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Figure 1: Qualitative results of our proposed video reference guided face swapping model,
LivingFace. Our method achieves stable identity preservation across long video sequences, while
faithfully inheriting source-video attributes such as lighting, expressions, and viewpoints. Compared
to existing approaches, LivingFace demonstrates strong robustness under challenging conditions and
generalizes well across diverse identities and source videos.

ABSTRACT

Video face swapping is crucial in film and entertainment production, where
achieving high fidelity and temporal consistency over long and complex video
sequences remains a significant challenge. Inspired by recent advances in
reference-guided image editing, we explore whether rich visual attributes from
source videos can be similarly leveraged to enhance both fidelity and temporal
coherence in video face swapping. This work presents LivingFace, the first video
reference guided face swapping model. Our approach employs keyframes as
conditioning signals to inject the target identity, enabling flexible and controllable
editing. By combining keyframe conditioning with video reference guidance, the
model performs temporal stitching to ensure stable identity preservation and high-
fidelity reconstruction across long video sequences. To address the scarcity of
data for reference-guided training, we construct a paired face-swapping dataset,
Face2FaceSwap, where the generated data are fed as inputs and the original data
serve as ground truth, thereby enabling reliable supervision. Extensive experi-
ments demonstrate that our method achieves state-of-the-art results, seamlessly
integrating the target identity with the source video’s expressions, lighting, and
motion, while significantly reducing manual effort in production workflows.

1 INTRODUCTION

Video face swapping holds significant value in the film and entertainment industries. However,
existing methods fall short of meeting the stringent demands of high-quality cinematic production.
For instance, GAN-based approaches (Li et al., 2019; DeepFakes, 2020; Chen et al., 2020; Shiohara
et al., 2023; Luo et al., 2025), which typically process videos frame-by-frame (see Fig. 2), have made
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Figure 2: (a) GAN-based approaches process videos in a frame-by-frame manner, and therefore
often suffer from temporal inconsistency. (b) Inpainting-based methods focus on generating the
facial region based on sparse conditions, which inevitably leads to a loss of fidelity and unnatural
visual artifacts. (c) Recent reference-based generation methods enable faithful utilization of rich
visual attributes contained in references and demonstrate remarkable capability in preserving them.

notable progress in injecting target identity but often suffer from temporal inconsistencies—such
as flickering and jitter—especially in long sequences. Meanwhile, contemporary video diffusion
models (Zhao et al., 2023; Han et al., 2024; Chen et al., 2024; Wang et al., 2025), while achieving
high visual quality and temporal consistency, often rely on sparse conditioning signals such as facial
landmarks. This reliance makes it challenging to perfectly align the generated expressions, lighting,
and subtle nuances with the source video, resulting in faces that may appear unnatural or lack lifelike
vitality. Consequently, there is a critical need for a video face swapping model capable of directly
leveraging the rich, detailed information from the source video’s facial region.

Achieving a high degree of customization while preserving the integrity of the original content
remains a fundamental challenge in generative media (Yang et al., 2023a). Methods based on
DDIM inversion (Ju et al., 2023; Qi et al., 2023; Geyer et al., 2023) or Score Distillation Sampling
(SDS) (Poole et al., 2022; Hertz et al., 2023) often struggle to strike an optimal balance between
editability and fidelity. In the field of video editing, a common strategy involves combining
inpainting with structural guidance such as depth or keypoints (Jiang et al., 2025; Hu et al., 2025;
Tu et al., 2025). However, such approaches inherently discard the original pixel information within
the edited region, leading to a noticeable loss of fidelity in details.

Recently, reference guided generation has demonstrated remarkable breakthroughs in image editing,
successfully reconciling editing flexibility with high-fidelity reconstruction (Labs et al., 2025; Deng
et al., 2025; Wu et al., 2025). This approach directly guides the model using the reference images,
enabling the faithful utilization of rich visual attributes contained in the references. Nevertheless,
adapting these techniques to video face swapping presents unique challenges: (1) the scarcity of
paired training data for reference-guided video face swapping task; and (2) the difficulty of injecting
a stable and consistent identity condition throughout long and complex video sequences.

