
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ENHANCING FOUNDATION MODELS FOR TIME SERIES
FORECASTING VIA WAVELET-BASED TOKENIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

There is a major open question about how to best develop foundation models
for time series forecasting. Tokenization is a crucial consideration in this effort:
what is an effective discrete vocabulary for a real-valued sequential input? To ad-
dress this question, we develop WaveToken, a wavelet-based tokenizer that allows
models to learn complex representations directly in the space of time-localized
frequencies. Our method first scales and decomposes the input time series, then
thresholds and quantizes the wavelet coefficients, and finally pre-trains an autore-
gressive model to forecast coefficients for the horizon window. By decomposing
coarse and fine structures in the inputs, wavelets provide an eloquent and compact
language for time series forecasting that simplifies learning. Empirical results on
a comprehensive benchmark, including 42 datasets for both in-domain and zero-
shot settings, show that WaveToken: i) provides better accuracy than recently pro-
posed foundation models for forecasting while using a much smaller vocabulary
(1024 tokens), and performs on par or better than modern deep learning mod-
els trained specifically on each dataset; and ii) exhibits superior generalization
capabilities, achieving the best average rank across all datasets for three comple-
mentary metrics. In addition, we show that our method can easily capture com-
plex temporal patterns of practical relevance that are challenging for other recent
pre-trained models, including trends, sparse spikes, and non-stationary time series
with varying frequencies evolving over time.

1 INTRODUCTION

Time series forecasting is integral to decision-making processes in many domains, including fi-
nance, healthcare, supply chain optimization, and climate science. Over the last decade, the field
has seen a gradual but steady adoption of “global” deep learning models in lieu of traditional “local”
statistical models (Lara-Benı́tez et al., 2021; Benidis et al., 2022). Recently, the success of large
language models (LLMs) on natural language and vision applications has spurred an increasing in-
terest for developing similar “foundation models” in other fields (for example, Subramanian et al.
(2024); Golling et al. (2024); Ansari et al. (2024); Das et al. (2023)). These efforts aim at building
general-purpose machines able to learn complex representations from vast amounts of data and to
generalize to a wide variety of tasks, based on the premise that LLMs are general pattern recogniz-
ers (Mirchandani et al., 2023). In other words, if a problem can be reduced to that of modeling an
arbitrary sequence of tokens defined on a discrete vocabulary, then an autoregressive transformer
might be capable of learning non-trivial relationships via next-token prediction, regardless of the
inputs representing text or not. The sequential nature of time series forecasting aligns seamlessly
with this perspective, which is why several recent works have proposed adapting transformer-based
architectures into foundation models for time series (see Section 2 for a review).

Tokenization is a crucial albeit still understudied (Dagan et al., 2024) component of LLMs, as it pro-
vides the vocabulary on which token streams are defined and the autoregressive structure is learned.
While in principle transformers can learn arbitrary dependencies, in practice it matters whether the
architecture can efficiently leverage specific structures in the inputs. In the context of time series
forecasting, it is then important to answer the following question: what is the most appropriate dis-
crete vocabulary for a continuous (real-valued) sequential input? In other words, what is the correct
“language” for time series forecasting? As the goal is to develop a unified model with excellent
forecasting performance on unseen datasets, an ideal dictionary of tokens should be as expressive as
possible while also being compact, in order to efficiently represent the extremely high variety of non-
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Figure 1: WaveToken-Base (199M parameters) provides excellent forecasts with very low uncer-
tainty. Performance of different foundation models for time series forecasting on complex patterns
of practical relevance: Chronos-Base (201M), TimesFM (200M) and Moirai-Large (311M) struggle
to capture exponential trends (top row), sparse spikes (second row), and non-stationary signals with
2 and 5 frequencies evolving over time (bottom two rows).

stationary real-world time series. In addition, different “languages” can exhibit various dependency
structures: although time series have a natural “order” dictated by time, one might ask whether there
exists a mapping providing a more eloquent re-ordering in a suitable space that exposes important
features and simplifies learning. Popular existing frameworks leverage temporal patches (e.g., Das
et al. (2023)) or quantization into prescribed bins (e.g., (Ansari et al., 2024)) and lead to competitive
performance in standard settings. However, by preserving the natural temporal dependency in the
input, these approaches tend to focus more either on the recent history or uniformly over all time
steps. As a result, they struggle to simultaneously capture both local and global patterns that often
represent relevant cases in practical applications (see, e.g., Figure 1).

Main contributions. In this work, we propose and analyze a tokenizer based on wavelets, which
are families of basis functions used to decompose a signal into small waves with high resolution
in both time and frequency domain (Mallat, 2009). In particular, we develop a tailored pre- and
post-processing tokenization pipeline — WaveToken — that allows the model to learn directly in the
space of sparse wavelet coefficients. This yields a compressed but highly expressive vocabulary that
facilitates the encoding of complex non-stationary time series. In addition, it provides an explicit
multi-scale structure in the inputs, which the model learns to exploit by effectively forecasting from
coarser to finer resolutions. We pair our wavelet-based tokenizer with the popular T5 encoder-
decoder architecture of Raffel et al. (2020) and pre-train it on a large corpus of time series from
different domains. We evaluate WaveToken on a comprehensive in-domain and zero-shot benchmark
made of 42 real-world datasets and compare it with traditional statistical models, recent LLM-based
forecasters, and state-of-the-art deep learning models. Empirical results show that

i) in terms of accuracy, WaveToken achieves superior forecasting performance and always performs
on-par or better than all other baselines with respect to three complementary metrics, while using a
much smaller vocabulary (1024 tokens) than recent foundation models for time series.

ii) WaveToken exhibits superior generalization capabilities, achieving the best average rank across
all datasets for all metrics. In addition, our method can easily capture complex temporal patterns in
several edge cases relevant for practical applications, such as exponential trends, sparse spikes and
signals with different frequencies varying over time, as shown in Figure 1.

Overall, our findings not only suggest that wavelet-based tokenization can provide a compelling
language for time series forecasting with LLMs, but also position our approach as a promising
avenue for developing general-purpose, information-efficient forecasting models.

2 RELATED WORK

Tokenization in LLMs. Most tokenizers originate from the natural language processing (NLP) lit-
erature and have been developed and studied for various domains such as math (Singh & Strouse,
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2024), code (Zheng et al., 2023), and several languages (e.g., Tolmachev et al. (2018); Alyafeai
et al. (2023)). In modern LLMs, the most popular tokenizers learn a dictionary directly on data,
such as variants of Byte-Pair Encoding (BPE; Gage (1994)). Tokenization of real-valued numbers
has received particular attention due to the difficulty of finding what is the most appropriate dis-
crete vocabulary for a continuous input. One of the most popular methods is training a Vector
Quantized-Variational AutoEncoder (VQ-VAE) (Van Den Oord et al., 2017), which learns a dic-
tionary of k-dimensional codewords to capture latent representations. Instead of learning a token
for each numerical value, Golkar et al. (2023) proposes a fixed scheme that allocates a dedicated
embedding vector for numerics and scales it by the number value, thereby improving efficiency
and generalization. In this work, we similarly adopt a fixed scheme, but employ a tailored wavelet
decomposition that enhances the crucial spectral properties of time series signals.

Wavelet-based forecasters. Several approaches have tried to embed wavelets in forecasting
pipelines. An early example is that of Papadimitriou et al. (2003), who integrate the discrete wavelet
transform with ARIMA modeling to capture complex patterns over long time periods. More recently,
Zhou et al. (2022) proposed to substitute attention blocks with Fourier- and wavelet-enhanced blocks
in the transformer architecture. Within this line of work, Zhang et al. (2022) proposed to model trend
and seasonality separately with an MLP and Fourier attention, respectively. In addition, they showed
that under linear transformations, attention models in time domain, Fourier domain and wavelet do-
main have the same representation power. Sasal et al. (2022) leverage a redundant wavelet transform
that yields J series of coefficients (one per decomposition level), each having the same length as the
original time series. They then learn a separate transformer model for each scale. To the best of our
knowledge, WaveToken is the first application of a maximally decimated wavelet transform to build
a tokenizer tailored for time series forecasting with LLMs.

Modeling and generation of signals. Different methods in the signal processing literature propose
to integrate spectral or wavelet decomposition with deep learning architectures to enhance the ca-
pabilities of these models on a variety of tasks. Apart from the already-mentioned VQ-VAE (Van
Den Oord et al., 2017), several works exploit spectrograms and log-mel spectra, for example, as
pre-processing steps on medical or audio data (Choi et al., 2023; Purwins et al., 2019). Similarly,
audio codecs (Zeghidour et al., 2021) are emerging as a critical technique to bridge the gap be-
tween continuous waveforms and token-based language models. As for image generation, Guth
et al. (2022) proposed to speed up denoising by learning diffusion models in the wavelets domain.
Recent concurrent works by Tian et al. (2024), Mattar et al. (2024) and Zhu & Soricut (2024), learn
an autoregressive model on a multi-scale sequence or in the space of 2D wavelet coefficients.

Foundation models for time series forecasting. Several approaches are being developed to adapt
LLMs to other domains, such as time series forecasting. Recent efforts in this direction include,
e.g., Xue & Salim (2023), which converts time series into text and re-frames the task as a question-
answering problem; Gruver et al. (2024), which tokenizes real-valued data as strings of digits and
leverages models such as GPT-3 (Brown, 2020) and Llama 2 (Touvron et al., 2023); and Jin et al.
(2023), which prompts a frozen LLM with a prefix describing the task and patch embeddings of time
series aligned with text prototypes. Recently, Rasul et al. (2023); Goswami et al. (2024); Das et al.
(2023); Ansari et al. (2024); Woo et al. (2024); Talukder et al. (2024) proposed different paradigms
to pre-train transformer-based architectures on a large corpus of time series. See also Zhang et al.
(2024) for a recent survey. While these works adopt domain-specific designs such as patching, lags
and time features, none of them tackles the problem by learning an autoregressive model in the
expressive space of time-localized frequencies.

