
Published in Transactions on Machine Learning Research (12/2025)

Amortized Inference of Causal Models via Conditional Fixed-
Point Iterations

Divyat Mahajan∗,1, Jannes Gladrow2, Agrin Hilmkil2, Cheng Zhang2, Meyer Scetbon∗,2
1 Mila, Université de Montréal, 2 Microsoft Research

Reviewed on OpenReview: https: // openreview. net/ forum? id= D9pq25PGc5

Abstract

Structural Causal Models (SCMs) offer a principled framework to reason about interventions
and support out-of-distribution generalization, which are key goals in scientific discovery.
However, the task of learning SCMs from observed data poses formidable challenges, and often
requires training a separate model for each dataset. In this work, we propose an amortized
inference framework that trains a single model to predict the causal mechanisms of SCMs
conditioned on their observational data and causal graph. We first use a transformer-based
architecture for amortized learning of dataset embeddings, and then extend the Fixed-Point
Approach (FiP) to infer the causal mechanisms conditionally on their dataset embeddings.
As a byproduct, our method can generate observational and interventional data from novel
SCMs at inference time, without updating parameters. Empirical results show that our
amortized procedure performs on par with baselines trained specifically for each dataset on
both in and out-of-distribution problems, and also outperforms them in scarce data regimes .

1 Introduction

Learning structural causal models (SCMs) from observations is a core problem in many scientific do-
mains (Sachs et al., 2005; Foster et al., 2011; Xie et al., 2012), as SCMs provide a principled way to model the
data generation process. They enable simulation of controlled interventions, offering the potential to accelerate
scientific discovery by predicting the outcomes of unseen experiments without requiring costly/time-consuming
lab trials (Ke et al., 2023; Zhang et al., 2024). However, solving this inverse problem of learning SCMs
from observed data is challenging as both the causal graph and the causal mechanisms are unknown a
priori. Recovering causal graphs is an NP-hard combinatorial optimization problem as the space of causal
graphs is super-exponential (Chickering et al., 2004). This subsequently complicates the estimation of causal
mechanisms via maximum likelihood estimation per node (Blöbaum et al., 2022). To address these challenges,
recent approaches have focused on learning causal mechanisms with partial causal structure, using techniques
such as autoregressive flows (Khemakhem et al., 2021; Geffner et al., 2022; Javaloy et al., 2023), or modeling
SCMs as fixed-point iterations via transformers (Scetbon et al., 2024).

Despite these advances, a major limitation remains: each new dataset requires training a specific model, that
prevents the transfer of causal knowledge across datasets. Amortized inference offers a solution by learning
a single model that can generalize across instances of the same optimization problem by exploiting their
shared structure (Andrychowicz et al., 2016; Gordon et al., 2019). This results in models that can quickly
adapt to new instances at test time (Finn et al., 2017). Amortized inference has shown success in several
challenging tasks, like bayesian posterior estimation (Garnelo et al., 2018; Müller et al., 2021), sampling
from unnormalized densities (Akhound-Sadegh et al., 2024; Sendera et al., 2024), as well as causal structure
learning (Lorch et al., 2022; Ke et al., 2022), which is more aligned with our paper.

∗Equal Contribution. Correspondence to: divyatmahajan@gmail.com.
This work was done when DM was an intern at Microsoft Research. JG, AH, CZ, and MS worked on this project when they

were affiliated with Microsoft Research.

1

https://openreview.net/forum?id=D9pq25PGc5

Published in Transactions on Machine Learning Research (12/2025)

𝑛

𝑛

Encoder

Attention
sample

Attention
node

𝐷𝑿

𝑛

𝑿1 𝑿2 𝑿𝑑

𝑑

𝑑ℎ

𝜇 𝐷𝑿,𝒢

𝒢 𝑿1

𝑿2
𝑿𝑑 𝑧 ∈ ℝ𝑑

𝒯 𝑧,𝐷𝑿,𝒢 ∈ ℝ𝑑

Projection

Conditional Embed

C
o
n
d
-
F
i
P

𝑑

𝑑

𝑑

𝑛
DAG
Attn.

Figure 1: Sketch of the approach proposed in this work. Given a dataset of observations DX and a causal
graph G obtained from an unknown SCM S(PN , G, F), the encoder produces a dataset embedding µ(DX , G),
which serves as a condition to instantiate Cond-FiP. Then for any point z ∈ Rd, T (z, DX , G) aims at
replicating the functional mechanism F (z) of the generative SCM.

In this work, we tackle the novel problem of amortized inference of causal mechanisms for additive noise
SCMs. While prior research has primarily focused on amortized approaches for causal discovery (Lorch et al.,
2022; Dhir et al., 2024) or treatment effect estimation (Nilforoshan et al., 2023; Zhang et al., 2023), our
goal instead is to train a single model capable of inferring the causal mechanisms of novel SCMs, given their
observational data and associated causal graph. We propose a two-step approach where we first learn dataset
embeddings via in-context learning (Garg et al., 2022) to represent the task-specific information. These
embeddings are then used to condition the fixed-point (FiP) approach (Scetbon et al., 2024) for modeling
causal mechanisms. This conditional modification, termed Cond-FiP, enables the model to adapt the causal
mechanism for each specific instance (Figure 1). Our key contributions are highlighted below.

• We propose Cond-FiP, a novel extension of FiP approach that enables amortized inference by training
a single model across different instances from the functional class of SCMs.

• For novel SCMs at inference, Cond-FiP can recover the causal mechanisms from the input observations
without updating any parameters, thereby allowing us to generate observational and interventional
data on the fly.

• We show empirically 1 that Cond-FiP achieves similar performances as the state-of-the-art (SOTA)
approaches trained from scratch for each dataset on both in and out-of-distribution (OOD) problems.
Further, Cond-FiP obtains better results than baselines in scarce data regimes, due to its amortized
inference procedure.

1.1 Related Works

Amortized Causal Learning. Amortized inference has gained traction in causality research, particularly
for structure learning. Early works by Lorch et al. (2022) and Ke et al. (2022) introduced transformer-
based models trained on multiple synthetic datasets using supervised objectives for amortized inference of
causal structure. Their approach aligns with recent works on in-context learning of function classes via
transformers (Müller et al., 2021; Akyürek et al., 2022; Garg et al., 2022; Von Oswald et al., 2023). Subsequent
improvements targeted OOD generalization (Wu et al., 2024), bayesian causal discovery (Dhir et al., 2024),
and applications to gene regulatory networks (Ke et al., 2023; Kim et al., 2025). Beyond structure learning,

1The code is available on Github: microsoft/causica.

2

https://github.com/microsoft/causica/tree/main/research_experiments/cond_fip

Published in Transactions on Machine Learning Research (12/2025)

amortized methods have been developed for ATE/CATE estimation (Nilforoshan et al., 2023; Zhang et al.,
2023; Sauter et al., 2025; Bynum et al., 2025; Balazadeh et al., 2025; Robertson et al., 2025; Ma et al., 2025;
Dhir et al., 2025), model selection (Gupta et al., 2023), and partial causal discovery tasks such as learning
topological order (Scetbon et al., 2024). However, amortized inference of causal mechanisms in SCMs remains
unaddressed, which is the central focus of our work.

Autoregressive Causal Learning. Most causal discovery methods focus first on structure learning (Chick-
ering, 2002; Peters et al., 2014; Zheng et al., 2018), followed by per-node maximum likelihood estimation to
recover the causal mechanisms (Blöbaum et al., 2022). In constrast, recent works on causal autoregressive
flows (Khemakhem et al., 2021; Geffner et al., 2022; Javaloy et al., 2023) focus on SOTA normalizing flow
based generative models to infer causal mechanisms. Further, FiP (Scetbon et al., 2024) modeled SCMs as
fixed-point problems over causal (topological) ordering of nodes using transformer-based architectures. These
approaches efficiently learn SCMs but require training a separate model per dataset. In this work, we remove
this limitation by extending FiP to enable amortized inference of causal mechanisms across different SCMs.

