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ABSTRACT

Adaptive methods are widely used for training generative adversarial networks
(GAN). While there has been some work to pinpoint the marginal value of adap-
tive methods in minimization problems, it remains unclear why it is still the
method of choice for GAN training. This paper formally studies how adaptive
methods help performance in GANs. First, we dissect Adam—the most popular
adaptive method for GAN training—by comparing with SGDA the direction and
the norm of its update vector. We empirically show that SGDA with the same
vector norm as Adam reaches similar or even better performance than the lat-
ter. This empirical study encourages us to consider normalized stochastic gradient
descent ascent (nSGDA) as a simpler alternative to Adam. We then propose a
synthetic theoretical framework to understand why nSGDA yields better perfor-
mance than SGDA for GANs. In that situation, we prove that a GAN trained with
nSGDA provably recovers all the modes of the true distribution. In contrast, the
same networks trained with SGDA (and any learning rate configuration) suffers
from mode collapsing. The critical insight in our analysis is that normalizing the
gradients forces the discriminator and generator to update at the same pace. We
empirically show the competitive performance of nSGDA on real-world datasets.

1 INTRODUCTION

It is commonly accepted that adaptive algorithms are required to train modern neural network ar-
chitectures in various deep learning tasks. This includes minimization problems that arise in natural
language processing (Vaswani et al., 2017) and fMRI (Zbontar et al., 2018) or min-max problems
such as generative adversarial network (GAN) training (Goodfellow et al., 2014). Indeed, it has been
empirically observed that Adam (Kingma & Ba, 2014) yields a solution with better generalization
than stochastic gradient descent (SGD) in these problems (Choi et al., 2019). Several works have
attempted to explain this phenomenon in the minimization case. Common explanations are that
adaptive methods train faster (Zhou et al., 2018), escape faster very flat saddle-point like plateaus
(Orvieto et al., 2021) or deal better with heavy-tailed stochastic gradients (Zhang et al., 2019b).
However, much less is known regarding min-max problems such as GANs. In this paper, we inves-
tigate why GANs trained with adaptive methods outperform those trained using stochastic gradient
descent ascent with momentum (SGDA).

Some prior works attribute this outperformance to the superior convergence speed of adaptive meth-
ods. For instance, Liu et al. (2019) show that a variant of Optimistic Gradient Descent (Daskalakis
et al., 2017) converges faster than SGDA for a class of non-convex non-concave min-max problems.
However, contrary to the minimization setting, convergence to a stationary point is not guaranteed
and not even a requirement to ensure a satisfactory GAN performance. Indeed, Mescheder et al.
(2018) empirically shows that popular architectures such as Wasserstein GANs (WGANs) (Arjovsky
et al., 2017) do not always converge, and yet produce realistic images. We support this observation
through the following experiment. We train a DCGAN (Radford et al., 2015) using Adam –the most
popular adaptive method– and set up the generator (G) and discriminator (D) step-sizes respectively
as ηD, ηG. Note that D is usually trained faster than G i.e. ηD ≥ ηG. Figure 1(a) displays the
GAN convergence measured by the ratio of gradient norms, and the GAN’s performance measured
in FID score (Heusel et al., 2017). We observe that when ηD/ηG is close to 1, the algorithm does not
converge and yet, the model produces high-quality solutions. On the other hand, when ηD/ηG � 1,
the model converges to an equilibrium –a similar statement has been proved by Jin et al. (2020) and
Fiez & Ratliff (2020) in the case of SGDA. However, the GAN produces low-quality solutions at
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(a) Each circle corresponds to a specific step-size
configuration ηD/ηG. The best-performing mod-
els have step-size ratios between 10−1 and 1, and
do not converge. As ηD/ηG increases, the models
perform worse but get closer to an equilibrium.

(b) shows that during training, the gradient ratio of
a well-performing GAN approximately stays con-
stant to 1. We also display the images produced
by the model during training.

Figure 1: Gradient ratio against FID score (a) and number of epochs (b) obtained with DCGAN on CIFAR-10.
This ratio is equal to ‖grad(t)

G ‖2/‖grad
(0)
G ‖2 + ‖grad(t)

D ‖2/‖grad
(0)
D ‖2, where grad

(t)
G (resp. grad

(t)
D ) and

grad
(0)
G (resp. grad(0)

D ) are the current and initial gradients of G (resp. D). Note that ‖ · ‖2 refers to the sum of
all the parameters norm in a network. For all the plots, the models are trained for 100 epochs using a batch-size
64. For (b), the results are averaged over 5 seeds.

this equilibrium. Thus, simply comparing the convergence speed of adaptive methods and SGDA
cannot explain the GAN’s performance obtained with adaptive methods. This observation motivates
the central question in this paper: What factors explain that Adam produces better quality solutions
than SGDA when training GANs?

