
ToolWriter: Question Specific Tool Synthesis for Tabular Data

Anonymous NAACL-HLT 2021 submission

Abstract

Tabular question answering (TQA) presents001
a challenging setting for neural systems by002
requiring joint reasoning of natural language003
with large amounts of semi-structured data.004
Unlike humans who use programmatic tools005
like filters to transform data before process-006
ing, language models in TQA process tables007
directly, resulting in information loss as table008
size increases. In this paper we propose Tool-009
Writer to generate query specific programs and010
detect when to apply them to transform tables011
and align them with the TQA model’s capa-012
bilities. Focusing ToolWriter to generate row-013
filtering tools improves the state-of-the-art for014
WikiTableQuestions and WikiSQL with the015
most performance gained on long tables. By016
investigating headroom, our work highlights017
the broader potential for programmatic tools018
combined with neural components to manipu-019
late large amounts of structured data.020

1 Introduction021

An important area for research in large language022

models (T5, PaLM, GPT-3) is combining them with023

"tools" to enhance their capabilities in question024

answering(Schick et al., 2023; Gao et al., 2022a;025

Parisi et al., 2022; Lazaridou et al., 2022). Tool-026

augmented approaches enable language models to027

externalize knowledge and computation by making028

explicit calls to APIs. However, these approaches029

do not process semi-structured data. We show030

that current models degrade in effectiveness sig-031

nificantly when questions and data become long032

and complex. A key task that demonstrates these033

limitations is tabular question answering (TQA)034

where long tables and complex questions are par-035

ticularly challenging for current models.036

Tabular question answering is a task in natural037

language processing that involves leveraging in-038

formation from a semi-structured table to answer039

multi-hop compositional questions. It discourages040

purely symbolic approaches due to latent structure041

Question:
How many monarchs died before the age of 35?

Deceased

James I aged 68

Alfonso I aged 27

Sancho aged 28

James II aged 69

295 rows x 5 columns

TQA Model

James III aged 34

Alfonso I aged 27

Sancho aged 28

>>> table.apply(lambda row:
float(row['Deceased']
.split('aged')[1]) < 35)

TQA Model

.
.
.

3

1

Tool
Generator

Low
Confidence

" Use tool

Long
Context

Step 1

Step 2

Step 3 Step 4

Step 5

Tool use
Detector

Answer:

Answer:
Deceased

…

…

Figure 1: ToolWriter for tabular question answering in-
troduces: 1) A tool-use detector; 2) A tool generator.
Here a row-filter tool is generated as a program that
transforms semi-structured data.