2 Amortized Causal Learning

2.1 Brief Overview of Amortized Inference

Amortized inference aims to learn a shared inference mechanism across multiple tasks that enables fast
adaptation to new tasks at test time. We motivate amortized inference through the following example,
consider the task of predicting the motion of objects on different planets. While trajectories vary across
planets across due to differences in gravitational constants, the underlying physical laws remain the same.
Rather than training a new model from scratch for each planet, we can exploit this shared structure to rapidly
adapt our predictions to new settings. This is the core idea behind amortized inference, leveraging common
patterns across training tasks to enable fast and efficient adaptation to novel ones.

Consider a task T that defines a distribution over inputs (Z) and targets (Y); Z, Y ∼ PT . Given a collection
of tasks

(
T (k))K

k=1 and some objective function L, the goal is to learn a shared model Tθ across tasks:

arg min
θ

∑
k

EZ,Y ∼P
T (k) L(Y , Tθ(Z, I(k))) (1)

where I(k) denotes additional context for task T (k), such as dataset with samples [Z1, · · · , Zn]. Instead of
retraining from scratch, the model should leverage the context I

′ to adapt to the task T
′ .

A classic approach towards this is meta-learning (Andrychowicz et al., 2016; Finn et al., 2017; Hospedales
et al., 2021), which leverages the context I

′ by task-specific finetuning. These methods typically learn a
shared initialization that is adapted for a new task via few gradient steps in an inner optimization loop. In
contrast, in-context learning (ICL) (Müller et al., 2021; Xie et al., 2021; Garg et al., 2022; Akyürek et al.,
2024) avoids this inner loop by using transformer-based architectures. By attending to the context I

′ during
the forward pass, ICL methods adapt to a new task without any parameter updates. This capability is often
attributed to transformers’ ability to implicitly approximate learning algorithms such as gradient descent
within their activations (Akyürek et al., 2022; Von Oswald et al., 2023).

While ICL is often used to describe "emergent" test-time adaptation in large language models (Brown et al.,
2020), where the training objective does not explicitly involve those tasks. Here, we focus on its formulation
as prior-fitted networks (PFNs) (Hollmann et al., 2022; Robertson et al., 2024), where transformers are
pretrained on synthetic datasets generated from a simulator that implicitly defines a prior over tasks.

2.2 Problem Setup

We start by formally defining structural causal models (SCMs). An SCM defines the causal generative process
of a set of d endogenous (causal) random variables V = {X1, · · · , Xd}, where each causal variable Xi is
defined as a function of a subset of other causal variables (V \ {Xi}) and an exogenous noise variable Ni:

Xi = Fi(PA(Xi), Ni) s.t. PA(Xi) ⊂ V , Xi ̸∈ PA(Xi) (2)

3

Published in Transactions on Machine Learning Research (12/2025)

Hence, an SCM S(PN , G, F) describes the data-generation process of X := [X1, · · · , Xd] ∼ PX from the
noise variables N := [N1, · · · , Nd] ∼ PN via the function F := [F1, · · · , Fd], and a graph G ∈ {0, 1}d×d

indicating the parents of each Xi, that is [G]i,j := 1 if Xj ∈ PA(Xi). We make the following assumptions
about SCMs.

• G is a directed and acyclic graph (DAG), and noise variables are mutually independent (Markovian
SCM).

• SCMs are restricted to be additive noise models (ANM), i.e., Xi = Fi(PA(Xi)) + Ni.

While the first assumption is pretty standard, we make the ANM assumption for training the proposed
dataset encoder in Section 3.1.

Consider a distribution over SCMs S(PN , G, F) ∼ PS . Then the goal with amortized inference of causal
mechanisms is to learn a single model Tθ that can approximate the true causal mechanism F (z) for any input
z ∈ Rd. With task specific context as I = (DX, G) in equation 1, we have

arg min
θ

ES∼PSEz∼PX
L(F (z), Tθ(z, DX, G)) (3)

Note that we consider access to causal graph G as part of the input context, which is available when
training on synthetic SCMs. Even if we don’t have access to G, we can use prior works on amortized causal
learning (Lorch et al., 2022; Ke et al., 2022) to infer the causal graphs from observations DX . This justifies
our setup where the causal graphs are provided as part of the context to the model.

3 Methodology: Conditional FiP

We present our methodology for learning the model T (., DX , G) that consists of two components: (1) a
dataset encoder that generates dataset embeddings µ(DX , G) from the input context, and (2) a conditional
variant of FiP (Scetbon et al., 2024), termed Cond-FiP that allows it to leverage the task-specific context
for amortized inference via the learned dataset embeddings µ(DX , G). We first present our dataset encoder,
then Cond-FiP, and conclude with data generation via Cond-Fip.

3.1 Dataset Encoder

The objective of this section is to develop a method capable of producing efficient latent representations of
datasets. To achieve this, we propose to train an encoder that predicts the noise samples from their associated
observations given the causal structures via in-context learning (pseudo code in Algorithm 1, Appendix A.4).

Training Setting. We consider empirical representations of K SCMs
(
S(P(k)

N , G(k), F (k))
)K

k=1, each sampled
independently from a distribution over SCMs S(P(k)

N , G(k), F (k)) ∼ PS . Each empirical representation,
denoted (D(k)

X , G(k))K
k=1, contains n observations D

(k)
X := [X(k)

1 , . . . , X
(k)
n]T ∈ Rn×d, and the causal graph

G(k) ∈ {0, 1}d×d. For training, we also need the associated noise samples D
(k)
N := [N (k)

1 , . . . , N
(k)
n]T ∈ Rn×d,

which play the role of the target variable in our prediction task. For simplicity, we drop the index k in our
notation and assume access to the full distribution PS . The objective is to recover the true noise DN from a
dataset of observations DX and the causal graph G, which provide us with dataset embeddings as detailed
below.

Encoder Architecture. Following (Lorch et al., 2021; Scetbon et al., 2024), we encode datasets using
a transformer-based architecture that alternates attention over both sample and node dimension. Given a
dataset DX , we first apply a linear embedding L(DX) ∈ Rn×d×dh , where dh is the hidden dimension. The
encoder E then applies transformer blocks, each comprising self-attention followed by an MLP (Vaswani
et al., 2017), where the attention mechanism is applied either across the samples n or the nodes d alternately.
Recall the standard self-attention is defined as

AM (Q, K) = exp((QKT − M)/
√

dh)
exp((QKT − M)/

√
dh) 1d

4

Published in Transactions on Machine Learning Research (12/2025)

where Q, K ∈ Rd×dh denote the keys and queries for a single attention head, and M ∈ {0, +∞}d×d is a
(potential) mask. When attending over samples, the encoder uses standard self-attention without masking
(M = {0}n×n). But for node-wise attention, we incorporate causal structure by masking invalid dependencies
using mask M = +∞×(1−G) in standard self-attention, with the convention that 0×(+∞) = 0. Finally, the
embeddings E(L(DX), G) ∈ Rn×d×dh are passed to a prediction network H : Rn×d×dh → Rn×d, implemented
as 2-hidden layers MLP to project back to the original data space.

Training Procedure. We minimize the mean squared error (MSE) of predicting the target DN from the
input (DX , G) over the distribution of SCMs PS available during training:

ES∼PS ||DN − H ◦ E(L(DX), G)||22 .

Further, as we restrict ourselves to the case of ANMs, we can equivalently reformulate our training objective
in order to predict the causal mechanism rather than the noise samples, as F (DX) := DX − DN . Therefore,
we instead propose to train our encoder as follows:

ES∼PS ||F (DX) − H ◦ E(L(DX), G)||22 .

