Mitigating Spurious Correlations Between Question and Answer via
Chain-of-Thought Correctness Perception Distillation

Anonymous ACL submission

Abstract

Large language models (LLMs) excel at rea-
soning tasks but are expensive to deploy. Thus
small language models (SLMs) are fine-tuned
on CoT data generated by LLMs to copy LLMs’
abilities. However, these CoT data may include
noisy rationales that either fail to substantiate
the answers or contribute no additional infor-
mation to support answer prediction, which
leads SLMs to capture spurious correlations be-
tween questions and answers and compromise
the quality of reasoning. In this work, we pro-
pose Chain-of-Thought Correctness Perception
Distillation (CoPeD), which aims to improve
the reasoning quality of the student model from
the perspectives of task setting and data uti-
lization. Firstly, we introduce a correctness-
aware task setting that encourages the student
model to predict answers based on correct ra-
tionales and revise them when they are incor-
rect. This setting improves the faithfulness of
reasoning and allows the model to learn from
its mistakes. Then, we propose a Correctness-
Aware Weighted loss, which dynamically ad-
justs the contribution of each training instance
based on the combined loss of the rationale
and the answer. This strategy encourages the
model to focus more on samples where the ra-
tionale offers stronger support for the correct
answer. Experiments have shown that CoPeD
is effective on both in-distribution (IND) and
out-of-distribution (OOD) benchmark reason-
ing datasets'.

1 Introduction

Through progressive scaling of model architectures
and training datasets, LLMs have demonstrated ex-
ceptional CoT reasoning capabilities in complex
NLP tasks. As evidenced by recent studies (Brown
et al., 2020; Hoffmann et al., 2022; Chowdhery
etal., 2023; OpenAl, 2023; Chen et al., 2023a), the
CoT paradigm enables multi-step logical reasoning

'We will release our code and data upon publication to
facilitate reproducibility.
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Figure 1: During training, the student model may cap-
ture spurious correlations between the question and the
answer. As aresult, during inference, the rationale could
be correct while the answer is erroneous, or the answer
could be correct while the rationale is erroneous.

through explicit intermediate derivations. While
this paradigm facilitates complex problem-solving,
it also introduces significant computational costs.
These costs pose practical challenges for real-world
deployment (Shao and Li, 2025). For example,
GPT-3 (Brown et al., 2020) has 175 billion parame-
ters. Its inference requires substantial computation,
making deployment costly.

Therefore, the current research (West et al., 2022;
Magister et al., 2023; Ho et al., 2023; Fu et al.,
2023; Chen et al., 2023b; Zhou and Ai, 2024; Li
et al., 2024; Chenglin et al., 2024; Wadhwa et al.,
2024; Lee et al., 2024) on knowledge distillation
aims to transfer the powerful reasoning ability of
LLMs to SLMs. The standard process of this proce-
dure consists of two stages: First, the LLM serves
as a teacher to generate rationales for each sam-
ple. Then, these rationales are used to perform
supervised fine-tuning on the SLM. Although this
paradigm improves the reasoning capabilities of
SLMs on specific tasks, it commonly assumes that
the generated rationale is reliable as long as the pre-
dicted answer is correct. However, this assumption
does not always hold, as in many cases the ratio-
nale neither introduces new information beyond
what is provided in the input nor effectively jus-
tifies the answer (Wang et al., 2023a). Therefore,
during training, SLMs may capture spurious corre-
lations between questions and answers, leading to
two main issues, as shown in Figure 1. First, the



model may overlook the causal logical relationship
between rationales and answers. As a result, the
generated rationales may be inconsistent with the
predicted answers (Wang et al., 2023a; Feng et al.,
2024). Second, such spurious correlations can de-
grade the quality of rationale generation during
reasoning (Dai et al., 2024b). In particular, an error
in intermediate steps may lead to error propagation
in subsequent reasoning.

To address the above issues, we propose
the Chain-of-Thought Correctness Perception
Distillation (CoPeD). Specifically, we begin by
prompting the teacher model (LLM) to generate
both correct and erroneous rationales. Following
previous work (Dai et al., 2024a,b), we assume that
If the LLM’s predicted answer is correct, the ratio-
nale is assumed to be correct; otherwise, the ratio-
nale is considered erroneous. Building on this, we
introduce a correctness-aware task setting. In this
setting, the student model predicts the answer based
on the question and rationale when the rationale
is correct. Otherwise, it generates a revised ratio-
nale when the original rationale is erroneous. This
task design encourages the student model to rely on
valid reasoning paths for answer prediction, thereby
mitigating spurious correlations between questions
and answers. Since the assumption regarding ratio-
nale correctness may not always hold (Wang et al.,
2023a), we further propose a correctness’-aware
confidence-weighted loss. This loss dynamically
adjusts each sample’s contribution to the overall
loss by evaluating the degree to which the ratio-
nale supports the answer. This mechanism directs
the model to focus more on high-quality training
examples that demonstrate more reliable reason-
ing processes and stronger alignment between the
rationale and the answer.

Experiments demonstrate that CoPeD outper-
forms the baselines on both IND and OOD bench-
mark datasets. Our contributions can be summa-
rized as follows:

* We propose a correctness-aware task setting
where the model is trained to answer questions
based on correct rationales and to revise er-
roneous rationales. This design improves the
consistency between the generated rationales
and answers, thereby enhancing the faithful-
ness and soundness of reasoning.

*Here, “correctness” refers to whether the rationale pro-
vides effective support for the ground-truth answer.

* We develop a Correctness-Aware Confidence-
Weighted Loss, which jointly considers ratio-
nale and answer prediction losses to re-weight
training examples. This loss encourages the
model to focus more on informative, well-
aligned samples, while reducing the impact of
noisy or misleading ones.

* We conduct comprehensive experiments
across IND and OOD benchmarks, demon-
strating that CoPeD effectively improves the
reasoning performance of SLMs.

2 Method

The core idea of our method consists of two compo-
nents: (1) guiding the student model with different
training tasks based on the correctness of the ratio-
nale; and (2) encouraging the model to prioritize
learning from high-quality and logically consistent
rationales during training. From the perspectives
of task design and data utilization, our approach
jointly enhances the faithfulness and soundness of
the rationales generated by the student model. The
overall framework of our method is illustrated in
Figure 2. In this section, we provide a detailed ex-
planation of the method and discuss the motivation
behind it.

