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ABSTRACT

Deep neural networks usually perform poorly when the training dataset suffers
from extreme class imbalance. To handle this issue, popular re-sampling meth-
ods generally require in-distribution data to balance the class priors. However,
obtaining suitable in-distribution data with precise labels for selected classes is
challenging. In this paper, we theoretically show that out-of-distribution data
(i.e., open-set samples) could be leveraged to augment the minority classes from
a Bayesian perspective. Based on this motivation, we propose a novel method
called Open-sampling, which utilizes open-set noisy labels to re-balance the class
priors of the training dataset. For each open-set instance, the label is sampled
from our pre-defined distribution that is complementary to the original class pri-
ors. Furthermore, class-dependent weights are generated to provide stronger reg-
ularization on the minority classes than on the majority classes. We empirically
show that Open-sampling not only re-balances the class prior, but also encour-
ages the neural network to learn separable representations. Extensive experiments
on benchmark datasets demonstrate that our proposed method significantly out-
performs existing data re-balancing methods and can be easily incorporated into
existing state-of-the-art methods to enhance their performance.

1 INTRODUCTION

The success of deep neural networks (DNNs) heavily relies on large-scale datasets with balanced
distribution (Krizhevsky et al., 2009; Russakovsky et al., 2015). However, in real-world applications
like autonomous driving and medical diagnosis, large-scale datasets naturally exhibit imbalanced
and long-tailed distributions, i.e., a few classes (majority classes) occupy most of the data while
most classes (minority classes) are under-represented (Zhou et al., 2017; Van Horn et al., 2018; Lin
et al., 2014). It has been shown that training on long-tailed datasets leads to poor generalization per-
formance, especially on the minority classes (Zhou et al., 2020; Liu et al., 2019; Kang et al., 2020).
Thus, designing effective algorithms to handle class imbalance is of great practical importance.

In the literature, a popular direction in learning from long-tailed datasets is to re-balance the data
distribution by data re-sampling. The simplest methods are under-sampling that discards data from
the majority classes (Buda et al., 2018; He & Garcia, 2009; Japkowicz & Stephen, 2002) and over-
sampling that repeats samples from the minority classes (Byrd & Lipton, 2019; Shen et al., 2016).
The former is infeasible if the data imbalance is extreme, while the latter usually causes over-fitting
to the minority classes (Cui et al., 2019). To alleviate the over-fitting issue, novel samples are in-
troduced to augment the minority classes without repetition (Chawla et al., 2002). For example,
SMOTE (Chawla et al., 2002) produces artificial minority samples by interpolating from neighbor-
ing samples, and ADASYN (He et al., 2008) uses synthesized data. However, the model is still
error-prone due to noise in the novel samples (Cui et al., 2019). A recent work (Yang & Xu, 2020)
introduced unlabeled-in-distribution data to compensate for the lack of training samples and showed
that adding unlabeled data from mismatched classes would hurt the generalization performance.
These data augmentation methods normally require in-distribution data with precise labels for se-
lected classes. However, such kind of data would be extremely hard to collect in real-world sce-
narios, due to the expensive labeling cost. This fatal weakness of previous methods motivates us to
explore the possibility of using out-of-distribution (OOD) data for long-tailed imbalanced learning.

1



Under review as a conference paper at ICLR 2022

In this paper, we theoretically show that out-of-distribution data (i.e., open-set samples) could be
leveraged to augment the minority classes from a Bayesian perspective. Based on this motivation,
we propose a simple yet effective method called Open-sampling, which uses open-set noisy labels
to re-balance the label priors of the training dataset. For each OOD instance, the label is sampled
from our pre-defined distribution that is complementary to the original class priors. To alleviate the
over-fitting issue on the minority classes, a class-dependent weight is used in the training objective
to provide stronger regularization on the minority classes than the majority classes. In this way, the
open-set noisy labels could be used to re-balance the class priors while retaining their non-toxicity.

To provide a comprehensive understanding, we conduct a series of analyses to illustrate the proper-
ties of the proposed Open-sampling method. From these empirical analyses, we show that: 1) the
Complementary Distribution is superior to the commonly used Class Balanced distribution since the
uniformity of the former reduces the harmfulness of the open-set noisy labels; 2) real-world datasets
with large sample size are the best choices for the open-set auxiliary dataset in Open-sampling and
the diversity (i.e., number of classes) is not an important factor in the method; 3) the Open-sampling
method not only re-balances the class prior, but also promotes the neural network to learn more
separable representations.

To the best of our knowledge, we are the first to explore the benefits of OOD instances in learn-
ing from long-tailed datasets. To verify the effectiveness of our method, we conduct experiments
on three long-tailed image classification benchmark datasets, including long-tailed CIFAR-10/100
dataset and a real-world long-tailed dataset, CelebA-5. Despite the simplicity of our method, it
achieves significant improvements over existing re-sampling or re-weighting methods across all the
datasets. Furthermore, experimental results also validate that our method can be easily incorporated
into existing state-of-the art methods (e.g., LDAM (Cao et al., 2019) and Balanced Softmax (Ren
et al., 2020)) to enhance their performance on long-tailed imbalanced classification tasks.