Note that ANM assumption provides a simplified true mapping from data to noise as x → x − F (x), which is
difficult to obtain in general SCMs. Please check Appendix A.2 for more details on justification for ANMs
and why recovering noise is equivalent to learning the inverse SCM.

Inference. Given a new dataset DX and its causal graph G, encoder provides us with the dataset embedding
µ(DX , G) := E(L(DX), G) ∈ Rn×d×dh .

3.2 Cond-FiP: Conditional Fixed-Point Decoder

We now present the modification of FiP that uses the learned dataset embeddings µ(DX , G) for amortized
inference of causal mechanisms (pseudo code in Algorithm 2, Appendix A.4).

Training Setting. Analogous to the encoder training setup, we assume that we have access to a distribution
of SCMs S(PN , G, F) ∼ PS at training time, from which we can extract empirical representations (DX , G).
Our goal is to train T such that given the context (DX , G) from an SCM S(PN , G, F) ∼ PS , the induced
conditional function z ∈ Rd → T (z, DX , G) ∈ Rd approximates the true causal mechanisms F : z ∈ Rd →
F (z) ∈ Rd (E.q. 3).

Decoder Architecture. The design of our decoder is based on the FiP architecture for fixed-point SCM
learning, with two major differences: (1) we use the dataset embeddings µ(DX , G) as a high dimensional
codebook to embed the nodes, and (2) we leverage adaptive layer norm operators (Peebles & Xie, 2023) in
the transformer blocks of FiP to enable conditional attention mechanisms.

Conditional Embedding. The key change of our decoder compared to the original FiP is in the embedding
of the input. FiP proposes to embed a data point z := [z1, . . . , zd] ∈ Rd into a high dimensional space using a
learnable codebook C := [C1, . . . , Cd]T ∈ Rd×dh and positional embedding P := [P1, . . . , Pd]T ∈ Rd×dh , from
which they define:

zemb := [z1 ∗ C1, . . . , zd ∗ Cd]T + P ∈ Rd×dh

This ensures that the embedded samples preserve the original causal structure. However, this embedding
layer is only adapted if the samples considered are all drawn from the same observational distribution, as
the representation of the nodes given by the codebook C, is fixed. In order to generalize their embedding
strategy to the case where multiple SCMs are considered, we consider conditional codebooks and positional
embeddings adapted for each dataset. Given a dataset DX and a causal graph G, we propose to define the
conditional codebook and positional embedding as

C(DX , G) := µ(DX , G)WC

P (DX , G) := µ(DX , G)WP

5

Published in Transactions on Machine Learning Research (12/2025)

where µ(DX , G) := MaxPool(E(L(DX), G)) ∈ Rd×dh is obtained by max-pooling w.r.t the sample dimension
the dataset embedding E(L(DX), G) ∈ Rn×d×dh produced by our trained encoder, and WC , WP ∈ Rdh×dh

are learnable parameters. Then we propose to embed any point z ∈ Rd conditionally on the context (DX , G)
as follows:

zemb :=[z1 ∗ C1(DX , G), . . . , zd ∗ Cd(DX , G)]T + P (DX , G) ∈ Rd×dh

Adaptive Transfomer Block. Once an input z ∈ Rd has been embedded as zemb ∈ Rd×dh , FiP models
SCMs by simulating the reconstruction of the data from noise. Starting from n0 ∈ Rd×dh a learnable
parameter, they propose to update the current noise L ≥ 1 times by computing:

nℓ+1 = h(DAM (nℓ, zemb)zemb + nℓ)

where h refers to the MLP block, and for clarity, we omit both the layer’s dependence on its parameters
and the inclusion of layer normalization in the notation. Note that here FiP considers the DAG-Attention
mechanism (details in Appendix A.1) in order to correctly model the root nodes of the SCM. To obtain a
conditional formulation, we first replace the starting noise n0 with n0 := µ(DX , G)Wn0 ∈ Rd×dh , where
Wn0 ∈ Rdh×dh is a learnable parameter. Then we add adaptive layer normalization operators (Peebles & Xie,
2023) to both attention and MLP blocks, where each scale or shift is obtained by applying a 1 hidden-layer
MLP to the embedding µ(DX , G).

Projection. To project back the latent representation of z obtained from previous stages, nL ∈ Rd×dh , we
use a linear operation to get ẑ = nLWout ∈ Rd, where Wout ∈ Rdh is learnable.

Training Procedure. The result of forward pass can be summarized as ẑ = T (z, DX , G), where we
omit the dependence of ẑ on context (DX , G) for simplicity. We train the model T by minimizing the
reconstruction error of the true causal mechanisms estimated by our model over the distribution of SCMs PS ,
as shown below.

ES∼PSEz∼PX
∥T (z, DX , G) − F (z)∥2

2 (4)

where z ∼ PX is chosen independent of the random dataset DX . To compute (4), we propose to sample n
independent samples X ′

1, . . . , X ′
n from PX , leading to a new dataset DX′ independent of DX , and we obtain

the following optimzation problem:

ES∼PS ∥T (DX′ , DX , G) − F (DX′)∥2
2 .

Remark on ANM assumption. Though our method relies on the ANM assumption for encoder training
(Appendix A.2), we do not need this assumption for decoder training! An interesting direction for future
work is to develop more general encoder training strategies, such as using self-supervised learning for dataset
encoding. Another option is to pursue end-to-end training of Cond-FiP, or adopt curriculum learning by
first training the encoder to predict noise variables (as a "pretraining" step), and then fine-tuning it using
the decoder’s reconstruction loss on more realistic SCMs. However, we consider these extensions beyond the
scope of the current work.

3.3 Inference with Cond-FiP

We provide a summary of inference procedure with Cond-FiP, with details in Appendix A.3.

Observational Generation. Cond-FiP is capable of generating new data samples: given a random
vector noise n ∼ PN , we can estimate the observational sample associated according to an unknown SCM
S(PN , G, F) ∼ PS as long as we have access to its empirical representation (DX , G). Formally, starting from
n0 = n, we infer the associated observation by computing for ℓ = 1, . . . , d:

nℓ = T (nℓ−1, DX , G) + n . (5)

6

Published in Transactions on Machine Learning Research (12/2025)

After (at most) d iterations, nd corresponds to the observational sample associated to the original noise n
according to our conditional SCM T (·, DX , G). To sample noise from PN , we leverage cond-FiP that can
estimates noise samples under the ANM assumption by computing D̂N := DX − T (DX , µ(DX , G)). From
these estimated noise samples, we can efficiently estimate the joint distribution of the noise by computing the
inverse cdfs of the marginals as proposed in FiP.

Interventional Generation. Cond-FiP also enables the estimation of interventions given an empirical
representation (DX , G) of an unkown SCM S(PN , G, F) ∼ PS . To achieve this, we start from a noise
sample n, and we generate the associated intervened sample ẑdo by directly modifying the conditional SCM
provided by Cond-FiP. More specifically, we modify in place the SCM obtained by Cond-FiP, leading to its
interventional version T do(·, DX , G). Now, generating an intervened sample can be done by applying the loop
defined in (5), starting from n and using the intervened SCM T do(·, DX , G) rather than the original one.

4 Experiments

4.1 Setup

Data Generation Process. We use the synthetic data generation procedure proposed by Lorch et al.
(2022) to generate SCMs as this framework supports a wide variety of SCMs, making it well-suited for
amortized training. It allows sampling of graphs from different schemes and noise variables from diverse
distributions. Further, we can also control the complexity of causal mechanisms, choosing between linear
(LIN) functions or random fourier features (RFF) for non-linear causal mechanisms. We construct two
distribution of SCMs, PIN, and POUT, which vary based on the choice for sampling causal graphs, noise
variables, and causal relationships, see Appendix B.1 for more details.