2.1 Extracting Rationales from Teacher

For each training data sample Diin =
{(qi, ai)};,, we first employ a prompting method
to automatically extract correct and erroneous ra-
tionales from the teacher model. Specifically, if
the LLM’s predicted answer matches the ground
truth, the corresponding rationale is considered
likely correct; otherwise, it is assumed to be er-
roneous. We collect these rationales for two main
purposes: (1) to enable the student model to learn
from correct rationales; and (2) to enable the stu-
dent model to learn how to correct erroneous ratio-
nales. This method utilizes a few annotated exam-
ples to guide the teacher in generating rationales
for new instances (Wei et al., 2022). To maintain
the quality of generated CoT, we following Dai
et al. (2024a) and use its provided prompt tem-
plates to guild the teacher generate correct and er-
roneous rationales with similar reasoning paths but
different conclusions. Eventually, we construct the
dataset Diyain = {(qi, rj ,7; ,a;) iy for the stu-
dent model, where ¢; is a question, a; is an answer,
r;r is the correct rationale, and r;” is the erroneous
rationale.
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Figure 2: Overview of Chain-of-Thought Correctness Perception Distillation(CoPeD). We use teacher and
student models to generate correct and erroneous rationales for the entire training set. Then, we adopt a multi-task
learning framework to leverage these rationales, where one task is trained to predict the answer based on correct
rationales, and the other task is trained to correct erroneous rationales as additional supervision signals.
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Figure 3: CoPeD adopts different strategies based on
the correctness of the rationale, cutting off the spurious
correlation between the question and the answer.

2.2 Correctness-Aware Task Setting

To mitigate spurious correlations between ques-
tions and answers, we propose a correctness-aware
task setting consisting of two tasks: answer pre-
diction and rationale correction. To distinguish
between these tasks, we append rationale status
tokens rs; (for correct rationale) and rs; (for er-
roneous rationale) to the rationale. When the ra-
tionale is correct, the student model predicts the
answer based on both the question and the ratio-
nale. When the rationale is erroneous, the model
learns to revise the rationale. This framework en-
courages the model to rely on valid reasoning paths
for answer prediction, rather than superficial ques-
tion—answer correlations, thereby enhancing the
faithfulness of the generated rationale. Addition-
ally, the rationale correction task helps the model
learn from mistakes. This reduces the probabil-
ity of flawed reasoning steps during inference and
improves the soundness of the generated rationale.

In the answer prediction task, the input to the

student model is the question ¢, and its corre-
sponding label consists of three components: the
correct rationale rT, the rationale status string
rsy = ''the rationale is right'', and the answer
a. The loss function for the answer prediction task
is formulated as follows:

Lra =Bt a) oDy (@7 @rse@a)] (D)

In the rationale correction task, we con-
catenate the question ¢, the erroneous ratio-
nale 7~ and the rationale status string rsy =
""the rationale is wrong'' as the input to the stu-
dent model. The output label is the correct ratio-
nale 7. This task design aims to enable the student
model to learn to correct erroneous rationales. It
thereby implicitly enhances the student model’s
robustness and the quality of rationales generated
during reasoning. The loss function for the ratio-
nale correction task is formulated as follows:

Lrc = E(Q7T+,T_)~Dtraill [Z(q &r- Srsy, T+)] @

The final objective function jointly optimizes
the answer prediction loss Lra and the rationale
correction loss Lrc, defined as:

LcopeDd = (1 - 0a)Lra + alre, 3)

where « is the hyperparameter used to weight the
losses between the two learning tasks.

It is important to note that when rsy is used as
the input or output of the rationale correction task,
the student model either determines the correctness
of the generated rationale during inference, or it



does not, respectively. In practice, we evaluate both
inference variants. One variant has the model at-
tempt to assess and revise flawed rationales. The
other variant has the model directly generate a ratio-
nale without explicit correctness assessment. We
find that the performance under both settings is
comparable. This suggests that training with the
correction task improves the model’s ability to gen-
erate faithful rationales, even when no correction is
applied at inference. We provide a detailed analysis
in Appendix D.

2.3 Correctness-Aware Weighted loss

While we initially assign rationale correctness la-
bels based on whether the teacher model’s pre-
dicted answer matches the ground truth, this heuris-
tic labeling may be noisy in practice. Specifically,
a rationale might contain logical flaws despite lead-
ing to a correct answer. Conversely, an erroneous
answer might be supported by a seemingly plausi-
ble rationale. Such coarse-grained supervision can
mislead the student model during training. It may
cause the model to overfit to unreliable or spurious
reasoning paths.

To mitigate this issue, we propose a Correctness-
Aware Weighted Loss, which dynamically adjusts
the training contribution of each sample based on
the degree of alignment between its rationale and
answer. This mechanism enables the model to pri-
oritize learning from samples with faithful and con-
sistent rationale—answer pairs. At the same time, it
down-weights samples exhibiting reasoning flaws
or misalignment. By introducing this label-robust
supervision strategy, the student model can better
discern and rely on high-quality reasoning paths
during distillation.

Concretely, we compute the rationale generation
loss £, and the answer prediction loss L, for each
instance. Based on these losses, we calculate a
normalized confidence weight w;, reflecting the re-
liability of the sample. Specifically, w; is computed
as follows:

£ 49 4129 - £l
T

), @

w; = softmax;(—

where composite loss term £, + £, reflects the
overall reliability of a sample. A high rationale
loss indicates a noisy reasoning process. In con-
trast, a high answer prediction loss suggests that
the rationale fails to support the final prediction.
Furthermore, we use a discrepancy term | £, — L,|
to measure the alignment between the two objec-

Algorithm 1: Training with Correctness-Aware
Weighted loss

Input: Training dataset D, student model fo,
temperature 7, starting epoch n, cross entropy

loss CE(,).

1 for epoch =11to N do
2 for each mini-batch B = {(qi, a;i,7:)} 2., do
3 for each sample (q;,ai,r;) € B do
4 Generate rationale #; and predict

answer a;: ;
5 74,6 = fo(qi);
6 Compute rationale loss:

LY = CE(#,r4);
7 Compute answer loss:

| Eff) :C’E(di,ai);

8 if epoch < n then
9 Compute unweighted loss:

Lru = Zz (£$‘Z) + Lg,l))v
10 else
1 for each sample i in B do
12 Compute confidence weight w; by

Eq. 4;

13 | Compute weighted loss L, by Eq. 5;
14 Update student model parameters using

gradient descent;

tives. The temperature parameter 7 controls the
smoothness of the resulting weight distribution.

The Correctness-Aware Weighted loss is then
defined as a weighted summation over the sample-
wise rationale and answer losses:

Lra=> wi- (LY + L) )

To stabilize training, we initially use uniform
weights during early epochs to allow the model to
acquire basic reasoning capabilities. Starting from
epoch n, the correctness-aware weighting mecha-
nism is introduced to emphasize trustworthy sam-
ples adaptively. The complete training algorithm is
presented in Algorithm 1.

3 Experiments

In this section, we conduct extensive experiments
and analyses to evaluate the effectiveness of our
method on both in-domain (IND) and out-of-
domain (OOD) datasets.

3.1 Datasets

In-domain Dataset: BIG-Bench Hard (BBH)
(Suzgun et al., 2023) consists of 27 challenging
tasks drawn from BIG-Bench (BB) (Guo et al.),
covering domains such as arithmetic, symbolic rea-
soning, and others. Most tasks are multiple-choice



Method Distill? Gen CoT?