To address this question, we dissect Adam following the approach by Agarwal et al. (2020). They
frame a generic optimizer’s update as W (t+1) = W (t) − ηa(t)G(t), where W (t) ∈ Rd is the iterate,
G(t) ∈ Rd such that ‖G(t)‖2 = 1 is the optimizer’s direction and a(t) ≥ 0 is the optimizer’s
magnitude. Therefore, a first step in our paper is to understand whether Adam outperforms SGDA
maintly due to its direction or to its magnitude. As detailed in Section 2, we train a GAN using
i) AdaLR, an algorithm that updates in the direction of SGDA but with the magnitude of Adam
ii) AdaDir which uses the direction of Adam but the magnitude of SGDA. We empirically show
that not only, AdaLR significantly outperforms AdaDir, SGDA, and Adam itself. This observation
encourages us to conclude that:

Adam produces higher quality solutions relative to SGDA in GANs mainly due to its adaptive
magnitude and not to its adaptive direction.

In Section 2, we empirically analyze the adaptive magnitude of AdaLR and observe that it stays
approximately constant throughout training. This observation eventually encourages the study of
AdaLR with a constant step-size. Such algorithm actually corresponds to normalized SGDA (nS-
GDA).Compared to SGDA, nSGDA has the same direction but differs in magnitude since we divide
the gradient by its norm. Intuitively, this normalization forces D and G to be updated by vectors
with constant magnitudes no matter how different the norms of D’s and G’s gradients are.

Motivated by the aforementioned observations, this paper studies the performance of GANs trained
with nSGDA. We believe that this is a first step to formally understand the role of adaptive methods
in GANs. Our contributions are divided as follows:

– In Section 3, we experimentally confirm that nSDGA consistently competes with Adam and out-
performs SGDA when using different GAN architectures on a wide range of datasets.

– In Section 4, we provide a theoretical explanation on why GANs trained with nSGDA outperform
those trained with SGDA. More precisely, we devise a data generation problem where the target
distribution D is made of multiple modes. The model trained with nSGDA provably recovers all
the modes in the target distribution while the SGDA’s one fails to do it under any step-size con-
figuration: We prove that even when SGDA converges to a locally optimal min-max equilibrium,
the model still suffers from mode collapsing and fails to learn recover the modes separately.

The key insight of our theoretical analysis is that no matter how the step-sizes are prescribed, D and
G necessarily update at very different speeds when we use SGDA. Therefore, i) either D updates
its weights too fast, thus learns a weighted average of the modes of D. This makes G learn this
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weighted average of modes ii) or D does not update its weights fast enough and thus, G aligns its
weights with those of D. This forces D to converge to a locally optimal min-max equilibrium that
classifies any instance as ”fake”. On the other hand, by normalizing the gradients as done in SGDA,
we force D and G to update at the same speed throughout training. Thus, whenever D learns a
mode of the distribution, G learns it right after, which makes both of them learn all the modes of the
distribution separately.

Our paper advocates for the use of balanced updates in GAN training i.e. the ratio of D vs G
updates should remain close to constant. To our knowledge, we are the first to theoretically show
the importance of these balanced updates. This insight contrasts with the related work that analyzes
GANs, and more generally zero-sum differentiable games, in the regime where D is updated much
faster than G i.e. ηD/ηG � 1 (Fiez & Ratliff, 2020; Jin et al., 2020; Fiez et al., 2020).
RELATED WORK

Adaptive methods in games optimization. Several works designed adaptive algorithms and ana-
lyzed their convergence to show their benefits relative to SGDA. For variational inequality problems,
Gasnikov et al. (2019); Antonakopoulos et al. (2019); Bach & Levy (2019); Antonakopoulos et al.
(2020) propose adaptive algorithms that reach optimal convergence rates under regularity assump-
tions. For a class of non-convex non-concave min-max problems, Liu et al. (2019); Barazandeh
et al. (2021) design algorithms that converge faster than SGDA. On the other hand, Heusel et al.
(2017) show that Adam locally converge to a Nash equilibrium in the regime where the step-size of
the discriminator is much larger than the one of the generator. Our work differs from these papers as
we analyze Adam and do not focus on the convergence properties but rather on the fit of the trained
model on the true (and not empirical) data distribution. Besides, contrary to some of the aforemen-
tioned papers, our work is not in the two-time scale learning-rates regime which do not correspond
to what is mostly done in practice.

Importance of balanced updates in GANs. The importance of balanced updates for GANs has
been noticed in the literature. The most popular GAN architectures (Radford et al., 2015; Arjovsky
et al., 2017; Brock et al., 2018) set the step-sizes such that ηD/ηG is constant. On the other hand,
Berthelot et al. (2017) introduced a control variable to ensure that the updates between G and D are
at the same speed. In this work, we do not modify the GAN objective loss to enforce balancedness.
Instead, we empirically and theoretically investigates how Adam and nSGDA enforce balanced up-
dates.