captured in natural language in the table. As shown 042

in Figure 1 strings in cells often contain numeri- 043

cal values implicitly contextualized by surrounding 044

text like "aged". 045

Current TQA systems (Xie et al., 2022b; Jiang 046

et al., 2022; Liu et al., 2021a) linearize tables as 047

a token string and process it jointly with the ques- 048

tion. In response to long tables present in Wik- 049

iTableQuestions (Pasupat and Liang, 2015a) and 050

WikiSQL (Zhong et al., 2017) language models for 051

TQA increase the context size to 1024 tokens in- 052

curring a high memory cost. However, we show in 053

Section 3 as table size increases average model per- 054

formance significantly degrades by 40%. Moreover, 055

23% of tables in WikiTableQuestions are truncated 056

at 1024 tokens. 057

1

We propose ToolWriter , a new method that aug-058

ments language model capabilities. In response059

to a question over a table, ToolWriter decides if060

tool use is required. It then generates a program to061

transform the table to simplify it to make question062

answering more effective. The generated tools are063

code that can be applied to all kinds of tables regard-064

less of size which overcomes key language model065

limitations. The proposed ToolWriter approach is066

model agnostic and can be flexibly combined with067

existing models in a zero-shot setup.068

In this work, we compare multiple detection069

strategies and tool generation approaches to gen-070

erate query and table-specific Python programs.071

ToolWriter leverages our best combination for072

tool generation (zero-shot GPT-3) and tool-use073

detection (combined answer confidence and table074

length). Our method improves the state-of-the-art075

exact match results on WikiTableQuestions to 64.9076

(+1.9%) and WikiSQL to 90.5 (1.5%).077

We summarize our contributions as the follow-078

ing:079

• We characterize the behavior of language080

models for TQA on WikiTableQuestions and081

find significant performance degradation as082

table size increases.083

• We propose ToolWriter to detect when tool-084

use is required and generate query and table-085

specific programs as tools to transform tab-086

ular data. By generating row-filter tools we087

achieve new state-of-the-art results on Wik-088

iTableQuestions and WikiSQL.089

• Through ablation studies analysis we show090

all our tool generation methods are model ag-091

nostic and improve effectiveness as table size092

increases.093

2 Task Definition094

Tabular question answering is a task in natural lan-095

guage processing that involves leveraging informa-096

tion from a semi-structured table T to generate an097

answer ŷ to a question q. Questions are expressed098

in natural language and implicitly involve compo-099

sitional types of reasoning to access and aggregate100

information in the table. These questions are im-101

plicitly multi-step and require a combination of102

symbolic reasoning and natural language under-103

standing.104

A system has access to a training setD = {(x =105

(q, T), ŷ)} of questions, tables, and answers. Ta-106

bles between training and evaluation are disjoint 107

to prevent memorization. The only restriction on 108

the question is that it must be answerable given the 109

information provided in the table. Average exact 110

match (EM) over D between the predicted answer 111

ŷ and target y is used as the primary metric. 112

2.1 Datasets 113

WikiTableQuestions (Pasupat and Liang, 2015b) 114

serves as our initial exploration into the limita- 115

tions of current models. It is a tabular question- 116

answering dataset from 2,108 HTML tables and 117

crowdsourced question-answer pairs. Despite mul- 118

tiple questions per table in both train and test set- 119

tings, tables between the training and testing set 120

are distinct. WikiTableQuestions boasts several key 121

attributes that make it an effective and challenging 122

benchmark: 123

• Questions often require multiple steps to an- 124

swer by gathering distinct pieces of informa- 125

tion from a single table. 126

• Tables are not perfectly formatted often dis- 127

playing non-consistent cell values depending 128

on the implicit capabilities of the reader to 129

discern different sections. 130

• Cells often contain interleaved formal repre- 131

sentations and natural language making use of 132

pure programmatic approaches challenging. 133

WikiTableQuestions-Filter is a subset of the 134

WikiTableQuestions dev set for analysis in Section 135

5.1 to isolate tool performance in ToolWriter inde- 136

pendent from the detector. Leveraging SQUALL 137

annotations (Shi et al., 2020) we keep samples that 138

contain a WHERE clause after a SELECT. This re- 139

sults in 1256 question-table-answer triplets. 140

WikiSQL (Zhong et al., 2017), similar to 141

WikiTableQuestions, consists of 80,654 question- 142

answer pairs over 24,241 tables from Wikipedia. 143

Although its original intention was for semantic 144

parsing it has been adapted to weak supervision 145

settings by just using the target answer span as the 146

source of signal. All tables in the dataset are fully 147

parseable with types. Questions are simpler com- 148

pared to WikiTableQuestions and only contain op- 149

erations on full cell values that are fully parseable 150

by an SQL query. 151

2.2 Baseline models 152

We investigate the limitations systems with varying 153

task specific supervision. 154

2

BART (Lewis et al., 2020) is a Transformer155

(Vaswani et al., 2017) pre-trained with a denois-156

ing objective. For TQA it is fine-tuned with157

1024 tokens of context jointly processing the158

query and a linearized table as follows: x =159

q[HEAD], c1, , cN,[ROW], 1, r1,[ROW], 2, r2..160

TapEx (Liu et al., 2021b) is a BART model161

fine-tuned to mimic an SQL executor on 5 mil-162

lion grammar-generated SQL statements. TapEx is163

currently state-of-the-art on the weak formulation164

of WikiSQL.165

Omnitab (Jiang et al., 2022) is based on TapEx166

and further fine-tuned on natural language. The167

pre-training translates synthetic SQL queries into168

questions and mines similar passages to tables for169

masked language modeling. OmniTab is state-of-170

the-art on WikiTableQuestions and may be seen as171

the narrowest model for TQA due to its fine-tuning172

regime.173

UnifiedSKG Xie et al. (2022a) is a T5 trans-174

former (Raffel et al., 2020) with a standardized175

multi-task text-to-text format on structured knowl-176

edge (tables, knowledge bases, semantic parsing,177

etc...).178

FlanT5 (Wei et al., 2021) takes a middle-ground179

approach between strong supervision and general-180

ity by instruction-tuning transformers on 62 differ-181

ent types of NLP tasks. Through in-context learn-182

ing, it provides a strong baseline for TQA.183

GPT-3 (Brown et al., 2020) showcases an un-184

supervised in-context learning approach to TQA.185

GPT-3 shows strong performance in TQA with186

zero-shot Chain-of-Thought (CoT) reasoning ex-187

plicitly answering step-by-step (Kojima et al.,188

2022; Wei et al., 2022; Chen, 2022).189

3 Behaviour Analysis190

Tabular question answering is a challenging set-191

ting since tables can be exceedingly long. Con-192

text length in Transformer architectures is often193

limited to 512 tokens due to a quadratic memory194

cost (Vaswani et al., 2017). In WikiTableQues-195

tions 41.7% of linearised tables exceed 512 tokens196

without even considering the question tokens. Cur-197

rent approaches to TQA patch this problem by in-198

creasing the context limit to 1024 tokens (Omnitab,199

TapEx, UnifiedSKG) and 2048 in GPT-3. This in-200

curs a significant memory cost often prohibiting201

the use of such models. However, even at 1024 to-202

kens of context 23.8% of tables are truncated thus203

incurring data loss.204

0-1
0

10
-20

20
-30

30
-40

40
-50

50
-60 60

-

Number of Rows in Table

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

Ex
ac

t M
at

ch

713 1121
407

159
126

124

181

OmniTab
UnifiedSKG
GPT3
FlanT5xl

Figure 2: Exact match by table size on the WikiTable-
Questions dev set. The number of dataset samples per
row subset is shown above each bar.

3.1 Effectiveness across table size 205

Figure 2 shows model effectiveness stratified by 206

the number of rows in a table on partitions of Wik- 207

iTableQuestions dev. We note that the 1024 token 208

context window is often exceeded at 40-50 rows. 209

Interestingly, we observe a universal degradation 210

in performance well before 40 rows. As such, table 211

size is an important factor in performance indepen- 212

dent of model capacity. 213

For tables exceeding 50 rows model performance 214

decreases by an average of 40% relative to small 215

tables. In these cases, due to prior ordering of the 216

table, some questions only require information that 217

is located at the top of the table. This maintains 218

base performance for most models however we 219

observe FlanT5-XL significantly degrades. Here 220

we qualitatively observe hallucinations that repeat 221

the input table tokens with large tables. 222

3.2 Potential in row filtering 223

Following our findings that table length has a sig- 224

nificant and universal decrease in performance, we 225

test the effect of filtering noise from the table. We 226

hypothesize that removing noise from the data will 227

increase model performance. We manually simu- 228

late a row-filtering tool by removing noise and only 229

keeping the rows that are sufficient to answer the 230

question. 231

To test our hypothesis we manually annotate 51 232

samples of the WikiTableQuestions dev set. We 233

validate that correct usage of a tool is critical by 234

also simulating a random row filter that removes 235

50% of rows indiscriminately. We note that the 236

3

Row Filter U.SKG O.Tab GPT-3 FlanT5-XL
None 39.21 54.9 47.05 17.64

Random 11.76 5.88 15.64 5.52
Manual 60.78 58.82 54.9 39.21

Table 1: Exact match scores over 51 samples from the
WikiTableQuestions dev set with gold rows selected
manually as sufficient to answer the question.