BBH-test

BB-sub AGIEval ARC-E ARC-C |

AVG

In-domain? \ \ X X X x |
Teacher: ChatGPT (gpt-3.5-turbo)
Zero-shot-CoT | X v | 426 445 50.3 92.1 82.2 62.3
Student: LLaMA2-7B
Std-CoT (Magister et al., 2023) v v 58.5 29.5 24.2 61.8 473 443
SCOTT (Wang et al., 2023a) v v 43.1 19.7 12.8 46.3 35.9 31.6
MT-CoT (Li et al., 2022) v v 59.3 31.4 23.2 51.7 40.6 412
Step-by-step (Hsieh et al., 2023) v v 44.6 29.2 28.4 69.0 492 432
CasCoD (Dai et al., 2024b) v v 60.2 37.2 28.6 71.1 52.4 49.9
CoPeD-T (ours) v v 63.1 38.3 30.2 72.6 55.1 51.8
CoPeD-L (ours) v v 60.9 38.2 27.9 69.2 50.9 49.4
CoPeD-TL (ours) v v 69.8 39.5 31.7 71.1 52.3 529
Student: Mistral-7B-v(.2

Std-CoT(Magister et al., 2023) v v 72.5 36.8 32.5 67.6 58.6 53.6
SCOTT (Wang et al., 2023a) v v 31.9 32.8 273 54.2 38.6 37.0
MT-CoT (Li et al., 2022) v v 56.1 39.4 31.3 68.4 59.3 50.9
Step-by-step(Hsieh et al., 2023) v v 58.1 375 229 78.4 61.7 51.7
CasCoD(Dai et al., 2024b) v v 70.5 39.5 38.2 84.2 75.5 61.6
CoPeD-T (ours) v v 74.4 40.7 36.7 78.9 68.5 59.8
CoPeD-L (ours) v v 74.1 40.8 36.1 80.1 65.4 59.3
CoPeD-TL (ours) v v 75.2 41.2 38.5 82.6 68.6 61.2

Table 1: Accuracy (%) on in-domain and out-of-domain datasets with different methods. ®: the results borrowed
from Dai et al. (2024b). The best performance among distilled student models is marked in bold, and the second-best
performance is indicated by an underline. CoPeD-T denotes the correctness-aware task setting, CoPeD-L refers
to training Std-CoT using a correctness-aware weighted loss, and CoPeD-TL represents the combination of both

methods.

questions, with a few open-ended ones. Follow-
ing Dai et al. (2024b), we randomly split the BBH
dataset into a training set (BBH-train) for distilla-
tion and a test set (BBH-test) for IND evaluation,
using a 4:1 split.

Out-of-domain Dataset: (1) BIG-Bench Sub
(BB-sub) is derived from BIG-Bench (BB) (Guo
et al.), encompassing 203 tasks across domains
such as linguistics, mathematics, and common-
sense reasoning. To simplify our evaluation, we
use the BB-Sub filtered by Dai et al. (2024b). (2)
AGIEval (Zhong et al., 2024) is a benchmark that
assesses language models (LMs) on reasoning abil-
ities using human exams from fields including En-
glish, Mathematics, Law, and Logic. We select
the English multiple-choice question subtask fil-
tered by Dai et al. (2024b). (3) AI2 Reasoning
Challenge (ARC) (Clark et al., 2018) consists of
two datasets: ARC-Easy and ARC-Challenge, de-
rived from middle and high school science exams.
ARC-E features easier questions, while ARC-C
presents more challenging ones. Following Dai
et al. (2024b), we use the test sets from both

datasets for evaluation.

3.2 Implementation Details

Models We use LLaMA-7B (Touvron et al.,
2023) as the base student model throughout all
experiments unless otherwise specified. Given
its cost-effectiveness and capabilities, we lever-
age OpenAl’s powerful black-box LLM, gpt-3.5-
turbo-0613, as the teacher model to extract chain-
of-thoughts (CoTs) using the same manual prompt
as in prior works (Dai et al., 2024a).

Setup We use LoRA (Hu et al.) for parameter-
efficient fine-tuning of the student model. To bal-
ance the answer prediction and rationale correction
tasks, we set a to 0.5. All experiments are per-
formed using a mixed-precision training strategy
on 8 x A800 GPUs. During inference, we utilize
vLLM3 (Kwon et al., 2023) to accelerate the pro-
cess, employing a greedy decoding strategy for text
generation on a single A800 GPU. Further details
on training and hyperparameters are provided in
Appendix B.1.



Baselines We compare our method with the
following baselines: (1) Teacher in Zero-shot-
CoT(Kojima et al., 2022) for showing the impact
of distilling reasoning ability from LLMs. (2) Std-
CoT (Magister et al., 2023), which is the standard
CoTs distillation method that directly fine-tune stu-
dent models on the CoTs data. (3) MT-CoT (Li
et al., 2022) is also a multi-task CoT's distillation
method, but unlike Step-by-step, it simultaneously
optimizes the objectives of answer prediction and
entire CoTs learning. (4) Step-by-step (Hsieh et al.,
2023) is a multi-task CoTs distillation method
that distills rationales and answers separately (5)
SCOTT (Wang et al., 2023a) that enhances the rea-
soning consistency of the student model by intro-
ducing additional counterfactual data. (6) CasCoD
(Dai et al., 2024b) splitting single-step learning
into two cascaded steps, restructuring training ob-
jectives to enhancing reasoning generalizability.

3.3 Main Results

As shown in Table 1, CoPeD demonstrates compet-
itive performance against strong baselines on both
in-domain (IND) and out-of-domain (OOD) bench-
marks. Specifically, LLaMA2-7B equipped with
CoPeD-TL achieves an average accuracy of 52.9%
across all tasks. It outperforms the strongest base-
line, CasCoD, by 3.0%. In particular, it surpasses
CasCoD by 9.6% in the IND scenario. Meanwhile,
CoPeD-TL also exhibits strong generalization abil-
ity in OOD scenarios. It outperforms CasCoD by
2.3%, 3.1%, 1.5%, and 2.7% on BB-test, AGIEval,
ARC-E, and ARC-C, respectively. While Mistral-
7B with CoPeD-TL does not achieve the best re-
sults on every individual OOD scenario, it still de-
livers consistently competitive performance across
a wide range of tasks. This highlights the robust-
ness and generalization ability of our method, even
in comparison with state-of-the-art models.

These results validate the effectiveness of our
design. CoPeD-T enables the student model to dis-
cern faithful reasoning paths from spurious ones,
thereby improving both the quality and reliability
of reasoning. Meanwhile, compared to the Std-CoT
approach, CoPeD-L enhances training robustness
by adaptively down-weighting misaligned or unre-
liable samples. It emphasizes high-quality, well-
aligned rationales, allowing the model to focus on
trustworthy reasoning paths.

