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Abstract

Using in-context learning (ICL) for data gener-
ation, techniques such as Self-Instruct (Wang
et al., 2023) or the follow-up Alpaca (Taori
et al., 2023) can train strong conversational
agents with only a small amount of human su-
pervision. One limitation of these approaches
is that they resort to very large language models
(around 175B parameters) that are also propri-
etary and non-public. Here we explore the ap-
plication of such techniques to language mod-
els that are much smaller (around 10B–40B
parameters) and have permissive licenses. We
find the Self-Instruct approach to be less effec-
tive at these sizes and propose new ICL meth-
ods that draw on two main ideas: (a) Catego-
rization and simplification of the ICL templates
to make prompt learning easier for the LM,
and (b) Ensembling over multiple LM outputs
to help select high-quality synthetic examples.
Our algorithm leverages the 175 Self-Instruct
seed tasks and employs separate pipelines for
instructions that require an input and instruc-
tions that do not. Empirical investigations with
different LMs show that: (1) Our proposed
method yields higher-quality instruction tun-
ing data than Self-Instruct, (2) It improves
performances of both vanilla and instruction-
tuned LMs by significant margins, and (3)
Smaller instruction-tuned LMs generate more
useful outputs than their larger un-tuned coun-
terparts. Our codebase is available at https:
//github.com/IBM/ensemble-instruct.

1 Introduction

Instruction-tuned language models have demon-
strated strong zero-shot generalization capabilities
to new tasks (Chung et al., 2022a; Wei et al., 2021;
Ouyang et al., 2022; Mishra et al., 2022; Wang
et al., 2022; Longpre et al., 2023), creating interest
in large-scale automatic synthesis of instruction-
tuning data (Honovich et al., 2022; Wang et al.,
2023; Xu et al., 2032; Sun et al., 2023a; Xu
et al., 2023). In this context, Self-Instruct (Wang

et al., 2023) showed that a small number of expert-
annotated seed examples, coupled with in-context
learning (ICL) with a base model, can be used
to generate an instruction-tuning dataset to effi-
ciently instruct that same base model. While this
method yielded strong results and multiple follow-
up works, most techniques resort to very large LMs
(around 175B parameters) (Wang et al., 2023; Taori
et al., 2023), available only through closed-access
APIs, or have restricted model access.

In this paper, we present Ensemble-Instruct, a
novel algorithm enabling high-quality instruction-
tuning data generation with smaller LMs (40B pa-
rameters or less), that are also fully accessible and
have permissive usage licenses. We show that,
when using smaller models as generators, Self-
Instruct struggles to produce text of adequate qual-
ity, adversely affecting the utility of the generated
data and downstream model performance. Stay-
ing within the ICL framework and using the Self-
Instruct seed tasks, Ensemble-Instruct explores two
main ideas to solve this problem: (1) Categoriz-
ing and simplifying the ICL prompts to ease the
few-shot learning process, and (2) Ensembling over
multiple LM outputs to improve both accuracy and
diversity of the generated data.

A standard instruction-tuning sample exempli-
fies a task comprising: (a) an instruction that de-
scribes the action to be performed, (b) an optional
input on which the action is performed, and (c) the
output of the action. Similar to Self-Instruct, we
generate samples in two stages: instruction gener-
ation and instance generation, where an instance
comprises an input (optional) and an output. Unlike
Self-Instruct, Ensemble-Instruct seeks to simplify
the problem for the generating LM by first cate-
gorizing the examples into two types—those with
an input and those without—and then employing
separate pipelines for the two that leverage their
own unique and simplified prompts (§2.1). Further,
it ensembles over the outputs of different LMs in
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two complementary ways: (1) including examples
generated by a heterogeneous collection of LMs
in the final set to increase diversity, and (2) ma-
jority voting followed by filtering low-consensus
examples to improve accuracy (§2.4).

To understand the effects of our proposed meth-
ods, we run an extensive evaluation of different
models for instruction generation. This includes
vanilla language models (T5) UL2-20B (Tay et al.,
2022), FALCON-40B (Penedo et al., 2023), the
instruction-tuned models FLAN-T5-11B (Chung
et al., 2022b) and FLAN-UL2-20B (Tay et al., 2022)
and the chat-tuned1 version of GPT-NeoX-20B
(Black et al., 2022). As base models to fine-tune
with our generated data, we use the vanilla LM
Pythia-1.4B (Biderman et al., 2023) for ablation
analysis, MPT-7B2, a decoder only LM similar to
LLaMA (Touvron et al., 2023) as well as GPT-JT-
6B3, an instructed version of GPT-J (Wang and
Komatsuzaki, 2021) trained on Chain of Thought
and Natural instruction datasets among others. All
chosen models are open-source and have permis-
sive licenses (Apache-2).