Training Datasets. We randomly sample≃ 4e6 SCMs from the PIN distribution, each with d = 20 total
nodes. From each SCM, we extract the causal graph G and generate ntrain = 400 observations to obtain DX .
This procedure is used to generate training data both the dataset encoder and Cond-FiP, with each epoch
containing ≃ 400 randomly generated datasets.

Test Datasets. We evaluate the model’s generalization both in-distribution and out-of-distribution by
sampling test datasets from PIN and POUT, respectively. The test datasets are categorized as follows: LIN
IN and RFF IN where the SCM are sampled from PIN with linear and non-linear causal mechanisms
respectively. Similarly, we define LIN OUT and RFF OUT where the SCMs are sampled from POUT
instead. For each category, we vary the total nodes d ∈ [10, 20, 50, 100] and sample 6 or 9 SCMs per d, based
on the available schemes for sampling the causal graphs (check Appendix B.1 for details). This results in a
total of 120 test datasets, supporting a comprehensive evaluation of the methods. For each SCM we generate
ntest = 800 samples, split equally into task context DX and queries DX′ for evaluation. An interesting aspect
of our test setup is we assess the model’s ability to generalize to larger graphs (d = 50, d = 100), despite
training only with d = 20 node graphs.

Model Architecture. For both the dataset encoder and cond-FiP, we set the embedding dimension to
dh = 256 and the hidden dimension of MLP blocks to 512. Both of our transformer-based models contains
4 attention layers and each attention consists of 8 attention heads. Please check Appendix B.3 for further
details and Cond-FiP’s memory and compute requirements.

Baselines. We compare Cond-FiP against FiP (Scetbon et al., 2024), DECI (Geffner et al., 2022), and
DoWhy (Blöbaum et al., 2022). Since the baselines do not have any amortization procedure, they are trained
from scratch on each test setting. For a fair comparison with our method, we use the same context set DX

with 400 samples to train the baselines, which was used to obtain the dataset embeddings in Cond-FiP. All
the methods are then evaluated on the remaining 400 samples in query set DX′ . Also, we provide the true
graph G to all the baselines to ensure consistency with Cond-FiP.

To avoid potential confusion, we clarify that the notion of distribution shift is defined w.r.t Cond-FiP’s
training setup. For the baselines, there is no distribution shift as they are trained on the context (DX) drawn
from the specific test distribution. The most important comparison is with the baseline FiP, as Cond-FiP is

7

Published in Transactions on Machine Learning Research (12/2025)

DoWhy DECI FiP Cond-FiP

0.10

0.15

0.20

0.25

(a) Noise Prediction

DoWhy DECI FiP Cond-FiP

0.2

0.3

0.4

0.5

(b) Sample Generation

DoWhy DECI FiP Cond-FiP

0.2

0.3

0.4

0.5

(c) Interventional Generation

Figure 2: In-Distribution Results. Benchmarking Cond-FiP for various evaluation tasks, with datasets
sampled from RFF IN with d = 20. The y-axis denotes the RMSE, with mean and standard error over the
respective test datasets. Results indicate Cond-FiP can generalize to novel in-distribution instances, with
detailed results in Appendix C.

DoWhy DECI FiP Cond-FiP
0.15

0.20

0.25

0.30

0.35

(a) Noise Prediction

DoWhy DECI FiP Cond-FiP

0.5

0.6

0.7

0.8

0.9

(b) Sample Generation

DoWhy DECI FiP Cond-FiP

0.6

0.8

(c) Interventional Generation

Figure 3: OOD Results. Benchmarking Cond-FiP for various evaluation tasks, with datasets sampled from
RFF OUT with d = 100 to test for OOD generalization. The y-axis denotes the RMSE, with mean and
standard error over the respective test datasets. Results indicate Cond-FiP can generalize to novel OOD
instances and larger graphs, with detailed results in Appendix C.

its amortized counterpart. Further, we do not report detailed comparisons with CausalNF (Javaloy et al.,
2023) as its performance was consistently weaker than other baselines, check Appendix H for details.

Evaluation Tasks. We evaluate the methods on the following three tasks. Noise Prediction: given the
observations DX and the true graph G, infer the noise variables D̂N . Sample Generation: given the noise
samples DN and the true graph G, generate the causal variables D̂X . Interventional Generation: generate
intervened samples from noise samples DN and the true graph G.

Metric. Let us denote a predicted & true target as Ŷ ∈ Rntest×d and Y ∈ Rntest×d. Then RMSE is
computed as 1

ntest

∑ntest
i=1

√
1
d ∥[Y]i − [Ŷ]i∥2

2. Note that we scale RMSE by dimension d, which allows us to
compare results across different graph sizes.

4.2 Results

Generalization to OOD data and larger graphs. In Figure 2, we first present results for in-distribution
generalization using test datasets sampled from RFF IN for graphs with d = 20 nodes. Cond-FiP performs
competitively with baselines trained from scratch on each test instance, hence it successfully generalizes to
novel in-distribution instances. Notably, Cond-FiP was never explicitly trained to generate interventional data,
and its strong performance on this task further supports that it captures the underlying causal mechanisms.

Next we consider the more challenging case of OOD generalization using test datasets sampled from RFF
OUT and graphs with d = 100 nodes, while the Cond-FiP was trained only with d = 20 node graphs.
As shown in Figure 3, Cond-FiP continues to perform well, indicating successful generalization to OOD
instances and significantly larger graphs! Due to space constraints, we report results for SCMs with non-linear
mechanisms—the more challenging setting. Full results for both in-distribution and OOD scenarios are
available in Appendix C, where our findings remain consistent.

8

Published in Transactions on Machine Learning Research (12/2025)

50 100 400
Test Dataset Size

0.2

0.3

0.4

0.5
DECI
FiP
Cond-FiP

(a) Noise Prediction

50 100 400
Test Dataset Size

0.5

0.6

0.7

0.8

0.9 DECI
FiP
Cond-FiP

(b) Sample Generation

50 100 400
Test Dataset Size

0.5

0.6

0.7

0.8

0.9 DECI
FiP
Cond-FiP

(c) Interventional Generation

Figure 4: Scarce Data Regime Results. Benchmarking Cond-FiP on the various evaluation tasks (RFF
OUT and d = 100) as we reduce the test dataset size. The y-axis denotes the RMSE, with mean and
standard error over the respective test datasets. Cond-FiP generalizes much better than the baselines in the
low-data regime, with detailed results in Appendix E.

DoWhy DECI FiP Cond-FiP
0.45

0.50

0.55

0.60

(a) Noise Prediction

DoWhy DECI FiP Cond-FiP

0.6

0.7

0.8

(b) Sample Generation

DoWhy DECI FiP Cond-FiP

0.6

0.7

0.8

(c) Interventional Generation

Figure 5: OOD Results without True Graph. Benchmarking Cond-FiP for various evaluation tasks,
with datasets sampled from RFF OUT with d = 100 where the true graph G is not present in input context,
rather its inferred via AVICI. The y-axis denotes the RMSE, with mean and standard error over the respective
test datasets. Results indicate Cond-FiP can generalize to novel instances even in the absence of true graph,
with detailed results in Appendix F.

We also assess Cond-FiP’s sensitivity to distribution shifts by varying the magnitude of distribution shift
(details in Appendix D). We consider two cases, where we control the severity in distribution shift by
controlling the causal mechanisms or the noise variables. We find that Cond-FiP is more robust to shifts in
causal mechanisms, with minimal performance degradation. However, its performance is more sensitive to
shifts in noise distributions, deteriorating as the magnitude of shift increases.

Better Generalization in Scarce Data Regimes. An advantage of amortized inference methods is their
ability to generalize well when context DX for test instances is small. As the context size decreases, baselines
often suffer significant performance drops as they require training from scratch. In contrast, Cond-FiP is less
impacted as its parameters remain unchanged at inference time, and the inductive bias learned during training
enables effective generalization even with limited context. In Figure 4, we demonstrate this in the challenging
OOD setting (RFF OUT , d = 100), where Cond-FiP outperforms the baselines .Please check Appendix E
for further details.