In this work, we address these challenges by introducing LivingFace, the first video editing
model for face swapping that directly references the source video’s details. To facilitate this,
we construct Face2FaceSwap, the first-of-its-kind dataset specifically curated for video reference
face swapping. Meanwhile, we reverses the data pairs to ensure reliable ground-truth supervision.
Furthermore, we decompose the challenging task of long-video face swapping into a highly
controllable pipeline comprising keyframe selection, identity injection, video completion, and
temporal stitching. Extensive experiments demonstrate that our approach achieves state-of-the-art
results, seamlessly blending the target identity with the high-definition details of the source video,
including its original expressions and lighting conditions.

Our contributions are multi-faceted. We provide a detailed analysis of the impact of the generated
data distribution on face swapping performance, and demonstrate the critical role of data diversity
in determining model effectiveness. Benefiting from its highly controllable pipeline and superior
generation quality, LivingFace is uniquely suited for the demands of the professional film and
television industry. It can incorporate meticulous manual editing results while drastically reducing
the intensive labor costs associated with frame-by-frame processing.
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2 RELATED WORK

Video face swapping. The task of video face swapping is to replace the identity in a video
while preserving attributes such as pose, expression, illumination, and background. GAN-based
approaches (Li et al., 2019; DeepFakes, 2020; Chen et al., 2020; Shiohara et al., 2023; Luo et al.,
2025), which typically process videos frame-by-frame, have made notable progress in injecting
target identity through encoder–decoder pipelines, feature matching, or two-stage refinement.
However, they often suffer from temporal inconsistencies—such as flickering and jitter—especially
in long sequences. Recently, video diffusion models are used in video face swapping. Diffusion-
based methods (Zhao et al., 2023; Han et al., 2024; Chen et al., 2024; Wang et al., 2025) demonstrate
stronger generative power and achieve higher visual quality and temporal consistency. They treat
face swapping as inpainting by masking the original face and regenerating it with a diffusion model
conditioned on background frames and auxiliary attribute encoding (Chen et al., 2024). This often
leads to the loss of fine-grained details and introduces inconsistencies with the model’s pretrained
priors, thereby degrading generation quality. In this work, we tackle these challenges by directly
leveraging detailed source video references for face swapping, combined with a carefully curated
dataset Face2FaceSwap and an inverse data training strategy to provide high-fidelity supervision.

Diffusion-based Video Editing. With the rapid progress of diffusion models, a variety of
video editing methods have been developed that can be broadly categorized into inversion-based,
inpainting-based, and reference-guided approaches. Inversion-based methods (Ju et al., 2023; Qi
et al., 2023; Geyer et al., 2023; Poole et al., 2022; Hertz et al., 2023) reconstruct the original video
trajectory in the diffusion process to enable editing, but they often struggle to balance editability
and fidelity. Inpainting-based approaches (Jiang et al., 2025; Hu et al., 2025; Tu et al., 2025)
edit masked regions with structural guidance such as optical flow, depth, or keypoints, achieving
temporal coherence but usually at the cost of losing fine-grained details. Recently, reference-
guided methods (Labs et al., 2025; Deng et al., 2025; Wu et al., 2025; Hurst et al., 2024; Comanici
et al., 2025) have shown strong potential by leveraging reference images or frames to combine
flexible editing with high-fidelity reconstruction. Nonetheless, extending this paradigm to long video
sequences remains challenging due to the scarcity of paired data and the difficulty of maintaining
consistent identity or attributes over time. In this work, we use reference-guided generation for face
video swapping, enabling controllable identity transfer while preserving temporal coherence and
visual fidelity across long sequences.

3 PRELIMINARY: VIDEO GENERATION WITH DIT AND RECTIFIED FLOW

Recent advancements in diffusion-based video generation leverage the Diffusion Transformer
(DiT) architecture combined with continuous-time training objectives such as Rectified Flow (RF)
to achieve high-quality and temporally coherent synthesis. DiT extends traditional UNet-based
diffusion backbones with transformer blocks, enabling more flexible and scalable modeling of high-
dimensional video data. In this framework, the model learns a continuous denoising process by
predicting the velocity between a pair of latent points. Given a ground-truth sample x1, and a
standard Gaussian noise x0 ∼ N(0, I), a linearly interpolated latent xt is constructed as:

xt = tx1 + (1− t)x0, (1)

where t ∈ [0, 1] is a timestep sampled from a predefined distribution. The target velocity is defined
as the derivative of xt with respect to time, yielding:

vt =
dxt
dt

= x1 − x0. (2)