3 LANGUAGE MODELING OF TIME-LOCALIZED FREQUENCIES

We introduce a wavelet-based tokenizer that allows the model to learn complex representations
directly in the space of time-localized frequencies. Our method first scales and decomposes the
input time series, then thresholds and quantizes the wavelet coefficients, and finally it pre-trains an
autoregressive model to forecast wavelet coefficients for the horizon window.

3.1 A BRIEF TOUR OF WAVELETS

Here we provide a very brief introduction to the main concepts and terminology regarding wavelets.
See Appendix A and references therein for more details. The Wavelet transform (WT) was intro-
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Figure 2: High-level depiction of our method. (Left) WaveToken first re-scales the input time series
by computing x̃t = (xt−µ1:C)/σ1:C , then it applies the DWT and possibly thresholds the resulting
detail coefficients to zero (red crosses). The wavelet coefficients are finally quantized to bins of
optimal size given their empirical distribution, and then concatenated together (excluding the first
J − 1 approximations). (Right) After pretraining on a large corpus of time series, at inference time
the model samples autoregressively from the categorical output distribution and yields coefficients
at all decomposition levels, which are pushed through the inverse tokenizer to obtain a forecast.

duced to address some limitations in existing mathematical tools — namely the Fourier transform,
which implicitly assumes a signal is stationary — by employing a quickly decaying zero-mean oscil-
latory function, known as the mother wavelet, which inherently adapts its time-frequency resolution
to the signal’s characteristics. This dual localization property, achieved through the modulation of
the wavelet’s scale parameter, enables the WT to efficiently analyze non-stationary signals achieving
localization in both time and frequency domain (Daubechies, 1992; Mallat, 2009).

We can divide wavelet families into two sets of basis functions: the father wavelet, which captures
low frequencies (the approximation), and the mother wavelet, which focuses on high frequencies
(the detail). Both sets can be modulated via scaling and translation to achieve a multi-resolution
decomposition of an arbitrary signal f(x) into the J-th lowest approximation component combined
with the J − 1 successive details. In what follows, we obtain approximation {ak}J and detail
coefficients {dk}j , ∀k, j via the maximally decimated Discrete Wavelet Transform (DWT), which
decomposes a signal and preserves its length N by applying a cascade of high-pass and low-pass
conjugate mirror filters via successive convolutions and down-sampling operations in O(N) time.

3.2 TOKENIZATION VIA WAVELET DECOMPOSITION

We ask the following question: given a real-valued univariate time series x1:C = [x1, . . . , xC ],
where C is the context length, can we find an optimal map T : R → V that encodes the input with a
compact but expressive discrete vocabulary V? To this end, we develop WaveToken, a tokenization
pipeline divided in scaling, wavelet decomposition, thresholding and quantization. See Section 4.4
for an extensive analysis of the chosen hyper-parameters.

Scaling. Re-normalizing time series is standard practice in modern forecasting, as it brings all
inputs to a common scale and avoids numerical and optimization issues, especially for globally-
learned deep learning models (Benidis et al., 2022). Popular normalization techniques are based
on affine transformations x̃t = (xt − m)/s, with m and s appropriately chosen. We set m =
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µ1:C = 1
C

∑C
t=1 xt and s = σ1:C =

√
1

C−1

∑C
t=1(xt − µ1:C)2, also known as z-score scaling.

This choice is especially important in our case because the specific wavelet transform we adopt is
not translation-invariant, hence a shift in the input signal can lead to different coefficients. Other
popular normalization techniques — e.g., dividing by the mean of the absolute values in the context
— could therefore yield unexpected results for similar inputs. By applying this transformation, we
make sure the model receives consistent time-frequency representations.

Decomposition. We then apply the maximally decimated DWT (Daubechies, 1992) to decompose
the scaled time series x̃1:C into its constituent time-localized frequencies up to the J-th level, which
yields approximation coefficients {ak}J and a series of detail coefficients {dk}Jj=1, ∀k. In addition
to being faster than the FFT as mentioned in Section A.2, this wavelet transform leads to compact
representations since it preserves the input size — i.e., a signal of size N results in N coefficients1

— and tends to concentrate the majority of the signal energy onto only a few significant wavelet
coefficients. This is especially true for time series with sharp spikes or localized features, and
is a useful property for compression and denoising. As each coefficient group is the outcome of
convoluting a filter with the signal, the autoregressive structure is also preserved within each group.

Thresholding. The inherently sparse representations that the DWT induces imply that we can
encode complex features with only a few significant wavelet coefficients, while the rest are close to
zero and thus can potentially be discarded without significantly addressing reconstruction quality.
Several thresholding techniques, many tailored to specific applications, have been developed over the
years and are effectively used in practice (e.g., in image compression: Chang et al. (2000); Vetterli
& Kovacevic (1995); Christopoulos et al. (2000)). As the main downstream task in this work is
to pre-train a language model on a large corpus of diverse time series datasets, any thresholding
technique must be adaptive to the underlying noise and complexity level of the input, so as to retain
most of the signal energy without discarding essential information. In what follows, we always keep
the approximation coefficients unaltered since they model the low-resolution coarse structure of the
time series, and explore the following techniques for thresholding detail coefficients:

No-thresholding: d̄k,j = dk,j . If the chosen wavelet family preserves signal energy (in the sense of
Parseval’s theorem), not thresholding the coefficients avoids any information loss at this stage.

CDF-thresholding: d̄k,j = dk,j1{|dk,j | > F−1
|dj |(b

J−j+1)}. A coefficient is set to 0 if it is in the
lower tail of the empirical distribution of the details’ magnitude at the corresponding j-th level,
where the cutoff grows exponentially from coarser to finer coefficients to reflect granularity and
downsampling of the DWT.

VisuShrink (Donoho, 1995): d̄k,j = sign(dk,j)(|dk,j | − λ), with λ = σ
√
2 logN and σ estimated

from the finest detail coefficients dk,j=1. The DWT of noisy data can be seen as a maximum-
likelihood estimate of the wavelet coefficients, and it can be shown that this threshold reduces the
expected reconstruction error (i.e., estimator’s risk) close to the possible minimum, under certain
assumptions. We explore both the soft- and hard-thresholding variants of this method.

FDRC (Abramovich & Benjamini, 1996): see Appendix B for details on the algorithm. By leverag-
ing the connection between thresholding and multiple hypotheses testing, this procedure improves
on VisuShrink by adaptively choosing λ to control the expected proportion of incorrectly included
coefficients (similar to false discovery rate) among those chosen for the wavelet reconstruction.

See Section 4.4 and Appendix B for results and justifications on the chosen thresholding technique.

Quantization. At this point, the resulting coefficients {ak}J and {d̄k}Jj=1 are still real-valued and
need to be converted into discrete tokens to be directly processed by language models. We construct
the vocabulary V by binning the raw coefficients according to their joint empirical distribution on
the training set, and choose the optimal bin size according to the Freedman-Diaconis rule (FD) to
minimize the reconstruction error (Freedman & Diaconis, 1981). In symbols, given the optimal B
bin centers c1 < · · · < cB and B − 1 edges ci < ei < ci+1 for i = 1, . . . , B − 1, we map each
wavelet coefficient w ∈ {{ak}J , {d̄k}j} to V as follows: q(w) = i · 1{ei−1 ≤ w < ei}. We

1To be precise, longer filters and specific boundary conditions to handle the signal edges might yield a
slightly higher number of coefficients (Torrence & Compo, 1998).
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further enrich V to be immediately compatible with language models by adding two special tokens:
a PAD token that signals missing values in the wavelet coefficients — resulting from missing values
in the time series or from padding of short instances — and an EOS token that signals the end of the
sequence. In our context, a single shared vocabulary jointly encodes time-localized low and high
frequencies, thereby leading to a compressed but expressive codebook.

3.3 MODEL TRAINING, OBJECTIVE FUNCTION AND FORECASTING

Given a time series context x1:C , we apply the steps detailed in Section 3.2 and then concate-
nate the resulting discrete tokens for approximation and detail coefficients into a vector z1:C =
[aJ ,dJ , . . . ,d1], so that the model can learn and forecast coarse-to-fine structures in a multi-scale
fashion. To minimize ad-hoc modifications to the language model, we opt for an encoder-decoder
architecture based on the T5 family (Raffel et al., 2020), which has recently been shown to achieve
excellent zero-shot performance on a comprehensive benchmark (Ansari et al., 2024). Other pro-
posed LLM-based forecasters either reformulate the problem as a question-answering task or use
patches of the input as tokens, and would therefore not be immediately compatible with our wavelet-
based tokenizer (see section 2 for an exhaustive review). For brevity, in what follows we refer to
WaveToken as being both the tokenizer and the model paired together.

We train the model via next-token prediction by minimizing the cross-entropy between the predicted
distribution and the categorical output distribution over the corresponding label tokens obtained from
the horizon window zC:C+H . In symbols, the loss function for a time series (including EOS) is

lθ = −
H+1∑
h=1

|V|∑
i=1

1{zC+h+1 = i} log pθ(zC+h+1 = i | z1:C+h)

While the cross-entropy loss does not induce a metric onto the underlying vocabulary, it offers
greater flexibility to learn output distributions of arbitrary shapes. This property lends itself well
to forecasting applications, where it is often important to capture the correct shape or pattern of the
time series without imposing structural limitations such as those inherent in traditional loss functions
like MSE and MAE (Le Guen & Thome, 2019).

Learning an autoregressive model on concatenated groups of wavelet coefficients might seem
counter-intuitive: the temporal structure is only preserved within each coefficient group and is bro-
ken as the input transitions from, e.g., approximations to details. In practice, this turns out to be
surprisingly helpful as it offers the model a natural way to break down complex sub-structures in
inputs and outputs by dividing them into a hierarchy of time-localized frequency bands. As we will
see in Section 4.3, the model easily learns to exploit these partitions and is able to attend to the right
coefficients to improve the overall forecasting accuracy.

At inference time, the model produces sample paths over the vocabulary via autoregressive sampling
from the predicted distribution pθ(zC+h+1 | z1:C+h), h = 1, . . . ,H . To obtain a time series
forecast, we first de-quantize the tokens by mapping them to the corresponding bin center: q−1(i) =
ci. We then apply the inverse discrete wavelet transform (IDWT) and un-scale the reconstructed
series by multiplying it by σ1:C and adding µ1:C , as depicted in Figure 2.