We evaluate the models fine-tuned on the data
generated by Ensemble-Instruct on the the Super-
Natural Instructions (SuperNI) test set (Wang et al.,
2022) and 252 user-oriented tasks from Wang et al.
(2023). Our contributions can be summarized as
follows:

• We propose a technique for generating high-
quality instruction-tuning data with 40B-
parameter or smaller LMs that are openly ac-
cessible, with non-restrictive licenses.

• We outperform Self-Instruct training of GPT3
(175B) with a far smaller base model (MPT-
7B). The technique also improves the perfor-
mance of instruction-tuned GPT-JT-6B.

• Ablation studies demonstrate the importance
of the individual components of our tech-
nique.

• We release the synthetic instruction-tuning
dataset of about 45k samples along with our
ICL templates and codebase.

2 Ensemble-Instruct

1https://huggingface.co/togethercomputer/
GPT-NeoXT-Chat-Base-20B

2https://www.mosaicml.com/blog/mpt-7b
3https://huggingface.co/togethercomputer/

GPT-JT-6B-v1

Algorithm 1 Output Ensembling
Input: LM outputs o1, o2, o3; Threshold t
Output: Best output obest

1: obest← None
2: Rs← ϕ
3: for (i, j) in {(1, 2), (1, 3), (2, 3)} do
4: Rs← Rs ∪ RougeL(oi, oj)
5: end for
6: if min(Rs) > t then
7: i, j ← argmax(Rs)
8: obest ← oi
9: end if

10: return obest

A high-level overview of Ensemble-Instruct is
given in Figure 1. The algorithm has three main
components: (i) Categorization of tasks and their
associated prompts, (ii) Generation of instructions
followed by instances, where an instance comprises
an input (optional) and an output, and (iii) Ensem-
ble of outputs from multiple LMs.

2.1 Categorization of Tasks and Prompts

We divide the tasks, i.e. the instruction-tuning sam-
ples, into two categories: those where the instruc-
tion needs an input to be meaningful (type A) and
those where it does not (type B). Examples of tasks
from these two types can be seen in Figures 1 and 2.
Among the seed tasks of Wang et al. (2023), 125
belong to type A and 50 to type B. For each cate-
gory, we employ a dedicated pipeline that (a) uses
ICL demonstrations only of that type, and (b) tai-
lors the number of demonstrations to the difficulty
of the type, at different stages of generation.

2.2 Instruction Generation

For type A tasks, we use 24 ICL demonstrations
during instruction generation. Out of those, 20
are randomly sampled from the 125 seed tasks of
the same type, and 4 are sampled from instruc-
tions previously generated by the model itself. For
type B tasks, we use 10 ICL demonstrations, of
which 8 are sampled from the 50 type B seed tasks
and 2 from previously generated synthetic instruc-
tions. Further, we adopt the approach of Wang et al.
(2023) of adding a new instruction to the set only if
its Rouge-L (Lin, 2004) score with every existing
instruction is less than 0.7.

https://huggingface.co/togethercomputer/GPT-NeoXT-Chat-Base-20B
https://huggingface.co/togethercomputer/GPT-NeoXT-Chat-Base-20B
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Figure 1: High-level overview of Ensemble-Instruct for synthetic instruction data generation. The top part generates
data for the tasks comprising instruction, input, and output while the bottom part generates for tasks without inputs.
The instruction generation and instance generation steps are done using the same LM with few-shot in-context
learning. Additional LMs are used for the additional output generation, for which in-context examples are used only
when the LM is not previously instruction tuned. In each box, the bottom gray portion gives an example of what is
produced during that step.

2.3 Instance Generation

During instance generation, we use 18 ICL demon-
strations for type A tasks and 15 for type B tasks,
randomly selected from the seed tasks. Figure 2
shows examples of type A and type B tasks, and
the prompts used for instance generation.

2.4 Output Ensembling

The instruction and instance generation steps
should in principle complete the process of syn-
thesizing an instruction-tuning sample (Wang et al.,
2023). However, samples generated by small LMs
can be inaccurate, which prompts us to design a
final step of output ensembling. Instead of simply
accepting the already generated example, we use an
additional set of LMs to predict new outputs, given
either the generated instruction-input pair (type A)
or the instruction (type B).