The DiT model is trained to estimate this velocity given the latent xt, the conditioning signal c,
and the timestep t. Let u(xt, c, t; θ) be the model’s predicted velocity, where θ denotes the model
parameters. The training objective is to minimize the mean squared error (MSE) between the
predicted and ground-truth velocities:

L = Ex0,x1,c,t ∥u(xt, c, t; θ)− vt∥2 . (3)

This training formulation enables high-quality results with significantly fewer steps and greater
computational efficiency in video generation.
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Figure 3: Overview of the proposed LivingFace framework for video face swapping. (1) High-
quality keyframes are selected under favorable conditions and used as temporal anchors to ensure
consistent identity injection across long sequences. (2) We directly feed the full-pixel source video
as a reference, enabling high-fidelity reconstruction of non-identity attributes such as lighting and
micro-expressions. (3) By sequentially generating chunks and propagating the final frame of the
previous chunk as guidance, LivingFace achieves seamless transitions in long videos. (4) We use
per-frame edit method to generate the data and invert data roles to construct paired samples, ensuring
reliable and artifact-free learning.

4 METHOD

In video face swapping tasks, the input typically consists of a source video Vs = {ft | t ∈ [1, T ]} to
be modified, a mask sequence M = {mt | t ∈ [1, T ]} indicating the target regions for editing, and a
target identity image Itar. The overall designs of LivingFace are illustrated in Fig. 3. In the following
sections, we introduce the designs of LivingFace focusing on four fundamental components of video
face swapping: target identity injection, source video attribute preservation, consistent long-video
generation, and paired-dataset construction.

4.1 KEYFRAMES IDENTITY INJECTION

Effectively injecting target identity into the swapped results is the basic challenge in face swapping
tasks. Previous face swapping methods typically encode the target identity into a identity vector
using a pre-trained identity encoder (Wang et al., 2018; Deng et al., 2019a), which is then injected
into the model. The model is trained to decode this identity vector into the edited facial region,
achieving satisfactory identity similarity with the target face. However, in long and complex
video sequences, this approach often suffers from identity flickering across frames due to motion
variations, resulting in temporal inconsistency.

To address the aforementioned issues, we draw inspiration from frame interpolation paradigms
and combine them with strengths of image-based face swapping in industrial settings, designing a
keyframe-based identity injection scheme. Guided by discrete keyframes within a video, diffusion-
based methods using frame interpolation paradigms typically generate temporally smooth and
stable long sequences (Wang et al., 2024). Meanwhile, image-based face swapping has become a
reliable solution in production environments. By applying per-frame editing — typically involving
face-swapping models combined with post-processing tools such as PhotoShop — high-quality
results can be achieved under favorable conditions. These conditions include frontal views, simple
lighting, and neutral facial expressions. Building on both, we design a method that achieves stable
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identity injection via keyframe selection and guidance. First, we select video frames meeting
industrial face-swapping criteria as keyframes to obtain high-quality single-frame swapping inputs
F swap-in

key = {f swap-in
ki

| ki ∈ K, K ⊂ [1, T ]}. Then, as illustrated in Fig. 3, we take a pair of adjacent
keyframes and use them as the boundary frames to guide the generation of the intermediate face-
swapped sequence, including the two reference keyframes. Additionally, a target face image Itar is
used to fill possible identity gaps in the first or last keyframe (e.g. occlusion or closed eyes). This
identity injection strategy effectively leverages the temporal priors of video generation models to
maintain identity consistency throughout the sequence. It also yields robust results on challenging
intermediate frames where image-based face-swapping methods often fail.

4.2 VIDEO REFERENCE COMPLETION

In addition to identity injection, it is crucial to incorporate both non-identity attributes of the edited
region and the unaltered content of the source video into the model. Previous diffusion-based video
face-swapping methods that follow an inpainting formulation typically reconstruct the attributes
of the edited region using structural features extracted from the source video (Han et al., 2024;
Wang et al., 2025). However, this approach discards the original pixel information within the edited
region, resulting in a noticeable loss of fine-grained fidelity. Moreover, as diffusion models are not
pretrained to interpret such structural features, the required additional training often compromises
their generative priors.