4 EXPERIMENTS

4.1 SETUP OF EMPIRICAL EVALUATION

Models and baselines. We pre-train WaveToken with T5 models of four sizes2 — Mini (19.2M),
Small (44.5M), Base (199M) and Large (705.8M) — for 200K steps on 8 A100 GPUs, and we com-
pare their performance against i) popular task-specific models trained for each dataset separately,
namely DeepAR (Salinas et al., 2020), PatchTST (Nie et al., 2022) and TFT (Lim et al., 2021);
and ii) recently proposed foundation models for time series forecasting — namely, TimesFM (Das
et al., 2023), Chronos Mini-Large (Ansari et al., 2024), Moirai Base & Large (Woo et al., 2024), and
Lag-llama (Rasul et al., 2023) — which do not perform task-specific training, but are trained only

2Parameter counts were obtained with the optimal vocabulary size as detailed in Section 4.4.
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Figure 3: WaveToken performs on par or better than other baselines on in-domain datasets.
Forecasting accuracy on Benchmark I in terms of WQL, MASE and VRSE.

once on a large corpus and then deployed across all evaluation datasets. Appendix G details all the
hyper-parameters for the mentioned baselines.

Datasets and training strategy. We train and evaluate WaveToken on the publicly available datasets
comprehensively collected by Ansari et al. (2024). These span a variety of domains and exhibit
diverse properties in terms of size, frequencies and prediction lengths, and can be divided in i) pre-
training only: datasets exclusively used for training (13 datasets); ii) in-domain: datasets employed
for training, whose validation set is also used for evaluation (Benchmark I, 15 datasets); and iii) zero-
shot: datasets used solely for evaluation (Benchmark II, 27 datasets). See Appendix G for detailed
information about all datasets. The context length of the sequences in each training batch is set to
512 and the prediction length is set to 64. In addition, we adopt the data augmentations techniques
introduced by Ansari et al. (2024): each of the sequences is generated with probability 0.9 from a
TSMixup set, which takes convex combinations of different time series, and with probability 0.1
from a synthetic dataset generated from Gaussian Processes based on randomly combined kernels.
Both of these have been shown to be effective in domains such as time series forecasting, where data
is inherently scarce relative to standard language modeling applications.

Evaluation tasks and metrics. For both in-domain (I) and zero-shot (II) benchmark datasets, we
use the last H observations of each time series as a held-out test set. We compute the weighted
quantile loss (WQL) to assess the quality of probabilistic forecasts on 9 uniformly-spaced quantile
levels {0.1, 0.2, ..., 0.9} and the mean absolute scaled error (MASE; Hyndman & Koehler (2006))
to evaluate the quality of point forecasts. In addition, we compute the Visual Relative Squared Error
(VRSE; Posam et al. (2024)), which measures the relative squared difference of the amplitudes at all
frequencies between the ground truth and the (median) forecast. This metric serves a complementary
role to avoid common pitfalls of standard scores, which can fail to properly assess important edge
cases that would otherwise be visually obvious, as shown in Figure 9. In order to aggregate these
metrics and provide fair comparisons, we compute each model’s score divided by the score of a
baseline model (here, Seasonal Naive). These relative scores are then aggregated across all datasets
using the geometric mean. See Appendix C for more details. All results for Chronos and WaveToken
are averaged across three different seeds.

4.2 IN-DOMAIN & ZERO-SHOT BENCHMARKS

Figure 3 summarizes the forecasting performance of all models on the in-domain datasets of Bench-
mark I. WaveToken outperforms all other baselines with the exception of Chronos-Large on WQL
and MASE, and is superior with respect to VRSE. Considering each model size for each metric,
WaveToken achieves lower (i.e., better) scores than Chronos 75% of the times and largely improves
on other recent LLM-based forecasters. Similarly, our method is considerably better even than task-
specific models trained separately on each dataset. Note again that WaveToken uses a vocabulary
size of 1024, while Chronos, for example, uses four times as much tokens with |V| = 4096. This
empirical finding confirms the well-known theoretical properties of wavelets, which can provide
compact but very expressive representations able to condense complex structures into a compressed
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Figure 4: WaveToken performs on par or better even relative to task-specific models on zero-
shot datasets. Forecasting accuracy on Benchmark II in terms of WQL, MASE and VRSE.

codebook. Finally, on the datasets of Benchmark I, WaveToken achieves the best average rank across
all metrics, as shown in Figure 10.

Benchmark II focuses on the forecasting performance on datasets that were never included in the
training corpus (for brevity, zero-shot). As shown in Figure 4, WaveToken exhibits superior general-
ization capabilities which lead it to i) outperform all other foundation models for time series across
all metrics, with a 83% success rate against Chronos models of the same size; and ii) be competitive
on WQL and MASE, and much better on VRSE, relative to task-specific models specifically trained
on each zero-shot dataset. Again, WaveToken achieves the best average rank across all metrics on
the dataset of Benchmark II, as shown in Figure 11.

Figure 12 in Appendix E shows results on a long-horizon benchmark constructed by increasing the
forecast length H of each dataset in Benchmark II (Zero-Shot) by a factor of 2 and 3. WaveToken
outperforms other foundation models across almost all combinations of metrics and long horizons,
the only exception being H × 3 with respect to WQL, where TimesFM performs slightly better.
Appendix D shows the raw WQL, MASE and VRSE values for each dataset in Benchmark I and II.

4.3 QUALITATIVE ANALYSIS

So far we have seen how wavelets allow a transformer-based architecture trained on a large corpus
to achieve excellent forecasting performance especially on previously unseen datasets, which hints
at their superior generalization capabilities. It is then worth analyzing more deeply some edge cases
of practical relevance to showcase how wavelets can efficiently capture a wide variety of complex
patterns, frequencies and local structures within a compressed representation. Figure 1 shows ex-
amples of synthetically-generated time series which exhibit strong trends, sharp spikes and several
frequencies evolving over time. We evaluate WaveToken against popular recent foundation models
for time series forecasting. Both Chronos, TimesFM and Moirai clearly underestimate trends, strug-
gle at isolating sudden spikes and are not able to capture non-stationary behaviours. On the other
hand, our model is able to leverage the different concatenated coefficient groups which represent the
time-localized frequency bands, thereby providing accurate forecasts with very low uncertainty.

This phenomenon can be further explained by looking at patterns in the cross-attention layers of
Chronos and our model, as they use the same T5 encoder-decoder architectures. Figure 5 shows
heat-maps of the cross-attention weights in the eighth decoder layer of Chronos-Base (left) and
WaveToken-Base (right), when forecasting the sparse spikes in the second row of Figure 1. Two
main things are worth noticing: first of all the attention map for our model is clearly divided in four
quadrants, of which the upper-left and lower-right ones exhibit generally larger attention values.
These clearly show that, to forecast approximation coefficients in the horizon (time-steps 0-34 on
the x-axis), the model is learning to attend more to approximation coefficients in the context (time-
steps 0-258 on the y-axis), and to forecast detail coefficients in the future (time-steps 35-68 on the
x-axis), the model attends more to detail coefficients in the context (time-steps 259-516 on the y-
axis). Second, we notice an interesting pattern: the detail coefficients for the horizon present two
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Figure 5: Wavelet-based tokenization induces structured patterns in the cross-attention maps.
Cross-attention weights for the eighth decoder layer when forecasting the spiky data of Figure 1
(second row). Chronos-Base (left) repeats the same patterns for all steps, while WaveToken-Base
(right) shows high values at the detail coefficients corresponding to the spikes.

clear columns of larger attention weights (time-steps 45 and 56 on the x-axis) that map to the detail
coefficients representing the spikes in the context. In addition, other detail coefficients attend to
everywhere else in the bottom-right quadrant (corresponding to the flat regions in time domain for
the spiky data of Figure 1) except to those same positions corresponding to spikes (see the white
horizontal lines interrupted by the vertical column in the magnified portion). Similar patterns are
present for the approximation coefficients, albeit less defined. None of this structures is present in
the attention weights of Chronos-Base shown in the left panel, which repeats the same patterns for
all steps and indeed fails to forecast the correct position and intensity of the spikes in time domain.

Appendix F shows the remaining attention maps for layers missing in Figure 5, which all show
similar patterns with varying intensities.

4.4 ABLATION STUDY

Figure 6 shows the effect of different vocabulary sizes, wavelet families and decomposition levels on
the forecasting accuracy of WaveToken-Small trained for 200K steps on one A100 GPU. Regarding
vocabulary size, which determines the precision with which tokens encode wavelet coefficients, we
observe a gradual but consistent improvement until |V| = 1024, which we select as the optimal
value. For higher vocabulary sizes, WQL and MASE remain flat or worsen on both in-domain and
zero-shot benchmarks. This phenomenon can be ascribed to the intrinsic compression properties of
wavelets (Mallat, 2009): by concentrating most of the signal energy onto a few coefficients, we can
effectively capture more information with a smaller codebook, while a larger one would only reserve
more tokens to spurious coefficients. Note that our vocabulary is much smaller than comparable
models: Chronos for example, that leverages the same architectures, uses |V| = 4096. As to the
many wavelet families available, the central panel of Figure 6 shows that the Biorthogonal-2.2 ba-
sis achieves optimal performance. This family uses two separate filters with two vanishing moments
for analysis and synthesis, a dual structure that allows for symmetric or near-symmetric wavelet
functions that help preventing distortions near the signal edges. This is known to be advantageous
in many applications, including image compression3. Families with higher vanishing moments ca-
pable of capturing higher order polynomial did not prove effective. As to the decomposition level,
we observe that first-level coefficients are sufficient to achieve good forecasting accuracy. Albeit
deeper levels provide more granular time-localized frequencies, the higher number of groups in the
concatenated coefficients make it harder for the attention mechanism to identify the relevant ones
at each prediction step. Regarding thresholding, we analyze the performance of all four techniques
described in Section 3. Empirically, we observe a discrepancy in the results obtained when training

3Biorthogonal wavelets with the maximally decimated DWT are in fact used in popular compression stan-
dards, such as JPEG-2000 (Christopoulos et al., 2000; Usevitch, 2001).
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Figure 6: Effect of different vocabulary sizes, wavelet families and decomposition levels on
downstream forecasting accuracy of WaveToken-Small. The optimal hyper-parameters were a
single-level wavelet decomposition with a Biorthogonal-2.2 family and a vocabulary size of 1024.
See Section 4 for more details.

for the same number of steps on 1 or 8 GPUs, where the latter is the final configuration used to train
the optimal models. As Figure 8 shows, in the single-GPU setting, chosen to streamline compu-
tations during hyper-parameter optimization, VisuShrink (Donoho, 1995) appears to be the best, a
result which is then reverted in favor of No-thresholding in the 8-GPU setting, which increases the
total number of samples processed at each step, thereby allowing the model to learn the richer fre-
quencies preserved in the input. VisuShrink, on the other hand, leads to smoother signals by crudely
cutting off coefficients, which eventually harms generalization. These empirical observations led us
to not threshold coefficients, although we note that thresholding is still implicitly happening during
the quantization step, which collapses small coefficients to the bin centered at 0. This value is then
used at inference time to forecast tokens mapped to this bin. Optimal bins for the discretization
procedure — detailed in Section 3 — were selected between the lower and upper bounds [−30, 30],
chosen empirically by scanning the training corpus.