The final output is derived by applying the
greedy consensus Algorithm 1 to the outputs gener-

ated by the different LMs. The algorithm computes
the Rouge-L score between all three pairs of out-
puts. If the lowest Rouge-L is above a threshold t,
it returns the first element of the pair with the high-
est Rouge-L score. This can be seen as a greedy
version of Minimum Bayesian Risk decoding (Goel
and Byrne, 2000) with additional thresholding. The
minimum threshold t is set to 0.01 across all tasks.
It is important to note that if the above process does
not select any of the three outputs, the example is
filtered out.

3 Analysis of Instruction Tuning Dataset

We generate multiple instruction-tuning datasets
using a heterogeneous set of LMs. Table 1 shows
the labels of our synthetic datasets according to the
LMs used in different stages of generation. Table 2
summarizes the set of LMs we use for generation.



Label Instructions Instances Additional Outputs for Ensembling
SO-FALCON FALCON FALCON –
SO-{UL2, NEOX} UL2, GPT-NEOXT-CHAT UL2, GPT-NEOXT-CHAT –
EO-FALCON-LM FALCON FALCON UL2, FALCON
EO-FALCON-ILM FALCON FALCON FLAN-UL2, GPT-NEOXT-CHAT
EO-{UL2, NEOX}-ILM UL2, GPT-NEOXT-CHAT UL2, GPT-NEOXT-CHAT FLAN-UL2, FLAN-T5-XXL

Table 1: Labels of our synthetic tuning datasets according to the LMs used for generating instructions, instances and
additional outputs for ensembling. Datasets with outputs from a single LM and an ensemble of LMs are prefixed
with SO- and EO-, respectively. The rest of each label specifies the models that were used at different stages of the
process. If additional outputs were generated using instruction-tuned LMs for ensembling, the dataset is suffixed
with -ILM. If vanilla LMs were used for the same purpose, we use the suffix -LM. With instruction-tuned LMs, we
generate the output zero-shot; for vanilla LMs, we use few-shot ICL.

3.1 Instance vs. Output Generation

As shown in Table 1, we use a distinct set of LMs
for instruction and instance generation on one hand
and output generation for ensembling on the other.
The motivations are two-fold: (1) We observed
that only relatively large decoder only models with
20B parameters or more are capable of generat-
ing input-output instances (type A). Therefore, we
use decoder only models including FALCON, GPT-
NEOXT-CHAT for input-output instance generation.
(2) Instruction-tuned models are capable of gener-
ating high quality zero-shot outputs. Therefore, we
use instruction-tuned models including FLAN-UL2,
FLAN-T5-XXL, GPT-NEOXT-CHAT for additional
output generation for ensembling. We found that
vanilla LMs UL2, FALCON lag behind instruction-
tuned models for output generation, as shown in
EO-FALCON-LM of Table 4.

Table 3 reports the number of valid instance gen-
erations, as well as samples accepted by the ensem-
ble Algorithm 1, using FLAN-UL2 and FLAN-T5-
XXL as additional outputs. We show results for 100
random samples using different models (FALCON,
FLAN-UL2, GPT-NEOXT-CHAT) to generate instruc-
tion and type A instances using the same prompt

Model # params LM type Rouge-L
FALCON 40B causal 12.7
UL2 20B seq2seq 10.4
GPT-NEOXT-CHAT 20B causal† 6.6
FLAN-UL2 20B seq2seq† 77.5
FLAN-T5-XXL 11B seq2seq† 73.0

Table 2: LMs we used for instruction-tuning data genera-
tion. seq2seq denotes sequence-to-sequence and causal
denotes decoder-only. GPT-NEOXT-CHAT is tuned on the
OIG dataset4. FLAN-UL2 and FLAN-T5-XXL are tuned
on FLAN collections. Both OIG and FLAN include
SUPERNI data. Instruction-tuned models are denoted
by †. Zero-shot performance of each model on the SU-
PERNI test set is provided in Rouge-L.

Model instruction instance ensemble
FALCON 100 72 49 (68%)
GPT-NEOXT-CHAT 100 40 25 (63%)
FLAN-UL2 100 0 0 (0%)

Table 3: Number of valid type A instructions and in-
stances generated by different models for 100 samples
as well and number (and percentage) of samples filtered
by Algorithm 1. All models share the same prompt and
examples.

and examples 5. Instructed models struggle to gen-
erate valid instances and in particular FLAN-UL2
generates no valid instance for the 100 samples.
Although not shown in the table, most LMs are
capable of generating type B instructions and in-
stances, indicating that instructions and instances
that do not require an input is an easier task than
those requiring an input.