Generalization without True Causal Graph. So far, our results assume access to the true causal graph
(G) as part of the input context to Cond-FiP. However, Cond-FiP can be extended to operate without this
information by first inferring the graph using amortized structure learning methods (Lorch et al., 2022; Ke
et al., 2022). We demonstrate this in Figure 5 for the RFF OUT; setting with d = 100 nodes, using graphs
inferred via AVICI (Lorch et al., 2022) for both Cond-FiP and the baselines. The results show that Cond-FiP
remains competitive, supporting its ability to capture underlying causal mechanisms (details in Appendix F).

Further, to assess whether Cond-FiP genuinely learns causal mechanisms tied to the input graph structure,
we perform a systematic sensitivity analysis by perturbing the causal graph. Starting from the true graph,
we randomly remove a proportion (p) of the true edges, such that on average p× (total edges) are missing.

9

Published in Transactions on Machine Learning Research (12/2025)

DoWhy DECI FiP Cond-FiP

0.2

0.4

0.6

(a) Noise Prediction

DoWhy DECI FiP Cond-FiP

0.2

0.4

0.6

0.8

(b) Sample Generation

DoWhy DECI FiP Cond-FiP

0.2

0.4

0.6

0.8

(c) Interventional Generation

Figure 6: CSuite Results. Benchmarking Cond-FiP on the various evaluation tasks on the CSuite benchmark,
which uses a different data simulator than the Cond-FiP’s training data simulator. The y-axis denotes the
RMSE, with mean and standard error across the 9 test datasets.

DoWhy DECI FiP Cond-FiP
0.5

1.0

1.5

2.0

(a) Noise Prediction

DoWhy DECI FiP Cond-FiP
0.5

1.0

1.5

2.0

(b) Sample Generation

DoWhy DECI FiP Cond-FiP

0.50

0.75

1.00

1.25

(c) Interventional Generation

Figure 7: CSuite GMM Results. Benchmarking Cond-FiP on the Large Backdoor and Weak Arrow
datasets from the CSuite benchmark, where the noise distribution is modified to be a multi-modal gaussian
mixture model. The y-axis denotes the RMSE, with mean and standard error across the 12 test scenarios.
Results indicate that Cond-FiP can generalize to instances with more complex noise distributions like GMMs.

As shown in Table 21 (Appendix F.1), Cond-FiP remains robust under moderate graph perturbations and
performs competitively with FiP, which is retrained from scratch for each setting. These results further
support that Cond-FiP learns transferable causal mechanisms and can adapt at test time by inferring functions
consistent with the available (and potentially imperfect) graph and observational context.

Ablation Study. Since the method relies on large-scale pretraining over synthetic SCMs, we analyze how
Cond-FiP’s performance scales with the number of pretraining SCMs. We conduct experiments at smaller
scales, with a total of 1e5, 4e5, 1e6 SCMs, as opposed to using 4e6 SCMs in our main results above. Our
results in Table 22 (Appendix G.1) show that Cond-FiP benefits consistently from additional pretraining
data, though the returns gradually diminish as scale increases. The most pronounced gains appear when
increasing the pretraining size from 1e5 to 4e5, while improvements become more incremental beyond 1e6.

Further, we conduct ablation studies on both the encoder (Appendix G.2) and decoder (Appendix G.3) to
better understand how the training data affects generalization performance. We find that Cond-FiP remains
competitive even when the encoder is trained on only RFF data, compared to training on a mixture of both.
In contrast, decoder performance benefits more noticeably from training on the combined dataset.

Generalization to novel data simulators. We further evaluate Cond-FiP on test datasets generated
using C-Suite (Geffner et al., 2022), a synthetic data simulator distinct from the training simulator. As
shown in Figure 6, Cond-FiP generalizes well to these novel instances. Additionally, to conduct more OOD
evaluations, we modify the noise distribution of the Large Backdoor and Weak Arrow datasets from the
Csuite benchmark such that the noise variables are sampled from a gaussian mixture model (GMM) (details
in Appendix B.2). Results in Figure 7 demonstrate that Cond-FiP can generalize to more complex noise
distributions as well. Importantly, while baselines were trained from scratch for each specific gaussian mixture
noise distribution, Cond-FiP was pretrained only on gaussian noise and generalizes effectively to settings
with GMM noise distribution.

10

Published in Transactions on Machine Learning Research (12/2025)

Method MMD(D̂query
X , Dquery

X) MMD(D̂context
X , Dquery

X) MMD(Dcontext
X , Dquery

X)
DoWhy 0.015 0.014 0.005
DECI 0.014 0.005 0.005
FiP 0.015 0.005 0.005
Cond-FiP 0.013 0.005 0.005

Table 1: Results for Flow Cytometry (Sachs) dataset. We benchmark Cond-FiP against the baselines
for the task of generating observational data on the real world Sachs benchmark. Each cell reports the MMD,
and we also report the reconstruction error for all of the methods. Results indicate that Cond-FiP matches
the performance of baselines trained from scratch.

Method MMD(D̂query
X , Dquery

X) MMD(D̂context
X , Dquery

X) MMD(Dcontext
X , Dquery

X)
DoWhy 0.020 0.014 0.005
DECI 0.016 0.005 0.005
FiP 0.017 0.005 0.005
Cond-FiP 0.019 0.005 0.005

Table 2: Results for Ecoli dataset. We benchmark Cond-FiP against the baselines for the task of generating
observational data on the real world Ecoli benchmark from the bnlearn repository. Each cell reports the
MMD, and we also report the reconstruction error for all of the methods. Results indicate that Cond-FiP
matches the performance of baselines trained from scratch.

Experiments on real-world benchmarks. Finally, we show that Cond-FiP can generalize to the real-
world instances using the flow cytometry dataset (Sachs et al., 2005) and ecoli dataset (Scutari, 2010).
Although Cond-FiP cannot be trained on real-world datasets since the encoder requires access to true noise
variables, it can still be used for inference. Both datasets contains n ≃ 800 observational samples expressed in
a d = 11 dimensional space for the flow cytometry dataset and d = 46 dimensional space for the ecoli dataset,
and the corresponding reference (true) causal graph. We split this into context Dcontext

X ∈ Rncontext×d and
queries Dquery

X ∈ Rnquery×d, each of size ncontext = nquery = 400. Note that the context dataset is to used to
train the baselines and obtain dataset embedding for Cond-FiP, while the query dataset is used for evaluation
of all the methods.

Since we don’t have access to the true causal mechanisms, we cannot compute RMSE for noise prediction
or sample generation like we did in our experiments with synthetic benchmarks. Instead for each method,
we obtain the noise predictions D̂context

N on the context, and use it to fit a gaussian distribution for each
component (node). Then we use the learned gaussian distribution to sample new noise variables, D̂query

N ,
which are mapped to the observations as per the causal mechanisms learned by each method, D̂query

X . Finally,
we compute the maximum mean discrepancy (MMD) distance between D̂query

X and Dquery
X as metric to

determine whether the method has captured the true causal mechanisms. For consistency, we also evaluate
the reconstruction performances by directly using the inferred noise from context D̂context

N from the models,
and then compute MMD between their reconstructed data (D̂context

X) and the query data (Dquery
X).

Table 1, 2, presents our results for the flow cytometry and the ecoli dataset, where for reference we also
report the MMD distance between samples from the context and query split, which should serve as the
gold standard since both the datasets are sampled from the same distribution. We find that Cond-FiP is
competitive with the baselines that were trained from scratch. Except DoWhy, the MMD distance with
reconstructed samples from the methods are close to oracle performance.