Statistical results in GANs. Early works investigate whether GANs memorize the training data or
actually learn the distribution (Arora et al., 2017; 2018; Dumoulin et al., 2016). Zhang et al. (2017);
Bai et al. (2018) then show that for specific GANs, the model learn some distributions with non-
exponential sample complexity (Liang, 2017; Feizi et al., 2017). Recently, Li & Dou (2020); Allen-
Zhu & Li (2021) further characterized the distributions learned by the generator. On the other hand,
some works attempted to explain GAN performance through the optimization lens. Lei et al. (2020);
Balaji et al. (2021) show that GAN models trained with SGDA converge to a global saddle point
when the generator is one-layer neural network and the discriminator is a specific quadratic/linear
function. Our contribution significantly differs from these two works as i) we construct a setting
where SGDA converges to a locally optimal min-max equilibrium and yet suffer from mode collapse.
Conversely, nSGDA does not necessarily converge and yet, recovers the true distribution ii) our
setting is more challenging since we need at least a degree-3 discriminator to learn the distribution
– see Section 4 for a justification.

Normalized gradient descent. Introduced by Nesterov (1984), normalized gradient descent has
been widely used in the minimization setting. Indeed, it has been observed that normalizing out the
gradient improves the ’slow crawling’ problem of gradient descent and avoids the iterates to be stuck
in flat regions – such as spurious local minima or saddle points – (Hazan et al., 2015; Levy, 2016;
Murray et al., 2019). Normalized gradient descent or its variants outperform the non-normalized
counterparts in multi-agent coordination (Cortés, 2006) and deep learning tasks (You et al., 2017;
2019; Cutkosky & Mehta, 2020; Liu et al., 2021). Our work rather considers the min-max setting
and shows that nSGDA performs better than SGDA as it forces the discriminator and generator to
update at the same rate.

2 FROM ADAM TO NSGDA
Generative adversarial networks. Given a training set sampled from some target distribution D,
a GAN learns to generate new data from this distribution. The architecture is constituted of two
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Algorithm 1 Generic second-moment adaptive optimizer

Input: initial pointsW(0),V(0), step-size schedules {(η(t)
G , η

(t)
D )} , hyperparameters {β1, β2, ε}.

Initialize M
(0)
W,1, M(0)

W,2, M(0)
V,1 and M

(0)
V,2 to zero.

for t = 0 . . . T − 1 do
Receive stochastic gradients g(t)

W ,g
(t)
V evaluated atW(t) and V(t).

Update accumulators for Y ∈ {W,V}, ` ∈ [2]: M(t+1)
Y,` = β`M

(t)
Y,` + g

(t)
Y .

Compute gradient oracles for Y ∈ {V,W}: A(t+1)
Y = M

(t+1)
Y,1 /

√
M

(t+1)
Y,2 +ε.

Update: W(t+1) =W(t) + η
(t)
D A

(t+1)
W , V(t+1) = V(t) − η(t)

G A
(t+1)
V .

return W(T ),V(T ).

networks: the generator maps points in the latent space Dz to sample candidates of the desired
distribution; the discriminator evaluates these samples by comparing them to samples from D.

More formally, the generator is a mappingGV : Rk → Rd where V is some parameter set. Generally,
the latent variables are sampled from the normal distribution. On the other hand, the discriminator
is a mapping DW : Rd → R whereW is some parameter set. In this section, one can think of these
parameter sets as made of matrices and vectors. To train the model, we consider the WGAN-GP
problem formulation (Gulrajani et al., 2017) (where D̂ = εD + (1− ε)Dz for ε > 0),

min
V

max
W

Ez∼Dz [DW(GV(z))]−Ex∼D[DW(x)]+λEy∼D̂[(‖∇WDW‖2−1)2] := f(V,W). (1)

Adaptive methods. In this paper, we particularly focus on second-moment-based adaptive optimiz-
ers to solve (1). Figure 1 captures the usual formulations of Adam (Kingma & Ba, 2014), Adagrad
(Duchi et al., 2011) and RMSprop (Tieleman et al., 2012) up to some scaling conventions that can
be absorbed into {(η(k)

G , η
(k)
D )}. Note that all operations on vectors in Figure 1 are entry-wise and

g2 denotes the entry-wise power on vector g.

The exponential window parameters β1, β2 ∈ [0, 1) respectively denote the first- and second-order
momentum parameters. A rule of thumb is to set them as β1 = 0.5 and β2 = 0.9. As we aim to
understand the role of adaptivity, an important baseline is stochastic gradient descent ascent with
momentum (SGDA) which consists in the update of Figure 1when the denominator

√
MY,2 + ε is

omitted. In what follows, we refer to SGDA as the SGDA with momentum update.