format for the input to the models is kept constant237

as we only change the number of rows in a table.238

Our findings are shown in Table 1 pertaining to239

correct and incorrect usage of a row filtering tool240

where we draw two conclusions:241

Correct row-filtering markedly improves242

performance across all tested model types. As243

tables reduce in size but retain relevant information,244

4 of the 51 tables that are originally truncated to245

the 1024 token limit are fully processed. Noise is246

reduced by changing incorrect answers to positive247

ones in 10% of samples.248

Incorrect usage of a tool poses the risk of re-249

moving relevant information. Since information250

in TQA is discreetly stored in table cells, it is chal-251

lenging for models to recover once it is removed252

as we see by random row-filter performance. Fur-253

thermore, 7 of the 51 tables require no filtering.254

For such questions like “how many players par-255

ticipated?” we observe that row-filtering is query-256

specific and demands detection strategies.257

Our findings motivate an automatic appraoch to258

generate a query-specific row-filtering tool and to259

detect when to apply it.260

4 ToolWriter261

ToolWriter is our proposed method to address the262

limitations of current language models on large263

semi-structured data. In response to a question264

over a table, ToolWriter decides if tool-use is re-265

quired. It then generates a program to transform266

and simplify the table to make question-answering267

more effective. First, we outline our conceptual268

framework followed by our method implementa-269

tion.270

4.1 Proposed model271

We introduce ToolWriter as TW that combines a272

Tool with a TQA model F mediated by σ ∈ [0, 1]273

where 0 means "don’t apply tool" and 1 means274

"apply tool".275

TW (x, F) = σ·F (Tool(x)) + (1− σ) · F (x)
(1)

