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Abstract

Safety fine-tuning algorithms are widely used to reduce harmful outputs in lan-
guage models. While studies show that these algorithms induce minimal changes
to pre-trained model parameters, the mechanisms of how such small parameter
changes lead to harm reduction remain unclear. When studying the direct pref-
erence optimization (DPO) algorithm for toxicity reduction, current explanation
claims that DPO reduces toxicity by dampening activations of the most toxic MLP
neurons. However, our activation patching experiments show that this explanation
is incomplete. Projections onto a toxicity probe show that only 4.9% of toxicity
reduction comes from dampened toxic neurons. Instead, DPO reduces toxicity
through distributed activation shifts across four neuron groups: two removing
toxicity and two promoting anti-toxicity, cumulatively shifting MLP outputs away
from toxicity. Neurons that do not promote toxic tokens still contribute to this
reduction through their weakly aligned components. These distributed activation
shifts, induced from DPO’s minimal parameter changes, form a mask over the
pre-trained toxic capabilities, while being small enough to preserve model’s general
language capabilities. Building on these insights, we propose an activation patching
technique on the identified neuron groups, outperforming DPO in reducing toxicity
while maintaining general language capabilities. 2

1 Introduction

The generality of an LLM’s capabilities means the model also learns to encode undesirable behaviours,
such as producing toxic, biased, or hallucinated outputs [6, 5, 17]. To address these issues, researchers
have developed safety fine-tuning algorithms, such as proximal policy optimization (PPO) [14] and
direct preference optimization (DPO) [13], to reduce undesirable outputs.

Recent studies showed that these safety fine-tuning algorithms cause minimal changes to the pa-
rameters of pre-trained models, and the model capabilities to generate undesirable outputs are not
eliminated but hidden [10, 8, 9]. However, the exact mechanisms through which small parameter
changes lead to the suppression of undesirable behaviours remain unclear. One explanation proposed
when studying the DPO algorithm for toxicity reduction, suggested that DPO reduces toxicity by
dampening the activations of the most toxic MLP neurons to bypass the toxic regions they create
in the residual stream [10]. Our study verifies this claim by analysing toxic feature writing along a
probe direction across MLP neurons, revealing the explanation to be incomplete. Our findings are:
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• Dampened toxic neurons account for a very limited effect of DPO. We patch the most toxic
neurons to post-DPO activations and find that this gives significantly higher toxicity levels
than DPO, showing that dampened toxic neurons alone [10] account for a very limited
amount of DPO’s effect. By projecting onto the toxicity probe, we show that dampened
toxic neurons account for just 4.9% of the total toxicity reduction.

• DPO reduces toxicity through distributed activation shifts across four neuron groups. DPO
achieves toxicity reduction by engaging over half of the neurons, which we categorise into
four groups, two reducing toxicity and two promoting anti-toxicity. These groups collectively
shift MLP layer outputs away toxicity. Interestingly, the rest of neurons modified by DPO
actually increase toxicity, indicating that DPO creates a trade-off in toxicity.

• Patching the identified neuron groups outperforms DPO. Leveraging these findings, we
apply activation patching to the identified neuron groups responsible for toxicity reduction,
which surpasses DPO in reducing toxicity while preserving general language capabilities.

2 Related work

Mechanisms of fine-tuning algorithms Several studies have theorised how fine-tuning algorithms
alter the capabilities of pre-trained models. Jain et al. [8] fine-tuned a language model on synthetic
tasks and showed that the model develops “wrappers” in its later layers — small, localised adjustments
to its pre-training abilities to optimise for each task. In a similar setting, Jain et al. [9] found that
safety fine-tuning methods work by minimally transforming MLP weights to project unsafe inputs
into its weights’ null space. Wei et al. [16] demonstrated the brittleness of safety fine-tuning methods,
showing that pruning just 3% of targeted model parameters can unlock the model from aligned
behaviours. These studies suggest that fine-tuning algorithms minimally alter model parameters to
achieve the desired outputs.

In our reference study, Lee et al. [10] studied how the DPO algorithm works internally to reduce
toxicity. Referring to the second weight vector for an MLP neuron as the value vector [7] (Appendix
A), Lee et al. [10] proposed that DPO reduces toxicity by dampening the activations on most toxic
MLP neurons, whose value vectors project onto toxic tokens and align the most with a toxicity linear
probe, thereby shifting model activations out of toxic regions associated with them. Our study tests
this claim and finds it incomplete, as discussed below.