3.2 Small LM Dataset Comparsion

We instruction-tune Pythia-1.4B-deduped with dif-
ferent datasets and evaluate them on the 119 tasks
of the SUPERNI test set. For validation, we use
10,589 samples from 106 SUPERNI training tasks.
Note that the validation and test sets have zero task
overlap. We instruction-tune the model for 5 to 7
epochs and select the checkpoint with the highest
validation Rouge-L score for evaluation. Perfor-
mances of these tuned models on the test set are
shown in Table 4, where M-SELF-INST denotes the
algorithm and ICL templates of Wang et al. (2023)
applied to {UL2, NEOX}, and F-SELF-INST, the
algorithm and ICL templates of Wang et al. (2023)
applied to FALCON. We also show the performance
of PYTHIA-1.4B-DEDUPED fine-tuned with two ex-

5See https://github.com/IBM/ensemble-instruct/
blob/main/ensemble_instruct/sample_instances.py
for instance rejection criteria and scripts/ensemble_instruct.sh
for experiment reproduction.
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Dataset # samples Rouge-L
ZERO-SHOT BASELINE 0 9.8
ALPACA 51,760 33.4
SELF-INST 82,612 34.4
M-SELF-INST 24,984 28.5
SO-{UL2, NEOX} 25,660 33.6
EO-{UL2, NEOX}-ILM 18,218 38.3
F-SELF-INST 38,624 25.6
SO-FALCON 30,537 34.4
EO-FALCON-LM 26,503 32.9
EO-FALCON-ILM 26,701 37.1

Table 4: Efficacy of synthetic instruction tuning
datasets measured by the performance of PYTHIA-
1.4B-DEDUPED tuned models on the SUPERNI test set.
Dataset labels are described in Table 1. ALPACA and
SELF-INST are external synthetic datasets for further
comparisons. M-SELF-INST denotes the algorithm and
ICL templates of Wang et al. (2023) applied to {UL2,
NEOX}. F-SELF-INST denotes the algorithm and ICL
templates of Wang et al. (2023) applied to FALCON. All
training sets include the 175 seed tasks and the learning
rate is 1e-5.

ternal datasets, ALPACA6 and SELF-INST7 for com-
parisons with much larger training data obtained
with the SELF-INSTRUCT algorithm.

The performance gap between M-SELF-INST and
SO-{UL2, NEOX} shows that our categorization
and simplification of ICL prompts for instruction
and instance generation already improves perfor-
mance over Self-Instruct. The same applies to
the larger FALCON model, with SO-FALCON out-
performing F-SELF-INST by a large margin. Out-
put ensembling with instruction-tuned LMs fur-
ther improves performance in both settings. Impor-
tantly, we find ensembling with vanilla LMs via
ICL less effective than ensembling with instruction-
tuned LMs that were applied zero-shot. Finally,
we produce data that is more sample-efficient than
Self-Instruct: With only about 30k examples, SO-
FALCON yields a Rouge-L score of 34.4, which is
equal to what Self-Instruct yields with about 82k
examples.

3.3 Qualitative Analysis

We randomly select 140 samples (40 with an input
and 100 with no input) from EO-{UL2, NEOX}-

6https://huggingface.co/datasets/yahma/
alpaca-cleaned

7https://github.com/yizhongw/self-instruct/
blob/main/data/gpt3_generations/batch_221203/
all_instances_82K.jsonl

Instance Type
criteria output input-output total
GOOD 77 22 99 (70.7%)
BAD 14 15 29 (20.7%)
MAYBE 9 3 12 (8.6%)
total 100 40 140

Table 5: Manual evaluation of synthetic instruction tun-
ing data quality on 140 randomly selected samples.

ILM and manually assign one of three categories
to each: GOOD, BAD and MAYBE. GOOD indicates
that there are no errors in the instruction, input
(optional) and output, and the sample as a whole
is coherent. MAYBE indicates that the input and
the output do not contain errors, but the quality is
questionable, e.g., the output is not complete. BAD

indicates that the input or the output contains errors
and is incoherent with the instruction.

Manual evaluation results are shown in Table 5,
which was carried out by one of the authors. We
find that examples containing only an instruction
and an output (type B) are generally of higher qual-
ity (77% GOOD) than those also containing an input
(type A) (55% GOOD). This difference in quality
is reflective of the relative difficulty of generating
them by smaller models, i.e. it is easier to generate
output-only instances, as suggested in §3.1. Out of
the 24,809 M-SELF-INST examples in Table 4 (after
excluding the 175 seed tasks), 20,752 (83.6%) are
of type B, further demonstrating that it is easier to
generate output-only instances. Ensemble-Instruct
pipeline avoids such unbalanced generation by first
categorizing the tasks and then leveraging separate
sets of simplified prompts for each. Each of our
data sets generated with Ensemble-Instruct is an
almost even split between instructions with and
without an input.