276

Moreover, we define our sigma as the output of 277

a detector function that aims to approximate the 278

uncertainty of the model prediction. 279

σ = dθ(x, F (x)) ≈ P (y 6= F (x)) (2) 280

Our task is to maximize the exact match EM 281

over our corpus D. We now take the partitions of 282

D over the correct and wrong predictions of the 283

model F (Eq. 3). 284

SF = {(x, ŷ) ∈ D|F (x) 6= ŷ}
SF = {(x, ŷ) ∈ D|F (x) = ŷ}

(3) 285

As we intend, transforming an input x with a 286

tool might have a positive or negative effect on the 287

produced output. When we observe our two subsets 288

of D we can draw the following conclusion. 289

EM(TW (·, F), SF) =

{
0 σ = 0

≤ 1 σ = 1
(4) 290

EM(TW (·, F), SF) =

{
1 σ = 0

≤ 1 σ = 1
(5) 291

The transformation on x produced by the tool 292

is guaranteed to increase or maintain performance 293

when the model is known to be wrong (Eq 4) and 294

decrease it otherwise (Eq 5). This justifies our 295

choice in Eq 2 of a detector that approximates the 296

probability for an incorrect prediction of model F . 297

4.1.1 Tool use detection 298

In an ideal setting, we maximizeEM over all avail- 299

able subsets: SF and SF . σ mediates when we 300

decide to use a tool. For SF we can see the best 301

choice is to use the original prediction yet for SF 302

we stand to gain if we use our tool before calling 303

the model F . If we are in an oracle setting and 304

we know the ground truth answer this gives us an 305

oracle detector for when to use a tool. 306

σ = 1(y 6= F (x)) (6) 307

However, in practice we approximate the ora- 308

cle detector with a parametrized detector d. This 309

aligns with previous work about query performance 310

4

prediction (Cronen-Townsend et al., 2002) where311

estimating query difficulty is a reasonable assump-312

tion.313

We explain our parametrized detector in more314

detail in Section 4.2. In the extreme, however,315

σ = 1 equates to always applying the tool. Given316

that we are detecting when the model is likely to317

fail, how we define our tool directly impacts the318

performance we can have on the subset of D it is319

applied over.320

4.1.2 Programs as tools321

The subset SF is by definition difficult for F . As322

we see later in Section 3, our tested diverse set323

of state-of-the-art neural models (each correspond-324

ing to a specific instantiation of F) display similar325

patterns. This raises the natural following ques-326

tion: What tool can distinctly complement the327

learned abilities of neural models?328

Our working hypothesis is that programs: 1)329

provide a natural interface to structured data; 2)330

circumvent several innate limitations of current331

neural systems due to their extrapolative nature.332

We define tools as short programs to transform the333

input data x into x∗, which are in the same input334

domain I . The term ε is introduced to account335

for any noise introduced between the transformed336

input (x∗) and the original input domain (I). This337

is represented in Eq 7 as:338

Tool : I → I∗ + ε (7)339

When paired selectively with an effective detec-340

tion strategy d, programs as tools are applied to341

increase the likelihood of a correct prediction on342

a subset that is challenging for a model F . This343

outlines a program generation method C(x) that344

generates a Python code dependent on the input. In345

Section 4.2 we describe our exploration into vari-346

ous methods for generating short programs as tools347

to interface in a query-specific way with structured348

data.349

Tool(x) = Exec[x,C(x)] (8)350

Deciding which programs to create as tools are351

strongly correlated with the target task as well as352

the limitations of the models. As such, we first353

clearly define our task in Section 2 followed by an354

in-depth analysis of where our search for useful355

programs as tools will start.356

4.2 Model implementation 357

ToolWriter is composed of a tool use detector and a 358

query-specific tool generator on top of an existing 359

TQA model. Following our behavior analysis, Om- 360

niTab and UnifiedSKG act as our two best TQA 361

models F (x) for WikiTableQuestions and we use 362

TapEx for WikiSQL. 363

4.2.1 Model agnostic tool-use detector 364

We develop a model-agnostic detector dθ(x, F (x)) 365

to detect when a tool is likely to improve model 366

accuracy. Detecting input difficulty is a reasonable 367

assumption and aligns with previous work on qual- 368

ity estimation (Ueffing and Ney, 2005; Fomicheva 369

et al., 2020) and query performance prediction 370

(Cronen-Townsend et al., 2002). The combined 371

detector in ToolWriter is a linear classifier with the 372

following features: 373

Sequence log-probability (SeqLogProb) is the 374

length-normalised sequence log-probability from a 375

trained model F (y | y, x, θ). 376

1

L

L∑
k=1

logF (yk | y<k, x, θ) (9) 377

378

We expect low-confidence answers are likely to be 379

incorrect. 380

Input length, as we have seen in Section 3, 381

poses a challenge to all models irrespective of size 382

and training objective. We leverage the size of the 383

table measured by the number of rows as a simple 384

feature to decide when to apply a tool. 385

Our use of such simple detection methods con- 386

trasts with well-studied error detection methods in 387

NLP (Bérard et al., 2019; Fomicheva et al., 2020) 388

as a sign that tools are reasonable model-agnostic 389

extensions even with simple detection heuristics. 390

4.2.2 Row-filter tool generator 391

The tool generator synthesizes a short Python pro- 392

gram that takes a table as input and returns a trans- 393

formed version of it. The following code snippet is 394

fixed and highlights the area where the generated 395

code from the tool generator is placed. 396

new_table = table[table.apply(lambda ... , axis=1)]

The task of the row filter generator is to generate 397

a lambda function to remove the rows in the table 398

that are not relevant to answering the question. The 399

5

Extracts x from “x-y” and keep if greater than 2
lambda row: float(row['Score'].split(‘–’)[0]) >= 2

(a) Zero-shot GPT-3 for the question "In how many games did sri
lanka score at least 2 goals?"

Keep rows containing ‘France’ in the description
lambda row: 'france' in row['Description'].lower()

(b) T5 for the question "Is France mentioned positively?"

Figure 3: Examples row filter tools generated from our
two proposed methods. Comments are added manually
for explanatory purposes.

program may be of arbitrary complexity empha-400

sizing the generality of our approach for systems401

to interact with data through programs as seen in402

Figure 3.403

As we see in Table 1 removing rows requires404

care to preserve crucial information. It is evident405

that a tool must adapt its filtering strategy according406

to the question and the table. Our row filtering tool407

keeps its input and output space consistent and408

suitable for the downstream model.409

The task of generating tools requires the model410

to produce an explicit transformation of the table411

given the question. Given that the search space412

for tools as programs grows exponentially with the413

expressiveness of the tools, we opt for methods that414

reduce the search space by having a prior on what415

possible transformations will work best.416

Specifically, we explore 2 approaches for gener-417

ating Python row filters:418

Fine-tuned T5. We fine-tune a T5 model419

through supervised training to autoregressively gen-420

erate a Python row filter given a question q and a421

table T . For our supervised data we leverage a sub-422

set WikiTableQuestions with SQUALL (Shi et al.,423

2020) annotations on questions that contain a sin-424

gle SELECT and WHERE clause which are likely425

to benefit from row filtering. Our starting check-426

point is FlanT5-XL, using a batch size of 64 on two427

RTX 3090 GPUs for 10k steps for 8 hours. Further428

training details are in429

Zero-shot GPT-3. We leverage GPT-3 for zero-430

shot prediction to generate a row filter as a Python431

lambda function. We use the "text-davinci-003"432

API with a temperature of 0.2 with the question and433

table schema in the prompt (Appendix C). Zero-434

shot tool generation shows the potential in low-435

effort approaches to manipulate structured data.436

Figure 3 showcases generated Python code sam-437

ples from both our proposed tool generators. Lan-438

Tool Detector Omnitab UnifiedSKG
Baseline 73.5 55.5

T5 Always 72.0 (-1.4) 59.5 (+4.0)
Oracle 77.5 (+4.0) 63.3 (+7.8)

GPT-3 Always 74.6 (+1.1) 63.0 (+7.6)
Oracle 80.3 (+6.8) 68.6 (+13.1)

Human SQL Always 74.9 (+1.4) 65.0 (+9.5)
Oracle 82.7 (+9.2) 70.6 (+15.1)

Table 2: Row filter tool performance on
WikiTableQuestions-Filtered with two detection
strategies.

guage models have no formal guarantees for exe- 439

cutable code (Rae et al., 2021; Chen et al., 2021). 440

As a result, if the execution of the tool throws an 441

exception or the resulting table is empty we revert 442

to the original table. 443

Manual tool. For WikiTableQuestions-Filter we 444

leverage the SQUALL SQL annotations to derive a 445

manual row filter. We analyze row filter headroom 446

performance in Section 5.1. 447

5 Results 448

First, we investigate the various tool generators 449

of ToolWriter on a subset of WikiTableQuestions 450

where filtering is often required. Second, we focus 451

on the importance of the detector to choose when to 452

best apply the generated tools (Section 5.2). Third, 453

we test ToolWriter to both detect and generate tools 454

across various TQA datasets and methods (Section 455

5.3). Finally, we analyze how ToolWriter performs 456

as table size increases (Section 5.4). 457

5.1 Performance of tool generators 458

As we observe in Table 2 our automatic tool gener- 459

ators (T5, zero-shot GPT-3) almost universally in- 460

crease model performance on WikiTableQuestions- 461

Filtered. Importantly, regardless of how our tools 462

may be applied, UnifiedSKG significantly benefits 463

by all tools generated by ToolWriter . This shows 464

our tools are effective at filtering irrelevant informa- 465

tion from tables that would otherwise cause TQA 466

models to fail. 467

Manual tools show the potential for tool gener- 468

ators to simplify tables further. Our best tool gen- 469

erator, zero-shot GPT-3, achieves 70% of manual 470

performance averaged over all detection settings 471

and models. 472

Table 2 also informs us of the importance of 473

the detector. We observe a large gap for all tool 474

6

WikiTableQuestions WikiSQL
OmniTab UnifiedSKG TapEx

Detector Dev Test Dev Test Dev Test
Never apply 62.7 63.0 49.6 50.8 89.6 89.0
Always apply 56.5 (-6.2) 57.5 (-5.5) 48.5 (-1.0) 50.2 (-0.6) 89.6 (0.0) 89.8 (+0.7)
SeqLogProb 63.7 (+1.0) 64.3 (+1.2) 52.6 (+3.0) 54.6 (+3.8) 90.5 (+0.8) 90.4 (+1.3)
Combined 63.7 (+1.0) 64.9 (+1.8) 52.9 (+3.4) 54.5 (+3.7) 90.7 (+1.1) 90.5 (+1.5)
Oracle 67.4 (+4.7) 68.3 (+5.3) 57.9 (+8.3) 59.0 (+8.1) 91.7 (+2.0) 91.5 (+2.4)