2 RELATED LITERATURE

In this section, we introduce the related studies of data re-balancing methods (including re-sampling
and re-weighting) and the utilization of auxiliary dataset in the deep learning community.

Re-sampling. Re-sampling methods aims to re-balance the class priors of the training dataset.
Under-sampling methods achieve the goal by removing examples from the majority classes, which
is infeasible under extreme data imbalanced settings (Buda et al., 2018; He & Garcia, 2009; Japkow-
icz & Stephen, 2002). The vanilla over-sampling method adds repeated samples for the minority
classes, usually causing over-fitting to the minority classes (Buda et al., 2018; Byrd & Lipton, 2019;
Shen et al., 2016). To alleviate the over-fitting issue, some methods introduce novel in-distribution
samples, e.g., interpolated from neighboring samples (Chawla et al., 2002) or synthesized samples
(He et al., 2008; Kim et al., 2020). However, the novel samples are either challenging to collect or
introduce extra noise. In contrast to in-distribution samples used in existing over-sampling methods,
our approach exploits OOD instances to re-balance the class priors of the training dataset.

Re-weighting. In re-weighting methods, adaptive weights are assigned for different classes or even
different samples. Generally, the vanilla scheme re-weights classes proportionally to the inverse
of their frequency in the training dataset (Huang et al., 2016; Wang et al., 2017). Focal loss (Lin
et al., 2017) assigns low weights to the well-classified examples. Cui et al. (2019) showed that re-
weighting by inverse class frequency yields poor performance on frequent classes, and thus propose
re-weighting by the inverse effective number of samples. However, these re-weighting methods tend
to make the optimization of deep neural networks difficult under extreme data imbalanced settings
and large-scale scenarios (Huang et al., 2016; Wang et al., 2017; Mikolov et al., 2013).

Utilizing auxiliary dataset. To the best of our knowledge, we are the first to explore the bene-
fits of open-set auxiliary dataset in learning with long-tailed imbalanced data. For learning with
long-tailed imbalanced data, Yang & Xu (2020) introduced unlabeled-in-distribution (UID) data to
compensate for the lack of training samples. In the deep learning community, auxiliary dataset is
also utilized in other problem settings. For example, pre-training a network on the large ImageNet
dataset (Russakovsky et al., 2015) can produce general representations that are useful in many fine-
tuning applications (Zeiler & Fergus, 2014). OE (Hendrycks et al., 2019) uses an auxiliary dataset
to teach the network better representations for OOD detection. To improve robustness against adver-
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sarial attacks, a popular method is to train on adversarial examples which can be seen as a generated
auxiliary dataset (Goodfellow et al., 2014). Unlabelled data is also shown to be beneficial for the
adversarial robustness (Carmon et al., 2019; Uesato et al., 2019). OAT (Lee et al., 2021) utilizes
OOD instances to improve generalization in adversarial training. Wei et al. (2021) proposed to use
open-set auxiliary dataset to prevent the model from over-fitting inherent noisy labels.

3 IMBALANCED LEARNING WITH OOD INSTANCES

3.1 BACKGROUND

In this work, we consider a multi-class classification problem, where the input space X is Rd and
the label space Y is {1, . . . ,K}. We denote by Dtrain = {(xi, yi)}Ni=1 ∈ X × Y the training
dataset with N samples. Let nj be the number of samples in class j, then N =

∑K
j=1 nj . Let

Ps(X,Y ) define the underlying training (source) distribution and Pt(X,Y ) define the test (target)
distribution. Generally, the class imbalance problem assumes that the test data has the same class
conditional probability as the training data, i.e., Ps(X|Y ) = Pt(X|Y ), while their class priors are
different, i.e., Ps(Y ) 6= Pt(Y ).

Besides, we consider an unlabelled auxiliary datasetD(x)
out = {x̃i}Mi=1 ∈ X consisting ofM open-set

instances, and we have M � N . These open-set instances are also known as OOD data points as
they are sampled from Pout(X), which is disjoint from Ps(X). In real-world scenarios, it is easy to
obtain such auxiliary datasets, which are commonly used in OOD detection tasks. In what follows,
we may assign each open-set instance x̃i with a random label ỹi ∈ Y , which is independently
sampled from an appropriate label distribution Pout(Y ) over Y . We denote byDout = {(x̃i, yi)}Mi=1
the auxiliary dataset with randomly sampled noisy labels.