Optimizers as autorefalg:adaptive are adaptive in that they keep updating step-sizes while train-
ing the model. Therefore, two types of schedules are involved: the explicit step size schedules
{(η(t)

G , η
(t)
D )} that the practitioner manually sets up and the implicit step size schedules induced by

the optimizers. The contributions of these two schedules overlap and it remains unclear how they
contribute to the superior performance of adaptive methods relative to SGDA in GANs.

Method dissection using grafting. To decouple the explicit and implicit schedules, we adopt the
step size grafting approach proposed by Agarwal et al. (2020) and described as follows. At each
iteration, we compute stochastic gradients, pass them to two optimizers A1,A2 and make a grafted
step which combines the magnitude of A1’s step and direction of A2’s step. Since our goal is to
understand the benefits of adaptivity, it is natural to consider the grafting approach with Adam and
SGDA. We define AdaLR, an optimizer that updates in the SGDA direction with Adam magnitude:

W(t+1) =W(t) + η
(t)
D ‖A

(t)
W ‖2

M
(t)
W,1

‖M(t)
W,1‖2 + ε

, V(t+1) = V(t) − η(t)
G ‖A

(t)
V ‖2

M
(t)
V,1

‖M(t)
V,1‖2 + ε

, (2)

and AdaDir which updates in the Adam direction with SGDA magnitude

W(t+1) =W(t) + η
(t)
D ‖M

(t)
W,1‖2

A
(t)
W

‖A(t)
W ‖2 + ε

, V(t+1) = V(t) − η(t)
G ‖M

(t)
V,1‖2

A
(t)
V

‖A(t)
V ‖2 + ε

. (3)

Note that two implementations are possible for AdaLR and AdaDir. In the layer-wise version, Y(t)

is a single parameter group (typically a layer in a neural network) and therefore, the update is applied
to each group. In the global version, Y(t) contains all of the model’s weights. Note that in Figure 2,
we set up AdaLR and AdaDir with the layer-wise version –the global AdaLR and AdaDir perform
approximately as well as their layer-wise counterparts.

4



Under review as a conference paper at ICLR 2022

(a)
(b) (c)

Figure 2: (a) FID score against the number of epochs of a Resnet WGAN-GP trained on CIFAR-10 with
Adam, AdaLR, and AdaDir. AdaLR performs slightly better than Adam while AdaDir performs very poorly.
(b)-(c) displays the fluctuations of AdaLR’s adaptive magnitude. We plot the ratio ‖A(t)

Y ‖2/‖A
(0)
Y ‖2 for each

discriminator’s (b) and generator’s (c) parameters. At early stages, this ratio barely increases and remains
constant after 10 steps. We train for 100 epochs using a batch-size 64 and results are averaged over 5 seeds.

We train a WGAN-GP (Arjovsky et al., 2017) on CIFAR-10 with AdaLR, AdaDir and Adam. Fig-
ure 2(a) shows the GAN performance measured in FID score (Heusel et al., 2017) obtained by the
three trained models. We observe that AdaDir does not generate samples from the desired distri-
bution as its FID score is high. On the other hand, AdaLR performs slightly better than Adam.
Therefore, we deduce that the success of adaptive methods in GANs may be explained by the im-
plicit step-size schedule induced by the algorithm.

From AdaLR to normalized SGDA. The previous experiment hints that AdaLR which combines
Adam’s magnitude and SGDA direction performs better than Adam. We here take a closer look at
this algorithm. In particular, we investigate the fluctuations of Adam’s magnitude during training.
Figures 2(b),2(c) show that this magnitude barely varies for both generator and discriminator.

Therefore, an update with SGDA direction and constant step-size seems to be a valid approximation
of Adam in GAN training. Such an algorithm corresponds to normalized SGDA (nSGDA),

W(t+1) =W(t) + η
(t)
D

M
(t)
W,1

‖M(t)
W,1‖2+ε

, V(t+1) = V(t) − η(t)
G

M
(t)
V,1

‖M(t)
V,1‖2+ε

. (4)

Similarly to AdaLR and AdaDir, we also define two versions of nSGDA: layer-wise nSGDA (l-
nSGDA) and global nSGDA (g-nSGDA). We use both of these in the numerical experiments. As a
comparison to (4), the SGDA (with momentum) update is:

W(t+1) =W(t) + η
(t)
D M

(t)
W,1, V(t+1) = V(t) − η(t)

G M
(t)
V,1. (5)

3 NUMERICAL PERFORMANCE OF NSGDA

Figure 3: FID score of a Resnet WGAN-GP
model trained with l-nSGDA, g-nSGDA, Adam,
and SGDA against the batch size in the CIFAR-10
dataset. At small batch sizes, the best perform-
ing models are those trained with nSGDA meth-
ods. As the batch size increases, the performance
of nSGDA methods worsens and Adam performs
better. Lastly, models trained with nSGDA con-
sistently outperform those trained with SGDA.