Figure 3 shows some synthetic examples before
and after output ensembling, depicting a few differ-
ent ways in which ensembling improves the quality
of the generated output. Regarding the effect of en-
sembling, observations show that it is particularly
effective in selecting accurate output when it is
short, e.g. classification tasks, via exact match. For
longer outputs from generation tasks, e.g. summa-
rization, the algorithm often filters out non-sensical
outputs with hallucinations.

https://huggingface.co/datasets/yahma/alpaca-cleaned
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——————————————————————————————————————————————————–
Instance Generation with Both an Input and an Output:
Generate examples for the following instructions. The instruction requires input and output
instances. And you have to generate both input and output.

instruction: Extract all the country names in the paragraph, list them separated by commas.
input: Dr. No is the sixth novel by the English author Ian Fleming to feature his British Secret
Service agent James Bond. Written at Fleming's Goldeneye estate in Jamaica, it was first published
in the United Kingdom by Jonathan Cape in 1958. In the novel Bond looks into the disappearance in
Jamaica of two fellow MI6 operatives who had been investigating Doctor No. Bond travels to No's
Caribbean island and meets Honeychile Rider, who is there to collect shells. They are captured and
taken to a luxurious facility carved into a mountain. The character of Doctor No, the son of a
German missionary and a Chinese woman, was influenced by Sax Rohmer's Fu Manchu stories. Dr. No was
the first of Fleming's novels to face widespread negative reviews in Britain, but it was received
more favourably in the United States.
output: English, British, Jamaica, the United Kingdom, German, Chinese, Britain, the United States.
|EoS|

instruction: Sort the given input ascendingly.
input: [10, 92, 2, 5, -4, 92, 5, 101]
output: [-4, 2, 5, 5, 10, 92, 92, 101]
|EoS|

instruction: In this task, you need to compare the meaning of the two sentences and tell if they
are the same. Output yes or no.
input: Sentence 1: The teacher is speaking to the class. Sentence 2: The teacher is
speaking to the students.
output: yes
|EoS|

instruction:

——————————————————————————————————————————————————–
Instance Generation with Only an Output:
Generate examples for the instructions. The instruction does not require input and generate the
output directly.

instruction: Which exercises are best for reducing belly fat at home?
output: Lying Leg Raises, Leg In And Out, Plank, Side Plank, Sit-ups
|EoS|

instruction: Is working part-time a good idea for teenagers between 15 and 19 years old?
output: There are both pros and cons to having a part-time job as a teenager. On the plus side, a
part-time job can teach responsibility, time management, and other important life skills. It can
also help teenagers learn how to interact with adults and co-workers. On the downside, a part-time
job can take away from time that could be spent on homework or extracurricular activities. It can
also be difficult to find a job that works around a school schedule.
|EoS|

instruction:

——————————————————————————————————————————————————–

Figure 2: Example ICL templates for instance generation. The top 3 examples are for instances with both an input
and an output; the bottom 3 are for output-only instances. We append the special token |EoS| to the end of
each example, clearly demarcating example boundaries, to make sure generation stops after
the final output token.

4 Experimental Results

We carry out automatic evaluations using Rouge-L
on the evaluation sets in Table 6. Both 119 SU-
PERNI tasks and 252 user-oriented tasks are identi-
cal to those evaluated in Wang et al. (2023).8

8We refer the reader to §4.4 of Wang et al. (2023) on the
characteristics of the 252 user-oriented test set and §A.1 on

Evaluation Data # tasks # samples
SUPERNI 119 11,810
User-Oriented 252 252

Table 6: Evaluation datasets for automatic evaluations
using Rouge-L. None of the tasks in the evaluation are
seen during training.



——————————————————————————————————————————————————–

instruction: Find the maximum number of the number in a set of numbers.
input: 1, 2, 23, 50, 1, 2, 23, 50, 1, 6, 22
output-before: 1, 2, 23, 50, 1, 2, 23, 23
output-after: 50

instruction: Describe a specific feature of the product in one sentence.
input: The feature of our product is that it has a rounded body shape, which is convenient to carry around.
output-before: Our product has a round design, making it lightweight and portable.
output-after: The product has a rounded body shape.

instruction: You are given a description of an item. Your task is to predict whether it can be found in a
store or not. Your output should be yes or no.
input: a red rubber ball
output-before: no
output-after: yes

instruction: Please describe a situation where you felt really happy.
output-before: When you have a happy life and you are happy, you are happy for yourself. When you're happy
for yourself, you are happy for everybody.
output-after: I felt really happy when I won the game

instruction: What are some foods that are high in Vitamin C?
output-before: 1. Tomatoes 2. Broccoli 3. Strawberries 4. Papaya 5. Oranges
output-after: oranges

——————————————————————————————————————————————————–

Figure 3: Instruction tuning dataset examples before and after output ensembling. Ensembling generally improves
different aspects of output quality, including correctness and adherence to the specifics of the question. We observe
a side effect of shorter outputs being preferred over longer ones in generation tasks even if in some cases that makes
the output less accurate, as shown in the last example.