Table 3: Exact match results on various detection strategies for applying our best row-filter tool generator: GPT-3.

generators comparing always applying our tool to475

oracle detection.476

5.2 Detecting when to use tools477

Table 3 shows performance of multiple detection478

strategies on the full dev and test sets for Wik-479

iTableQuestions and WikiSQL. We use our best-480

performing tool generator, zero-shot GPT-3. We481

observe row filtering tools require query specific482

detection since “always” or “never” applying tools483

shows the lowest results in all cases.484

We observe that even simple detection meth-485

ods like SeqLogProb are sufficient to inform Tool-486

Writer when to apply the query-specific generated487

row filter. We see significant benefits in leveraging488

tools for all TQA models in contrast to not using489

them. Performance increases further as we include490

table length as a feature in our detector highlighting491

the importance of using tools in accordance with492

the complexity of the data.493

Under oracle detection conditions we observe494

significant potential for our generated tools. This495

shows how deciding when to apply a row filter tool496

is just as important as how to apply it.497

5.3 Overall performance498

Leveraging our prior findings, ToolWriter is the499

combination of our best detection method (SeqLog-500

Prob with table length) and our best row-filter tool501

generator (zero-shot GPT-3). For each dataset, we502

show the corresponding model F as our base TQA503

model. Table 4 and Table 5 show overall model504

performance on WikiTableQuestions and WikiSQL505

respectively.506

Our results show ToolWriter significantly im-507

proves performance agnostic of the target model508

using the generated tools. UnifiedSKG is particu-509

larly effective in leveraging the transformed tables510

with a 3.6% absolute performance increase com-511

pared to not using tools. When paired with Om-512

Method Dev Test
2-shot GPT-3 Direct (Chen, 2022) — 27.3
BART (Lewis et al., 2020) 37.2 38.0
2-shot GPT-3 CoT (Chen, 2022) — 45.7

UnifiedSKG (Xie et al., 2022b)
50.9
(49.6)

50.9
(50.8)

ToolWriter + UnifiedSKG 52.9 54.5
TapEx (Liu et al., 2021a) 57.0 57.5

OmniTab (Jiang et al., 2022)
—
(62.7)

62.8
(63.0)

ToolWriter + Omnitab 63.7 64.9

Table 4: Exact match accuracy results on WikiTable-
Questions. Results in parenthesis are our reproduced
experiments.

Method Dev Test
BART (Lewis et al., 2020) 87.3 85.8
UnifiedSKG (Xie et al., 2022b) 87.4 85.7
OmniTab (Jiang et al., 2022) — 88.7

TapEx (Liu et al., 2021a)
89.2
(89.6)

89.5
(89.0)

ToolWriter + TapEx 90.7 90.5

Table 5: Exact match accuracy results on WikiSQL. Re-
sults in parenthesis are our reproduced experiments.

niTab and TapEx we improve the state-of-the-art 513

for both datasets. The improvement in WikiSQL is 514

particularly impactful as ToolWriter enables a 10% 515

error-rate reduction. 516

These results show how programmatic tools ef- 517

fectively complement neural components as an ef- 518

fective method for processing semi-structured data. 519

In the following section, we perform a stratified 520

analysis to understand where ToolWriter leads to 521

the most improvements. 522

5.4 Tools improve performance on long 523

tables 524

In this section we do an ablation study stratified by 525

table length on WikiTableQuestions: short tables 526

7

Omnitab UnifiedSKG
Dev Test Dev Test

rows < 30
Baseline 67.0 67.9 52.7 54.3
ToolWriter 67.0 (+0.0) 68.0 (+0.1) 55.0 (+2.3) 57.2 (+2.8)

30 ≤ rows < 60
Baseline 48.7 46.4 39.6 37.5
ToolWriter 52.6 (+3.9) 51.9 (+5.5) 44.0 (+4.4) 45.1 (+7.6)

rows ≤ 60
Baseline 41.4 35.0 33.7 34.3
ToolWriter 48.1 (+6.6) 43.3 (+8.3) 42.0 (+8.3) 41.7 (+7.5)

Table 6: Row filtering performance comparison on partitions stratified by table length for WikiTableQuestions.