3 Experimental setup

To test Lee et al. [10]’s claims and ensure fair comparisons, we replicate their experimental setup,
including the same language model, dataset of toxicity-eliciting prompts, probe training method, and
evaluation metrics.

Model and dataset We focus on GPT-2 medium with 355M parameters and 24 layers, a residual
stream dimension of 1024, and an MLP hidden layer dimension of 4096 [10]. GPT-2 Medium is
well-suited for studying toxicity reduction, as it is easier to elicit toxic responses with designed
prompts compared to larger base models, making it ideal for capturing toxicity changes. We use
the DPO-ed version of GPT2-medium [10] fine-tuned on 24,576 pairs of toxicity data generated by
PPLM pipeline [3] on Wikitext-2 prompts. To elicit toxic outputs, we use the “challenge” subset of
REALTOXICITYPROMPTS [6], containing 1,199 highly toxic prompts.

Toxicity probe We train a linear probe at the last layer of GPT2-medium to classifiy toxic text
from non-toxic text [10]. The toxicity linear probe Wtoxic was trained on a binary classification task
using the Jigsaw toxic comment classification dataset (561,808 comments) [2]. The probe direction
projects to toxic tokens and serves as an effective steering vector to reduce toxicity when applied to
the final layer of GPT-2 Medium [10]. We follow Lee et al. [10] and view this probe as capturing the
aggregated toxicity feature direction in GPT2-medium.

Evaluation metrics To evaluate toxicity and language quality of the generation, we measure toxicity
scores by passing the generated responses through the Perspective API [7], perplexity by matching
generated tokens on the Wikitext-2 dataset [12], and F1 scores on 2,000 Wikipedia sentences [4].
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Table 1: Toxicity, Perplexity (PPL) and F1 scores after activation patching on neurons. Patching
toxic neurons to post-DPO levels achieves limited toxicity reduction compared to DPO. In contrast,
patching all four of our identified neuron groups surpasses DPO in reducing toxicity while preserving
perplexity, validating their effects.

Model Intervention Toxicity PPL F1
GPT2 None 0.453 21.70 0.193
DPO None 0.208 23.34 0.195
GPT2 Patch the toxic neurons to post-DPO activations 0.404 21.70 0.193
GPT2 Patch the positively activated toxic neurons 0.409 21.70 0.193
GPT2 Ablate the toxic neurons 0.409 22.13 0.192
GPT2 Ablate the positively activated toxic neurons 0.398 21.74 0.193
GPT2 Patch the TP− group to post-DPO activations 0.335 21.69 0.190
GPT2 Patch the TN+ group to post-DPO activations 0.413 21.71 0.190
GPT2 Patch the AN− group to post-DPO activations 0.410 21.80 0.193
GPT2 Patch TP− and AN− to post-DPO activations 0.239 21.78 0.189
GPT2 Patch TP−, AN−, TN+ to post-DPO activations 0.193 21.76 0.174
GPT2 Patch all four groups to post-DPO activations 0.114 21.76 0.171

4 Track toxicity reduction across neurons

4.1 Activation patching the toxic neurons

Identify toxic neurons Follow Lee et al. [10], we identify toxic neurons as those whose value
vectors (the second weight vector for an MLP neuron) have the highest cosine similarity to Wtoxic
and project onto toxic tokens in the vocabulary space. We narrow this down to N = 128 toxic value
vectors, as Lee et al. [10] found this to be the number required to form a stable toxic space with
singular value decomposition, beyond which adding more value vectors does not expand the toxic
basis further. Also beyond N = 128, the value vectors no longer project onto toxic tokens (Table 2 in
Appendix B).

Patch toxic neurons We apply activation patching to the 128 toxic neurons after DPO, aligning
their activations to their post-DPO levels. Additionally, we patch the 36 out of 128 toxic neurons with
positive activations before DPO to test if their dampened activations reduce toxicity. For a stronger
intervention, we ablate these neurons (i.e., zero out their activations) to eliminate their associated
toxic regions in the residual stream entirely.

Table 1 shows that, while patching or ablating the toxic neurons reduces toxicity to some extent, it
falls short to the reduction achieved by DPO. This suggests that dampened toxic neurons alone [10]
account for a very limited amount of DPO’s effect.