3.2 THEORETICAL MOTIVATION

From a Bayesian perspective, the final prediction is generally made as follows:

y∗ = arg max
y∈Y

P (y|x) = arg max
y∈Y

P (x|y)P (y)

P (x)
= arg max

y∈Y
P (x|y)P (y), (1)

where P (x) and P (y) represent P (X = x) and P (Y = y), respectively. However, the discrepancy
between the class priors of training and test distributions makes the prediction in Eq. (1) unreliable,
thereby downgrading the generalization performance. Specifically, the class prior of the test distri-
bution is usually class-balanced (i.e., a uniform distribution over labels), while the training dataset
exhibits a long-tailed class distribution. Thus, Ps(Y = i) 6= Pt(Y = i) for any class i ∈ Y , and
Ps(Y = j)� Pt(Y = j) for a minority class j ∈ Y .

To re-balance the class priors of the training dataset, existing re-sampling methods mostly augment
the minority classes with extra in-distribution samples with precise labels, e.g., duplicated examples
(Buda et al., 2018), synthetic generation (He et al., 2008), and interpolation (Chawla et al., 2002).
However, it is challenging or expensive to generate or collect those samples, especially for minority
classes, due to the strict in-distribution constraints on data distribution and label quality. In this
paper, we will break through the constraints by demonstrating that OOD instances with noisy labels
are also useful for re-balancing the training dataset.

To safely apply OOD instances, we first provide the following theoretical evidence to prove the
non-toxicity of open-set instances with uniformly sampled labels.
Theorem 1. Assume that Pout(Y ) is the discrete uniform distribution over the label space Y . Let
Dmix = Dtrain ∪ Dout, and Pmix(X,Y ) be the underlying data distribution of Dmix, then we have

arg max
y∈Y

Pmix(x|y)Pmix(y) = arg max
y∈Y

Ps(x|y)Ps(y).

The proof is provided in Appendix A. From Theorem 1, we can see that the prediction of the Bayes
classifier is unchanged after augmenting the training dataset with the auxiliary dataset, if the labels
of the OOD instances are uniformly sampled from the in-distribution label space. We notice that the
non-toxicity of OOD instances with uniformly sampled labels is not new and has been studied before
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(d) CD (α=0.5)
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Figure 1: An illustration of label distributions for long-tailed CIFAR-10 dataset with imbalance
ratio 100. (1a) Original label prior, (1b) Class Balanced distribution, (1c) Minimum Complementary
Distribution, (1d) and (1e) are Complementary Distributions with different values of α.

in Wei et al. (2021). Nevertheless, our contribution here is to theoretically prove its correctness from
a Bayesian perspective. We provide a detailed comparison for these two works in Appendix. C.

Although using the uniform distribution as Pout(Y ) will not downgrade the Bayes classifier as
shown above, the resulting classifier is not yet optimal and its corresponding partition is still far away
from the optimal decision boundary on the test distribution, since the label distribution Pmix(Y ) still
remains largely imbalanced. In the following, we will show that we can obtain a better classifier by
exploring the trade-off between re-balancing the label distribution and keeping non-toxicity.

3.3 OPEN-SAMPLING

Motivated by the previous analysis, we propose to exploit the open-set auxiliary dataset to improve
the generalization under class-imbalanced settings. With a proper label distribution, OOD instances
with dynamic labels can be used to re-balance the class priors while retaining their non-toxicity. We
start by giving the following definition.
Definition 1 (Complementary Distribution). Complementary Distribution (CD) is a label distribu-
tion for the auxiliary dataset to re-balance the class priors of the original dataset. In particular,
Minimum Complementary Distribution (MCD) is the complementary distribution that requires the
smallest number of auxiliary instances to re-balance the original training set.

Designing a proper Complementary Distribution to mitigate the class imbalance problem is a dif-
ficult problem, which depends on the trade-off between re-balancing the class priors and keeping
the non-toxicity of the added noisy labels. Intuitively, to re-balance the class priors, more OOD
instances should be allocated into the minority classes than the majority classes. On the other hand,
the unequal number of OOD instances in different classes may shift the Bayes classifier.

The above conflict can be understood naturally through a simple case. We consider a binary classi-
fication task with K = 2, and let the sample numbers of the two classes be n1 and n2, respectively.
Without loss of generality, let n1 > n2. It is straightforward to verify that one of the optimal al-
location to re-balance the class priors is simply appending n1 − n2 extra OOD instances into the
minority class. However, in such a way, all OOD instances are assigned the same label, thereby
downgrading the resulting classifier. As a remedy, we make the following hypothesis.
Hypothesis 1. There exists a “sweet spot” between the uniform label distribution and the Minimum
Complementary Distribution, where a proper Complementary Distribution can be found to obtain a
better classifier.

To find the “sweet spot”, we propose the following sampling rate, which allows us to achieve a
smooth transition from the Minimum Complementary Distribution to the uniform distribution. Let
us denote Complementary Distribution as Γ, Minimum Complementary Distribution as Γm, and the
complementary sampling rate for class j as Γj , then we have:
Proposition 1 (Complementary Sampling Rate). Γj = (α−βj)/(K ·α− 1), where βj =

nj∑K
i=1 ni

.