(rows < 30), medium tables (30≤ rows < 60), and527

long tables (60 ≤ rows). We aim to quantify the528

effect ToolWriter has as table size increases. As529

in Section 5.3 ToolWriter uses GPT-3 as the tool530

generator and the combined detector.531

Table 6 shows our original hypothesis confirmed:532

Row filtering tools can be an effective strategy to533

help models handle long tables. We notice how534

as table length increases, the positive effect of the535

row filtering tool becomes more pronounced. Our536

hypothesis is further confirmed with our T5 tool537

generator where results mimic the Table 6 reaching538

up to 5% absolute improvement with UnifiedSKG.539

As noted in Section 4.2.1, detection is critical to540

tool-use. On short tables, we observe no degrada-541

tion in performance highlighting the effectiveness542

of our combined detector.543

6 Background and Related Work544

Semantic parsing focuses on generating an exe-545

cutable parse for the exact answer (McClelland and546

Rumelhart, 1986), benefiting from data size inde-547

pendence (Herzig and Berant, 2017). It requires548

strong supervision (Dong and Lapata, 2018; Yin549

et al., 2021) or reinforcement learning (Zhong et al.,550

2017) and assumes coherent data formatting and551

an expressive target language.552

Alternative approaches learn a joint table-553

question-answer mapping. Seq2Seq models554

(Sutskever et al., 2014) execute (Zaremba and555

Sutskever, 2014) and simulate formal programs556

(Lu et al., 2015). Intermediate executable modules557

were integrated (Neelakantan et al., 2015), while558

Transformer-based models (Vaswani et al., 2017;559

Lewis et al., 2020; Raffel et al., 2020) leveraged un-560

supervised language capabilities (Xie et al., 2022a;561

Jiang et al., 2022; Herzig et al., 2020; Yin et al.,562

2020).563

Recent interest in execution-loop models arises 564

from language models’ ability to explain reasoning 565

(Wei et al., 2022), improving compositional ques- 566

tions (Zhou et al., 2022) and symbolic manipulation 567

(Bueno et al., 2022; Nye et al., 2021; Wolfson et al., 568

2020). TQA language models generate chains of 569

thought with sub-question answers (Chen, 2022). 570

Recent advances in code-focused language mod- 571

els led to an interest in combining question de- 572

composition and program interaction (Chen et al., 573

2021). Toolformer (Schick et al., 2023), Program 574

Assisted Learning (Gao et al., 2022b), and Tool 575

Augmented Language Models (Parisi et al., 2022) 576

interleave execution and natural language reason- 577

ing but face limitations in capacity. Our work ad- 578

dresses large structured context directly while in- 579

terleaving execution and natural language. 580

7 Conclusion 581

Tabular question answering is a challenging setting 582

for neural methods due to large context sizes and 583

implicit reasoning. First, we characterize the limita- 584

tions of neural methods to integrate structured data 585

and find all language modeling methods struggle 586

with large tables. Second, we propose ToolWriter 587

to generate query-specific tools to simplify large ta- 588

bles and detect when these transformations should 589

be applied. We propose various language model- 590

based methods to generate programs that filter rows 591

which universally improve and achieve state-of- 592

the-art results on two tabular question-answering 593

datasets. Finally, we determine significant head- 594

room in both detecting when to use tools and how 595

to generate them under oracle setting highlighting 596

the potential in tools to manipulate structured data 597

combined with language models. 598

8

References599

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie600
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind601
Neelakantan, Pranav Shyam, Girish Sastry, Amanda602
Askell, Sandhini Agarwal, Ariel Herbert-Voss,603
Gretchen Krueger, T. J. Henighan, Rewon Child,604
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu,605
Clemens Winter, Christopher Hesse, Mark Chen,606
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin607
Chess, Jack Clark, Christopher Berner, Sam Mc-608
Candlish, Alec Radford, Ilya Sutskever, and Dario609
Amodei. 2020. Language models are few-shot learn-610
ers. ArXiv, abs/2005.14165.611

Mirelle Candida Bueno, Carlos Gemmel, Jef-612
frey Stephen Dalton, Roberto de Alencar Lotufo,613
and Rodrigo Nogueira. 2022. Induced natural614
language rationales and interleaved markup tokens615
enable extrapolation in large language models.616
ArXiv, abs/2208.11445.617

Alexandre Bérard, Ioan Calapodescu, and Claude618
Roux. 2019. Naver labs europe’s systems for the619
wmt19 machine translation robustness task.620

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming621
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-622
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,623
Greg Brockman, Alex Ray, Raul Puri, Gretchen624
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-625
try, Pamela Mishkin, Brooke Chan, Scott Gray,626
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz627
Kaiser, Mohammad Bavarian, Clemens Winter,628
Philippe Tillet, Felipe Petroski Such, Dave Cum-629
mings, Matthias Plappert, Fotios Chantzis, Eliza-630
beth Barnes, Ariel Herbert-Voss, William Hebgen631
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie632
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,633
William Saunders, Christopher Hesse, Andrew N.634
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan635
Morikawa, Alec Radford, Matthew Knight, Miles636
Brundage, Mira Murati, Katie Mayer, Peter Welin-637
der, Bob McGrew, Dario Amodei, Sam McCandlish,638
Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-639
uating large language models trained on code.640

Wenhu Chen. 2022. Large language models are few(1)-641
shot table reasoners. ArXiv, abs/2210.06710.642

Stephen Cronen-Townsend, Yun Zhou, and W. Bruce643
Croft. 2002. Predicting query performance.644

Li Dong and Mirella Lapata. 2018. Coarse-to-fine de-645
coding for neural semantic parsing. In Annual Meet-646
ing of the Association for Computational Linguis-647
tics.648

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya,649
Frédéric Blain, Francisco Guzmán, Mark Fishel,650
Nikolaos Aletras, Vishrav Chaudhary, and Lucia651
Specia. 2020. Unsupervised quality estimation for652
neural machine translation.653

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 654
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 655
ham Neubig. 2022a. Pal: Program-aided language 656
models. 657

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 658
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 659
ham Neubig. 2022b. Pal: Program-aided language 660
models. ArXiv, abs/2211.10435. 661

Jonathan Herzig and Jonathan Berant. 2017. Neu- 662
ral semantic parsing over multiple knowledge-bases. 663
In Annual Meeting of the Association for Computa- 664
tional Linguistics. 665

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas 666
Müller, Francesco Piccinno, and Julian Martin 667
Eisenschlos. 2020. Tapas: Weakly supervised table 668
parsing via pre-training. ArXiv, abs/2004.02349. 669

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neu- 670
big, and Weizhu Chen. 2022. Omnitab: Pretraining 671
with natural and synthetic data for few-shot table- 672
based question answering. In North American Chap- 673
ter of the Association for Computational Linguistics. 674

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 675
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 676
guage models are zero-shot reasoners. 677

Angeliki Lazaridou, Elena Gribovskaya, Wojciech 678
Stokowiec, and Nikolai Grigorev. 2022. Internet- 679
augmented language models through few-shot 680
prompting for open-domain question answering. 681
ArXiv, abs/2203.05115. 682

Mike Lewis, Yinhan Liu, Naman Goyal, Mar- 683
jan Ghazvininejad, Abdelrahman Mohamed, Omer 684
Levy, Veselin Stoyanov, and Luke Zettlemoyer. 685
2020. Bart: Denoising sequence-to-sequence pre- 686
training for natural language generation, translation, 687
and comprehension. 688