Note that Cond-FiP (as well as the other baselines) only supports hard interventions while the interventional
data available for Sachs are soft interventions. Hence, we are unable to provide a comprehensive evaluation
of Cond-FiP (and the baselines) for interventional predictions on Sachs.

11

Published in Transactions on Machine Learning Research (12/2025)

Computational Efficiency. Like other amortized approaches, Cond-FiP has a higher training cost than
the baselines, as it is trained across multiple datasets. While the cost of each forward-pass is comparable to
FiP, we trained Cond-FiP over approximately 4M datasets in an amortized manner. However, Cond-FiP offers
a significant advantage at inference time since it requires only a single forward pass to generate predictions,
whereas the baselines must be retrained from scratch for each new dataset. Thus, while Cond-FiP incurs a
higher one-time training cost, its substantially faster at inference.

For instance, Cond-FiP can infer causal mechanisms for a novel task in under one minute, while FiP takes
on average 30 minutes per task. For a concrete comparison, it took us 30 hours to train Cond-FiP but we
can solve each inference task in max 1 minute. Therefore, to compute our main results (Appendix C we
evaluated 360 different tasks, implying a total cost of 30 + 360/60 = 36 hours with Cond-FiP. In contrast,
evaluating FiP on the same 360 tasks would require retraining from scratch each time, taking approximately
180 hours!

Thus, while Cond-FiP has a higher one-time training cost, it offers a 5× speedup over FiP in total runtime
when evaluating across multiple tasks.

5 Conclusion

In this work, we propose novel methodology for training a single model for amortized inference of causal
mechanisms in SCMs. Cond-FiP not only generalizes to unseen in-distribution instances, but also to a wide
range of OOD instances, including larger graphs, unknown causal graphs, complex noise distributions, and
real-world data. To the best of our knowledge, this is the first approach to demonstrate the feasibility of
learning causal mechanisms in a reusable, foundational manner—paving the way for a paradigmatic shift
towards the assimilation of causal knowledge across datasets.

Limitations. Our training is limited to synthetic additive noise SCMs due to the requirement of true noise
variables for learning the dataset encoder. However, the conditional FiP decoder (see Section 3.2) does
not rely on this assumption and can be applied to general SCMs given pretrained dataset embeddings. A
promising direction for future work is to explore more general encoding schemes, such as self-supervised
learning, or design an implicit in-context learning approach to remove the need for dataset embeddings
via direct attention over the context (Mittal et al., 2024). We believe our framework can serve as a good
motivation for future works that incorporate real-world datasets during training as well.

While Cond-FiP generalizes to larger graphs, it does not yet benefit from larger context sizes at inference
(Appendix I.1), suggesting the need to scale both the model and training data for richer contexts. Addi-
tionally, although Cond-FiP performs well on generating interventional samples, it doesn’t perform well
on counterfactual generation (Appendix I.2). Future work will explore scaling Cond-FiP to larger problem
instances and application for more complex tasks (counterfactual generation) in real-world scenarios.

12

Published in Transactions on Machine Learning Research (12/2025)

Acknowledgements

We thank the members of the Machine Intelligence team at Microsoft Research for helpful discussions.
We also thank Sarthak Mittal for their suggestion to benchmark Cond-FiP in the scarce data regime.
Further, we thank Moksh Jain for their feedback on the draft. Part of the experiments were enabled
by the Digital Research Alliance of Canada (https://alliancecan.ca/en) and Mila cluster (https://
docs.mila.quebec/index.html). Divyat Mahajan acknowledges support via FRQNT doctoral scholarship
(https://doi.org/10.69777/354785) for his graduate studies.

Broader Impact Statement

We propose novel methodology for amortized inference of causal mechanisms in structural causal models,
representing an initial step toward the development of causal foundational models. Integrating causal
principles into machine learning has been widely suggested to improve robustness and reliability, an important
property for high-stakes domains such as healthcare, policy, and scientific discovery. By advancing core
methodology in causal inference, our work may indirectly support the creation of machine learning systems
that are more transparent and trustworthy. However, our research currently does not target any societal
application, and does not pose foreseeable risks or negative consequences.

References
Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos, Cheng-Hao

Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, et al. Iterated denoising
energy matching for sampling from boltzmann densities. arXiv preprint arXiv:2402.06121, 2024.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algorithm is
in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661, 2022.

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Architectures and
algorithms. arXiv preprint arXiv:2401.12973, 2024.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul, Brendan
Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient descent. Advances
in neural information processing systems, 29, 2016.

Vahid Balazadeh, Hamidreza Kamkari, Valentin Thomas, Benson Li, Junwei Ma, Jesse C Cresswell, and
Rahul G Krishnan. Causalpfn: Amortized causal effect estimation via in-context learning. arXiv preprint
arXiv:2506.07918, 2025.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286(5439):
509–512, 1999.

Patrick Blöbaum, Peter Götz, Kailash Budhathoki, Atalanti A. Mastakouri, and Dominik Janzing. Dowhy-gcm:
An extension of dowhy for causal inference in graphical causal models. arXiv preprint arXiv:2206.06821,
2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Lucius EJ Bynum, Aahlad Manas Puli, Diego Herrero-Quevedo, Nhi Nguyen, Carlos Fernandez-Granda,
Kyunghyun Cho, and Rajesh Ranganath. Black box causal inference: Effect estimation via meta prediction.
arXiv preprint arXiv:2503.05985, 2025.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of machine learning
research, 3(Nov):507–554, 2002.

Max Chickering, David Heckerman, and Chris Meek. Large-sample learning of bayesian networks is np-hard.
Journal of Machine Learning Research, 5:1287–1330, 2004.

13

https://alliancecan.ca/en
https://docs.mila.quebec/index.html
https://docs.mila.quebec/index.html
https://doi.org/10.69777/354785

Published in Transactions on Machine Learning Research (12/2025)

Anish Dhir, Matthew Ashman, James Requeima, and Mark van der Wilk. A meta-learning approach to
bayesian causal discovery. arXiv preprint arXiv:2412.16577, 2024.

Anish Dhir, Cristiana Diaconu, Valentinian Mihai Lungu, James Requeima, Richard E Turner, and Mark
van der Wilk. Estimating interventional distributions with uncertain causal graphs through meta-learning.
arXiv preprint arXiv:2507.05526, 2025.

P Erdos and A Renyi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Jared C Foster, Jeremy MG Taylor, and Stephen J Ruberg. Subgroup identification from randomized clinical
trial data. Statistics in medicine, 30(24):2867–2880, 2011.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn in-context?
a case study of simple function classes. Advances in Neural Information Processing Systems, 35:30583–30598,
2022.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray Shanahan,
Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In International
conference on machine learning, pp. 1704–1713. PMLR, 2018.

Tomas Geffner, Javier Antoran, Adam Foster, Wenbo Gong, Chao Ma, Emre Kiciman, Amit Sharma,
Angus Lamb, Martin Kukla, Nick Pawlowski, et al. Deep end-to-end causal inference. arXiv preprint
arXiv:2202.02195, 2022.

Jonathan Gordon, John Bronskill, Matthias Bauer, Sebastian Nowozin, and Richard Turner. Meta-learning
probabilistic inference for prediction. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HkxStoC5F7.

Shantanu Gupta, Cheng Zhang, and Agrin Hilmkil. Learned causal method prediction. arXiv preprint
arXiv:2311.03989, 2023.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First steps.
Social networks, 5(2):109–137, 1983.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer that
solves small tabular classification problems in a second. In NeurIPS 2022 First Table Representation
Workshop, 2022. URL https://openreview.net/forum?id=eu9fVjVasr4.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural networks:
A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):5149–5169, 2021.

Adrián Javaloy, Pablo Sanchez-Martin, and Isabel Valera. Causal normalizing flows: from theory to practice.
In Advances in Neural Information Processing Systems, volume 36, 2023.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and improving the training dynamics of diffusion models. ArXiv, abs/2312.02696, 2023. URL https:
//api.semanticscholar.org/CorpusID:265659032.