Section 2 indicates that nSGDA may work as well as
Adam in GAN training. In this section, we empiri-
cally verify this hypothesis through an extensive nu-
merical study. To evaluate the proposed algorithm,
we conducted extensive experiments on CIFAR-10
(Krizhevsky et al., 2009), LSUN Churches (Yu et al.,
2016), STL-10 (Coates et al., 2011) and Celeba-HQ
(Liu et al., 2015). Similarly to above, we choose
the Fréchet Inception distance (FID) (Heusel et al.,
2017) to quantitatively assess the performance of
the model. In all our experiments, 50k samples are
randomly generated for each model to compute the
FID. As for the architectures, we choose Resnets (He
et al., 2016) from Gidel et al. (2018) and set up the
WGAN-GP loss (Gulrajani et al., 2017). Note that
for each optimizer, we grid-search over stepsizes to
find the best one in terms of FID. Due to limited
computational resources, we trained the models for
100 epochs in the case of CIFAR-10 and Celeba-HQ
and for 50 epochs for LSUN and STL-10. We apply a linear decay learning rate scheduling during
training. All the results are averaged over 10 seeds.

nSGDA competes with Adam. Figure 4 shows the performance of l-nSGDA, g-nSGDA, Adam,
and SGD on different datasets. We first observe that l-nSGDA and g-nSGDA compete with Adam
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(a) CIFAR-10 (b) LSUN Churches (c) STL-10 (d) Celeba-HQ

Figure 4: FID scores obtained when training a Resnet WGAN-GP using Adam, l-nSGDA, g-nSGDA, and
SGD on different datasets. In all these datasets, l-nSGDA, g-nSGDA and Adam perform approximately as
well. SGDA performs much worse. The models are trained with batch-size 64.

in all these datasets. On the other hand, SGD struggles to produce good quality images compared
to the other methods as expected. It is worth reminding that the nSGDA methods and SGD have the
same direction but differ in their magnitude. Therefore, this experiment confirms our hypothesis that
adaptive methods outperform SGDA thanks to their implicit step-size schedule. Lastly, we highlight
that l-nSGDA and g-nSGDA perform almost as well. This suggests that a global step-size adaptivity
is enough to perform well in GANs. Similar observations hold for DCGAN (see Appendix A).

Influence of batch size. While the nSGDA methods compete with Adam in GAN, it remains unclear
whether such performance is proper to the algorithm or tied to the stochastic noise of the gradients.
Figure 3 shows the performance of the model trained with l-nSGDA, g-nSGDA, Adam, and SGD and
using a wide range of batch sizes. We remark that the nSGDA methods perform better than Adam
when the batch size is small. However, as the batch size increases, their performance seriously
deteriorates. On the other hand, the performance of Adam seems to be less sensitive to the change
of batch size. As expected, SGD overall performs poorly. nSGDA performs well in a relevant batch-
size regime, as many GAN architectures such as DCGAN, WGAN-GP, SNGAN (Miyato et al.,
2018), SAGAN (Zhang et al., 2019a) requires small batch sizes for optimal performances.

4 WHY DOES NSGDA PERFORM BETTER THAN SGDA IN GANS?
In Section 2, we numerically observed that Adam outperforms SGDA mainly thanks to its adaptive
magnitude (implicit step-size schedule). In Section 3, we observed that nSGDA methods – which
differs from SGDA only by adaptive magnitude – compete with Adam and significantly surpass
SGDA. To the best of our knowledge, there is no theoretical result that demonstrates the importance
of adaptive magnitude in GANs performance. Thus, we set the following question:

From a theoretical perspective, for what distribution learning problem using GANs
does nSGDA perform better comparing to SGDA?

We devise a simple data generation problem where the target distribution consists of two modes,
described as vectors u1, u2, that are slightly correlated (See Assumption 1). We show that using
standard GANs’ training objective, with high probability, SGDA – with any reasonable 1 step-size
configuration – only learn distributions that suffer from mode collapse i.e. u1, u2 always show up in
the learned distribution simultaneously. Conversely, nSGDA learns the two modes separately.
Notations. We set the GAN 1-sample loss L(t)

V,W(X, z) = log(D
(t)
W (X)) + log(1−D(t)

W (G
(t)
V (z))).

g
(t)
Y = ∇YL(t)

V,W(X, z) is the 1-sample stochastic gradient (without momentum).

4.1 SETTINGS

In this section, we consider the classical GAN problem formulation.

min
V

max
W

EX∼D[log(DW(X))] + Ez∼Dz [log(1−DW(GV(z)))]. (6)

In the following paragraphs, we describe each element of our formulation.

Data distribution D. The data generation problem consists in having a training dataset with points
sampled from a target distribution D. Using this dataset, our goal is to train a model that generates
samples with the same statistics as D. The latter is defined as follows.