Qian Liu, Bei Chen, Jiaqi Guo, Zeqi Lin, and 689
Jian-Guang Lou. 2021a. Tapex: Table pre- 690
training via learning a neural sql executor. ArXiv, 691
abs/2107.07653. 692

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi 693
Lin, Weizhu Chen, and Jian-Guang Lou. 2021b. 694
Tapex: Table pre-training via learning a neural sql 695
executor. 696

Zhengdong Lu, Hang Li, and Ben Kao. 2015. Neu- 697
ral enquirer: Learning to query tables in natural lan- 698
guage. In IEEE Data Engineering Bulletin. 699

James L. McClelland and David E. Rumelhart. 1986. 700
Mechanisms of sentence processing: Assigning 701
roles to constituents of sentences. 702

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. 703
2015. Neural programmer: Inducing la- 704
tent programs with gradient descent. CoRR, 705
abs/1511.04834. 706

9

https://arxiv.org/abs/1907.06488
https://arxiv.org/abs/1907.06488
https://arxiv.org/abs/1907.06488
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/564376.564429
https://arxiv.org/abs/2005.10608
https://arxiv.org/abs/2005.10608
https://arxiv.org/abs/2005.10608
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://openreview.net/forum?id=e2TBb5y0yFf
https://openreview.net/forum?id=e2TBb5y0yFf
https://openreview.net/forum?id=e2TBb5y0yFf
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,707
Henryk Michalewski, Jacob Austin, David Bieber,708
David Dohan, Aitor Lewkowycz, Maarten Bosma,709
David Luan, Charles Sutton, and Augustus Odena.710
2021. Show your work: Scratchpads for intermedi-711
ate computation with language models.712

Aaron Parisi, Yao Zhao, and Noah Fiedel. 2022. Talm:713
Tool augmented language models.714

Panupong Pasupat and Percy Liang. 2015a. Compo-715
sitional semantic parsing on semi-structured tables.716
In Annual Meeting of the Association for Computa-717
tional Linguistics.718

Panupong Pasupat and Percy Liang. 2015b. Composi-719
tional semantic parsing on semi-structured tables.720

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie721
Millican, Jordan Hoffmann, Francis Song, John722
Aslanides, Sarah Henderson, Roman Ring, Susan-723
nah Young, Eliza Rutherford, Tom Hennigan, Ja-724
cob Menick, Albin Cassirer, Richard Powell, George725
van den Driessche, Lisa Anne Hendricks, Mari-726
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-727
hannes Welbl, Sumanth Dathathri, Saffron Huang,728
Jonathan Uesato, John Mellor, Irina Higgins, An-729
tonia Creswell, Nat McAleese, Amy Wu, Erich730
Elsen, Siddhant Jayakumar, Elena Buchatskaya,731
David Budden, Esme Sutherland, Karen Simonyan,732
Michela Paganini, Laurent Sifre, Lena Martens,733
Xiang Lorraine Li, Adhiguna Kuncoro, Aida Ne-734
matzadeh, Elena Gribovskaya, Domenic Donato,735
Angeliki Lazaridou, Arthur Mensch, Jean-Baptiste736
Lespiau, Maria Tsimpoukelli, Nikolai Grigorev,737
Doug Fritz, Thibault Sottiaux, Mantas Pajarskas,738
Toby Pohlen, Zhitao Gong, Daniel Toyama, Cy-739
prien de Masson d’Autume, Yujia Li, Tayfun Terzi,740
Vladimir Mikulik, Igor Babuschkin, Aidan Clark,741
Diego de Las Casas, Aurelia Guy, Chris Jones,742
James Bradbury, Matthew Johnson, Blake Hecht-743
man, Laura Weidinger, Iason Gabriel, William Isaac,744
Ed Lockhart, Simon Osindero, Laura Rimell, Chris745
Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stan-746
way, Lorrayne Bennett, Demis Hassabis, Koray747
Kavukcuoglu, and Geoffrey Irving. 2021. Scal-748
ing language models: Methods, analysis & insights749
from training gopher.750

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine751
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,752
Wei Li 0133, and Peter J. Liu. 2020. Exploring the753
limits of transfer learning with a unified text-to-text754
transformer.755

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì,756
Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,757
Nicola Cancedda, and Thomas Scialom. 2023. Tool-758
former: Language models can teach themselves to759
use tools. ArXiv, abs/2302.04761.760

Tianze Shi, Chen Zhao, Jordan Boyd-Graber, Hal761
Daumé, and Lillian Lee. 2020. On the potential of762
lexico-logical alignments for semantic parsing to sql763
queries.764

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. 765
Sequence to sequence learning with neural networks. 766
In NIPS. 767

Nicola Ueffing and Hermann Ney. 2005. Word-level 768
confidence estimation for machine translation using 769
phrase-based translation models. 770

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 771
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 772
Kaiser, and Illia Polosukhin. 2017. Attention is all 773
you need. Advances in neural information process- 774
ing systems, 30. 775

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, 776
Adams Wei Yu, Brian Lester, Nan Du, Andrew M. 777
Dai, and Quoc V Le. 2021. Finetuned language 778
models are zero-shot learners. 779

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 780
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, 781
and Denny Zhou. 2022. Chain-of-thought prompt- 782
ing elicits reasoning in large language models. 783

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 784
Chaumond, Clement Delangue, Anthony Moi, Pier- 785
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow- 786
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 787
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 788
Teven Le Scao, Sylvain Gugger, Mariama Drame, 789
Quentin Lhoest, and Alexander M. Rush. 2019. 790
Huggingface’s transformers: State-of-the-art natural 791
language processing. 792

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gard- 793
ner, Yoav Goldberg, Daniel Deutch, and Jonathan 794
Berant. 2020. Break it down: A question under- 795
standing benchmark. Transactions of the Associa- 796
tion for Computational Linguistics, 8:183–198. 797

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, 798
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng 799
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic- 800
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle, 801
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming 802
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith, 803
Luke Zettlemoyer, and Tao Yu. 2022a. Unified- 804
skg: Unifying and multi-tasking structured knowl- 805
edge grounding with text-to-text language models. 806