Inspired by the success of reference-guided methods in image editing, we extend this paradigm to
video face swapping for high-fidelity reconstruction. As illustrated in Fig. 3, instead of masking the
facial region in the source video and relying on external pretrained encoders, we directly input the
correspond full-pixel source video chunk V [ki:ki+1]

s = {ft | t ∈ [ki, ki+1]} as the visual reference.
This design allows the model to preserve the detailed visual attributes, such as lighting and micro-
expressions, without degradation. Together with identity signals, we encode each conditional input
using the VAE encoder Eϕ(·), and concatenate the resulting latent token sequences along the token
dimension in the following order:

Zc = Concattoken
(
Eϕ(Itar), Eϕ(f

swap-in
ki

), Eϕ(V
[ki:ki+1]
s ), Eϕ(f

swap-in
ki+1

)
)
, (4)

where Zc denotes the aggregated conditional representation in latent space. This ordered
concatenation aligns well with the temporal modeling of video diffusion models, allowing the
generative process to be guided by priors across time. To further support spatial localization, we
construct the binary mask sequence M with black-filled masks to indicate the regions to be edited,
and concatenate it with Zc along the channel dimension.

For adaptive feature injection, we introduce an attribute encoder composed of DiT blocks that share
the same architecture as the diffusion backbone. These blocks are initialized with the corresponding
pretrained weights. The output of each attribute encoder layer is added element-wise to the
corresponding layer of the backbone, enabling latent-space conditioning in a layer-wise manner.
Formally, the injection process is defined as:

X(l+1) = D
(l)
θ

(
X(l) +A

(h)
ψ (Z(h)

c ,M)
)
. (5)

whereX(l) denotes the hidden representation at layer l of the DiT backbone Dθ, and A
(h)
ψ is the h-th

block of the attribute encoder with parameters ψ. This formulation enables adaptive conditioning
while preserving the pretrained generative priors of the diffusion model.

4.3 TEMPORAL STITCHING

To meet the needs of industrial face swapping for videos of variable length, we split long videos into
multiple fixed-length chunks. Generating each chunk independently often causes noticeable jumps
between adjacent chunks. Fortunately, thanks to our keyframe design and the incorporation of video
reference guidance, we achieve smooth transitions using a temporal stitching method. Specifically,
we process chunks sequentially in temporal order. When generating a middle chunk, we use the last
frame output f swap-out

ki
of the previous chunk instead of f swap-in

ki
as the first-frame guidance, while the

last-frame guidance continues to use f swap-in
ki+1

:

{f swap-out
t }ki+1

t=ki
= Dθ,ψ

(
f swap-out
ki

, f swap-in
ki+1

, V [ki:ki+1]
s , Itar, M

)
, (6)
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Methods ID Retri. ↑ ID Simil. ↑ Expr.↓ Lighting↓ Gaze↑ Pose↓ FVD↓ Avg. Rank↓
Deepfakes 0.893 0.432 2.941 0.340 0.584 4.662 47.54 9.28
FaceShifter 0.918 0.485 2.451 0.225 0.690 2.696 18.73 5.00
InfoSwap 0.961 0.542 2.868 0.290 0.586 2.962 47.28 7.14
SimSwap 0.989 0.562 2.674 0.221 0.720 2.977 33.97 4.57
BlendFace 0.929 0.480 2.256 0.228 0.717 2.196 21.96 4.28

CanonSwap 0.946 0.523 2.307 0.205 0.685 1.782 30.30 4.00
DiffSwap 0.435 0.261 1.912 0.199 0.687 2.277 83.98 5.71

Face-Adapter 0.501 0.247 2.564 0.259 0.641 3.608 36.83 8.28
inswapper 0.968 0.636 2.536 0.214 0.704 2.464 20.63 3.71

LivingFace (Ours) 0.973 0.592 2.466 0.211 0.706 2.336 19.29 3.00

Table 1: Quantitative comparison with state-of-the-art methods on FF++. For each metric, the
top-3 methods are highlighted in cyan, while the others are shown in gray. Lower values indicate
better performance for ↓ metrics (Expr., Lighting, Pose, FVD), and higher values indicate better
performance for ↑ metrics (ID Retrieval, ID Similarity, Gaze). The last column reports the average
ranking across all metrics, with our method achieving the best overall performance.