We set aside 106 tasks (10, 589 samples) from
the SuperNI 756 training tasks as the validation
data set. For SuperNI instruction tuning, we ex-
clude the validation set from training to simulate
evaluation on unseen tasks.

We fine-tune 2 base LMs on the instruction tun-
ing data generated by the current technique: (1) a
vanilla LM, MPT-7B, and (2) an instruction tuned
LM, GPT-JT-6B.9 To fine-tune these models, we
adopt QLoRA (Dettmers et al., 2023), which en-
ables us to train both LMs with a single A100 GPU
(40GB memory) within 24 hours. We also car-
ried out full fine-tuning of MPT-7B for 2 data sets,
EO-{UL2,NEOX}-ILM and SUPERNI with 2 A100
GPUs (80GB memory). The results are shown in
Tables 7 and 8 for the SUPERNI test set, and in
Table 9 for the 252 user-oriented test set.

In Table 7, MPT-7B fine-tuned on our syn-
thetic data generated from vanilla LMs (SD I) out-
performs both T0 and GPT3SELF-INST despite the
fact that the latter are fine-tuned on over 80K sam-

the analysis of the overlap between 175 seed instructions and
the two evaluation data sets.

9They first train 2.62 billion tokens using the UL2 loss on
the Pile, (Gao et al., 2020), followed by 0.92 billion tokens
with a mixture of 5% of Chain-of-Thought (COT, Longpre
et al. (2023)), 20% of Public Pool of Prompts (P3, (Bach et al.,
2022)), 20% of SuperNI, and 55% of the Pile.

ples whereas MPT-7B is fine-tuned only on around
30K samples. MPT-7B fine-tuned on our syn-
thetic data generated from instruction-tuned mod-
els (SD II) outperform the data generated using
vanilla LMs (SD I) by up to 3 points. Full fine-
tuning outperforms QLoRA fine-tuning by 1.4 on
EO-{UL2,NEOX}-ILM (46.8 vs. 45.4). Full fine-
tuning again outperforms QLoRA fine-tuning by
2.2 on SuperNI training (50.4 vs. 48.2). MPT-7B

fine-tuned on the combination of two synthetic data
sets EO-{UL2,NEOX ∪ FALCON}-ILM and the Su-
perNI training set improves the Rouge-L score over
SuperNI training only by 2.2 points (from 48.2 to
50.4). We see a similar pattern in Table 8 for the
instruction-tuned base LM GPT-JT-6B. The fact
that our synthetically generated data significantly
improve the performance of the instruction-tuned
LM suggests that our technique generates data suf-
ficiently different from the instruction tuning data
incorporated into the base LM training.

In Table 9, we note that both base models, MPT-
7B and GPT-JT-6B, perform worse on the user-
oriented data set than on the SuperNI test set: 10.6
vs. 16.6 with MPT-7B and 6.2 vs. 10.4 with GPT-
JT-6B. Fine-tuning these models on about 45K
samples of the synthetic data provides a significant



Models # Params Training Set # Samples Rouge-L
Vanilla Base LMs
T5-LM, Wang et al. (2023) 11B None (ZERO-SHOT) 0 25.7
GPT3, Wang et al. (2023) 175B None (ZERO-SHOT) 0 6.8
MPT 7B None (ZERO-SHOT) 0 16.6
Instruction-tuned w/ SD I
T0, Wang et al. (2023) 11B Self-Instruct (GPT3) 82,612 33.1
GPT3SELF-INST, Wang et al. (2023) 175B Self-Instruct (GPT3) 82,612 39.9
MPTqlora, ours 7B SO-FALCON 30,537 43.1
MPTqlora, ours 7B EO-FALCON-LM 26,503 43.2
Instruction-tuned w/ SD II
MPTqlora, ours 7B EO-FALCON-ILM 26,701 44.4
MPTff, ours 7B EO-{UL2,NEOX}-ILM 18,218 46.8
MPTqlora, ours 7B EO-{UL2,NEOX}-ILM 18,218 45.4
MPTqlora, ours 7B EO-{UL2,NEOX ∪ FALCON}-ILM 44,744 46.4
Instruction-tuned w/ SUPERNI
Tk-Instruct, Wang et al. (2023) 11B SUPERNI 50,000 46.0
GPT3, Wang et al. (2023) 175B SUPERNI 50,000 49.5
MPTff, ours 7B SUPERNI 64,528 50.4
MPTqlora, ours 7B SUPERNI 64,528 48.2
Instruction-tuned with SD II & SUPERNI
GPT3SELF-INST, Wang et al. (2023) 175B Self-Instruct & SUPERNI 132,612 51.6
MPTqlora, ours 7B EO-COMBO-ILM & SUPERNI 109,272 50.4