4.2 Compute neuron toxicity via projections

MLP layer projection Instead, we track toxicity reduction across MLP layers by projecting each
MLP layer’s output onto the normalised Wtoxic direction. These projections are averaged over layer
activations for 1,199 prompts and 20 generated tokens. Figure 1a shows a consistent drop in toxicity
projections across layers after DPO, which consistently outperforms ablating the toxic neurons.

MLP neuron projection To compute neuron toxicity, we decompose the reduction in MLP layer
projections (the gap between the red and green lines in Figure 1a) into the sum of contributions from
individual neurons in each layer. This is feasible because changes in layer activations equal the sum
of activation changes from individual neurons in that layer (Equation 3 in Appendix A). Specifically,
for neuron i, we compute its contribution to toxicity reduction as:

toxic_reductioni = (mpre
i vprei −mdpo

i vdpoi ) · Wtoxic

|Wtoxic|
, (1)
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(a) Projection of MLP layer outputs to toxicity probe. (b) Cumulative toxicity reduction by neurons.

Figure 1: Toxicity projection to the probe across MLP layers and neurons. (a) Output projections
of MLP layers before DPO (red), after ablating the toxic neurons (yellow), and after DPO (green). (b)
Cumulative sum of toxicity reduction contributed by neurons, with neurons ranked from highest to
lowest toxicity reduction. The U-shaped curve shows that many neurons increase toxicity after DPO.

Here, mpre
i and mdpo

i are the activation coefficients (scalars) of neuron i’s value vector before and
after DPO, while vprei and vdpoi represent the value vectors. This equation quantifies the change
in each neuron’s toxicity projection after DPO. This equation assumes the toxicity probe direction
remains unchanged after DPO following [10]. This assumption is supported by findings that sparse
autoencoders (SAEs) trained on the base model can effectively reconstruct chat versions of models
[11], suggesting that feature directions transfer well between pre-trained and safety fine-tuned models.

Results Following this equation, the summed toxicity reduction of the 128 toxic neurons with
dampened positive activations accounts for only 4.9% of the total toxicity reduction. Moreover, the
U-shaped cumulative reduction in Figure 1b shows that, while DPO engages over half of the neurons
to reduce toxicity, the remaining neuron activations are adjusted to increase toxicity. This suggests
that DPO creates opposing neuron effects, where reduced toxicity in some neurons comes at the
expense of increased writing in others, potentially an inevitable trade-off driven by noisy parameter
updates.

4.3 Categorise neuron groups for toxicity reduction

Define neuron groups Following neuron toxicity projection, we categorise neurons contributing to
toxicity reduction (the rising part of curve in Figure 1b) into four groups based on two criteria: (1)
whether they align positively or negatively with the toxicity probe, and (2) whether their activations
are increased or decreased. The groups are:

• Toxic-aligned neurons activated less positively (TP−);

• Toxic-aligned neurons activated more negatively (TN+);

• Anti-toxic-aligned neurons activated less negatively (AN−);

• Anti-toxic-aligned neurons activated more positively (AP+).

Here, a neuron is considered toxic-aligned or anti-toxic-aligned based on whether the cosine similarity
between its value vector and the toxic probe direction is positive or negative. Many neurons that do
not project directly to toxic tokens (Appendix B) are still weakly aligned with the probe. In particular,
groups TN+ and AN− arise because the GELU activation function allows small negative activations
on neurons (Appendix C). Overall, TP− and AN− represent reduced writing in the toxic direction,
while TN+ and AP+ reflect proactive anti-toxic writing.

Analyse neuron groups Figure 2 shows that the contributions of different neuron groups to toxicity
reduction. Figure 2a shows that TP− and AN− are the primary contributors, accounting for 31.8%
and 37.3% of the total reduction, respectively. Together, these groups contribute 69.1% of the
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(a) (b) Stacked toxicity reduction by neuron groups. (c) Toxicity projection shifts by neuron groups.

(d) Toxicity reduction per layer by neuron groups.