Nan Rosemary Ke, Silvia Chiappa, Jane Wang, Anirudh Goyal, Jorg Bornschein, Melanie Rey, Theophane
Weber, Matthew Botvinic, Michael Mozer, and Danilo Jimenez Rezende. Learning to induce causal
structure. arXiv preprint arXiv:2204.04875, 2022.

Nan Rosemary Ke, Sara-Jane Dunn, Jorg Bornschein, Silvia Chiappa, Melanie Rey, Jean-Baptiste Lespiau,
Albin Cassirer, Jane Wang, Theophane Weber, David Barrett, Matthew Botvinick, Anirudh Goyal, Mike
Mozer, and Danilo Rezende. Discogen: Learning to discover gene regulatory networks, 2023.

14

https://openreview.net/forum?id=HkxStoC5F7
https://openreview.net/forum?id=eu9fVjVasr4
https://api.semanticscholar.org/CorpusID:265659032
https://api.semanticscholar.org/CorpusID:265659032

Published in Transactions on Machine Learning Research (12/2025)

Ilyes Khemakhem, Ricardo Monti, Robert Leech, and Aapo Hyvarinen. Causal autoregressive flows. In
International Conference on Artificial Intelligence and Statistics, pp. 3520–3528. PMLR, 2021.

Jang-Hyun Kim, Claudia Skok Gibbs, Sangdoo Yun, Hyun Oh Song, and Kyunghyun Cho. Large-scale
targeted cause discovery via learning from simulated data. Transactions on Machine Learning Research,
2025. ISSN 2835-8856. URL https://openreview.net/forum?id=NVgy29IQw8.

Lars Lorch, Jonas Rothfuss, Bernhard Schölkopf, and Andreas Krause. Dibs: Differentiable bayesian structure
learning. Advances in Neural Information Processing Systems, 34:24111–24123, 2021.

Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause, and Bernhard Schölkopf. Amortized inference for
causal structure learning. Advances in Neural Information Processing Systems, 35:13104–13118, 2022.

Yuchen Ma, Dennis Frauen, Emil Javurek, and Stefan Feuerriegel. Foundation models for causal inference
via prior-data fitted networks. arXiv preprint arXiv:2506.10914, 2025.

Sarthak Mittal, Eric Elmoznino, Leo Gagnon, Sangnie Bhardwaj, Dhanya Sridhar, and Guillaume Lajoie. Does
learning the right latent variables necessarily improve in-context learning? arXiv preprint arXiv:2405.19162,
2024.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Transformers
can do bayesian inference. arXiv preprint arXiv:2112.10510, 2021.

Hamed Nilforoshan, Michael Moor, Yusuf Roohani, Yining Chen, Anja Šurina, Michihiro Yasunaga, Sara
Oblak, and Jure Leskovec. Zero-shot causal learning. Advances in Neural Information Processing Systems,
36:6862–6901, 2023.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with continuous
additive noise models. Journal of Machine Learning Research, 2014.

Jake Robertson, Noah Hollmann, Noor Awad, and Frank Hutter. Fairpfn: Transformers can do counterfactual
fairness. arXiv preprint arXiv:2407.05732, 2024.

Jake Robertson, Arik Reuter, Siyuan Guo, Noah Hollmann, Frank Hutter, and Bernhard Schölkopf. Do-pfn:
In-context learning for causal effect estimation. arXiv preprint arXiv:2506.06039, 2025.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan. Causal protein-signaling
networks derived from multiparameter single-cell data. Science, 308(5721):523–529, 2005.

Andreas Sauter, Saber Salehkaleybar, Aske Plaat, and Erman Acar. Activa: Amortized causal effect estimation
without graphs via transformer-based variational autoencoder. arXiv preprint arXiv:2503.01290, 2025.

Meyer Scetbon, Joel Jennings, Agrin Hilmkil, Cheng Zhang, and Chao Ma. Fip: a fixed-point approach for
causal generative modeling, 2024.

Marco Scutari. Learning bayesian networks with the bnlearn r package. Journal of statistical software, 35:
1–22, 2010.

Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks, Alexandre
Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion samplers. Advances
in Neural Information Processing Systems, 37:81016–81045, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

15

https://openreview.net/forum?id=NVgy29IQw8

Published in Transactions on Machine Learning Research (12/2025)

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey
Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In International
Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393(6684):
440–442, 1998.

Menghua Wu, Yujia Bao, Regina Barzilay, and Tommi Jaakkola. Sample, estimate, aggregate: A recipe for
causal discovery foundation models. arXiv preprint arXiv:2402.01929, 2024.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context learning
as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Yu Xie, Jennie E Brand, and Ben Jann. Estimating heterogeneous treatment effects with observational data.
Sociological methodology, 42(1):314–347, 2012.

Jiaqi Zhang, Joel Jennings, Cheng Zhang, and Chao Ma. Towards causal foundation model: on duality
between causal inference and attention. arXiv preprint arXiv:2310.00809, 2023.

Jiaqi Zhang, Kristjan Greenewald, Chandler Squires, Akash Srivastava, Karthikeyan Shanmugam, and
Caroline Uhler. Identifiability guarantees for causal disentanglement from soft interventions. Advances in
Neural Information Processing Systems, 36, 2024.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Contin-
uous optimization for structure learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
e347c51419ffb23ca3fd5050202f9c3d-Paper.pdf.

16

https://proceedings.neurips.cc/paper/2018/file/e347c51419ffb23ca3fd5050202f9c3d-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e347c51419ffb23ca3fd5050202f9c3d-Paper.pdf

Published in Transactions on Machine Learning Research (12/2025)

Appendix

Table of Contents
A Additional Details on Cond-FiP 18

A.1 DAG-Attention Mechanism . 18
A.2 Details on Encoder Training . 18
A.3 Inference with Cond-FiP . 19
A.4 Pseduo Code . 20

B Details on Experiment Setup 22
B.1 AVICI Benchmark . 22
B.2 CSuite Benchmark . 23
B.3 Model Architecture and Training Details . 24

C Complete Results for Cond-FiP on AVICI Benchmark 24

D Experiments on Sensitivity to Distribution Shifts on AVICI benchmark 26

E Experiment on Generalization in Scarce Data Regime on AVICI benchmark 30
E.1 Experiments with nDtest = 100 . 30
E.2 Experiments with nDtest = 50 . 32

F Experiments without True Causal Graph on AVICI Benchmark 34
F.1 Analyzing Cond-FiP’s Sensitivity to Causal Graph Structure 36

G Ablation Study on AVICI benchmark 37
G.1 Analyzing the Effect of Pretraining Scale . 37
G.2 Ablation Study of Encoder . 37
G.3 Ablation Study of Decoder . 40

H Comparing Cond-FiP with CausalNF 42

I Limitations of Cond-FiP 43
I.1 Evaluating Generalization of Cond-Fip to Larger Sample Size 43
I.2 Counterfactual Generation with Cond-FiP . 45

17

A Additional Details on Cond-FiP

A.1 DAG-Attention Mechanism

In FiP (Scetbon et al., 2024) the authors propose to leverage the transformer architecture to learn SCMs
from observations. By reparameterizing an SCM according to a topological ordering induced by its graph,
the authors show that any SCM can be reformulated as a fixed-point problem of the form X = H(X, N)
where H admits a simple triangular structure:

[JacxH(x, n)]i,j = 0, if j ≥ i

[JacnH(x, n)]i,j = 0, if i ̸= j,

where JacxH, JacnH denote the Jacobian of H w.r.t the first and second variables respectively. Motivated
by this fixed-point reformulation, FiP considers a transformer-based architecture to model the functional
relationships of SCMs and propose a new attention mechanism to represent DAGs in a differentiable manner.
Recall that the standard attention matrix is defined as:

AM (Q, K) = exp((QKT − M)/
√

dh)
exp((QKT − M)/

√
dh) 1d

(6)

where Q, K ∈ Rd×dh denote the keys and queries for a single attention head, and M ∈ {0, +∞}d×d is
a (potential) mask. When M is chosen to be a triangular mask, the attention mechanism (6) enables to
parameterize the effects of previous nodes on the current one However, the normalization inherent to the
softmax operator in standard attention mechanisms prevents effective modeling of root nodes, which should
not be influenced by any other node in the graph. To alleviate this issue, FiP proposes to consider the
following formulation instead:

DAM (Q, K) = exp((QKT − M)/
√

dh)
V

(
exp((QKT − M)/

√
dh) 1d

) (7)

where Vi(v) = vi if vi ≥ 1, else Vi(v) = 1 for any v ∈ Rd. While softmax forces the coefficients along each
row of the attention matrix to sum to one, the attention mechanism described in (7) allows the rows to sum
in [0, 1], thus enabling to model root nodes in attention.