For the first chunk, both the first and last frame guides are given by the respective keyframe inputs.
Moreover, to allow flexible selection of keyframe positions under the constraint of fixed-chunk
inference length, we also employ techniques such as frame interpolation, reverse playback, and
frame skipping combined with multiple inference as needed.

4.4 DATASET CONSTRUCTION

Face video datasets typically contain only single videos of individuals and lack paired source–target
samples for face swapping. Consequently, these datasets cannot be directly used to train our method
as reference-guided methods relies on paired source–target samples to supervise the extraction
of non-identity attributes from the source video. To obtain such pairs, we generate synthetic
data using existing face-swapping models. Compared with diffusion-based methods, GAN-based
face swapping approaches achieve better fidelity to the source video by leveraging the full-pixel
source video as input. However, GAN-based results frequently exhibit temporal inconsistencies
and degraded visual quality (e.g., artifacts and distortions). If such issues dominate the synthetic
data, the resulting supervision would be unreliable, leading to ineffective training of our method.
To overcome this challenge, as illustrated in Fig. 3, we invert the data roles: the GAN-generated
swapped video serve as the model input Vs, while the original video provides the keyframe inputs
F swap-in

key , the target image Itar and the ground truth supervision. This design guarantees that the
reference and the ground truth share the same identity, while also providing artifact-free, high-
quality supervision signals.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. For training, we construct our dataset Face2FaceSwap based on CelebV-Text (Yu et al.,
2023) and VFHQ (Xie et al., 2022). CelebV-Text is a large-scale video–text dataset containing
approximately 70,000 in-the-wild facial video clips, totaling around 279 hours of footage. VFHQ
(Video Face High-Quality) comprises over 16,000 high-resolution video clips collected from
YouTube, covering diverse scenarios and identities, with frame sizes typically ranging from 700×700
to 1000×1000. Based on these two datasets, we synthesize paired face-swapping data to build
our training dataset, Face2FaceSwap. For evaluation, we adopt FaceForensics++ (FF++) (Rossler
et al., 2019), a widely used benchmark for face manipulation analysis. FF++ consists of 1,000
pristine video sequences and includes variations in compression levels and resolutions, providing a
challenging and realistic testbed for assessing both fidelity and robustness.

Metrics. To comprehensively evaluate the face-swapping performance, we employ both image-level
and video-level metrics to assess the quality of the generated results. Following prior work Chen
et al. (2020; 2024); Wang et al. (2025), we randomly sample 10 frames from each face-swapped
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Methods ID Retri. ↑ ID Simil. ↑ Expr.↓ Lighting↓ Gaze↑ Pose↓
LivingFace 0.948 0.536 2.84 0.285 0.451 2.84

VACE 0.572 0.313 3.08 0.355 0.299 6.42
w/o Target Image 0.927 0.515 2.74 0.279 0.537 2.80

w/o Keyframe 0.559 0.281 2.47 0.249 0.502 2.84
Inpainting 0.941 0.519 2.89 0.292 0.491 2.87

Table 2: Ablation of key components. Replacing video reference with inpainting reduces fidelity,
highlighting its role in preserving non-identity attributes. Removing keyframe guidance decreases
identity similarity and temporal consistency, while omitting target image reference also lowers
identity accuracy under challenging conditions.

Methods ID Retri. ↑ ID Simil. ↑ Expr.↓ Lighting↓ Gaze↑ Pose↓
LivingFace 0.948 0.536 2.84 0.285 0.451 2.84

VACE 0.572 0.313 3.08 0.355 0.299 6.42
Using Upper Data 0.943 0.532 2.82 0.289 0.484 2.89
Using Lower Data 0.947 0.540 2.83 0.288 0.488 2.87

Table 3: Ablation on generated data quality. Results show that identity performance remains stable
across groups, but using the full dataset achieves better fidelity (e.g., gaze, pose) due to greater
sample diversity, which enhances the model’s robustness to identity variations.