Figure 2: Toxicity reduction contributed by four neuron groups. (a) Proportions of toxicity reduc-
tion by neuron groups; (b) Stacked contribution by neuron groups among the top 10,000 contributing
neurons. TP− initially dominates, with AN− gradually catching as neuron rank progresses; (c)
Shifts in toxicity projections for the top 3,000–3,200 contributing neurons, with the four-quadrant
separation defining the groups. Each arrow indicates a neuron’s projection change from pre-DPO
to post-DPO levels, all showing reduced toxicity; (d) Per-layer toxicity reduction by neuron groups.
Four neuron groups cumulatively reduce toxicity across layers, with the most significant reductions
occurring in the later layers, primarily driven by TP− and AN−.

reduction by removing existing toxicity, while the remaining 30.9% results from promoting anti-
toxicity. Figure 2b shows that among the top neuron contributors, TP− initially dominates, but the
influence of AN− grows as neuron rank increases, with later neurons adding more effects to toxicity
reduction (Appendix D). Figure 2c illustrates the balanced contributions from the four groups among
the top 3,000–3,200 neuron contributors, with the four-quadrant separation visually representing the
definitions of the groups. Figure 2d shows that the four neuron groups cumulatively reduce toxicity
layer by layer, with peak reductions occurring in the later layers, primarily driven by TP− and AN−.
In summary, these results show that toxicity reduction in DPO is a collective effort across all four
groups, with their activation shifts collectively steering MLP layer outputs away from toxicity.

Validate neuron groups To validate the effects of neuron groups on actual toxicity scores, we
perform activation patching for each group, adjusting their activations to post-DPO levels, and
measure toxicity scores using the Perspective API. Specifically, we apply averaged patching, assigning
each neuron its mean post-DPO activation value (averaged across all prompts and 20 generated tokens)
at the final token position for each prompt.
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Table 1 shows that patching each of the top three contributing neuron groups individually (TP−,
AN−, TN+) reduces toxicity. Patching the top two groups (TP− and AN−) achieves toxicity levels
close to those of DPO, while patching the top three or all four groups results in reductions surpassing
DPO. This validates the contribution of each neuron group and supports our claim regarding their
collaborative role in toxicity reduction. The superior performance of patching all four groups
may result from excluding neurons that increase toxicity (the falling part of curve in Figure 1b).
Additionally, perplexity scores remain minimally affected by patching, indicating that the distributed
small activation shifts induced by DPO across the four neuron groups effectively preserve general
language capabilities.

5 Discussion

Mechanisms of DPO Our study challenges the monosemantic view of neuron roles proposed by
Lee et al. [10], which attributes toxicity to a few specific toxic neurons. Our findings reveal that
DPO’s parameter changes do not simply dampen toxic neurons but instead reduce writing in the
toxic direction through subtle activation shifts across four neuron groups. These shifts accumulate
within each layer, with per-layer changes peaking in the later layers, collectively decreasing the
overall writing of toxicity. Since DPO minimally alters model parameters [10], the pre-trained toxic
capabilities remain largely intact. Instead, the distributed activation shifts induced by DPO’s minimal
parameter changes form a mask over the toxic capabilities, effectively hiding them while reducing
toxicity and remaining small enough to preserve the model’s general language capabilities.

Limitations Our work relies on a single linear probe direction to capture aggregated toxicity
information in the model, which may overlook more nuanced aspects of toxicity. For instance,
different toxic behaviours, such as gender bias or the use of curse words, may manifest in different
directions. Future work could extend this approach by computing projections onto a toxic subspace
spanned by multiple toxic feature directions [15], to identify more accurate neuron groups. Addition-
ally, for computing neuron toxicity, we used projection to estimate the portion of the toxic feature
embedded in each neuron, assuming proportional contribution based on each neuron’s activated
direction. However, toxic features may actually be distributed across neurons in a more complex
linear composition with varying weights. Alternative methods, such as sparse autoencoders (SAEs)
[1], could be explored to track fine-grained changes in toxic features across neurons. Future work
could also investigate the toxicity trade-offs observed in neurons, disentangling how adjustments in
neuron weights counterbalance one another to create these trade-offs.

6 Conclusion

This study decodes DPO’s mechanism by analysing how writing in a toxic feature direction, identified
via a linear probe, is reduced across MLP neurons. We challenge the prior explanation that DPO
reduces toxicity by dampening the most toxic neurons [10], demonstrating through activation patching
that this explanation is incomplete. Projecting neuron activations onto the toxic probe reveals that
only 4.9% of the total reduction is due to dampened toxic neurons. Instead, DPO reduces toxicity
through cumulative effects across four neuron groups, progressively reducing toxic feature writing
across layers. These distributed activation shifts form a mask over the pre-trained toxic capabilities
while remaining small enough to preserve the model’s general language capabilities. Based on these
findings, we propose an activation patching intervention targeting the identified neuron groups, which
outperforms DPO in reducing toxicity while maintaining general language capabilities.
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A Mechanisms of MLP layers in Transformers

In this section, we provide details on MLP layers in transformer.