Table 7: Evaluation results on the SuperNI test set. SD I denotes synthetic data generated from only vanilla LMs,
and SD II, synthetic data generated from the combination of vanilla and instruction-tuned LMs. Superscriptff

denotes full fine-tuning. Superscriptqlora, QLoRA fine-tuning. Learning rate is set to 1e-6 for full fine-tuning and
5e-5 for QLoRA tuning. EO-COMBO-ILM denotes EO-{UL2, NEOX ∪ FALCON}-ILM. Combination of synthetic
data EO-COMBO-ILM and SUPERNI training set improves over SUPERNI training set by 2.2 points, from 48.2
to 50.4. Instruction tuning with SD II output-performs instruction tuning with SD I. For instruction tuning with
SuperNI, we subsample 100 instances from each of the 650 training tasks.

Trainset # Samples Rouge-L
ZERO-SHOT 0 10.4
FALCON 30,537 41.7
EO-FALCON-LM 26,503 40.5
EO-FALCON-ILM 26,701 41.9
EO-{UL2,NEOX}-ILM 18,218 42.7
EO-COMBO-ILM 44,744 43.1
SUPERNI 64,528 44.2

Table 8: Results of (instruction-tuned base LM) GPT-
JT-6B fine-tuned on synthetic data. EO-COMBO-ILM
denotes EO-{UL2, NEOX ∪ FALCON}-ILM. All models
are fine-tuned with QLoRA with learning rate 5e-5.

Models Trainset Rouge-L
MPT-7B ZERO-SHOT 10.6
MPT-7B M-SELF-INST 20.6
MPT-7B F-SELF-INST 21.6
MPT-7B EO-COMBO-ILM 22.1
GPT-JT-6B ZERO-SHOT 6.2
GPT-JT-6B M-SELF-INST 16.5
GPT-JT-6B F-SELF-INST 17.4
GPT-JT-6B EO-COMBO-ILM 21.5

Table 9: Results on the 252 user-oriented test set.

boost to the Rouge-L scores, from 10.6 to 22.1 for
MPT-7B, and from 6.2 to 21.5 for GPT-JT-6B. This
suggests that the synthetic data we generate capture
the characteristics of user-oriented instructions to
a certain degree. Consistent with the results noted
in Table 4 for the SuperNI test set, the data gen-
erated by our technique is more effective than the
data generated using Self-Instruct (M-SELF-INST,
F-SELF-INST) on the user oriented data set as well.

In Table 10, we show experimental results with
other much larger models to illustrate the scala-
bility of the proposed Ensemble-Instruct to any
black-box models. Regardless of the base model
sizes, ranging from 6B to 40B, fine-tuning the base
model with the synthetic data EO-{UL2, NEOX ∪
FALCON}-ILM improves the Rouge-L score signif-
icantly. The fine-tuned model performances seem
to correlate well with the base model’s parameter
sizes, i.e. 43.1 for the smallest GPT-JT-6B, 49.9
for the largest FALCON-40B and all other model
sizes and scores in between. In particular, the ex-
perimental results on FALCON-40B indicates that
Ensemble-Instruct is not an instance of model dis-
tillation in the sense that the synthetic data gener-
ated from FALCON-40B and smaller models signifi-



Model-ParamSize zero-shot fine-tuned
GPT-JT-6B 10.4 43.1
MPT-7B 16.6 46.4
OPEN-LLAMA-13B 11.9 46.7
MPT-30B 12.2 49.5
FALCON-40B 12.7 49.9

Table 10: Fine-tuning results on large models demon-
strating the scalability of the Ensemble-Instruct tech-
nique to any black-box models. Zero-shot and fine-
tuned model scores are Rouge-L on SUPERNI test set.
Performance improvement of FALCON-40B after fine-
tuning, compared with its zero-shot performance indi-
cates that Ensemble-Instruct is not an instance of model
distillation. All models are fine-tuned with EO-{UL2,
NEOX ∪ FALCON}-ILM in Table 7.

cantly improves all model’s zero-shot performance
including the largest model FALCON-40B.