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, 807
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng 808
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic- 809
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle, 810
Ansong Ni, Ziyu Yao, Dragomir R. Radev, Caiming 811
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith, 812
Luke Zettlemoyer, and Tao Yu. 2022b. Unified- 813
skg: Unifying and multi-tasking structured knowl- 814
edge grounding with text-to-text language models. 815
In Conference on Empirical Methods in Natural Lan- 816
guage Processing. 817

Pengcheng Yin, Hao Fang, Graham Neubig, Adam 818
Pauls, Emmanouil Antonios Platanios, Yu Su, Sam 819
Thomson, and Jacob Andreas. 2021. Compositional 820

10

https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2205.12255
https://arxiv.org/abs/2205.12255
https://arxiv.org/abs/2205.12255
https://arxiv.org/abs/1508.00305
https://arxiv.org/abs/1508.00305
https://arxiv.org/abs/1508.00305
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/2112.11446
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2010.11246
https://arxiv.org/abs/2010.11246
https://arxiv.org/abs/2010.11246
https://arxiv.org/abs/2010.11246
https://arxiv.org/abs/2010.11246
https://www.aclweb.org/anthology/H05-1096/
https://www.aclweb.org/anthology/H05-1096/
https://www.aclweb.org/anthology/H05-1096/
https://www.aclweb.org/anthology/H05-1096/
https://www.aclweb.org/anthology/H05-1096/
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2201.05966
https://arxiv.org/abs/2201.05966
https://arxiv.org/abs/2201.05966
https://arxiv.org/abs/2201.05966
https://arxiv.org/abs/2201.05966

generalization for neural semantic parsing via span-821
level supervised attention. In North American Chap-822
ter of the Association for Computational Linguistics.823

Pengcheng Yin, Graham Neubig, Wen tau Yih, and Se-824
bastian Riedel. 2020. Tabert: Pretraining for joint825
understanding of textual and tabular data. ArXiv,826
abs/2005.08314.827

Wojciech Zaremba and Ilya Sutskever. 2014. Learning828
to execute. ArXiv, abs/1410.4615.829

Victor Zhong, Caiming Xiong, and Richard Socher.830
2017. Seq2sql: Generating structured queries from831
natural language using reinforcement learning.832

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei,833
Nathan Scales, Xuezhi Wang, Dale Schuurmans,834
Olivier Bousquet, Quoc Le, and Ed Huai hsin835
Chi. 2022. Least-to-most prompting enables com-836
plex reasoning in large language models. ArXiv,837
abs/2205.10625.838

A Experimental setting839

We use the recommended settings for each and840

linearize the tables with the official scripts. At test841

time we perform greedy decoding. We obtain these842

models from the Huggingface model hub (Wolf843

et al., 2019).844

Our two tool generation models: prompt-based845

and fine-tuned. For our prompt-based model we846

use the OpenAI GPT-3 API with the "text-davinci-847

003" model with a temperature of 0.2.848

Our fine-tuned FlanT5-XL model is always849

trained for 10k steps with the validation set used to850

tune the appropriate batch size of 64, weight decay851

of 0.01 and a learning rate of 10e-4. We perform852

a grid search across these parameters as the most853

influential for the final row filter effectiveness.854

B Subset analysis855

To effectively filter according to relevant criteria we856

leverage parallel SQL annotations from SQUALL857

(Shi et al., 2020) which cover 77.11% of the dev858

data. These annotations are formal semantic parses859

of the query which remove the natural language860

variability enabling us to filter by required capabil-861

ity.862

As shown in the first two rows of Table 7 we863

see a marked decrease in performance for non864

SQUALL annotated samples across all model types.865

These are cases where the queries or table are con-866

sidered too complex to be expressed as SQL. As867

such we are restricted to qualitative and point-wise868

analysis of these samples to characterize model869

behavior.870

C Prompts 871

11

https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103

Data Subset Uni.SKG OmniTab GPT-3 FlanT5 dataset %
SQUALL annotated 54.56 66.65 38.62 17.36 77.11
Non SQUALL annotated 33.49 40.43 30.4 11.27 22.89
+ 1’ as offset 69.23 73.85 47.69 16.92 2.3
requires counting rows 43.14 66.11 27.17 6.72 25.22
count all rows 39.62 66.67 16.98 3.77 5.62
big sub or add 6.58 11.84 55.26 2.63 2.68
1 ’where’ clause 55.65 70.75 39.92 17.63 44.68
2 ’where’ clauses 49.42 59.83 41.62 15.32 12.22
count and where 54.41 67.8 39.73 16.35 63.3
answer not in prompt 30.23 31.4 26.74 3.88 9.11
multiple answers 41.94 51.61 32.26 0 2.19
one select 55.92 68.33 38.15 17.88 63.79
one select and one where 55.99 71.2 40.06 17.7 43.91
has duplicate columns 30.59 41.18 21.18 10.59 3

Table 7: Exact match performance of systems according to subsets of the WikiTableQuestions dev set.

User 1:
I need an expert to help me answer the question by making the table
smaller.
Question: Who are all of the players on the Westchester High School
club team?

table = {’Player’: [’Jarrett Jack’, ’Jermaine Jackson’, ...
’No.’: [’1’, ’8’, ...
’Nationality’: [’United States’, ’United States’, ...
’Position’: [’Guard’, ’Guard’, ...
’Years in Toronto’: [’2009-10’, ’2002-03’, ...
’School/Club Team’: [’Georgia Tech’, ’Detroit’, ...
}

User 2:
For ’Who are all of the players on the Westchester High School club
team?’ the most impactful change will be to filter the rows. Since I
don’t know all the rows I’ll use rough string matching, float casting,
lowering and be as broad as possible.

>>> new_table = table[table.apply(lambda row_dict: ’Westchester’ in
row_dict[’School/Club Team’].lower(), axis=1)]

Figure 4: Prompt used to generate row filter tools with GPT-3 in a zero-shot setup. Tables are truncated to 2 rows
to give the model a schema for how to interact with the data. Hilighted region indicates the start of the prompt
completion.

12