3.4 Faithfulness and Soundness of Students

Inspired by previous work (Wang et al., 2023a; Dai
et al., 2024b), we employ LLMs as evaluators to
assess two aspects. First, whether the rationale pro-
vided by the student model supports its prediction
(i.e., faithfulness). Second, whether the rationale
supports the ground-truth answer (i.e., soundness).
Given a rationale 7; generated by the student model
and an answer (either the predicted answer a; or
the ground-truth answer a;), we construct evalua-
tion prompt® p, to guide LLM-based scoring. We
define faithfulness and soundness as follows:

Faithfulness = [& [feval (pe7 iy T4 dz)] ) (6)
Soundness = | foval (Pe; ¢i, i, ai)], (7

where foval (7, @;) and foyal (74, a;) € {0,1} are a
binary evaluation function, returning 1 if the ra-
tionale 7; sufficiently supports the given answer
(either the predicted answer a; or the ground-truth
answer a;), and O otherwise.

Method Faithfulness Soundness
ChatGPT GPT4 | AVG | ChatGPT GPT4 | AVG
Teacher 86.6 86.9 | 86.8 74.8 715 | 732
Std-CoT 80.5 67.9 | 74.2 64.0 545 | 593
CasCoD 822 72,6 | 774 70.2 59.6 | 64.9
CoPeD-TL 83.8 78.5 | 81.2 72.6 67.9 | 70.2

Table 2: Faithfulness (%) and Soundness (%) of the
compared methods on the IND dataset. We employ both
ChatGPT and GPT-4 as evaluators to mitigate the risk
of single-model bias.

The results are shown in Table 2. Compared to
the baseline, the rationale generated by CoPeD-TL
is more consistent with the answer. This includes
both the predicted and the ground-truth answers.
This indicates that CoPeD-TL ensures the faith-
fulness and soundness of the rationale generated
during the reasoning process. It does so by adopt-
ing different strategies based on the correctness
of the rationale and filtering noisy samples. This
approach helps mitigate spurious correlations be-
tween the question and the answer.

3.5 Ablation Study

Model Size We conducted model distillation on
TinyLLaMA-1.1B* (Zhang et al., 2024), LLaMA2-
7B, and LLaMAZ2-13B, and compared it with Std-
CoT, MT-CoT, and CasCod. As shown in Figure 4,

*The prompt for evaluating whether the rationale provided
by the student model supports the answer can be found in the
Appendix C.2

4https: //huggingface.co/TinyLlama/TinyLlama-1.
1B-intermediate-step-1431k-3T
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Figure 4: Ablation study on model size for IND and four OOD datasets. The dotted line indicates the performance
of the teacher LLM under the Zero-shot-CoT setting.
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Figure 5: Ablation study on training data size for IND and four OOD datasets. The dotted line indicates the
performance of fine-tuning the student models by Std-CoTs distillation using the full set (100% of) BBH-train

dataset.

CoPeD-TL consistently achieves competitive per-
formance across student models of varying sizes,
outperforming baseline methods on both IND and
OOD datasets. Notably, on the IND dataset, the
1.1B model with CoPeD-TL reaches 113.1% of
the teacher model’s performance, demonstrating
the significant advantages of CoPeD-TL in low-
resource scenarios. Moreover, across different
model scales, CoPeD-TL maintains competitive
performance on OOD datasets compared to base-
line approaches.

Data Size CoPeD-TL demonstrates significant
improvements over baseline methods on both IND
and OOD datasets, while utilizing considerably less
training data. As shown in Figure 5, CoPeD-TL
achieves a 16.8% improvement over CasCoD on
the IND (BBH-test) dataset, using only 12.5% of
the full BBH-train data. The performance on OOD
datasets is even more notable. For example, on
the BB-sub dataset, CoPeD-TL achieves a 9.4%
improvement in accuracy compared to CasCoD,
even when using only 12.5% of the complete BBH-
train data. On other OOD datasets, CoPeD-TL
also achieves excellent performance. These results
clearly demonstrate the effectiveness of CoPeD-TL
in low-resource settings. They highlight its ability
to enhance the performance of CoTs in both IND
and OOD scenarios while requiring significantly
less training data.

Method Accuracy (%) Gain (%)
Uniform Weight (Std-CoT) 58.5 -
Only Composite Term (L, + Lq) 60.2 +1.7
Only Discrepancy Term (|£, — L) 59.8 +1.3
Full (CoPeD-L) 60.9 +2.4

Table 3: Ablation results of different loss weighting
strategies on BBH-test.

Loss Term To evaluate the individual contribu-
tions of the components within our correctness-
aware weighted loss, we conduct an ablation study
focusing on the BBH-test accuracy, as shown in Ta-
ble 3. When only the composite loss term (£, +L,,)
is used to compute sample weights, the model
achieves a moderate improvement over the uni-
form weighting baseline. This suggests that con-
sidering the overall sample difficulty helps filter
out noisy examples. Similarly, utilizing only the
discrepancy term |£, — L,| yields a modest ac-
curacy gain. This indicates that rationale—answer
alignment alone also provides useful supervision.
Importantly, combining both components in the
full weighting scheme leads to a substantial boost
in performance. These results highlight the im-
portance of modeling both sample quality and ra-
tionale—answer consistency, enabling the student
model to focus on more trustworthy reasoning tra-
jectories.



3.6 Analysis & Case Study

Due to page limitations, we provide analysis in
Appendix E and case study in Appendix F.

4 Related Works

Chain-of-Thought Distillation Recent studies
have demonstrated that CoT prompts significantly
enhance the reasoning ability of LLMs for com-
plex tasks (Wei et al., 2022; Kojima et al., 2022;
Wang et al.; Huang et al., 2023). However, this
advantage is most pronounced in LLMs, prompting
several researchers (Magister et al., 2023; Ho et al.,
2023; Li et al., 2023; Chae et al., 2023; Yang et al.,
2024) to explore methods for transferring reason-
ing knowledge from LLMs to SLMs. Typically,
these approaches leverage CoT prompts to gener-
ate rationales from LLMs, which are then used to
fine-tune SLMs.

In addition, Hsieh et al. (2023) argue that reason-
ing bases and answers should be treated as distinct
optimization objectives. Similarly, Li et al. (2022)
suggest that learning both the complete CoT and
individual answers can enhance the reasoning ca-
pabilities of the student model. Liu et al. (2024) in-
troduce an additional distillation objective focused
on self-assessment, enabling the SLM to evaluate
the accuracy of its generated CoTs. Wang et al.
(2023a) propose reducing reasoning errors and hal-
lucinations inherited by the SLM from the LLM
through contrastive decoding, which ensures that
the reasoning basis is closely related to the answer.
Moreover, Wang et al. (2023b) present an interac-
tive, multi-turn paradigm that allows the SLM to
engage in self-reflection and receive feedback from
the LLLM during the learning process. Dai et al.
(2024b) suggest decomposing the traditional single-
step learning process into two cascading steps to
alleviate the effects of spurious correlations be-
tween questions and answers. Lee et al. (2024)
effectively enhances the reasoning ability of small
models by introducing an intermediate-sized, task-
specific “mentor” model to improve the quality of
multi-step reasoning distillation and provide soft
labels. Feng et al. (2024) proposes a counterfactual
distillation framework that improves the reasoning
ability and OOD robustness of small language mod-
els. Wadhwa et al. (2024) investigates why CoT
rationales help in model distillation and finds that
even incoherent or partial rationales appended after
labels can significantly improve student model per-
formance. Chenglin et al. (2024) proposed a Mixed

Distillation framework that efficiently distills multi-
step reasoning abilities into small models through
multi-path reasoning samples and multi-task loss.
Zhu et al. (2024) proposes Program-aided Distilla-
tion (PaD), which improves the distillation quality
of reasoning tasks by using reasoning programs to
correct errors in synthetic data and iteratively refine
the distilled model’s reasoning capabilities.