5 CONCLUSION

In this work, we develop WaveToken, a tokenization pipeline tailored to a specific goal: constructing
a general-purpose forecasting model capable of capturing a wide variety of complex patterns while
consuming as little information as possible, thereby leading to excellent generalization performance
on unseen datasets. We leverage a recently-proposed framework to pre-train an encoder-decoder
architecture in the context of time series (Ansari et al., 2024) and re-purpose it to learn an autore-
gressive model in the space of time-localized frequencies. The resulting wavelet-based vocabulary
is both compact — using 1024 tokens, i.e. one quarter of Chronos — and very expressive, and leads
to

i) excellent forecasting accuracy with respect to all other baselines in terms of three complementary
metrics: weighted quantile loss for probabilistic forecasts, mean absolute scaled error for point
forecasts, and visual relative squared error to measure dicrepancies in the frequency content relative
to the ground truth.

ii) superior generalization capabilities, with WaveToken being the best model across all datasets
and metrics in terms of average rank. In addition, our method can easily capture complex temporal
patterns in several edge cases relevant for practical applications, as shown in Figure 1.

As potential future directions, we foresee that exploring techniques to automatically handle context
lengths larger than 512 in the tokenizer would allow models to capture longer-range dependencies
if needed. The DWT is in fact a natural tool to leverage in these settings, as it can encode long
contexts without increasing the input length through convolutions and down-sampling. Furthermore,
WaveToken exploits an autoregressive model on wavelet coefficients. As such, it suffers from slower
decoding and inference times relative to recently proposed alternatives, such as patch-based models.
Applying WaveToken to patch-based architectures represents an interesting area for future research.
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Figure 7: (Left) Mother and father wavelets for the Haar and Biorthogonal-2.2 families. Note the
dual structure of the latter, which uses two filters: one for decomposition and one for reconstruc-
tion. (Right) Example of discrete wavelet transform (DWT) applied to a time series from the traffic
dataset. Red boxes highlight the coefficients that are returned by the decomposition.

A A BRIEF TOUR OF WAVELETS

A.1 MOTIVATION: FROM THE FOURIER TRANSFORM TO THE WAVELET TRANSFORM

The Fourier Transform (FT) allows one to map a signal from the time domain to the frequency
domain by computing the signal’s projection onto a basis of complex exponentials, which represent
sine and cosine functions of varying frequencies. This process effectively decomposes the signal
into its constituent frequency components. The main drawback of the Fourier Transform is that,
while having high resolution in the frequency domain, it has zero resolution in the time domain. In
other words, it cannot tell at which location in time these frequencies occur in the original signal.
The Short-Time Fourier Transform (STFT) tries to overcome this issue by splitting the original
signal in different windows and applying the Fourier Transform in each of them. Nonetheless, the
fixed window immediately implies a trade-off: the smaller the size of the window, the higher the
resolution in time domain, the lower the resolution in frequency domain, and vice versa. This is
widely known as the Uncertainty Principle (Oppenheim & Schafer, 2010).

The Wavelet Transform (WT) addresses this limitation by employing a quickly decaying zero-mean
oscillatory function, known as the mother wavelet, which inherently adapts its time-frequency reso-
lution to the signal’s characteristics. By dilating or compressing the wavelet, its time support varies
inversely with its frequency, thus providing high time resolution for high-frequency components and
high frequency resolution for low-frequency components. This dual localization property, achieved
through the modulation of the wavelet’s scale parameter, enables the WT to efficiently analyze
non-stationary signals whose spectral content evolves over time, a phenomenon often referred to as
time-frequency localization (Daubechies, 1992; Mallat, 2009).

A.2 THE HAAR WAVELET AND THE DISCRETE WAVELET TRANSFORM

Wavelet families consist of basis functions that can be divided into two primary types: the scaling
function (often referred to as the “father” wavelet), which captures the low-frequency, coarse struc-
ture of the signal (the approximation), and the wavelet function (often referred to as the “mother”
wavelet), which captures the high-frequency components (the detail) of the signal. The “father”
and “mother” wavelets give rise to “son” and “daughter” wavelets through scaling and translation.
Here, we briefly formalize these concepts in the context of the Haar wavelet (Haar, 1911), a simple
yet pedagogically significant wavelet family. For an extensive introduction to wavelets and their
applications, see, for example, Mallat (2009), Daubechies (1992) and Strang & Nguyen (1996).

The Haar father wavelet is given by ϕ(x) = I(x ∈ [0, 1]). The corresponding son wavelet is

ϕk,j(x) = 2j/2ϕ(2jx− k) =

{
2j/2, if k

2j ≤ x ≤ k+1
2j

0, otherwise,
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Algorithm 1 False Discovery Rate of Coefficients (FDRC)

1: For each dk,j , compute two-sided p-value pk,j = 2(1− Φ(|dk,j |/σ)) for H(k,j)
0 : dk,j = 0

2: Order pk,j such that p(1) ≤ · · · ≤ pm
3: Let i0 = argmaxi p(i) ≤ (i/m)q, with q being error-rate under H0

4: Let λi0 = σΦ−1(1− pi0/2)
5: Threshold all detail coefficients at level λi0

where k, j ∈ N. Note that ϕk,0(x) generates an orthonormal basis for functions with jumps at the
integers, whose space we denote by V0. The dilations and translations ϕk,j(x) span orthonormal
spaces Vj for functions with jumps at k/2j , and satisfy Vj+1 ⊃ Vj ⊃ · · · ⊃ V0. With these bases,
we can represent an arbitrary function f(x) in Vj+1 by taking a component in Vj (the approximation)
plus the orthogonal complement of Vj to Vj+1, which we denote by Wj (the detail). In other words,
we represent f in Vj+1 by taking its orthogonal decomposition Vj+1 = Vj ⊕Wj . The space W0 is
spanned by the mother wavelet

ψ(x) = ϕ(2x)− ϕ(2x− 1) =


1, if 0 ≤ x < 1

2

−1, if 1
2 ≤ x ≤ 1

0, otherwise
,

whose dilations and translations ψk,j = 2j/2ψ(2jx − k) form an orthonormal basis for each Wj .
Putting this all together, we can represent a function at different resolution levels by breaking down
the level-j approximation component Vj to level-(j − 1) detail and approximation components, and
so on: VJ = VJ ⊕ WJ = V0 ⊕ W0 ⊕ W1 · · ·WJ−1. A wavelet decomposition is then a linear
combination of elements in these subspaces:

f(x) =

∞∑
k=−∞

akϕk,J(x) +

J∑
j=1

∞∑
k=−∞

dk,jψk,j(x),

where only a finite number of coefficients ak and dk,j are non-zero.

How do we compute ak and dk,j in practice? The multi-resolution theory of Mallat (1989) and
Meyer (1992) offers an elegant and efficient solution: any wavelet that generates an orthonormal
basis can be characterized by a conjugate mirror filter. The mapping from a discretized signal to a
sequence of wavelet coefficients is then implemented as a filter bank made of a cascade of high-pass
and low-pass filters associated with the mother and father wavelets, and is called Discrete Wavelet
Transform (DWT)4. For the Haar family, the approximation components are associated with aver-
aging filters (low-pass), while the detail components are associated with distance filters (high-pass).
The DWT convolves these filters with the signal and then downsamples by a factor of two to elimi-
nate the repeated information. The result is an array of detail coefficients {dk}j and approximation
coefficients {ak}j . The latter can be further decomposed into new approximation and detail co-
efficients at the next level and the process can continue recursively, resulting in a hierarchical and
multi-resolution decomposition of the signal. Figure 7 (right) shows this for a particular time series.

The DWT has a computational complexity of O(N), with N being the length of the input signal.
This is due to i) the filtering operation requiring a constant amount of work proportional to the signal
length, and ii) the down-sampling operation halving the signal at each of the log2N levels: this leads
to a total amount of work equal to N(1 + 1

2 + 1
4 + · · · ), which converges to 2N . Note that this is

even faster than the FFT algorithm, which has a computational complexity of O(N logN).

B ADDITIONAL RESULTS ON DIFFERENT THRESHOLDING TECHNIQUES

Algorithm 1 outlines the FDRC thresholding method step-by-step. See Abramovich & Benjamini
(1996) for more details. During our experiments, we chose the standard q = 0.05, which corre-
sponds to the type-I error control level of the resulting hypotheses tests.

Figure 8 shows the effect of the different thresholding techniques detailed in Section 3.2 on the
downstream forecasting accuracy in terms of weighted quantile loss (WQL), mean absolute scaled

4We always refer to the decimated DWT. For a comparison with the undecimated DWT, see Mallat (2009).
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error (MASE), and visual relative squared error (VRSE). This ablation study complements those on
vocabulary size, wavelet family and decomposition level outlines in Section 4.4. Apart from the
four thresholding techniques analyzed in this paper, several more exist in the literature for signal
processing and image compression. We leave a comprehensive analysis of these methods and a
deeper study of their effect on downstream performance to future work.