Then, (i)
∑K
i=1 Γi = 1; (ii) Γ = Γm if α = maxj(βj); (iii) Γj → 1/K as α→∞.

The hyperparameter α ∈ R+ ≥ maxj(βj) controls the trade-off bwteen the Minimum Comple-
mentary Distribution and uniform distribution. As shown in Proposition 1, when α = maxj(βj), it
recovers a Minimum Complementary Distribution. With a larger value for the α, the label distribu-
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tion of the auxiliary dataset would be closer to a uniform distribution. The proof of Proposition 1 is
provided in Appendix A.

Figure 1 presents an example of label distribution of the original long-tailed training dataset, Class
Balanced distribution (CB) (Cui et al., 2019), and Complementary Distribution (CD) with various
α. From Figure 1, we can observe that both the CB distribution and the Complementary Distribution
exhibit an inverse relationship with the original label prior, i.e., the minority classes possess larger
sampling rate than the majority classes. Compared with the CB distribution, our Complementary
Distribution is flatter so that the instances would not be concentrated in a class. In such a manner,
the harmfulness of open-set noisy labels would be alleviated to a large extent.

With the Complementary Sampling Rate, we can then build an auxiliary dataset with OOD instances
to re-balance the training dataset while retaining their non-toxicity as far as possible.

Training Objective. To involve the sampled open-set noisy labels into the training, a natural idea is
directly combining them with the original training dataset, and using the standard cross entropy as
the training objective function:

L = EDmix [`(f(x;θ, y)] = EDmix [−ey log f(x;θ)], (2)

where Dmix = Dtrain ∪ Dout, and ey = (0, . . . , 1, . . . , 0)> ∈ {0, 1}K is a one-hot vector in which
only the y-th entry of ey is 1. In each epoch, the labels of samples from the auxiliary dataset could
be updated following the Complementary Distribution Γ.

However, the naive combination would consume too much capacity of the network on fitting the
open-set noisy labels, making it hard to converge, especially when the sample size of the auxiliary
dataset is much larger than that of the original training dataset. To handle this issue, we propose to
use the loss on the auxiliary dataset as a regularization term as shown below:

Lreg = EDout
[` (f(x̃;θ), ỹ)] = EDout

[−eỹ log f(x̃;θ)],where ỹ ∼ Γ. (3)

To alleviate the over-fitting issue on the minority classes without sacrificing the performance on
the majority classes, we explicitly introduce a class-dependent weighting factor ωj based on the pre-
defined Complementary Distribution. To make the total loss roughly in the same scale after applying
ωj , we normalize ω so that

∑K
j=1 ωj = K. Then, the regularization item becomes:

Lreg = EDout
[ωỹ · ` (f(x̃;θ), ỹ)] ,where ỹ ∼ Γ, ωỹ = Γỹ ·K. (4)

Now, the final training objective function is given as follows:

Ltotal = EDtrain
[` (f(x;θ), y)] + η · EDout

[ωỹ · ` (f(x̃;θ), ỹ)] ,where ỹ ∼ Γ, ωỹ = Γỹ ·K, (5)

where η controls the strength of the regularization term. The details of the proposed algorithm are
provided in Appendix B.

As a data re-balancing technique, Open-sampling is orthogonal to the training objective based meth-
ods (e.g., LDAM (Cao et al., 2019), Balanced Softmax (Ren et al., 2020)), and can be easily incorpo-
rated into these algorithms to further improve their generalization performance. Given the original
learning objective Limb of the existing methods, we can formalize the final objective as:

Ltotal = Limb + η · Lreg. (6)

4 A CLOSER LOOK AT OPEN-SAMPLING UNDER CLASS IMBALANCE

To provide a comprehensive understanding of the proposed method, we conduct a set of analyses
in this section. Firstly, we compare our defined distribution with several alternative distributions to
show the advantage of the Complementary Distribution in our method. Furthermore, the effect of
α in our method is thoroughly analyzed by empirical studies. Then, we present a guideline about
how to choose or collect a suitable open-set auxiliary dataset for long-tailed imbalanced learning.
Finally, we analyze the effect of the proposed method through the lens of decision boundaries.