Learning from Mistakes Recent studies have
investigated the use of mistake data to improve
the performance of language models. Shinn et al.
(2024) introduce Reflexion, a method that allows
LLM agents to self-reflect on their mistakes. Wang
and Li (2023) propose a study assistant that collects
and retrieves training mistakes from LLMs to guide
future inferences. Li et al. present the CoK method,
which corrects reasoning errors by retrieving rel-
evant knowledge to prevent the propagation of er-
rors. However, these approaches are not directly
applicable to standard SLMs. Wang et al. (2023a)
propose fine-tuning on counterfactual data to en-
sure the faithful reasoning of the student model.
An et al. (2023) introduce LEMA, a method that
fine-tunes language models on corrected mistake
data, with mistakes collected from various LLM:s.
Tong et al. (2024) explores whether large language
models (LLMs) can enhance their reasoning abili-
ties by learning from their mistakes, proposing two
methods—self-rethinking prompting and mistake
tuning. An et al. (2024) investigates whether large
language models (LLMs) can enhance their CoT
reasoning by learning from mistakes.

5 Conclusion

In this study, we propose a Chain-of-Thought
Correctness Perception Distillation framework
(CoPeD). It employs a dual-task training mech-
anism comprising answer prediction and rationale
correction to significantly enhance the faithfulness
and soundness of reasoning. To address the noise
present in teacher-generated data, we introduce a
correctness-aware weighted loss. This loss effec-
tively reduces the negative impact of unreliable
samples and strengthens the model’s ability to iden-
tify and leverage high-quality reasoning paths. Ex-
tensive experiments across varying model sizes and
training data volumes demonstrate that CoPeD con-
sistently achieves superior performance on both
IND and OOD benchmarks, validating its effective-
ness in improving reasoning quality and general-
ization capability.



6 Limitations

In our study, we explore enabling the student model
to verify the correctness of the generated rationale
during inference and to attempt corrections when
the rationale is identified as erroneous. However,
the student model currently struggles to effectively
validate whether the rationale derived from its rea-
soning is indeed correct.

Moreover, our approach depends on correctness
labels heuristically derived from whether the pre-
dicted answer matches the ground truth. Although
our weighted loss function alleviates the impact
of this coarse supervision, it may still introduce
noise in certain edge cases. Additionally, the cur-
rent weighting mechanism is relatively simple and
could be further refined to better capture subtle
inconsistencies between rationales and answers.
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A Additional Experiment Results

A.1 Ablation on Temperature ™

Temperaturer | 1 25 50 7.5 100
BBH-test Accuracy (%) ‘ 648 69.2 69.8 68.5 66.1

Table 4: Effect of temperature 7 in the correctness-
aware weighting loss on BBH-test accuracy.

We conduct an ablation study to investigate the
impact of the temperature coefficient 7 in our pro-
posed CoPeD-TL. As shown in Table 4, we eval-
uate CoPeD-TLon the BBH-test set under various
7 values. The results show that performance in-
creases as 7 grows from 0.5 to 2.5, peaking at
69.8%. Further increasing 7 causes a slight decline,
indicating a trade-off between weighting sharp-
ness and generalization. Specifically, small T val-
ues lead to overconfident weighting on a few low-
loss samples, which may introduce bias and hin-
der learning from diverse correct examples. Con-
versely, large 7 makes the softmax distribution
nearly flat, diminishing the benefit of correctness-
aware weighting.

A.2 Ablation on Task Balance Parameter o

To investigate the impact of task balancing between
rationale correction and answer prediction, we con-
duct an ablation study on the weighting parameter
a used in our multi-objective loss. Specifically,
we vary a € 0.3,0.5,0.7 to control the relative
importance of rationale supervision versus answer
supervision. The results are reported in Table 5.

From the results, we observe that « = 0.5 yields
the best average performance across all benchmark
datasets, indicating that a balanced emphasis on
both rationale correction and answer prediction
leads to more effective reasoning. When « is set to
0.3, the model prioritizes answer prediction while
underutilizing the benefits of rationale supervision,
resulting in suboptimal generalization. Conversely,
when « is increased to 0.7, the model places exces-
sive focus on rationale correction, potentially at the
cost of answer prediction quality. These findings
suggest that maintaining a moderate balance be-
tween the two tasks is crucial for achieving strong
overall reasoning ability and robustness across di-
verse benchmarks. Therefore, we adopt o = 0.5 as
the default setting in our final model.
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B Experimantal Settings

B.1 Hyperparameters Settings

To guarantee the fairness of our comparative analy-
sis, in our study, we keep the hyperparameter set-
tings consistent across all baselines, our proposed
CoPeD approach included. Below, we provide a de-
tailed account of the hyperparameter configurations
used in our experiments. The detailed hyperparam-
eters in training and inference can be found in Table
6 and Table 7, respectively.

In our research, We maintain a consistent batch
size across all baselines to eliminate performance
differences caused by varying batch sizes. Through
a series of experiments with learning rates set to
Se-5, le-4, 2e-4, 3e-4 and 4e-4, Se-4 we find that
the learning rate is a critical factor affecting model
performance and that the optimal value varies with
model size. Therefore, we adjust the learning rate
accordingly based on model size.

B.2 Dataset Statistics

Table 8, Table 9, Table 10 and Table 11 show the
data statistics of AGIEval, ARC, BIG-Bench Hard
(BBH) and BIG-Bench Sub (BB-sub), respectively.

C Prompts

C.1 Prompts of Correct the Erroneous
Rationale for ChatGPT

We use the prompt template shown in Table 12 to
call the ChatGPT API to correct the erroneous ra-
tionale of student model for the BBH-train datasets.

C.2  Prompts of Evaluator

We use the prompt templates shown in Table 13
to call the ChatGPT and GPT-4 APIs, predicting
whether the rationale supports the answer.

D Inference Process

Figure 6 demonstrates that different training meth-
ods lead to variations in the student model’s ability
to verify the correctness of the rationale during in-
ference. When the rationale status string rs; is used
as the model’s input in the rationale correction task,
the student model cannot predict the correctness
of the rationale during inference. However, when
rsg is used as the model’s target output in the task,
the student model can predict the correctness of
the generated rationale during inference and adopt



@ BBH-test BB-sub AGIEval ARC-E ARC-C | AVG
0.3 70.4 37.7 28.1 69.7 514 51.5
0.5 69.8 39.5 31.7 71.1 52.3 52.9
0.7 63.5 38.6 29.7 70.2 50.7 50.5

Table 5: Ablation study on the task balance parameter «.. o controls the trade-off between answer prediction and

rationale correction.