C EVALUATION METRICS

Consider a collection of N time series {xi = [xi,1, . . . , xi,C+H ]}Ni=1 that include both context
and horizon. In Section 4, we evaluated WaveToken and all the other baselines with respect to three
metrics, which we now describe more in detail: weighted quantile loss (WQL), mean absolute scaled
error (MASE), and visual relative squared error (VRSE)

Weighted quantile loss (WQL). We use this metric to evaluate probabilistic forecasts qαi,C+t —
obtained by generating N = 20 samples from the model for an input i — at nine quantile levels
α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. WQL aggregates the standard quantile loss at level
α QLα(q, x) (Koenker & Hallock, 2001) over multiple horizon steps t = 1, . . . ,H and series i by
taking a weighted average:

WQL = 1/9
∑
α

2
∑

i,t QLα(q
α
i,C+t, xi,t)∑

i,t |xi,t|
,

where 9 is the number of quantiles used.

Mean absolute scaled error (MASE). We use this metric to evaluate point forecasts x̂i =
[xi,1, . . . , xi,C+H ], which we take to be the median quantile q0.5i,C+t across N = 20 samples for
probabilistic models. The MASE (Hyndman & Koehler, 2006) scales the mean absolute error by the
empirical error of the seasonal naı̈ve model:

MASE(x̂i,xi) =
C − S

H

∑C+H
t=C+1 |x̂i,t − xi,t|∑C−S
t=1 |xi,t − xi,t+S |

,

where S is a seasonality parameter.

Visual relative squared error (VRSE). We use this metric to measure the frequency content of
(point) forecasts relative to the ground truth. As for MASE, we take the median forecast q0.5i,C+t as
input to the metric for probabilistic models. VRSE (Posam et al., 2024) is defined as follows:

VRSE(x̂i,xi) =

∑
f (Ax̂i

(f)−Axi
(f))2∑

f (Axi
(f))2

,

Figure 8: Effect of the different thresholding techniques of Section 3.2 on the forecasting accuracy.
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Figure 9: Pitfall of standard evaluation metrics. RMSE and MASE fail to distinguish a poor
constant forecast from a visually much more accurate shifted forecast. By comparing the amplitudes
at all frequencies, VRSE captures the difference and assigns a lower score to the shifted forecast.

where Ax(f) is the amplitude of the Fourier transform coefficient at frequency f for input x. It
serves a complementary role to WQL and MASE: by computing the discrepancy between forecasts
and ground truth in the amplitudes of the Fourier transform coefficients at all frequencies, this metric
captures whether the forecast has the correct overall “shape”, instead of looking at it point-wise.
Thus, it provides a valuable alternative in cases where other metrics clearly fail, as shown in Figure 9.

D ADDITIONAL RESULTS: BENCHMARKS I & II

Figures 10 and 11 report the average rank across all datasets in the corresponding benchmark (in-
domain and zero-shot, respectively) achieved by all the evaluated models. Tables 1-3 report the
raw per-dataset values of all metrics for all models on the in-domain benchmark, along with the
corresponding Aggregate Relative Score and Average Rank. Similarly, Tables 4-6 report the same
values on the zero-shot benchmark. Results for WaveToken, Chronos, PatchTST, DeepAR and TFT
are averaged over three seeds.
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Figure 10: WaveToken achieves best average ranks on in-domain datasets. Average rank of
models on Benchmark I (in-domain) in terms of WQL, MASE and VRSE.
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Figure 11: WaveToken achieves best average ranks on zero-shot datasets. Average rank of models
on Benchmark II (zero-shot) in terms of WQL, MASE and VRSE.
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Table 1: Raw per-dataset values of WQL for all models on the in-domain benchmark.
Pretrained Models (In Domain) Pretrained Models (Other) Task Specific Models Local Models
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Electricity (15 Min.) 0.077 0.078 0.080 0.082 0.086 0.082 0.079 0.085 0.319 0.105 0.104 0.121 0.082 0.090 0.189 0.117
Electricity (Hourly) 0.101 0.114 0.105 0.089 0.104 0.109 0.114 0.098 0.104 0.122 0.117 0.079 0.089 0.106 0.125 0.147
Electricity (Weekly) 0.059 0.062 0.073 0.067 0.071 0.069 0.067 0.065 0.147 0.113 0.162 0.062 0.069 0.116 0.106 0.198
KDD Cup 2018 0.272 0.268 0.289 0.271 0.262 0.265 0.270 0.282 0.369 0.287 0.277 0.288 0.252 0.330 0.571 0.556
London Smart Meters 0.423 0.428 0.431 0.436 0.355 0.349 0.343 0.340 0.384 0.358 0.350 0.384 0.346 0.405 0.365 0.541
M4 (Daily) 0.022 0.022 0.022 0.022 0.021 0.021 0.021 0.021 0.043 0.023 0.023 0.021 0.023 0.023 0.023 0.028
M4 (Hourly) 0.022 0.024 0.024 0.025 0.025 0.031 0.024 0.026 0.111 0.025 0.022 0.021 0.027 0.038 0.033 0.048
M4 (Monthly) 0.101 0.103 0.103 0.103 0.100 0.099 0.098 0.098 0.153 0.102 0.100 0.087 0.095 0.101 0.097 0.146
M4 (Weekly) 0.037 0.037 0.040 0.041 0.040 0.039 0.036 0.036 0.078 0.049 0.047 0.040 0.039 0.046 0.051 0.063
Pedestrian Counts 0.187 0.204 0.237 0.236 0.227 0.219 0.210 0.195 0.262 0.273 0.259 0.233 0.257 0.229 0.261 0.319
Rideshare 0.140 0.137 0.140 0.133 0.136 0.137 0.137 0.138 0.158 0.164 0.159 0.133 0.135 0.130 0.134 0.186
Taxi (30 Min.) 0.268 0.274 0.312 0.313 0.300 0.284 0.278 0.267 0.357 0.513 0.368 0.334 0.363 0.395 0.382 0.471
Temperature-Rain 0.663 0.669 0.685 0.704 0.651 0.646 0.640 0.637 0.717 0.655 0.685 0.646 0.804 0.718 0.670 1.424
Uber TLC (Daily) 0.096 0.097 0.100 0.105 0.112 0.107 0.103 0.102 0.176 0.115 0.108 0.089 0.100 0.110 0.111 0.231
Uber TLC (Hourly) 0.153 0.153 0.155 0.161 0.158 0.157 0.154 0.160 0.176 0.176 0.166 0.153 0.167 0.176 0.179 0.299

Agg. Relative Score 0.564 0.580 0.603 0.598 0.592 0.591 0.573 0.569 0.937 0.690 0.669 0.579 0.601 0.676 0.734 1.000
Avg. Rank 4.867 6.067 8.467 8.133 6.800 5.933 4.867 4.733 13.333 12.133 10.333 5.467 7.267 10.800 11.400 15.400

Table 2: Raw per-dataset values of MASE for all models on the in-domain benchmark.
Pretrained Models (In Domain) Pretrained Models (Other) Task Specific Models Local Models

Chro
no

s

(L
arg

e)
Chro

no
s

(B
ase

)
Chro

no
s

(S
mall

)
Chro

no
s

(M
ini

)
W

av
eT

ok
en

(M
ini

)

W
av

eT
ok

en
(S

mall
)

W
av

eT
ok

en
(B

ase
)

W
av

eT
ok

en
(L

arg
e)

Lag
-L

lam
a

M
oir

ai

(B
ase

)
M

oir
ai

(L
arg

e)
Tim

esF
M

Patc
hT

ST

Dee
pA

R

TFT Sea
so

na
l

Naiv
e

Electricity (15 Min.) 0.391 0.394 0.418 0.445 0.443 0.422 0.410 0.410 1.169 0.707 0.625 0.750 0.450 0.515 1.108 0.498
Electricity (Hourly) 1.439 1.590 1.477 1.348 1.503 1.580 1.614 1.419 1.573 1.712 1.669 1.200 1.349 1.528 1.789 1.840
Electricity (Weekly) 1.739 1.801 1.942 1.954 1.938 1.890 1.879 1.864 2.979 2.858 2.758 1.773 1.631 2.517 2.800 3.037
KDD Cup 2018 0.683 0.646 0.687 0.667 0.618 0.624 0.631 0.654 0.844 0.661 0.656 0.687 0.616 0.779 1.022 0.994
London Smart Meters 0.828 0.838 0.846 0.857 0.771 0.759 0.748 0.740 0.792 0.770 0.754 0.822 0.733 0.832 0.788 0.966
M4 (Daily) 3.144 3.160 3.148 3.154 3.140 3.120 3.145 3.116 8.038 3.445 3.377 3.269 3.450 3.305 3.292 3.278
M4 (Hourly) 0.682 0.694 0.721 0.758 0.722 0.697 0.667 0.671 3.807 1.210 0.951 0.767 0.967 1.215 1.833 1.193
M4 (Monthly) 0.960 0.970 0.982 0.991 0.992 0.974 0.956 0.950 2.090 1.033 1.005 0.886 0.962 1.040 1.009 1.260
M4 (Weekly) 1.998 2.021 2.113 2.155 2.137 2.077 2.005 1.948 5.658 2.475 2.419 2.262 1.996 2.346 2.745 2.777
Pedestrian Counts 0.272 0.286 0.304 0.303 0.309 0.297 0.292 0.279 0.342 0.355 0.330 0.307 0.339 0.311 0.364 0.369
Rideshare 0.865 0.862 0.854 0.830 0.840 0.854 0.856 0.871 0.891 0.911 0.900 0.853 0.827 0.996 1.067 1.250
Taxi (30 Min.) 0.830 0.849 0.941 0.944 0.902 0.861 0.848 0.823 1.069 1.374 1.088 1.054 1.077 1.158 1.113 1.160
Temperature-Rain 0.980 0.986 1.012 1.029 0.945 0.935 0.929 0.924 1.031 0.963 0.988 1.011 1.250 1.015 0.994 2.243
Uber TLC (Daily) 0.821 0.839 0.870 0.906 0.952 0.938 0.887 0.876 1.289 0.937 0.874 0.803 0.813 0.905 0.916 1.378
Uber TLC (Hourly) 0.670 0.673 0.677 0.689 0.786 0.777 0.771 0.779 0.711 0.728 0.716 0.677 0.696 0.703 0.746 0.931