The advantage of Complementary Distribution. In the proposed method, the labels of OOD in-
stances from the auxiliary dataset are sampled from a random label distribution. For the random
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Figure 2: Analytical experiments of Open-sampling on long-tailed CIFAR-10: (2a)(2b) with various
label distributions, (2c) with various values of the α, (2d) with various open-set auxiliary datasets,
including simulated noise datasets and real-world datasets. All the datasets contain 50,000 instances.
(2e) with various sample sizes (K) of the auxiliary dataset, (2f) with various number of classes in the
auxiliary datasets that are randomly sampled from CIFAR-100. Experiments in (2b), (2c), and (2e)
are conducted under the imbalance ratio 100. The y-axis represents the test error in all the figures.

label distribution, we defined a Complementary Distribution in Proposition 1 and also presented
several commonly used distributions, including uniform distribution (Unif), class balanced distribu-
tion (CB) (Cui et al., 2019), and the original class priors of the training dataset (Original). Here, we
conduct experiments to compare the performance of the Open-sampling variants with different label
distributions. The results in Figure 2a show that using the Complementary Distribution consistently
achieves the best performance on the test set. In particular, using the uniform distribution can also
improve the generalization performance while both CB and the original class priors deteriorate the
performance of the neural networks.

To further understand why CB is not a good choice in our method, we present the per-class top-
1 error on long-tailed CIFAR-10 in Figure 2b. Although using the CB distribution can achieve
better performance on the smallest class, it downgrades the generalization performance on the other
classes. The reason is that the CB distribution is far away from the uniform distribution, thereby
introducing too much noise to the Bayes classifier. Different from CB, the proposed Complementary
Distribution is closer to a uniform distribution, making it achievable to re-balance the class priors
while almost keeping non-toxicity of the open-set noisy labels.

Here, we also show the effect of α in Figure 2c. As analyzed in Section 3, the larger the value of α
is, the Complementary Distribution tends to be closer to a uniform distribution. Here, “M” denotes
the default value of α = (maxj βj + minj βj). From Figure 2c, the test error presented a slightly
upward trend with the increasing of the value of α. The results verified that it is necessary to find the
“sweet spot” in Hypothesis 1 for a better classifier, instead of simply using a uniform distribution.

The choices of open-set auxiliary dataset. With proper label distribution, can any OOD dataset be
used to improve Long-tail imbalanced learning? In Figure 2d, we show the test error on long-tailed
CIFAR-10 with imbalance ratio 100 using Open-sampling with different auxiliary datasets. We can
observe that using simple noise, e.g., Gaussian noise, Rademacher noise, and Blob noise would
almost not change the performance on the test set, while using real-world datasets like CIFAR100
and 80M Tinyimages (Torralba et al., 2008) could achieve impressive improvements.

The sample size is another important factor for the open-set auxiliary dataset. In Fig. 2e, we show
that the performance of Open-sampling would be slightly better with a larger sample size of the
auxiliary dataset. It is worth noting that the phenomenon is not consistent with that of Wei et al.
(2021), where using larger open-set auxiliary dataset could not improve the performance on learning
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Figure 3: t-SNE visualization of test set on long-tailed CIFAR-10 with imbalance ratio 100. We can
observe that LDAM and our method appear to learn more separable representations than Standard
training and the other algorithms.

with noisy labels. Here, we also conduct experiments using a variant of Open-sampling with fixed
labels for OOD instances. We can observe that the variant performs poorly with a small auxiliary
dataset, but the performance can be significantly improved by increasing the sample size of auxiliary
dataset. In particular, the variant could achieve nearly the same improvement as the proposed Open-
sampling method, with a large enough sample size.

In addition, we also find that the diversity of the open-set auxiliary dataset is unimportant for the
effectiveness of Open-sampling. We conduct experiments on long-tailed CIFAR-10 with imbalance
ratio 100 and use the subset of CIFAR100 with different number of classes as the open-set auxiliary
dataset. The sample size of these subsets are fixed as 5,000. The results of using different subsets
are almost the same, achieving 73.28% test accuracy. The results are consistent with that in Figure
2d, where using CIFAR100 as open-set auxiliary dataset can achieve almost the same improvements
as 80M Tinyimages.

The effect of Open-sampling as regularization. In addition to re-balancing the class prior, what
is the effect of Open-sampling as a regularization method? To gain additional insight, we look at
the t-SNE projection of the learnt representations for different algorithms in Figure 3. For each
method, the projection is performed over test data. The figures show that the decision boundaries
of Open-sampling and LDAM (Cao et al., 2019) are much clearer than those of the other methods.
The phenomenon illustrates that Open-sampling can encourage the minority classes to have a larger
margin, which is similar to the effect of the LDAM loss (Cao et al., 2019). As shown in Section
5, our method could still boost the performance of the LDAM method, which demonstrates the
differences between our works.

5 EXPERIMENTS

In this section, we evaluate our proposed method on artificially simulated long-tailed CIFAR datasets
with controllable degrees of data imbalance and a real-world long-tailed datasets, Celeba-A. Besides,
we also analyze the impact of η by sensitivity analysis.
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Table 1: Test accuracy (%) of ResNet-32 on long-tailed CIFAR-10 and CIFAR-100 with various
imbalance ratios. The † indicates the reported results from Kim et al. (2020). The bold indicates the
improved results by integrating our regularization.