video to compute image-level evaluation metrics, including ID Similarity, ID Retrieval, Expression
Error, Lighting Error, Gaze Error, and Face Pose Error. ID Similarity is measured by encoding
both the face-swapped result and the target image into identity vectors using a pre-trained ID
encoder (Wang et al., 2018), followed by computing the cosine similarity between them. For ID
Retrieval, the identity vector of the swapped image is compared against all samples in the dataset
using cosine similarity to determine whether the correct target identity can be successfully retrieved.
In addition to identity-related metrics, we calculate Expression and Lighting Errors by extracting
their respective coefficients using a 3DMM-based face reconstruction method (Deng et al., 2019b)
and computing the L2 distance between the source and swapped results. Similarly, we use a gaze
estimation model (Abdelrahman et al., 2023) and a head pose estimation model (Ruiz et al., 2018)
to predict gaze direction and head pose in the original and swapped frames, and compute the
L2 distance to quantify the changes. For video-level evaluation, we use Frechet Video Distance
(FVD) (Unterthiner et al., 2018) to assess the overall quality of generated videos, and Warping Error
to evaluate motion consistency between the original and swapped sequences.

Implementation Details. As a recently released open-source video editing model, VACE (Jiang
et al., 2025) builds upon the Wan video generation framework and is fine-tuned into a high-quality
framework capable of controllable, customizable, and inpainting-based video editing. By loading
its pre-trained weights and fine-tuning the model on our constructed dataset, we adapt VACE to
the reference-guided video face-swapping task. Specifically, we train the model for 10,000 steps
using the AdamW optimizer, with a learning rate of 1e-5 and a batch size of 16. The input
resolution is set to 640, consistent with the preprocessing applied during dataset construction,
and the number of frames is set to 81, following the original VACE configuration. All training
experiments are conducted on 8 NVIDIA H200 GPUs. During inference, we first detect faces using
a face detection model, then crop the detected regions and perform face swapping on the cropped
sequences. The swapped regions are subsequently pasted back into their original positions within
the frames. As detailed in Sec. 4.3, each video sample is divided into multiple chunks, which
are processed sequentially. Following our training setup, each chunk contains 81 frames, and the
cropped regions are resized to 640×640 before face swapping. As a face-swapping model commonly
used in industrial scenarios, we employ Inswapper (Henry, 2025) for processing keyframes.

5.2 ABLATION STUDIES

Ablation of Synthetic Data Quality. As discussed in Sec. 4.4, while invert the data role ensures a
matched identity and high-quality ground truth (GT), the generated data used as training input still

7
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Figure 4: Quantitative and qualitative comparison with state-of-the-art face-swapping methods.
LivingFace achieves the best overall performance across metrics and average ranks, surpassing
both GAN- and diffusion-based approaches in video consistency, fidelity, and identity similarity.
Despite using InSwapper for keyframe generation, our model delivers more stable results and better
preserves source attributes, even under challenging conditions such as side profiles and occlusions.

suffers from the quality problem. On one hand, when the face-swapping model fails, the results often
exhibit high identity similarity with the original video and may suffer from flickering. On the other
hand, when there is a substantial discrepancy in identity, the resulting face swap exhibits artifacts.
To investigate the impact of synthetic data quality on the final model performance, we conduct an
ablation study. Since the aforementioned issues are closely linked to identity variation between the
original video and synthetic data, we evaluated their ID cosine similarity. By visualizing the data
distribution and analyzing samples from different intervals, we confirm that this metric effectively
captures the two aforementioned scenarios (see Fig. 5). Consequently, we filter the data pairs based
on this metric and categorize them into three groups for comparison: using the entire dataset, the first
70% of the data, and the last 70% of the data. The experimental results, presented in Table 3, show
that neither the ID-similar data nor the data with significant ID differences have a substantial impact
on the model’s identity performance. However, we observe that using the full dataset yields stronger
performance in terms of gaze, pose, and other fidelity metrics. We hypothesize that the inclusion of
more diverse samples in the full dataset contributes to this outcome. This diversity enables the model
to adapt to a broader range of identity-related variations, thereby enhancing its ability to preserve
source attributes more robustly. Therefore, in our training process of next experiments, we use all
available data pairs for training.