1Here reasonable simply means that the learning rates are bounded to prevent the training to blow up.
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Let u1 and u2 two vectors in Rd such that ‖ui‖2 = 1, for i ∈ {1, 2}.
Each sample from D consists of an input data X generated as:

1. Sample s = (s1, s2) from the distribution S defined as si ∈ [0, 1], P[si = 1] ≥ 1/2 for
i ∈ {1, 2}, such that ‖s‖0 ≥ 1. Note that s1 and s2 are not necessarily independent.

2. Define data-point X = s1u1 + s2u2 ∈ Rd.

The distribution D generates points that are a linear combination of two modes u1 and u2. In what
follows, we make the following assumptions on the coefficients (si) and modes (ui).
Assumption 1 (Data structure). Let γ = 1

polylog(d) . The coefficients s1, s2 and modes u1, u2 of the
distribution D respect one of the following conditions:

1. Correlated Modes: 〈u1, u2〉 = γ and the generated data point is either X = u1 or X = u2.

2. Correlated Coefficients: P[s1 = s2 = 1] = γ and the modes are orthogonal, i.e., 〈u1, u2〉 = 0.

Assumption 1 captures some of the realistic structure of images. Case 1 models the setting where
we have two pure modes (e.g., two different types of cats) that are correlated. Case 2 corresponds to
two (roughly) orthogonal modes (e.g., vertical and horizontal edges), that may sometimes be mixed
together (images containing object corners in the example above).

Learner models. To learn the true distribution D, we use a linear generator GV defined as

GV(z) = V z =

mG∑
i=1

vizi, (7)

where V = [v>1 , v
>
2 , · · · , v>mG

] ∈ RmG×d is the weight matrix and z ∈ {0, 1}mG .We set V = {V }.
Intuitively, GV outputs linear combinations of modes (vi). We assume that GV samples from the
latent distribution Dz defined for z ∈ {0, 1}mG , ‖z‖0 ≥ 1 as:

∀i, j ∈ [mG], Pr[zi = 1] = Θ

(
1

mG

)
, Pr[zi = zj = 1] =

1

m2
Gpolylog(d)

(8)

First, remark that vectors sampled from Dz are binary-valued. Although usual latent distributions
in GANs are either Gaussian or uniform, the distribution Dz should be rather seen as modelling the
weights’ distribution of a hidden layer of a deep generator. Indeed, Allen-Zhu & Li (2021) argue
that the distributions of these hidden layers are sparse, non-negative, and non-positively correlated.
Besides, in (8), Pr[zi = zj = 1] = 1

m2
Gpolylog(d)

ensures that that the output of the generator is only
made of one mode with probability 1−o(1) and thus avoid creating weighted averages of the two or
more vi’s (which might cause mode collapsing). To assess the distribution learned by GV , we also
train a non-linear neural network as discriminator DW

DW(X) = sigmoid

a ∑
i∈[mD]

σ(〈wi, X〉) + λb

 , σ(z) =


z3 if |z| ≤ Λ

3Λ2z − 2Λ3 if z > Λ

3Λ2z + 2Λ3 otherwise
, (9)

where W = [w>1 , . . . , w
>
mD

] ∈ RmD×d and a, b ∈ R are the trainable parameters of DW , λ > 0 is
a fixed scaling factor (specified below) and Λ = d0.2. For simplicity, we setW = {W,a, b}.
Besides, σ(·) is the truncated degree-3 activation function—it is thus made Lipschitz, which is
only needed in the proof to deal with the case where the generator is trained much faster than the
discriminator. Note that this latter case is uncommon in practice.

Lastly, we choose a cubic activation as it is the smallest polynomial degree for the discriminator that
is sufficient: as pointed out in Li & Dou (2020), with linear or quadratic activations, the generator
can fool the discriminator by only matching the first and second moments of D. By doing so, the
generator cannot recover the modes u1, u2 but only weighted averages of them even at the global
optimal solution.

Algorithms. We solve the training problem (6) using SGDA and nSGDA with momentum = 0. For
simplicity, we also set the batch-size to 1. At each step t, we sample X ∼ D and z ∼ Dz and define
SGDA’s update as

W(t+1) =W(t) + ηDg
(t)
W , V(t+1) = V(t) − ηGg(t)

V , (SGDA)
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Figure 5: Learning process of SGDA (a,b,c) and learned modes by nSGDA (d) with mD = mG = 5, d =
1000. We see that in the nSGDA model, each neuron solely learns one of the modes.

where ηD, ηG > 0 are constant step-sizes. On the other hand, nSGDA is defined by the update rule

W(t+1) =W(t) + ηD
g

(t)
W

‖g(t)
W ‖2

, V(t+1) = V(t) − ηG
g

(t)
V

‖g(t)
V ‖2

. (nSGDA)

Compared to (4), (nSGDA) is a global nSGDA update (without momentum) (i.e. we do not consider
layer-wise normalization). Indeed, ‖g(t)

Y ‖2 in the update refers to the sum of norms of the gradients
with respect to a, b,W . We now detail how to set parameters in (SGDA) and (nSGDA).
Parametrization 4.1. When running SGDA and nSGDA on (1), we set the parameters as

– Initialization: b(0) = 0, a(0) ∼ N
(

0, 1
mDpolylog(d)

)
, w

(0)
i ∼ N

(
0, 1

dI
)
, v

(0)
j ∼ N

(
0, 1

d2 I
)

for i ∈ [mD], j ∈ [mG].