Dataset Long-tailed CIFAR-10 Long-tailed CIFAR-100

Imbalance Ratio 100 50 10 100 50 10

Standard 71.61 ± 0.21 77.30 ± 0.13 86.74 ± 0.41 37.59 ± 0.19 43.20 ± 0.30 56.44 ± 0.12
SMOTE † 71.50 ± 0.57 - 85.70 ± 0.25 34.00 ± 0.33 - 53.80 ± 0.93
CB-RW 72.57 ± 1.30 78.19 ± 1.79 87.18 ± 0.95 38.11 ± 0.78 43.26 ± 0.87 56.40 ± 0.40
CB-RS 72.31 ± 0.50 76.91 ± 0.83 86.48 ± 0.49 38.41 ± 0.29 42.97 ± 0.57 56.28 ± 0.73

CB-Focal 70.91 ± 0.39 77.71 ± 0.57 86.89 ± 0.21 37.84 ± 0.80 42.96 ± 0.77 56.09 ± 0.15
Ours 78.11 ± 0.33 81.76 ± 0.51 89.38 ± 0.46 40.26 ± 0.65 44.77 ± 0.25 58.09 ± 0.29

LDAM 74.21 ± 0.61 78.86 ± 0.65 86.44 ± 0.78 29.02 ± 0.34 36.41 ± 0.84 54.23 ± 0.72
+ Ours 75.19 ± 0.34 79.76 ± 0.44 87.28 ± 0.61 35.85 ± 0.62 42.18 ± 0.82 55.48 ± 0.59

LDAM-DRW 78.08 ± 0.38 81.88 ± 0.44 87.49 ± 0.18 42.84 ± 0.25 47.13 ± 0.28 57.18 ± 0.47
+ Ours 79.82 ± 0.31 82.22 ± 0.45 87.83 ± 0.38 44.07 ± 0.75 47.5 ± 0.24 57.43 ± 0.31

Balanced Softmax 78.03 ± 0.28 81.63 ± 0.39 88.10 ± 0.32 42.11 ± 0.70 46.79 ± 0.24 58.06 ± 0.40
+ Ours 79.05 ± 0.20 82.76 ± 0.52 88.89 ± 0.21 42.86 ± 0.27 47.28 ± 0.58 58.80 ± 0.72

5.1 DATASETS AND EMPIRICAL SETTINGS

Long-Tailed CIFAR. The original version of CIFAR-10 and CIFAR-100 contains 50,000 training
images and 10,000 validation images of size 32 × 32 with 10 and 100 classes, respectively. To
create their long-tailed version, we reduce the number of training examples per class according
to an exponential function n = njµ

j , where j is the class index, nj is the original number of
training images, and µ ∈ (0, 1). Besides, the validation set and the test set are kept unchanged. The
imbalance ratio of a dataset is defined as the number of training samples in the largest class divided
by that of the smallest.

CelebA-5. CelebFaces Attributes (CelebA) dataset is a real-world long-tailed dataset. It is originally
composed of 202,599 number of RGB face images with 40 binary attributes annotations per image.
Note that CelebA is originally a multi-labeled dataset, we port it to a 5-way classification task by
filtering only the samples with five non-overlapping labels about hair colors. We also subsampled
the full dataset by 1/20 while maintaining the imbalance ratio as 10.7, following Kim et al. (2020).
In particular, We pick out 50 and 100 samples in each class for validation and testing. We denote
the resulting dataset by CelebA-5.

5.2 COMPARISON METHODS

In this section, we verify that Open-sampling can boost the standard training and several state-
of-the-art techniques by integrating Open-sampling with the following methods: 1) Standard: all
the examples have the same weights; by default, we use standard cross-entropy loss. 2) SMOTE
(Chawla et al., 2002): a variant of re-sampling with data augmentation. 3) CB-RW (Cui et al.,
2019): training examples are re-weighted according to the inverse of the effective number of samples
in each class, defined as (1 − βni)/(1 − β). 4) CB-RS (Cui et al., 2019): balancing the objective
from different sampling probability for each sample using class-balanced distribution. 5) CB-Focal
(Cui et al., 2019): the CB method is combined with Focal loss. 6) M2m (Kim et al., 2020): an
over-sampling method with adversarial examples. 7) LDAM (Cao et al., 2019): the method derives a
generalization error bound for the imbalanced training and uses a margin-aware multi-class weighted
cross entropy loss. 8) LDAM-DRW (Cao et al., 2019): the network is trained with LDAM loss
and deferred re-balancing training. 9) Balanced Softmax (Ren et al., 2020): the method derives a
Balanced Softmax function from the probabilistic perspective that explicitly models the test-time
label distribution shift. Roughly, these comparison methods can be classified into three categories:
(i) re-sampling based methods - (2, 4, 6), (ii) re-weighting based methods - (3, 5), and (iii) different
loss functions - (7, 8, 9). Here, we do not expect vanilla Open-sampling to achieve state-of-the-art
results compared with many complicated methods, our method can be still a promising option in the
family of class-imbalanced learning methods, because it can outperform existing data re-balancing
methods and improve existing state-of-the-art methods.
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Table 2: Classification accuracy (%) on CelebA-5. The † indicates the reported results from Kim
et al. (2020). The shadow indicates the improved results.