Ablation of Model Design. We conduct ablation studies on three key components of our model
design: video reference, keyframe guidance, and target image reference. As shown in Table 2, when
we replace the video reference with the traditional inpainting approach, the model exhibits a notable
decline in fidelity metrics, including gaze, pose, lighting, and expression. This demonstrates that
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Artifact Fail SwapData Distribution

Figure 5: Visualization of the Face2FaceSwap dataset. The central plot shows the distribution
of identity similarity scores, with the lowest 30% (red) and highest 30% (blue) highlighted.
Low-similarity pairs often contain artifacts (left), while high-similarity pairs may retain reference
information and reduce fidelity (right).

the video reference approach more effectively utilizes detailed information from the original video
compared to the structural condition of inpainting, thereby enabling better preservation of non-
identity attributes. Regarding identity injection, when we remove the keyframe guidance and rely
solely on the target image, we observe a significant drop in identity similarity as well as a noticeable
degradation in temporal consistency. This validates the effectiveness of keyframe guidance in
ensuring stable identity injection across long video sequences. Conversely, when we ablate the
identity information provided by the target image, we still observe a decline in identity similarity.
This is due to the limitations of keyframes in certain scenarios—such as occlusion, extreme angles,
or closed eyes—which may result in the loss of critical identity features.

5.3 COMPARISONS WITH EXISTING METHODS

In this section, we compare several state-of-the-art face-swapping methods, including Sim-
Swap (Chen et al., 2020), InfoSwap (Gao et al., 2021), BlendSwap (Shiohara et al., 2023),
CanonSwap (Luo et al., 2025), DiffSwap (Zhao et al., 2023), FaceAdapter (Han et al., 2024),
as well as our baseline model, VACE (Jiang et al., 2025), and the widely used industrial face-
swapping model, InSwapper (Henry, 2025), which is also employed for generating keyframes
for our model. As shown in Table 1, LivingFace achieves state-of-the-art performance across
multiple metrics and average ranks. Compared to our keyframe generation model, InSwapper,
although the keyframes are generated based on its outputs, our model demonstrates superior video
consistency, better preservation of source video attributes, and more stable face-swapping results
in challenging scenarios such as side profiles and occlusions (as shown in Fig. 4). This also
indicate our model exhibits strong robustness when handling problematic keyframes, as detailed
in Supplementary Material. Additionally, GAN-based methods such as SimSwap and CanonFace
exhibit poor performance in video quality and consistency, while diffusion-based methods do not
perform well in terms of fidelity and identity similarity. These conclusions from the quantitative
experiments align with our qualitative results, as shown in Fig. 4.

6 CONCLUSION

This work presented LivingFace, the first video reference-guided face swapping model that leverages
keyframes as conditioning signals to enhance both fidelity and temporal coherence in video face
swapping. By combining keyframe conditioning with video reference guidance, our approach
ensures stable identity preservation and high-fidelity reconstruction across long video sequences.
We propose a novel paired dataset, Face2FaceSwap, and an inverse training strategy, offering
reliable ground-truth supervision, tackling the challenge of scarce data for reference-guided training.
Extensive experiments validate that our method sets a new state-of-the-art, seamlessly integrating
target identities with source video expressions, lighting, and motion. Our model significantly
reduces manual effort in production workflows, enabling more efficient and flexible video editing in
film and entertainment.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal experi-
mentation was involved. All datasets used, including Face2FaceSwap, VoxCeleb, FaceForensics++
and CelebV-HQ, were sourced in compliance with relevant usage guidelines, ensuring no violation
of privacy. We have taken care to avoid any biases or discriminatory outcomes in our research
process. No personally identifiable information was used, and no experiments were conducted that
could raise privacy or security concerns. Since video face swapping has potential for misuse (e.g.,
deepfakes), we restrict the use of our dataset and code strictly to academic research and prohibit
malicious applications such as disinformation, harassment, or unauthorized impersonation. We
are committed to maintaining transparency, integrity, and responsible AI practices throughout the
research process.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code, pre-trained models, and the Face2FaceSwap dataset will be made publicly available upon
acceptance to facilitate replication and verification. The experimental setup, including training steps,
model configurations, optimizer details, hyperparameters, and hardware specifications, is described
in detail in the paper. We have also provided a full description of our inverse training strategy,
the keyframe conditioning module, and temporal stitching pipeline to assist others in reproducing
our experiments. Additionally, publicly available datasets such as VoxCeleb, FaceForensics++, and
CelebV-HQ are used for training and evaluation, ensuring consistent and comparable results across
studies. We believe these measures will enable other researchers to reproduce our work faithfully
and further advance the field of controllable video face swapping.
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Figure 6: Qualitative comparison under challenging scenarios including occlusions, exaggerated
expressions, and large shape deformations. While the keyframe-based face-swapping baseline
(InSwapper) often produces artifacts or distorted facial regions (red boxes), our method successfully
refines the keyframes and achieves temporally consistent and high-fidelity results across diverse
conditions.