5 Related Work

This work is directly related to Self-Instruct (Wang
et al., 2023), borrowing from it the initial seed tasks
and the idea of using ICL for tuning a base model
into a instruction following model. It could also be
seen as related to follow-up works such as: Alpaca
(Taori et al., 2023)—a practical application of Self-
Instruct—Evol-Instruct (Xu et al., 2023), which
iteratively evolves instructions into increasing dif-
ficulty levels and Dromedary (Sun et al., 2023b),
which combines self-instruct with principle-based
correction, similar to Constitutional AI (Bai et al.,
2022). One fundamental limitation of these ap-
proaches is that they resort to very large language
models (around 175B parameters or 65B parame-
ters at the minimum) that are also proprietary and
non-public. Here we explore techniques for gen-
erating instruction tuning data using LMs that are
much smaller (around 10B–40B parameters) and
have permissive licenses. We crucially draw on a
heterogeneous mixture of smaller LMs to generate
diverse outputs and then ensemble over multiple
outputs to select high-quality synthetic examples,
while also simplifying the instruction creation pro-
cess.

The use of a reference metric, such as Rouge-
L, to ensemble the outputs of multiple language
distributions is a common technique in Mini-
mum Bayesian Risk decoding, with applications
to speech-to-text (Goel and Byrne, 2000), machine
translation (Kumar and Byrne, 2004), language
modeling (Suzgun et al., 2022) and parsing (Lee

et al., 2022), among others. Here we use a similar
technique in the context of instruction generation.
To the best of our knowledge, this is the first ap-
plication of such an approach to instruction-tuning
data generation.

Jiang et al. (2023) proposes LLM-Blender, an
ensembling framework to improve the generaion
qualities by leveraging the diverse strengths of
multiple language models. While we utilize the
output ensemble in the context of synthetic data
generation with Rouge-L as the reference metric,
LLM-Blender focuses on improving model output
qualities using PairRanker and GenFuser, both ap-
proaches capitalize on the efficacy of ensembling
as a way of improving output qualities.

Also related to this work are approaches directly
distilling from ChatGPT or GPT-4 (OpenAI, 2023)
without specific instruction strategies, such as Vi-
cuna10, which distills ChatGPT, Baize (Xu et al.,
2032), distilling conversations and Orca (Mukher-
jee et al., 2023), which uses a large amount of Chat-
GPT and GPT-4 outputs and combines FLAN tasks,
system prompts and machine-generated explana-
tions sampled from these models. The strength
of these approaches seems to rely more on the
amount and quality of teacher samples available
than on the inductive biases of the self-instructing
technique and still rely on proprietary models with
non-permissive licenses.

6 Conclusion

We present a novel technique to generate
instruction-tuning data through ICL, following the
recent Self-Instruct work (Wang et al., 2023). Un-
like Self-Instruct, we propose techniques that ex-
plicitly avoid the use of proprietary language mod-
els like GTP-3, ChatGPT or GPT-4. We show that
when using smaller models, Self-Instruct becomes
less performant. To overcome this, we draw on two
main ideas: (a) Categorization and simplification
of ICL templates to make prompt learning easier,
and (b) Ensembling over multiple LM outputs to
select high-quality examples. These ideas allow
us to outperform training with Self-Instruct while
utilizing the same seed tasks. The resulting syn-
thetic data enables base models like MPT-7B to
outperform GPT-3, a far larger model with 175B
parameters. The results of this work also encour-
age the departure from closed-access models for
advancing instruction generation algorithms.

10https://lmsys.org/blog/2023-03-30-vicuna/

https://lmsys.org/blog/2023-03-30-vicuna/


7 Limitations

Due to time and resource constraints, some parts of
the experimental setup are not ideal. All model out-
puts were collected from an internal API serving
models from HuggingFace11. Due to limitations
of this API, different number of samples were col-
lected for each model which may have introduced
noise in the performance estimates. We report the
exact number of samples used for training along
with the results. Note that for cases using ensem-
bling one has to take into account that there is an
additional filtering process that removes samples.
We provide approximate rates for ensembling fil-
tering in Table 3. For the small user-oriented test
set containing 252 tasks, automatic evaluation is
arguably not ideal. Proper human evaluation would
provide a clearer signal but this requires of signif-
icant time investment and resources. The method
employs a set of various LMs, and therefore the
generated synthetic data can be susceptible to the
limitations of such LMs, particularly the biases in-
herent in the training data which may be harmful
leading to synthetic data with hate, abuse and social
stereotypes.
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