Each MLP layer l in a transformer processes the input xl through two linear transformations with a
point-wise activation function σ in between:

MLPℓ(xℓ) = σ
(
W ℓ

Kxℓ
)
W ℓ

V , (2)

where W ℓ
K ,W ℓ

V ∈ Rdmlp×d, dmlp and d are the dimensions of MLP layers and the residual stream,
respectively. Expanding the equation gives:

MLPℓ(xℓ) =

dmlp∑
i=1

σ(xℓ · kℓ
i)v

ℓ
i =

dmlp∑
i=1

mℓ
iv

ℓ
i . (3)

Following Geva et al. [7] and Lee et al. [10], we refer to kℓ
i (the i-th row of W ℓ

K ) as the key vector, and
vℓ
i (the i-th column of W ℓ

V ) as the value vector [7]. This equation shows that the MLP layer writes to
the residual stream dmlp times, once for each value vector vℓ

i scaled by an activation coefficient mℓ
i .

Geva et al. [7] showed that each sub-update mℓ
iv

ℓ
i promotes the likelihood of certain tokens to be

generated.

B Projections of value vectors to the vocabulary space

In this section, we present how value vectors project onto tokens as their cosine similarity with the
toxicity probe decreases.

Table 2 shows that value vectors cease projecting onto toxic tokens around N = 60, and by N = 128,
they no longer project onto toxic tokens at all.

Table 2: Top tokens that value vectors projected onto in the vocabulary space.
WARNING: THESE EXAMPLES ARE HIGHLY OFFENSIVE.

VECTOR RANK TOP TOKENS

WToxic - c*nt, f*ck, a**hole, d*ck, wh*re, holes
MLP.v770

19 1 sh*t, a**, cr*p, f*ck, c*nt, garbage, trash
MLP.v2669

18 3 degenerate, whining, idiots, stupid, smug
MLP.v3680

3 10 se*ist, feminist, Femin, femin, misogyn
MLP.v253

13 18 c*m, d*ck, icles, icle, bo*bs, naughty,
MLP.v3358

7 29 cr*p, whine, sh*t, uphem, shri, bullsh*t
MLP.v3972

6 44 death, extermination, Corpse, decap, torture
MLP.v3972

6 50 f*cking, d*mn, sinful, hell, immoral
MLP.v1438

19 56 c*m, c*ck, orgasm, missionary, anal
MLP.v1438

19 59 burdens, bad, offending, imped, horrible
MLP.v1438

19 60 Bench, rodu, Sequ, RIP, Brist, Vers
MLP.v1438

19 61 uple, buff, virgin, intangible, nw, illiter
MLP.v1438

19 128 vous, ccoli, weed, ername, Timber, alyses
MLP.v1438

19 129 roma, ocker, oley, hiba, osure, urden
MLP.v1438

19 130 revolving, Bree, Hoo, dise, Cheong, uay
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C Most toxic neurons have negative activations

In this section, we explain why we focus on patching or ablating only toxic neurons with positive
activations in Section 4.1, as many toxic value vectors have small negative activations, and ablating
them directly may increase toxicity.

Figure 3 shows the average activations of the top 100 toxic neurons across all prompts and 20
generated tokens, both before and after DPO. Aside from the first few, most neurons are inactive and
display small negative activations due to the GELU function. This suggests that simply zeroing their
activations may inadvertently increase toxicity.

Figure 3: Activations of the top 100 toxic neurons before and after DPO. Most neurons have
negative activations averaged across prompts, both before and after DPO.
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D Toxicity reduction by neuron groups

In this section, we demonstrate how neuron groups contribute to toxicity reduction as neuron rank
progresses, further illustrating Figure 2b.

Figure 4 compares the contribution of the most toxic neurons, focusing on the top 200 versus those
ranked between 3000 and 3200. Initially, as shown in Figure 4a shows that initially TP− constitutes
the majority of the top 200 toxic neurons and dominates their contribution. However, further down
the neuron ranks, as seen in Figure 4b, contributions from the other three neuron groups, particularly
AN−, accumulate more effects and become more significant.

(a) Shifts in activations on top 200 toxic neurons. (b) Shifts in activations on top 3000-3200 toxic neurons.

Figure 4: Shifts in activations of top toxic neurons by neuron groups. (a) In the top 200
toxic neurons, the primary contributing group is TP−; (b) For toxic neurons ranked 3000-3200,
contributions are more evenly distributed across all four groups.
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