Hyperparameter | TinyLLaMA-1.1B LLaMA2-7B LLaMA2-13B  Mistral-7B-v0.2
gradient accumulation steps 2 2 2 2
per device batch size 2 2 2 2
learning rate 4e-4 3e-4 le-4 3e-4
epoches 30 20 20 20
temperature T 2.5 5 5 5
starting epoch n 10 5 5 5
max length 1024 1024 1024 1024
B of AdamW (0.9,0.999) (0.9,0.999) (0.9,0.999) (0.9,0.999)
€ of AdamW le-8 le-8 le-8 le-8
~ of Scheduler 0.95 0.95 0.95 0.95
weight decay 0 0 0 0
warmup ratio 0 0 0 0
rank of LoORA 64 64 64 64
a of LoRA 32 32 32 32
target modules q_proj, v_proj q_proj, v_proj d_proj, v_proj g_proj, v_proj
drop out of LoRA 0.05 0.05 0.05 0.05
Table 6: Training hyperparameters.

Arguments | Student Teacher Task | Size | # Choices

do sample False True ARC-E ‘ 2376 ‘ 4-5

temperature - 0.2 ARC-C | 1172 4-5

top-p 1.0 1.0

;gg;knew tokens 1004 5048 Table 9: Statistics of ARC test dataset.

# return sequences 1 1

Table 7: Generation configs of students and teachers.

No. | Task | Size | # Choices
] AQUA_RAT 254 5 question and the verification string rs; as input to
2 LogiQA-EN 651 4 predict the answer. When the rationale status string
3 LSAT-AR 230 5 rs¢ is used as the target output in the rationale cor-
4 LSAT-LR 510 5 . .
5 LSAT.RC 269 5 rection task, although the student model can verify
6 SAT-Math 220 4 whether the generated rationale is correct during
7 | SAT-EN 206 4 inference, it still struggles with effectively validat-
8 SAT-EN (w/o Psg.) | 206 4 . .

ing the correctness of the rationale (Kumar et al.,

| Sum | 2546 | -

Table 8: Statistics of AGIEval dataset.

different strategies based on its correctness. If the
student model predicts the generated rationale is
correct, it directly predicts the answer based on
that rationale. If the rationale is predicted to be
erroneous, the model first corrects the rationale,
and then uses the corrected rationale along with the
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2024). Therefore, our goal is to improve the quality
of the rationales generated by the student model
during inference by enabling the student model
to learn from errors through a rationale correction
task, rather than validating the correctness of the
generated rationale during inference. In §E, we fur-
ther discuss the specific impact on student model
performance when the rationale status string 7s¢ is
used as the student model’s input and output in the
rationale correction task, respectively.



(a) rsf as input

g;: ...how many ...? }

g

W

Student

#;: ...Vincent is 9 years old and weighs 11 kg, and Gwen is 8 years old and weighs 15 kg....
78¢: The rationale is right.
a;: Therefore, the answer is...

(b) s # as output

#;: ...Vincent is 9 years old and weighs 11 kg, and Gwen is 8 years old and weighs 15 kg....

g

qi: ...how many ...? }——) @ ——

—— 3 |78z The rationale is right.
a;: Therefore, the answer is...

Student

7;: ...The penguins that are less than 8 years old and weigh more than 12 kg are Gwen and James....
rsf: The rationale is wrong.

7*¢: ... the revised rationale is ...Vincent is 9 years old and weighs 11 kg, and Gwen is 8 years old and
weighs 15 kg....

g;: ...how many ...?

and Gwen is 8 years old and weighs 15 kg....

@ [f‘f ...Vincent is 9 years old and weighs 11 kg,} @ rs;: The rationale is right.

-

—> ioiOF —>a;: Therefore, the answer is...

Student

Figure 6: Comparison of student model inference processes under different training strategies.

No. | Task | Size | #Choices
1 Reasoning about Colored Objects 250 18
2 Geometric Shapes 250 11
3 Ruin Names 250 11
4 Penguins in a Table 146 5
5 Movie Recommendation 250 5
6 Tracking Shuffled Objects (3 objects) 250 3
7 Tracking Shuffled Objects (5 objects) 250 5
8 Tracking Shuffled Objects (7 objects) 250 7
9 Logical Deduction (3 objects) 250 3
10 Logical Deduction (5 objects) 250 5
11 Logical Deduction (7 objects) 250 7
12 Date Understanding 250 6
13 Salient Translation Error Detection 250 6
14 Causal Judgement 187 2
15 Disambiguation QA 250 4
16 Temporal Sequences 250 4
17 Boolean Expressions 250 2
18 Hyperbaton (Adjective Ordering) 250 2
19 Navigate 250 2
20 Snarks 178 2
21 Sports Understanding 250 2
22 Formal Fallacies Syllogisms Negation 250 2
23 Web of Lies 250 2
24 Dyck Languages 250 -
25 Multi-Step Arithmetic 250 -
26 Object Counting 250 -
27 Word Sorting 250 -
| Sum | 6511 | -

Table 10: Statistics of BIG-Bench Hard dataset.
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Figure 7: Compare training CoPeD with different target
outputs when the rationale is erroneous.
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E Analysis

What is the impact of training the student model
with different target outputs when the rationale
is erroneous? We investigate the impact of train-
ing the student model to adopt different target out-
puts when the rationale is erroneous. As shown
in Figure 7, the performance of the student model
trained with an empty string as the target output
when a reasoning error occurs is significantly lower
than that of the student model trained with the cor-
rect rationale as the target. This suggests that the ra-
tionale correction task implicitly improves the qual-
ity of the rationales generated by the student model.
Furthermore, the performance of the student model
trained with an empty string as the target output is
notably superior to that of Std-CoT, which further
demonstrates that CoPeD-TL enables the student
model to benefit from the generated rationale when
predicting answers, thereby effectively mitigating
the spurious correlation between the question and
the answer.