– Number of iterations: we run SGDA for t ≤ T0 iterations where T0 is the first iteration such that
‖∇E[LV(T0),W(T0)(X, z)]‖2 ≤ 1/poly(d). . For nSGDA, we run for T1 = Θ̃

(
1
ηD

)
iterations.

– Step-sizes: For SGDA, ηD, ηG ∈ (0, 1
poly(d) ). For nSGDA, ηD ∈ (0, 1

poly(d) ], ηG = ηD
polylog(d) .

– Over-parametrization: For SGDA, mD,mG = polylog(d) are arbitrarily chosen i.e. mD may
be larger than mG or the opposite. For nSGDA, we set mD = log(d) and mG = log(d) log log d.

Parametrization 4.1 corresponds to usual initialization and optimization hyper-parameters. Regard-
ing initialization, the discriminator’s weights are sampled from a standard normal and its bias is set
to zero. The weights of the generator are initialized from a normal with variance 1/d2 (instead of
the 1/d in standard normal). Such a choice is explained as follows. In practice, the target X ∼ D
is a 1D image, thus has entries in [0, 1]d and norm O(

√
d). Yet, we sample the initial generator’s

weights from N (0, Id/d) in this case. In our case, since ‖ui‖2 = 1, the target X = s1u1 + s2u2

has norm O(1). Therefore, we scale down the variance in the normal distribution by a factor of 1/d
to match the configuration encountered in practice. Therefore, we also set λ = 1√

dpolylog(d)
in (9)

to ensure that the weights and the bias in the discriminator learn at the same speed.

Regarding the number of iterations, our theorem holds when running SGDA for any (polynomially)
possible number of iterations –after T0 steps, the gradient becomes inverse polynomially small and
SGDA essentially stops updating the parameters. Lastly, we allow any step-size configuration for
SGDA i.e. larger, smaller, or equal step-size for D compared to G. To our knowledge, this setting
has never been studied in GAN performance. Note that our choice of step-sizes for nSGDA matches
with the one used in practice i.e. ηD slightly larger than ηG.
4.2 MAIN RESULTS

We state our main results on the performance of models trained using (SGDA) and (nSGDA). We
show that nSGDA is able to learn the two modes of the distribution D while SGDA is not.
Theorem 4.1 (SGDA suffers from mode collapse). Let T0, ηG, ηD and the initialization as defined
in Parametrization 4.1. Let t be such that t ≤ T0. Run SGDA for t iterations with step-sizes ηG, ηD.
Then, with probability at least 1− o(1), for all z ∈ {0, 1}mG , we have:

G
(t)
V (z) = α(t)(z)(u1 + u2) + ξ(t)(z), where α(t)(z) ∈ R and ξ(t)(z) ∈ Rd,

such that for all ` ∈ [2], |〈ξ(t)(z), u`〉| = o(1)‖ξ(t)(z)‖2 for every z ∈ {0, 1}mG .

In the specific case where ηG =
√
dηD

polylog(d) , the model mode collapses i.e. ‖ξ(T0)(z)‖2 = o(α(T0)(z)).

Theorem 4.1 indicates that when using SGDA with any step-size configuration, the generator either
does not learn the modes at all – when α(t)(z) = 0, G

(t)
V (z) = ξ(t)(z) – or learns an average of the

8
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modes – when α(t)(z) 6= 0, G
(t)
V (z) ≈ α(t)(z)(u1 + u2). We emphasize that the theorem holds for

any time t ≤ T0 which is the iteration where SGDA converges to an approximate first-order locally
optimal min-max equilibrium. Conversely, nSGDA succeeds to learn the two modes separately.
Theorem 4.2 (nSGDA recovers modes separately). Let T1, ηG, ηD and the initialization as defined
in Parametrization 4.1. Run nSGDA for T1 iterations with step-sizes ηG, ηD. Then, the generator
learns both modes u1, u2 i.e.,

Pr z∼Dz

(∥∥ G
(T1)

V (z)

‖G(T1)

V (z)‖2
− u`

∥∥
2

= o(1)

)
= Ω̃(1) , for ` = 1, 2 . (10)

Theorem 4.2 indicates that when we train a GAN with nSGDA in the regime where the discriminator
updates slightly faster than the generator (as done in practice), the generator successfully learns the
distribution containing the direction of both modes.
4.3 WHY DOES SGDA SUFFER FROM MODE COLLAPSE?
We now sketch the reason why SGDA suffers from mode collapse using Figure 5. Figure 5(a)

displays the relative update speed η‖g(t)
Y ‖2

‖Y(t)‖2
, Figure 5(b) the correlation 〈w

(t)
i ,u`〉
‖w(t)

i ‖2
between D’s neuron

and mode u` and Figure 5(c) the correlation
〈v(t)j ,u`〉
‖v(t)j ‖2

between G’s neuron and mode u`.