Agg. Relative Score 0.695 0.706 0.727 0.732 0.729 0.718 0.708 0.698 1.141 0.856 0.806 0.745 0.740 0.821 0.939 1.000
Avg. Rank 4.333 5.733 7.400 8.067 7.333 6.400 5.133 4.133 13.200 11.867 10.133 6.933 6.333 11.467 12.867 14.667

Table 3: Raw per-dataset values of VRSE for all models on the in-domain benchmark.
Pretrained Models (In Domain) Pretrained Models (Other) Task Specific Models Local Models
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Electricity (15 Min.) 0.022 0.023 0.021 0.024 0.027 0.026 0.024 0.027 1.354 0.018 0.024 0.033 0.022 0.030 0.109 0.032
Electricity (Hourly) 0.012 0.013 0.012 0.009 0.013 0.010 0.012 0.013 0.008 0.014 0.012 0.01 0.007 0.008 0.010 0.011
Electricity (Weekly) 0.015 0.014 0.022 0.021 0.021 0.019 0.016 0.014 0.099 0.093 0.179 0.011 0.026 0.070 0.057 0.159
KDD Cup 2018 0.099 0.101 0.108 0.115 0.113 0.118 0.123 0.131 0.157 0.129 0.119 0.151 0.117 0.131 0.996 0.284
London Smart Meters 0.323 0.337 0.341 0.352 0.213 0.213 0.208 0.205 0.252 0.208 0.188 0.274 0.241 0.309 0.261 0.177
M4 (Daily) 0.010 0.007 0.005 0.007 0.004 0.004 0.004 0.004 0.022 0.005 0.004 0.004 0.005 0.006 0.007 0.007
M4 (Hourly) 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.001 0.003 0.000 0.000 0.000 0.001 0.001 0.001 0.002
M4 (Monthly) 0.047 0.047 0.048 0.047 0.045 0.044 0.044 0.043 0.080 0.042 0.042 0.040 0.043 0.041 0.044 0.048
M4 (Weekly) 0.003 0.003 0.004 0.004 0.004 0.004 0.003 0.003 0.020 0.006 0.005 0.004 0.004 0.005 0.008 0.008
Pedestrian Counts 0.083 0.104 0.110 0.108 0.111 0.109 0.105 0.099 0.121 0.126 0.133 0.111 0.128 0.088 0.109 0.118
Rideshare 0.043 0.041 0.043 0.041 0.043 0.043 0.044 0.043 0.052 0.066 0.064 0.049 0.041 0.031 0.049 0.032
Taxi (30 Min.) 0.097 0.099 0.136 0.126 0.118 0.104 0.096 0.087 0.169 0.329 0.156 0.172 0.214 0.208 0.222 0.108
Temperature-Rain 0.596 0.633 0.677 0.712 0.512 0.515 0.505 0.493 0.423 0.419 0.409 0.528 0.854 0.527 0.542 1.715
Uber TLC (Daily) 0.024 0.023 0.023 0.024 0.028 0.023 0.024 0.024 0.067 0.031 0.024 0.024 0.023 0.024 0.031 0.115
Uber TLC (Hourly) 0.020 0.019 0.020 0.024 0.022 0.021 0.020 0.024 0.047 0.029 0.023 0.030 0.030 0.030 0.028 0.058

Agg. Relative Score 0.550 0.547 0.582 0.591 0.555 0.567 0.540 0.540 1.350 0.684 0.664 0.548 0.608 0.681 0.921 1.000
Avg. Rank 6.733 6.733 8.267 8.400 8.000 6.667 6.400 6.467 12.733 9.533 8.467 6.800 8.533 8.867 11.667 11.733

E ADDITIONAL RESULTS: LONG-HORIZON FORECASTING

Figure 12 shows results on a long-horizon benchmark constructed by increasing the forecast length
H of each dataset in Benchmark II (Zero-Shot) by a factor of 2 and 3, implying maximum horizons
of 112 and 168 (for NN5 Daily). Benchmark I (In-Domain) was not used as increasing the forecast
length over the prescribed ones (see Table 9) would imply mixing the test and training portions of
the datasets. The datasets in Benchmark II without sufficient history in all time series to allow for
longer horizons have been skipped. WaveToken-Base outperforms other foundation models across
all three metrics in the H × 2 setting. When H × 3, TimesFM performs better with respect to WQL
only. All results for Chronos and WaveToken are averaged across three different seeds.

F ADDITIONAL RESULTS: QUALITATIVE ANALYSIS

Figures 13, 14 and 15 show all the cross-attention maps for the 12 decoder layers of Chronos-Base
(left) and WaveToken-Base (right) when forecasting the spiky data of the second row in Figure 1.
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Table 4: Raw per-dataset values of WQL for all models on the zero-shot benchmark.
Pretrained Models (Zero Shot) Pretrained Models (Other) Task Specific Models Local Models
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Australian Electricity 0.067 0.075 0.074 0.063 0.094 0.065 0.075 0.071 0.097 0.055 0.046 0.089 0.037 0.087 0.036 0.084
Car Parts 1.060 1.057 1.029 1.024 0.973 0.986 0.994 1.001 1.011 1.654 1.621 1.019 0.998 0.967 0.871 1.600
CIF 2016 0.014 0.013 0.015 0.013 0.014 0.012 0.014 0.012 0.041 0.011 0.031 0.020 0.140 0.136 0.011 0.015
Covid Deaths 0.045 0.048 0.059 0.084 0.057 0.050 0.048 0.049 0.276 0.038 0.035 0.204 0.065 0.108 0.034 0.133
Dominick 0.332 0.333 0.338 0.346 0.352 0.348 0.343 0.342 0.443 0.361 0.346 0.426 0.345 0.364 0.320 0.453
ERCOT Load 0.019 0.016 0.018 0.018 0.017 0.015 0.015 0.019 0.033 0.019 0.021 0.021 0.017 0.032 0.023 0.037
ETT (15 Min.) 0.068 0.069 0.064 0.072 0.068 0.071 0.063 0.061 0.080 0.075 0.070 0.084 0.054 0.069 0.075 0.141
ETT (Hourly) 0.073 0.081 0.080 0.085 0.080 0.072 0.073 0.074 0.106 0.095 0.084 0.092 0.071 0.081 0.082 0.122
Exchange Rate 0.013 0.014 0.013 0.012 0.015 0.014 0.014 0.013 0.011 0.010 0.012 0.013 0.010 0.009 0.011 0.013
FRED-MD 0.020 0.022 0.017 0.017 0.026 0.022 0.027 0.026 0.389 0.047 0.048 0.035 0.042 0.043 0.112 0.122
Hospital 0.056 0.056 0.057 0.058 0.060 0.059 0.057 0.055 0.093 0.060 0.057 0.051 0.070 0.056 0.053 0.073
M1 (Monthly) 0.130 0.128 0.139 0.138 0.140 0.139 0.134 0.128 0.196 0.155 0.151 0.123 0.165 0.150 0.175 0.191
M1 (Quarterly) 0.107 0.105 0.103 0.103 0.111 0.110 0.111 0.119 0.141 0.108 0.107 0.087 0.078 0.089 0.122 0.150
M1 (Yearly) 0.183 0.181 0.172 0.179 0.177 0.173 0.167 0.166 0.293 0.195 0.199 0.163 0.165 0.139 0.124 0.209
M3 (Monthly) 0.096 0.097 0.100 0.099 0.099 0.098 0.097 0.095 0.155 0.102 0.101 0.093 0.113 0.099 0.096 0.149
M3 (Quarterly) 0.074 0.076 0.079 0.081 0.079 0.077 0.076 0.075 0.134 0.080 0.085 0.072 0.074 0.073 0.071 0.101
M3 (Yearly) 0.151 0.153 0.155 0.159 0.140 0.149 0.151 0.143 0.192 0.166 0.170 0.123 0.133 0.122 0.130 0.167
M4 (Quarterly) 0.082 0.083 0.084 0.086 0.081 0.081 0.080 0.079 0.132 0.081 0.080 0.074 0.074 0.080 0.080 0.119
M4 (Yearly) 0.134 0.137 0.136 0.140 0.134 0.136 0.134 0.130 0.178 0.121 0.138 0.117 0.106 0.111 0.110 0.161
M5 0.587 0.586 0.590 0.595 0.602 0.597 0.593 0.590 0.635 0.692 0.584 0.559 0.597 0.657 0.560 1.024
NN5 (Daily) 0.156 0.161 0.169 0.173 0.190 0.176 0.162 0.161 0.261 0.181 0.162 0.160 0.149 0.155 0.145 0.425
NN5 (Weekly) 0.091 0.091 0.090 0.091 0.094 0.092 0.092 0.090 0.111 0.092 0.092 0.086 0.081 0.087 0.086 0.123
Tourism (Monthly) 0.100 0.103 0.113 0.109 0.117 0.103 0.096 0.093 0.213 0.123 0.113 0.088 0.092 0.092 0.096 0.104
Tourism (Quarterly) 0.061 0.069 0.069 0.074 0.071 0.070 0.066 0.063 0.202 0.100 0.085 0.069 0.074 0.072 0.074 0.119
Tourism (Yearly) 0.183 0.207 0.200 0.218 0.184 0.197 0.193 0.192 0.238 0.167 0.163 0.148 0.136 0.127 0.102 0.209
Traffic 0.256 0.264 0.263 0.264 0.240 0.250 0.260 0.250 0.256 0.225 0.231 0.184 0.246 0.233 0.264 0.362
Weather 0.139 0.140 0.143 0.150 0.142 0.140 0.139 0.137 0.164 0.135 0.132 0.150 0.143 0.147 0.151 0.217

