some λ ∈ R and some
∆z∗ satisfying A(z +∆z∗) = b, then

1

2
∆z⊤H∆z =

1

2
∆z

gg⊤

2L
∆z

Proof If ∆z = λ∆z∗ and A(z +∆z∗) = b, then A∆z = −λr. So

1

2
∆z⊤

(
gg⊤

2L

)
∆z

=
1

2
∆z⊤

(
A⊤rr⊤A

r⊤r

)
∆z

=
1

2
λ2r⊤r

Similarly,

1

2
∆z⊤H∆z =

1

2
∆zA⊤A∆z

=
1

2
λ2r⊤r

Therefore, we say the Gauss-Newton approximation is exact in the space spanned by the solutions
∆z∗ to the linear system A(z +∆z∗) = b.

Theorem 2 (Rank-1 Gauss-Newton Approximation) If H is rank-1 and there exists a solution z∗

to the linear system Az∗ = b, then for all ∆z,

1

2
∆z⊤H∆z =

1

2
∆z

gg⊤

2L
∆z

14



GROWING NETWORKS WITH GAUSS-NEWTON

Proof If H is rank-1, then A consists of a single row u⊤ and b ∈ R is a scalar.
Let ∆z be arbitrary. Then there exists a solution ∆z∗ to the linear system A(z +∆z∗) = b and

λ ∈ R such that ∆z = λ∆z∗, namely

∆z∗ =
b− u⊤z

u⊤z
∆z

λ =
u⊤∆z

b− u⊤z

since then

A(z +∆z∗) = u⊤z + u⊤∆z∗

= u⊤z + u⊤
(
b− u⊤z

u⊤z
∆z

)
= b

Applying the previous theorem yields the result.

From this it is clear that we can expect the Gauss-Newton approximation to be quite accurate if the
true Hessian matrix H is low-rank.

15


	Introduction
	Related Work
	Method
	Morphisms
	Gauss-Newton Approximation
	Algorithm

	Experiments
	Conclusion
	Algorithm Pseudocode
	Gauss-Newton Approximation Accuracy
	Learned Morphism Quality
	Gauss-Newton Approximation