Whether the student model can effectively ver-
ify the correctness of the rationale? We explore
the impact of using the rationale status string rs¢ as
both input and output on CoPeD-TL’s performance
in the rationale correction task on IND and OOD
datasets. As shown in Figure 8, the experiment in-
cludes the following three settings: (1) input: When
the rationale status string 7s; is used as input, the
student model predicts the answer based on the gen-
erated rationale without verifying the correctness of
the rationale; (2) output-correction: When the ratio-
nale status string 7s¢ is used as output, the student
model, after identifying rationale errors, corrects



No. | Task | Size | # Choices
1 abstract_narrative_understanding 100 5
2 anachronisms 100 2
3 analogical_similarity 100 7
4 analytic_entailment 70 2
5 cause_and_effect 100 2
6 checkmate_in_one 100 26
7 cifar10_classification 100 10
8 code_line_description 60 4
9 conceptual_combinations 100 4
10 crass_ai 44 4
11 elementary_math_ga 100 5
12 emoji_movie 100 5
13 empirical_judgments 99 3
14 english_russian_proverbs 80 4
15 entailed_polarity 100 2
16 entailed_polarity_hindi 100 2
17 epistemic_reasoning 100 2
18 evaluating_information_essentiality 68 5
19 fantasy_reasoning 100 2
20 figure_of_speech_detection 59 10
21 goal_step_wikihow 100 4
22 gre_reading_comprehension 31 5
23 human_organs_senses 42 4
24 identify_math_theorems 53 4
25 identify_odd_metaphor 47 5
26 implicatures 100 2
27 implicit_relations 82 25
28 indic_cause_and_effect 100 2
29 intersect_geometry 100 26
30 kanji_ascii 100 5
31 kannada 100 4
32 key_value_maps 100 2
33 logic_grid_puzzle 100 3
34 logical_args 32 5
35 logical_fallacy_detection 100 2
36 metaphor_boolean 100 2
37 metaphor_understanding 100 4
38 minute_mysteries_qa 100 4
39 mnist_ascii 100 10
40 moral_permissibility 100 2
41 movie_dialog_same_or_different 100 2
42 nonsense_words_grammar 50 4
43 odd_one_out 86 5
44 parsinlu_ga 100 4
45 physical_intuition 81 4
46 play_dialog_same_or_different 100 2
47 presuppositions_as_nli 100 3
48 riddle_sense 49 5
49 similarities_abstraction 76 4
50 simple_ethical_questions 100 4
51 social_iqa 100 3
52 strange_stories 100 2
53 strategyqa 100 2
54 swahili_english_proverbs 100 4
55 swedish_to_german_proverbs 72 4
56 symbol_interpretation 100 5
57 timedial 100 3
58 undo_permutation 100 5
59 unit_interpretation 100 5
60 vitaminc_fact_verification 100 3
61 winowhy 100 2
| Sum | 5384 | -

Table 11: Statistics of BIG-Bench sub dataset. We filter
the original dataset by retrieving tasks with keywords
"multiple choice" and randomly sample up to 100 exam-
ples per task. Note, the task in BBH will not be involved
in BB-sub.

the rationale and concatenates it with the question
to re-predict the answer; (3) output-no correction:
Even when the student model identifies rationale
errors, the original rationale is used for prediction
without any correction. The experimental results
indicate that there is no significant performance
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difference between these three settings, suggesting
that the student model is almost incapable of ef-
fectively verifying the correctness of the generated
rationale. We believe the student model’s limited
capacity, due to its smaller number of parameters,
prevents it from independently verifying the cor-
rectness of the rationale, especially in complex rea-
soning tasks. Additionally, the model may struggle
to generalize to different types of reasoning errors.

Input Output-Correction Output-No Correction
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Figure 8: Comparison between using the rationale status
string rs; as input and output in the correction task.

Does the student model have the ability to cor-
rect erroneous rationale? We assume that the
student model can correct verify erroneous ratio-
nales to evaluate its ability to correct them. Dur-
ing evaluation, the student model attempts to cor-
rect the rationales corresponding to previously erro-
neous answer predictions and then concatenates the
corrected rationale with the question to re-predict
the answer. As shown in Figure 9, The student
model’s accuracy improves on both the IND and
OQOD datasets, mainly because 15% to 30% of the
previous incorrect predictions are now correct. This
suggests that the model can partially correct erro-
neous rationales, enhancing the final answer ac-
curacy. Although the student model shows some
limitations in correcting errors, this finding still
reveals the substantial potential of distilling the
ability to correct erroneous reasoning into student
model.

F Case Study

Table 14 shows that Std-CoT generates incorrect
intermediate reasoning steps, leading to an incor-
rect final answer, indicating that Std-CoT struggles
with effective reasoning in complex tasks. In con-
trast, CoPeD-TL generates a CoT that outperforms
the teacher’s reasoning. Tables 15 and 16 demon-
strate that the intermediate reasoning steps gen-
erated by Std-CoT in domain-specific tasks lack
causal relationships with the final answers, sug-



system content \ You are a helpful and precise assistant for following the given instruction.

[Instruction]{Please correct the wrong rationale by using better reasoning steps.}
Task Description:{Task Description}

Question: {Question}

user content Answer: {Answer}

Wrong rationale: {Wrong rationale}

Better Reasoning:

Table 12: Prompt template for gpt-3.5-turbo for ask the teacher LLM to generate correct rationales.

system content \ You are a helpful and precise assistant for following the given instruction.

[Instruction]{Please read the question, rationale, and answer, and simply determine
whether the answer can be derived from the rationale. Respond with ‘yes’ or ‘no’,
without any explanations}

Task Description: {Task Description}
user content
Question: {Question}

Rationale: {Rationale}

Answer: {Answer}

Table 13: Prompt template of evaluator for predicting whether the rationale supports the answer, given the question,
rationale, and answer.

CoCPerD CoCPerD-Correct Verification
85

Accuracy (%)
&
L

IS
@
L

25

BBHt(est BB—‘sub AGI‘Eva\ ARE—E AR&—C
Figure 9: Comparison between CoPeD without correct-
ing rationale errors and correcting rationale errors under
the assumption of correct rationale verification.

gesting that Std-CoT causes the student model to
capture spurious correlations between the question
and the answer. In contrast, the CoT generated
by CoPeD-TL effectively supports answer predic-
tion, indicating an enhancement in the student’s
reasoning ability. Tables 17 and 18 further show
that in domain-adapted tasks, Std-CoT almost fails
to reason correctly, whereas CoPeD-TL can clearly
understand the question and provide logical and
coherent reasoning.
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Michael lies. Leda says Michael lies. Delbert says Leda tells the truth. Tamika says Delbert tells the truth. Fidel says Tamika lies.