A USE OF LLMS

We used large language models (LLMs) only for minor assistance in polishing the language and
adjusting the presentation of tables. No LLMs were involved in designing the methodology,
conducting experiments, or analyzing results.

B ROBUSTNESS IN KEYFRAME QUALITY

As shown in Fig. 6, our model demonstrates strong robustness in terms of keyframe quality. Even
when our keyframe face-swapping model, InSwapper, produces suboptimal results in challenging
scenarios such as occlusions or side profiles, we are able to refine its outputs by regenerating the
keyframes. Furthermore, when using other less effective models as the keyframe preprocessing
network, as shown in Table 1, our model consistently outperforms the corresponding models,
achieving better overall results.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Source 
video

Figure 7: Identity swapping results on the same source video with different target identities.
Our method produces consistent and high-fidelity face swaps regardless of large or small identity
differences, demonstrating strong robustness to identity variations.

C ROBUSTNESS TO IDENTITY DIFFERENCES

For the scenario of swapping different identities for the same source video, we conducted
experiments with multiple videos and identities. As shown in Fig. 7, leveraging the advantages
of image-based identity injection, LivingFace achieves satisfactory results for the same video,
regardless of whether the identity difference is large or small. We hypothesize that this robust of
identity difference is due to the diversity of identities in our training data, as discussed in Sec. 5.2.

D ROBUSTNESS TO ATTRIBUTE VARIATIONS IN SOURCE VIDEO

To verify whether our reference-based video face swapping approach is robust to attribute variations
in the source video, we selected a diverse set of videos as source inputs and conducted experiments
using the same target identity. As shown in Fig. 8, our model consistently produces high-quality
results across attributes in challenging scenarios, such as occlusions, side profiles, and complex
lighting conditions. Furthermore, owing to the robustness of keyframe quality, our model is able to
generate realistic, high-fidelity outputs even when the keyframe model produces suboptimal results.

E COMPARISON WITH CLOSE-SOURCE METHODS

Recently, several inpainting-based video face swapping methods using the Stable Video Diffu-
sion model (Blattmann et al., 2023) are proposed, such as HiFiVFS (Chen et al., 2024) and
FaceAdapter (Han et al., 2024). However, these methods are not open-source. To enable a
comparison with them, we captured several demos from their project websites and conducted tests
using the same target face image. The comparative results are shown in the Fig. 9. Our approach
better preserves the original video attributes such as lighting and expression, and also demonstrates
strong stability in occluded cases.
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Figure 8: Face swapping results on diverse source videos with the same target identity. Our
method consistently preserves target identity and produces high-fidelity outputs across challenging
conditions, including occlusions, side profiles, and complex lighting.

F FACE2FACESWAP CONSTRUCTION DETAILS

We construct our dataset Face2FaceSwap based on CelebV-Text (Yu et al., 2023) and VFHQ (Xie
et al., 2022). First, we perform crop, resize, and clipping operations on the dataset to ensure the
resolution is 640×640 pixels and the video length is approximately 200 frames. We then randomly
pair the data and extract the first frame from the target video as the target face image. Next, we
apply InSwapper (Henry, 2025) to perform face-swapping on the entire dataset. The process is
conducted using 8 NVIDIA H100 GPUs over a duration of 120 hours. Additionally, we use the
face-parsing model (Yu et al., 2018) to generate the face mask video. For the ablation study on
the inpainting paradigm, we also use the pose estimation model (Yang et al., 2023b) to generate
the corresponding pose video. After filtering out the failed samples from the preprocessing steps,
our dataset Face2FaceSwap contains a total of 152,221 video samples, with a cumulative duration
exceeding 300 hours.
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Figure 9: Qualitative results.
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