We focus on the case where the discriminator’s step-size is set so it updates slightly faster than the
generator at the beginning – as displayed in iterations 1–5 in Figure 5(a). The key observation is that
in the early stages, the discriminator’s update is approximately

w
(t+1)
i ≈ w(t)

i + ηD〈w(t)
i , X〉2X, for i ∈ [mD]. (11)

With high probability, there exists at least a neuron i such that 〈w(t)
i , X〉 > 0. Thus, (11) implies that

〈w(t)
i , X〉 is an increasing sequence. As t increases, w(t)

i gradually grows its correlation with one
of the modes u` (iterations 1-20 in Figure 5(b)) and D’s gradient norm thus increases. Therefore,
after a first phase where D updates slightly faster than G, D’s update speed becomes significantly
larger than G’s one (iterations 5–20 in Figure 5(a)). Thus, D learns the first mode after 20 iterations
in Figure 5(b).

However, one of the goal of D (from the training objective in (6)) is to maximize its average
correlation with the target distribution D. Since G does not catch up and D is made of two modes
showing up with equal probability, the optimal solution forD is to have each of itswi = αi(u1+u2)
to maximize the average correlation. Therefore, after iteration 20, D learns the second mode and
eventually gets this optimal solution (which is a mode collapse) at iteration 40. Then, D’s update
speed starts dropping as we see in Figure 5(a) which helps G to catch up and grow its update speed.
However, since D already learnt a weighted average of the modes, it can only teach G to learn this
average and thus mode collapses as we see in Figure 5(c).

On the other hand, nSGDA ensures thatG andD always learn at the same speed, so thatG can learn
one mode immediately when D learns (such as at iteration 25 in (b) in Figure (5)), which avoids
mode collapse.
5 CONCLUSION

Our work offers a complementary view to several works in the min-max optimization literature
where the discriminator is much faster than the generator to converge to an equilibrium. Here,
instead, we advocate the use of balanced updates to ensure that the GAN performs well.

Our work is a first step towards understanding how adaptive methods improve the GAN perfor-
mance. Our empirical observations and theorems heavily rely on the fact that the batch size is small.
However, nSGDA methods seem to not work well for large batch sizes and may not be suitable to
some large-scale GANs such as BigGAN (Brock et al., 2018). It would be interesting to understand
why adaptive methods are crucial in this case. Another interesting direction would be to improve
the training of nSGDA in the batch setting.
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Mahdi Soltanolkotabi, and Soheil Feizi. Understanding overparameterization in generative ad-
versarial networks. arXiv preprint arXiv:2104.05605, 2021.

Babak Barazandeh, Davoud Ataee Tarzanagh, and George Michailidis. Solving a class of non-
convex min-max games using adaptive momentum methods. In ICASSP 2021-2021 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3625–3629.
IEEE, 2021.

David Berthelot, Thomas Schumm, and Luke Metz. Began: Boundary equilibrium generative ad-
versarial networks. arXiv preprint arXiv:1703.10717, 2017.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon Lee, Chris J Maddison, and
George E Dahl. On empirical comparisons of optimizers for deep learning. arXiv preprint
arXiv:1910.05446, 2019.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Jorge Cortés. Finite-time convergent gradient flows with applications to network consensus. Auto-
matica, 42(11):1993–2000, 2006.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International Confer-
ence on Machine Learning, pp. 2260–2268. PMLR, 2020.

10

https://arxiv.org/abs/2012.09816
https://arxiv.org/abs/2012.09816


Under review as a conference paper at ICLR 2022

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training gans with
optimism. arXiv preprint arXiv:1711.00141, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Ar-
jovsky, and Aaron Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704,
2016.

Soheil Feizi, Farzan Farnia, Tony Ginart, and David Tse. Understanding gans: the lqg setting. arXiv
preprint arXiv:1710.10793, 2017.

Tanner Fiez and Lillian Ratliff. Gradient descent-ascent provably converges to strict local minmax
equilibria with a finite timescale separation. arXiv preprint arXiv:2009.14820, 2020.

Tanner Fiez, Benjamin Chasnov, and Lillian Ratliff. Implicit learning dynamics in stackelberg
games: Equilibria characterization, convergence analysis, and empirical study. In International
Conference on Machine Learning, pp. 3133–3144. PMLR, 2020.

AV Gasnikov, PE Dvurechensky, FS Stonyakin, and AA Titov. An adaptive proximal method for
variational inequalities. Computational Mathematics and Mathematical Physics, 59(5):836–841,
2019.
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