Method Accuracy Method Accuracy Method Accuracy

Standard 72.7 M2m † 75.6 LDAM-DRW 74.5

SMOTE † 72.8 Ours 76.8 LDAM-DRW + Ours 76.9
CB-RW 73.6 LDAM 73.1 Balanced Softmax 76.4

CB-Focal 74.2 LDAM + Ours 75.8 Balanced Softmax + Ours 78.6

5.3 MAIN RESULTS

Results on long-tailed CIFAR. Extensive experiments are conducted on long-tailed CIFAR datasets
with three different imbalance ratios: 10, 50, and 100. The average test accuracy of ResNet-32 (He
et al., 2016) on long-tailed CIFAR datasets are reported in Table 1. The results show that our method
can achieve impressive improvements on the standard training method. Especially for long-tailed
CIFAR-10 with imbalance ratio 100, an extreme imbalance case, the vanilla Open-sampling can
significantly outperform the standard baseline by 9.06%. Besides, incorporating our method into
existing state-of-the-art methods is shown to consistently improve their performance under different
imbalance ratios. In particular, we can observe that our method can boost the performance of existing
state-of-the-art methods, such as LDAM-DRW and Balanced Softmax.
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Figure 4: Results of sensitivity analy-
sis on long-tailed CIFAR-10 with vari-
ous values for η.

To further clarify the influence of η, we present a sensi-
tivity analysis on long-tailed CIFAR-10 dataset with im-
balance ratio 100 in Fig. 4. Here, the η is fixed as 1.0.
Specifically, we highlight the differences in the trend of
test accuracy after the decay of learning rate at the 160th
epoch. From the figure, we can observe that with a proper
value of η like 1.5, the generalization performance can be
largely improved by our proposed regularization. The re-
sult verifies that our regularization is an effective method
to improve the generalization performance in long-tailed
imbalanced learning. It is worth noting that η with too
large value would downgrade the performance of the neu-
ral network. In other word, the test performance would be
a function of η that first increases and then decreases. The
phenomenon inspires us to quickly search the best value
for η using the validation accuracy throughout training.

Results on CelebA-5. We further verify the effectiveness of our method on real-world class-
imbalanced datasets. The CelebA dataset has a long-tailed label distribution and the test set is
designed to have a balanced label distribution. Table 2 summarizes test accuracy on the CelebA-5
dataset. In particular, the proposed method outperforms existing data-rebalancing methods and is
able to consistently improve the existing state-of-the-art methods in test accuracy. The results show
that our method is applicable for real-world scenarios.

6 CONCLUSION

In this paper, we propose a simple yet effective method termed Open-sampling, by introducing
OOD instances to re-balance the class priors of the training dataset. To the best of our knowl-
edge, our method is the first to utilize OOD instances in the problem of long-tailed imbalanced
learning. We show that our method not only re-balances the training dataset, but also promotes the
neural network to learn more separable representations. Besides, we also present a guideline about
the open-set auxiliary datasets: the realism and sample size are more important than the diversity.
Extensive experiments on benchmark datasets demonstrate that our proposed method significantly
outperforms existing data re-balancing methods and can be easily incorporated into existing state-
of-the-art methods to enhance their performance.
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A PROOFS

Theorem 1 (restated). Assume that Pout(Y ) is the discrete uniform distribution over the label
space Y . Let Dmix = Dtrain ∪ Dout, and Pmix(X,Y ) be the underlying data distribution of Dmix,
then we have

arg max
y∈Y

Pmix(x|y)Pmix(y) = arg max
y∈Y

Ps(x|y)Ps(y).

Proof. Since Dmix = Dtrain ∪ Dout, the underlying data distribution of Dmix will be a linear com-
bination of the training distribution Ps(X,Y ) and the OOD distribution Pout(X,Y ):

Pmix(x, y) =
N

M +N
Ps(x, y) +

M

M +N
Pout(x, y), (7)

where N is the size of Dtrain and M is the size of Dout.

By the virtue of Bayes’ theorem, we have

Pmix(x|y)Pmix(y) =
N

M +N
Ps(x|y)Ps(y) +

M

M +N
Pout(x|y)Pout(y)

=
N

M +N
Ps(x|y)Ps(y) +

M

M +N
Pout(x)Pout(y)

=
N

M +N
Ps(x|y)Ps(x, y) +

1

K
· M

M +N
Pout(x),

(8)

where the second equality follows the fact that Pmix(x|y) = Pmix(x) since the label y is indepen-
dent of the instance x for the OOD data, and the third equality is simply the fact that Pout(y) = 1/K.