tion: .
Question Does Fidel tell the truth?
(1) Michael lies. So, we know that Michael lies.
(2) Leda says Michael lies. Since we know from (1) that Michael lies, if Leda says Michael lies, then Leda tells the
truth.
(3) Delbert says Leda tells the truth. Since we know from (2) that Leda tells the truth, if Delbert says Leda tells the truth,
then Delbert tells the truth.
Teacher (4) Tamika says Delbert tells the truth. Since we know from (3) that Delbert tells the truth, if Tamika says Delbert tells
the truth, then Tamika tells the truth.
(5) Fidel says Tamika lies. Since we know from (4) that Tamika tells the truth, if Fidel says Tamika lies, then Fidel
lies.
Now, the question asks: Does Fidel tell the truth? We know from (5) that Fidel lies.
Therefore, the answer is No. /
According to this question, the answers to the questions are as follows: Michael lies: true. Leda lies: true. Delbert lies: true. Tamika
lies: true. Fidel tells the truth: true.
We know that Michael lies. Leda lies. Delbert lies. Tamika lies. Fidel tells the truth.
Std-CoT To answer this question, we need to evaluate the statement Fidel tells the truth?
Yes, Fidel tells the truth.
Therefore the answer is Yes. X
We first identify the parties in this dialogue as follows: Michael= M, [edaz L, Delbertz D, Tamikaz T, and Fidelz F.
The statement Michael liesis expressed as M = lies. The statement I'eda says Michael liesis expressed as L = lies.
The statement Delbert says Leda tells the truthis expressed as D = tells-the-truth.
CoPeD The statement Tamika says Delbert tells the truthis expressed as T = tells-the-truth.
The statement Fidel says Tamika liesis expressed as F = lies.
Now, the question asks: Does Fidel tell the truth? We know from earlier that F = lies.
Therefore, the answer is No. \/
Table 14: A web of lies case from BIG-Bench Hard.
Here is a table where the first line is a header and each subsequent line is a penguin: name, age, height (cm), weight (kg) Louis, 7, 50,
11 Bernard, 5, 80, 13 Vincent, 9, 60, 11 Gwen, 8, 70, 15 For example: the age of Louis is 7, the weight of Gwen is 15 kg, the height of
Question: Bernard is 80 cm. We now add a penguin to the table: James, 12, 90, 12 And here is a similar table, but listing giraffes: name, age,
: height (cm), weight (kg) Jody, 5, 430, 620 Gladys, 10, 420, 590 Marian, 2, 310, 410 Donna, 9, 440, 650 How many penguins are more
than 5 years old?
Options:(A) 1 (B)2(C)3 (D) 4 (E) 5
This question focuses on age. We know the following: Louis is 7 years old, Bernard is 5 years old, Vincent is 9 years old, Gwen is 8
years old, and James is 12 years old.
The penguins that are more than 5 years old are Louis, Vincent, Gwen, and James.
Teacher
There are 4 penguins more than 5 years old.
Therefore, the answer is (D). \/
This question focuses on age. We know the following:
Louis is 7 years old, Bernard is 5 years old, Vincent is 9 years old, and James is 12 years old. Gwen’s age is not men-
tioned in the table.
Std-CoT The penguins that are more than 5 years old are Louis, Bernard, Vincent, and James.
There are 4 penguins that are more than 5 years old.
Therefore, the answer is (D). X
This question focuses on age. We know the following:
Louis is 7 years old, Bernard is 5 years old, Vincent is 9 years old, Gwen is 8 years old, and James is 12 years old.
CoPeD

According to the table, we can observe that there are 4 penguins that are more than 5 years old: Louis, Vincent, Gwen,
and James.

Therefore, the answer is (D). /

Table 15: A penguins in a table case from BIG-Bench Hard.
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Question:

On the desk, you see a fuchsia dog leash and a teal necklace. Is the dog leash turquoise?
Options: (A) yes (B) no

Teacher

According to this question, the color of the dog leash is fuchsia, not turquoise.

Therefore, the answer is (B) no. |/

Std-CoT

According to this question, the color of the dog leash is fuchsia.

Therefore, the answer is (A) yes. X

CoPeD

According to this question, the color of the dog leash is fuchsia.

Therefore, the answer is (B) no. \/

Table 16: A reasoning about colored objects case from BIG-Bench Hard.

Question:

Please answer the following questions about which words certain pronouns refer to.

The sun was covered by a thick cloud all morning, but luckily, by the time the picnic started, it was gone. The ’it’ refers to the cloud
because The cloud covered the sun.

The above reasoning is

Options: (A) correct (B) incorrect

Teacher

First, we are given the information that the sun was covered by a thick cloud all morning.

Then, we are told that by the time the picnic started, it was gone. The pronoun "it" is used to refer to something that was
previously mentioned.

In this case, the only thing mentioned that could be referred to by "it" is the cloud.

Therefore, the answer is (A) correct. /

Std-CoT

The answer is not (A) because (A) states that the "it" refers to the picnic, which is not correct based on the context of the story.

The "it" refers to the cloud because the cloud covered the sun.

Therefore, the answer is (B) X

CoPeD

In this question, we are told that "The cloud covered the sun." A pronoun is used in the sentence to refer to the cloud.
The sun is not directly mentioned in the sentence, but it is implied that the cloud covered the sun.

Therefore, the cloud covered the sun.

Therefore, the answer is (A) correct. /

Table 17: A winowhy case from BIG-Bench sub.

18



Context and question: "But consider your daughters. Only think what an establishment it would be for one of them. Sir Adams and
Lady Nelson are determined to go, merely on that account, for in general, you know, they visit no newcomers. Indeed you must go, for
it will be impossible for us to visit him if you do not." "You are over-scrupulous, surely. I dare say Mr. Torres will be very glad to see
you; and I will send a few lines by you to assure him of my hearty consent to his marrying whichever he chooses of the girls; though I
must throw in a good word for my little Helga" "I desire you will do no such thing. Helga is not a bit better than the others; and I am

Question: sure she is not half so handsome as Olga, nor half so good-humoured as Freya. But you are always giving her the preference.” What is
Freya to Olga?
Options: (A) Brother (B) Sister (C) Colleague (D) Master (E) Servant (F) Enemy (G) Lover (H) Husband (I) Father-in-law (J)
Daughter-in-law (K) Mother-in-law (L) Son (M) Father (N) Wife (O) Grandfather (P) Grandson (Q) Grandmother (R) Son-in-law (S)
Sister-in-law (T) Mother (U) Daughter (V) Cousin (W) Granduncle (X) Grandnephew (Y) Brother-in-law
First, we are given that Sir Adams and Lady Nelson are determined to go to visit someone. This suggests that the person they are
visiting is important or has a high social status.
Next, it is mentioned that Mr. Torres is the person they are visiting, and the speaker wants to send a message to him
through the person they are addressing. The speaker also mentions that they give a good word for their "little Helga" but the person
Teacher they are addressing disagrees and says that Helga is not better than the others.
Based on this context, we can conclude that Freya, who is mentioned as being better-humored than Helga, is one of the
daughters of the person being addressed.
Therefore, the answer is (U) Daughter. X
the answer is not (B) or (C), as these are not the correct relationships.
Std-CoT the answer is (D), because Freya is the daughter of Sir Adams and Lady Nelson, making her their daughter-in-law.
Therefore, the answer is D. X
We have (1) "But consider your daughters. Only think what an establishment it would be for one of them."
(2) "Sir Adams and Lady Nelson are determined to go, merely on that account, for in general, you know, they visit no
newcomers."
(3) "You are over-scrupulous, surely. I dare say Mr. Torres will be very glad to see you; and I will send a few lines by
CoPeD you to assure him of my hearty consent to his marrying whichever he chooses of the girls."

(4) "You are always giving her the preference."

From these clues, we can deduce that Freya is Olga’s sister.

Therefore, the answer is (B). /

Table 18: A implicit-relations case from BIG-Bench sub.
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