Agg. Relative Score 0.645 0.662 0.667 0.678 0.683 0.655 0.655 0.644 1.097 0.698 0.707 0.692 0.684 0.733 0.639 1.000
Avg. Rank 6.630 7.963 8.556 9.741 9.333 8.000 7.074 5.630 14.481 9.667 9.296 6.259 6.037 7.000 5.778 14.556

Table 5: Raw per-dataset values of MASE for all models on the zero-shot benchmark.
Pretrained Models (Zero Shot) Pretrained Models (Other) Task Specific Models Local Models
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Australian Electricity 1.333 1.319 1.399 1.114 1.657 1.287 1.404 1.310 1.635 1.250 0.995 1.631 0.871 1.473 0.810 1.253
Car Parts 0.906 0.899 0.887 0.891 0.847 0.860 0.865 0.873 0.816 1.734 1.540 0.893 0.803 0.798 0.799 1.201
CIF 2016 0.986 0.981 0.989 1.051 1.066 1.012 0.997 0.977 2.235 1.208 1.138 0.925 1.537 1.363 1.553 1.289
Covid Deaths 42.550 42.687 42.670 43.621 38.051 37.939 37.670 36.969 78.456 33.036 33.063 55.627 36.465 38.203 30.635 46.912
Dominick 0.818 0.816 0.819 0.833 0.825 0.823 0.821 0.822 1.250 0.880 0.845 1.220 0.867 0.851 0.800 0.871
ERCOT Load 0.617 0.550 0.573 0.588 0.565 0.510 0.519 0.627 0.834 0.590 0.660 0.590 0.553 1.197 0.690 0.761
ETT (15 Min.) 0.741 0.739 0.710 0.792 0.729 0.710 0.674 0.642 0.967 0.968 0.765 1.037 0.652 0.874 0.962 1.169
ETT (Hourly) 0.735 0.789 0.789 0.797 0.795 0.737 0.723 0.726 1.002 0.895 0.839 0.890 0.729 0.814 0.875 0.932
Exchange Rate 2.375 2.433 2.252 2.030 2.306 2.268 2.224 2.348 3.087 1.536 1.923 3.310 1.540 1.615 2.361 1.740
FRED-MD 0.500 0.486 0.496 0.483 0.510 0.503 0.501 0.500 2.283 0.609 0.598 0.484 0.745 0.621 0.929 1.101
Hospital 0.810 0.810 0.815 0.817 0.713 0.709 0.697 0.697 0.939 0.821 0.824 0.759 0.859 0.804 0.799 0.921
M1 (Monthly) 1.090 1.117 1.169 1.174 1.205 1.158 1.104 1.079 1.875 1.271 1.241 1.027 1.208 1.122 1.326 1.314
M1 (Quarterly) 1.713 1.739 1.764 1.785 1.782 1.779 1.758 1.787 3.036 1.877 1.829 1.632 1.920 1.741 2.144 2.078
M1 (Yearly) 4.301 4.624 4.659 4.958 4.737 4.895 4.751 4.449 7.149 4.629 4.707 4.004 4.042 3.685 4.316 4.894
M3 (Monthly) 0.857 0.868 0.885 0.900 0.912 0.888 0.877 0.858 1.846 0.947 0.924 0.870 1.225 0.943 0.916 1.146
M3 (Quarterly) 1.181 1.199 1.256 1.289 1.272 1.247 1.223 1.216 2.886 1.433 1.439 1.150 1.264 1.209 1.160 1.425
M3 (Yearly) 3.106 3.209 3.276 3.385 3.009 3.142 3.185 2.992 5.114 3.654 3.823 2.697 2.949 2.827 2.860 3.172
M4 (Quarterly) 1.216 1.231 1.246 1.271 1.243 1.226 1.212 1.210 2.663 1.285 1.259 1.160 1.150 1.254 1.248 1.602
M4 (Yearly) 3.606 3.678 3.651 3.743 3.688 3.731 3.652 3.550 5.866 3.601 4.174 3.339 3.072 3.178 3.119 3.974
M5 0.944 0.939 0.940 0.944 0.944 0.945 0.941 0.940 0.965 1.440 0.930 0.912 0.919 0.956 0.909 1.399
NN5 (Daily) 0.573 0.585 0.615 0.642 0.732 0.678 0.621 0.615 0.992 0.700 0.626 0.629 0.575 0.585 0.556 1.292
NN5 (Weekly) 0.940 0.938 0.944 0.947 0.966 0.951 0.948 0.937 1.141 0.991 0.994 0.949 0.877 0.920 0.896 1.063
Tourism (Monthly) 1.761 1.828 1.900 1.950 1.997 1.821 1.695 1.633 3.030 2.040 1.911 1.541 1.572 1.529 1.686 1.631
Tourism (Quarterly) 1.677 1.717 1.730 1.829 1.836 1.804 1.762 1.725 3.695 2.712 2.306 1.731 1.723 1.586 1.729 1.699
Tourism (Yearly) 3.755 3.900 3.901 4.048 3.635 3.852 3.697 3.689 3.755 3.060 3.284 3.234 3.138 3.702 3.047 3.552
Traffic 0.804 0.828 0.837 0.850 0.785 0.817 0.843 0.817 0.829 0.725 0.759 0.638 0.790 0.737 0.880 1.077
Weather 0.822 0.824 0.836 0.853 0.846 0.834 0.830 0.822 1.001 0.831 0.808 0.912 0.860 0.911 0.913 1.004

Agg. Relative Score 0.823 0.832 0.841 0.850 0.848 0.828 0.817 0.810 1.291 0.908 0.875 0.846 0.810 0.843 0.847 1.000
Avg. Rank 6.333 6.926 8.148 10.111 9.111 8.037 6.741 5.481 14.815 10.556 9.815 6.741 6.148 7.296 7.333 12.407

Table 6: Raw per-dataset values of VRSE for all models on the zero-shot benchmark.
Pretrained Models (Zero Shot) Pretrained Models (Other) Task Specific Models Local Models
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Australian Electricity 0.008 0.008 0.008 0.010 0.012 0.005 0.009 0.010 0.006 0.004 0.005 0.013 0.002 0.012 0.001 0.008
Car Parts 0.906 0.922 0.867 0.843 0.863 0.854 0.845 0.848 0.933 0.967 0.946 0.893 0.976 0.908 0.948 0.827
CIF 2016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.001 0.035 0.030 0.000 0.000
Covid Deaths 0.003 0.004 0.006 0.012 0.006 0.005 0.003 0.003 0.079 0.003 0.009 0.099 0.011 0.045 0.002 0.026
Dominick 0.273 0.279 0.290 0.308 0.242 0.243 0.241 0.245 0.283 0.244 0.242 0.278 0.279 0.271 0.311 0.401
ERCOT Load 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.004 0.001 0.001 0.001 0.001 0.003 0.001 0.002
ETT (15 Min.) 0.006 0.006 0.006 0.008 0.007 0.007 0.006 0.005 0.034 0.007 0.006 0.010 0.004 0.006 0.006 0.019
ETT (Hourly) 0.007 0.007 0.008 0.009 0.007 0.006 0.006 0.007 0.020 0.012 0.009 0.014 0.007 0.009 0.010 0.012
Exchange Rate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
FRED-MD 0.005 0.001 0.000 0.000 0.004 0.002 0.006 0.004 0.577 0.013 0.089 0.011 0.010 0.009 0.084 0.051
Hospital 0.003 0.003 0.003 0.004 0.004 0.004 0.003 0.003 0.007 0.003 0.004 0.003 0.006 0.009 0.010 0.005
M1 (Monthly) 0.059 0.060 0.057 0.061 0.078 0.082 0.071 0.060 0.177 0.102 0.078 0.106 0.174 0.156 0.232 0.094
M1 (Quarterly) 0.020 0.020 0.020 0.015 0.021 0.020 0.022 0.027 0.031 0.019 0.018 0.016 0.008 0.008 0.028 0.029
M1 (Yearly) 0.097 0.094 0.079 0.087 0.084 0.082 0.078 0.072 0.193 0.094 0.081 0.077 0.068 0.039 0.037 0.092
M3 (Monthly) 0.032 0.033 0.037 0.031 0.030 0.030 0.029 0.028 0.064 0.030 0.031 0.031 0.039 0.034 0.032 0.030
M3 (Quarterly) 0.024 0.026 0.028 0.029 0.026 0.025 0.025 0.024 0.059 0.024 0.024 0.023 0.021 0.021 0.021 0.026
M3 (Yearly) 0.095 0.079 0.074 0.068 0.062 0.074 0.086 0.067 0.175 0.051 0.055 0.060 0.066 0.040 0.061 0.060
M4 (Quarterly) 0.031 0.032 0.032 0.032 0.030 0.030 0.029 0.029 0.064 0.028 0.027 0.027 0.028 0.029 0.032 0.037
M4 (Yearly) 0.060 0.060 0.060 0.062 0.060 0.061 0.060 0.058 0.193 0.050 0.057 0.056 0.051 0.048 0.052 0.065
M5 0.279 0.275 0.286 0.285 0.319 0.296 0.292 0.281 0.308 0.258 0.280 0.324 0.375 0.338 0.318 0.618
NN5 (Daily) 0.047 0.046 0.046 0.044 0.041 0.041 0.040 0.040 0.108 0.046 0.038 0.053 0.043 0.035 0.042 0.275
NN5 (Weekly) 0.016 0.016 0.016 0.016 0.017 0.016 0.016 0.016 0.021 0.016 0.016 0.018 0.013 0.015 0.017 0.026
Tourism (Monthly) 0.019 0.021 0.027 0.015 0.021 0.019 0.020 0.026 0.087 0.018 0.014 0.009 0.014 0.019 0.019 0.010
Tourism (Quarterly) 0.004 0.004 0.004 0.005 0.004 0.003 0.003 0.002 0.045 0.005 0.002 0.002 0.005 0.005 0.009 0.024
Tourism (Yearly) 0.033 0.037 0.032 0.036 0.030 0.035 0.038 0.036 0.125 0.038 0.02 0.021 0.014 0.018 0.007 0.034
Traffic 0.243 0.244 0.243 0.239 0.227 0.235 0.241 0.236 0.224 0.223 0.221 0.150 0.227 0.223 0.247 0.279
Weather 0.070 0.070 0.072 0.073 0.068 0.068 0.068 0.067 0.073 0.065 0.065 0.078 0.076 0.071 0.079 0.098

Agg. Relative Score 0.623 0.629 0.608 0.624 0.632 0.585 0.610 0.584 1.843 0.604 0.590 0.773 0.732 0.854 0.667 1.000
Avg. Rank 8.407 9.296 9.333 9.444 8.370 7.333 7.111 6.444 13.889 6.481 6.47 8.630 7.667 7.704 9.111 11.667
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Figure 12: Long-horizon benchmark constructed by increasing the forecast length of each
dataset in Benchmark II (Zero-Shot) by a factor of 2 and 3. (Top row) Results with horizon
multiplied by 2: WaveToken-Base outperforms other foundation models across all three metrics.
(Bottom row) Results with horizon multiplied by 3: WaveToken-Base outperforms other foundation
models with respect to MASE and VRSE. TimesFM performs better with respect to WQL. (Right)
List of all datasets included in the two long-horizons benchmarks. All results for Chronos and
WaveToken are averaged across three different seeds.