Then, by taking the maximum of both sides, we have

arg max
y∈Y

Pmix(x|y)Pmix(y) = arg max
y∈Y

{
N

M +N
Ps(x|y)Ps(x, y) +

1

K
· M

M +N
Pout(x)

}
= arg max

y∈Y

N

M +N
Ps(x|y)Ps(x, y).

= arg max
y∈Y

Ps(x|y)Ps(x, y).

(9)

Proposition 1 (restated) (Complementary Sampling Rate). Γj = (α − βj)/(K · α − 1), where
βj =

nj∑K
i=1 ni

. Then, (i)
∑K
i=1 Γi = 1; (ii) Γ = Γm if α = maxj(βj); (iii) Γj → 1/K as α→∞.

Proof. By definition,
∑K
i=1 Γi = 1 naturally holds for any α.

If β = maxj(βj), then Γj = (maxj(βj) − βj)/(K · maxj(βj) − 1). In particular, for k =
arg maxi(βi), we have Γk = 0.

In the case of α→∞, let us denote f(α) = α− βj and g(α) = K · α− 1. Since limα→∞ f(α) =
limα→∞ g(α) = ∞, g′(α) = K 6= 0, and limα→∞ f ′(α)/g′(α) = 1/K exists, using L’Hôpital’s
rule, we have:

lim
α→∞

Γj = lim
α→∞

f(α)

g(α)
= lim
α→∞

f ′(α)

g′(α)
= 1/K
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B ALGORITHM

Algorithm 1 Open-sampling

Require: Training dataset Dtrain. Open-set auxiliary dataset D(x)
out;

1: for each iteration do
2: Sample a mini-batch of original training samples {(xi, yi)}ni=0 from Dtrain;
3: Sample a mini-batch of open-set instances {x̃i}mi=0 from D(x)

out;
4: Generate random noisy label ỹi ∼ Γ for each open-set instance x̃i;
5: Perform gradient descent on f with Ltotal from Equation (5);
6: end for

C DISCUSSIONS

Relation to Wei et al. (2021). Recent work (Wei et al., 2021) show that open-set noisy labels
could be applied to enhance the robustness against inherent noisy labels, which has some conceptual
similarities to the proposed method in this work. Here, we summarize the main differences between
Wei et al. (2021) and our work.

1. Problem setting: they focuses on improving the robustness against noisy labels while our
work considers the problem of learning from long-tailed imbalanced datasets.

2. Technique: we proposed to sample the labels of OOD instances from the Complementary
Distribution and add a weight factor to their losses, while they treats all the OOD instances
equally by simply using a uniform distribution. In particular, Wei et al. (2021) can be seen
as a special case of our method with a large value of α. As analyzed in Figures 2a and 2c,
our Open-sampling consistently outperforms the variant with a uniform distribution or a
large value of α, which demonstrates the advantage of the proposed method.

3. Insight: Wei et al. (2021) aims to consume the extra representation capacity of neural
networks to prevent over-fitting inherent noisy labels and show that their method helps
the network converge to a flat minimum as SGD noises. In our work, OOD instances are
applied to re-balance the label prior of the training dataset and the proposed method are
shown to encourage the network to learn more separable representations.

D IMPLEMENTATION DETAILS

For experiments on Long-Tailed CIFAR10 and CIFAR-100 (Krizhevsky et al., 2009), we perform
training with ResNet-32 (He et al., 2016) for 200 epochs, using SGD with a momentum of 0.9, and
a weight decay of 0.0002. We set the initial learning rate as 0.1, then decay by 0.01 at the 160th
epoch and again at the 180th epoch. For fair comparison, We also use linear warm-up learning rate
schedule (Goyal et al., 2017) for the first 5 epochs. For data augmentation in training, we use the
commonly used version: 4 pixels are padded on each side, and a 32× 32 crop is randomly sampled
from the padded image or its horizontal flip.

For experiments on CelebA-5 (Liu et al., 2015), we use the same training setting as that of CIFAR
datasets. For all the experiments, we use 80 Million Tiny Images (Torralba et al., 2008) as the
open-set auxiliary dataset. We conduct all the experiments on NVIDIA GeForce RTX 3090, and
implement all methods with default parameters by PyTorch (Paszke et al., 2019). All experiments
are repeated five times with different seeds and we report the average test accuracy.

We tune the hyperparameter η on the validation set, then train the model on the full training set. The
α is fixed as (maxj βj + minj βj) by default and we find this value performs well overall. For the η
in the training objective, the best value depends on the dataset, imbalance ratio, network architecture,
and the integrated method. For example, for training ResNet-32 network on the long-tailed CIFAR-
10 dataset using vanilla Open-sampling, we set η = 1.0 for experiments with imbalance ratio 100,
η = 2.0 for experiments with imbalance ratio 50 and η = 1.0 for experiments with imbalance ratio
10.
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