G DATASETS AND BASELINES

In this section we report details on all the datasets (Tables 7 and 9) and baselines (Table 8) used
for the experiments of Section 4. For the SeasonalNaive baseline, we relied on the implementation
available in the StatsForecast library (Garza et al., 2022). For the task-specific deep learning models,
we used their implementations available in the GluonTS library (Alexandrov et al., 2020). Finally,
we used the corresponding reference implementations for Lag-llama5 (Rasul et al., 2023), Moirai6
(Woo et al., 2024), TimesFM7 (Das et al., 2023) and Chronos8 (Ansari et al., 2024).

Table 7: Breakdown of the datasets and baselines used for training and evaluation.

Data Subset # Datasets # Series Usage Evaluation Baselines
Pretraining-only 13 795,936 pretraining -

Benchmark I 15 97,272 pretraining and
in-domain evaluation

SeasonalNaive, DeepAR, TFT, PatchTST
Lag-Llama, Moirai-1.0-R (Base & Large),
Chronos (Mini-Large), TimesFM

Benchmark II 27 190,674 zero-shot evaluation All of the above

Table 8: Baseline models and hyper-parameter choices. Hyper-parameters not specified are set
to defaults in their respective implementations. C stands for context length, dh for hidden layer
dimension, nL for number of layers, and nH for number of heads.

Model Model Type Implementation Probabilistic Hyperparameters
SeasonalNaive Local StatsForecast Yes N/A
DeepAR Task-specific GluonTS Yes dh = 40, nL = 2
TFT Task-specific GluonTS Yes dh = 32, nH = 4
PatchTST Task-specific GluonTS Yes Patch length: 16, Stride: 8, dh = 32, nL = 2, nH = 4
Lag-Llama Pretrained Reference Yes C = 32
Moirai-1.0-R Pretrained Reference Yes C = 1024, Patch length: selected by dataset-specific validation
TimesFM Pretrained Reference Yes All hyperparameters set to defaults from the released models
Chronos Pretrained Reference Yes All hyperparameters set to defaults from the released models
WaveToken Pretrained Reference Yes All hyperparameters set to defaults as in Chronos

5https://github.com/time-series-foundation-models/lag-llama
6https://github.com/SalesforceAIResearch/uni2ts
7https://github.com/google-research/timesfm
8https://github.com/amazon-science/chronos-forecasting
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Figure 13: Cross-attention maps for the first to fourth (from top) decoder layers of Chronos-Base
(left) and WaveToken-Base (right) when forecasting the spiky data of the second row in Figure 1.
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1237
1238
1239
1240
1241 Figure 14: Cross-attention maps for the fifth to eighth (from top) decoder layers of Chronos-Base

(left) and WaveToken-Base (right) when forecasting the spiky data of the second row in Figure 1.
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1295 Figure 15: Cross-attention maps for the ninth to twelfth (from top) decoder layers of Chronos-Base

(left) and WaveToken-Base (right) when forecasting the spiky data of the second row in Figure 1.
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Table 9: Details of all datasets used for experiments, as collected by Ansari et al. (2024), partitioned
according to how they are used for training and evaluation of WaveToken models.

Dataset Domain Freq. Num. Series Series Length Prediction
min avg max Length (H)

Pretraining-only
Solar (5 Min.) energy 5min 5166 105120 105120 105120 -
Solar (Hourly) energy 1h 5166 8760 8760 8760 -
Spanish Energy and Weather energy 1h 66 35064 35064 35064 -
Taxi (Hourly) transport 1h 2428 734 739 744 -
USHCN nature 1D 6090 5906 38653 59283 -
Weatherbench (Daily) nature 1D 225280 14609 14609 14610 -
Weatherbench (Hourly) nature 1h 225280 350633 350639 350640 -
Weatherbench (Weekly) nature 1W 225280 2087 2087 2087 -
Wiki Daily (100k) web 1D 100000 2741 2741 2741 -
Wind Farms (Daily) energy 1D 337 71 354 366 -
Wind Farms (Hourly) energy 1h 337 1715 8514 8784 -

In-domain evaluation
Electricity (15 Min.) energy 15min 370 16032 113341 140256 24
Electricity (Hourly) energy 1h 321 26304 26304 26304 24
Electricity (Weekly) energy 1W 321 156 156 156 8
KDD Cup 2018 nature 1h 270 9504 10897 10920 48
London Smart Meters energy 30min 5560 288 29951 39648 48
M4 (Daily) various 1D 4227 107 2371 9933 14
M4 (Hourly) various 1h 414 748 901 1008 48
M4 (Monthly) various 1M 48000 60 234 2812 18
M4 (Weekly) various 1W 359 93 1035 2610 13
Pedestrian Counts transport 1h 66 576 47459 96424 48
Rideshare transport 1h 2340 541 541 541 24
Taxi (30 Min.) transport 30min 2428 1469 1478 1488 48
Temperature-Rain nature 1D 32072 725 725 725 30
Uber TLC (Daily) transport 1D 262 181 181 181 7
Uber TLC (Hourly) transport 1h 262 4344 4344 4344 24

Zero-shot evaluation
Australian Electricity energy 30min 5 230736 231052 232272 48
CIF 2016 banking 1M 72 28 98 120 12
Car Parts retail 1M 2674 51 51 51 12
Covid Deaths healthcare 1D 266 212 212 212 30
Dominick retail 1D 100014 201 296 399 8
ERCOT Load energy 1h 8 154854 154854 154854 24
ETT (15 Min.) energy 15min 14 69680 69680 69680 24
ETT (Hourly) energy 1h 14 17420 17420 17420 24
Exchange Rate finance 1B 8 7588 7588 7588 30
FRED-MD economic 1M 107 728 728 728 12
Hospital healthcare 1M 767 84 84 84 12
M1 (Monthly) various 1M 617 48 90 150 18
M1 (Quarterly) various 3M 203 18 48 114 8
M1 (Yearly) various 1Y 181 15 24 58 6
M3 (Monthly) various 1M 1428 66 117 144 18
M3 (Quarterly) various 3M 756 24 48 72 8
M3 (Yearly) various 1Y 645 20 28 47 6
M4 (Quarterly) various 3M 24000 24 100 874 8
M4 (Yearly) various 1Y 23000 19 37 841 6
M5 retail 1D 30490 124 1562 1969 28
NN5 (Daily) finance 1D 111 791 791 791 56
NN5 (Weekly) finance 1W 111 113 113 113 8
Tourism (Monthly) various 1M 366 91 298 333 24
Tourism (Quarterly) various 1Q 427 30 99 130 8
Tourism (Yearly) various 1Y 518 11 24 47 4
Traffic transport 1h 862 17544 17544 17544 24
Weather nature 1D 3010 1332 14296 65981 30
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https://www.nrel.gov/grid/solar-power-data.html
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https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
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https://github.com/pangeo-data/WeatherBench
https://github.com/pangeo-data/WeatherBench
https://github.com/pangeo-data/WeatherBench
https://wikimedia.org/api/rest_v1/
https://zenodo.org/record/4654909
https://zenodo.org/record/4654909
https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
https://zenodo.org/records/4656140
https://zenodo.org/records/4656141
https://zenodo.org/record/4656719
https://zenodo.org/records/4656072
https://github.com/Mcompetitions/M4-methods
https://github.com/Mcompetitions/M4-methods
https://github.com/Mcompetitions/M4-methods
https://github.com/Mcompetitions/M4-methods
https://zenodo.org/record/4656626
https://zenodo.org/record/5122114
https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets
https://zenodo.org/record/5129073
https://github.com/fivethirtyeight/uber-tlc-foil-response
https://github.com/fivethirtyeight/uber-tlc-foil-response
https://zenodo.org/record/4659727
https://zenodo.org/records/4656042
https://zenodo.org/record/4656022
https://zenodo.org/record/4656009
https://www.chicagobooth.edu/research/kilts/research-data/dominicks
https://github.com/ourownstory/neuralprophet-data/raw/main/datasets_raw/energy/
https://github.com/zhouhaoyi/ETDataset
https://github.com/zhouhaoyi/ETDataset
https://github.com/laiguokun/multivariate-time-series-data/tree/master/exchange_rate
https://zenodo.org/records/4654833
https://zenodo.org/record/4656014
https://zenodo.org/records/4656159
https://zenodo.org/records/4656154
https://zenodo.org/records/4656193
https://zenodo.org/records/4656298
https://zenodo.org/records/4656262
https://zenodo.org/records/4656222
https://github.com/Mcompetitions/M4-methods
https://github.com/Mcompetitions/M4-methods
https://github.com/Nixtla/datasetsforecast/blob/main/datasetsforecast/m5.py
http://www.neural-forecasting-competition.com/downloads/NN5/datasets/
https://zenodo.org/records/4656125
https://zenodo.org/record/4656096
https://zenodo.org/record/4656093
https://zenodo.org/record/4656103
https://zenodo.org/record/4656132
https://zenodo.org/record/4654822
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