A.2 Details on Encoder Training

Additive Noise Model Assumption. Our method relies on the ANM assumption only for the training
the encoder. This is because we require the encoder to predict the noise from data in order to obtain
embeddings, and under the ANM assumption, the mapping from data to noise can be easily expressed as
x → x − F (x) where F is the generative functional mechanism of the generative ANM. However, if we were to
consider general SCMs, i.e. of the form X = F (X, N), we would need access to the mapping x → F −1(x, ·)(x)
(assuming this function is invertible), which for general functions is not tractable. Also, note that the ANM
assumption by default ensures invertibility since the jacobian w.r.t noise is a triangular matrix with nonzero
diagonal elements. An interesting future work would be to consider a more general dataset encoding (using
self-supervised techniques) that do not require the ANM assumption, but we believe this is out of the scope
of this work.

We now provide further details on training the encoder and show how recovering the noise is equivalent to
learn the inverse causal generative process. Recall that an SCM is an implicit generative model that, given a
noise sample N, generates the corresponding observation according to the following fixed-point equation in X

X = F (X, N)

More precisely, to generate the associated observation, one must solve the above fixed-point equation in X
given the noise N. Let us now introduce the following notation that will be instrumental for the subsequent
discussion: we denote FN(z) : z → F (z, N).

Published in Transactions on Machine Learning Research (12/2025)

Due to the specific structure of F (determined by the DAG G associated with the SCM), the fixed-point
equation mentioned above can be efficiently solved by iteratively applying the function FN to the noise (see
Eq. (5) in the manuscript). As a direct consequence, the observation X can be expressed as a function of the
noise:

X = Fgen(N)

where Fgen(N) := (FN)◦d(N), d is the number of nodes, and ◦ denotes the composition operation. In the
following we refer to Fgen as the explicit generative model induced by the SCM.

Conversely, assuming that the mapping z → Fgen(z) is invertible, then one can express the noise as a function
of the data:

N = F −1
gen(X)

Therefore, learning to recover the noise from observation is equivalent to learn the function F −1
gen, which

is exactly the inverse of the explicit generative model Fgen. It is also worth noting that under the ANM
assumption (i.e. F (X, N) = f(X) + N), Fgen is in fact always invertible and its inverse admits a simple
expression which is

F −1
gen(z) = z − f(z)

Therefore, in this specific case, learning the inverse generative model F −1
gen is exactly equivalent to learning

the causal mechanism function f .

A.3 Inference with Cond-FiP

Sample Generation. Given a dataset DX and its causal graph G, we denote z → T (z, DX , G) the function
infered by Cond-FiP. This function defines the predicted SCM obtained by our model, and we can directly use
it to generate new points. More precisely, given a noise sample n, we can generate the associated observational
sample by solving the following equation in x:

x = T (x, DX , G) + n

To solve this fixed-point equation, we rely on the fact that G is a DAG, which enables to solve the fixed-point
problem using the following simple iterative procedure. Starting with z0 = n, we compute for ℓ = 1, . . . , d
where d is the number of nodes

zℓ = T (zℓ−1, DX , G) + n

After d iterations we obtain the following,

zd = T (zd, DX , G) + n

Therefore, zd is the solution of the fixed-point problem above, which corresponds to the observational sample
associated to n according to our predicted SCM z → T (z, DX , G).

Interventional Prediction. Recall that given a dataset DX and its causal graph G, z ∈ Rd →
T (z, DX , G) ∈ Rd denotes the SCM infered by Cond-FiP. Let us also denote the coordinate-wise for-
mulation of our SCM defined for any z ∈ Rd as T (z, DX , G) = [[T (z, DX , G)]1, . . . , [T (z, DX , G)]d], where
for all i ∈ {1, . . . , d}, z ∈ Rd → [T (z, DX , G)]i ∈ R is a real-valued function.

In order to intervene on this predicted SCM, we simply have to modify in place the predicted function. For
example, assume that we want to perform the following intervention do(Xi) = a. Then, to obtain the intervened
SCM, we define a new function z → T do(Xi)=a(z, DX , G) defined for any z ∈ Rd as: [T do(Xi)=a(z, DX , G)]j :=
[T (z, DX , G)]j if j ̸= i and [T do(Xi)=a(z, DX , G)]i := a.

Now, using this intervened SCM z → T do(Xi)=a(z, DX , G), we can apply the exact same generation procedure
as the one introduced above to generate intervened samples according to our intervened SCM.

19

Published in Transactions on Machine Learning Research (12/2025)

A.4 Pseduo Code

Algorithm 1 Cond-FiP Part 1: Dataset Encoder µ(DX , G)
Input: Observational dataset DX ∈ Rn×d, causal graph G ∈ {0, 1}d×d

Output: Dataset embedding µ(DX , G)
1: Linear Embedding: Apply a learned linear map L : R1 → Rdh to each sample:

L(DX) = [X1WL, . . . , XnWL]⊤ ∈ Rn×d×dh .

2: Alternating Attention: Pass L(DX) through a stack of transformer blocks that alternate between:
• Sample-wise attention (unmasked) across the n observations, capturing global context.
• Node-wise attention with mask defined as per the causal graph.

Mij =
{

0, if Gij = 1,

−∞, otherwise.

3: Contextual Representation: After alternating attention blocks, obtain dataset embeddings

µ(DX , G) = E(L(DX), G) ∈ Rn×d×dh .

4: Prediction Head: Apply a two-layer MLP H to map embeddings to estimated noise or function values:

Ŷ = H(µ(DX , G)) ∈ Rn×d.

5: Training Objective: Under the additive noise model assumption, minimize the MSE loss:

LE = ES∼PS

[
∥F (DX) − Ŷ ∥2

2

]
.

6: Output: Return the dataset embedding µ(DX , G)

20

Published in Transactions on Machine Learning Research (12/2025)

Algorithm 2 Cond-FiP Part 2: Conditional Fixed-Point Decoder T (z, DX , G)
Input: Input point z ∈ Rd, dataset DX ∈ Rn×d, causal graph G ∈ {0, 1}d×d, encoder output µ(DX , G)
Output: Learned causal model: T (z, DX , G)

1: Pooling: Aggregate the encoder representations across samples:

µ′(DX , G) = MaxPooln
(
E(L(DX), G)

)
∈ Rd×dh .

2: Context-Specific Codebooks: Compute dataset-conditioned codebooks and positional embeddings:

C(DX , G) = µ′(DX , G)WC , P (DX , G) = µ′(DX , G)WP .

3: Input Embedding: Embed the input z via element-wise modulation:

zemb = [z1C1(DX , G), . . . , zdCd(DX , G)] + P (DX , G).

4: Initialization: Set initial latent state (which will be transformed into the estimated causal variable)
using the dataset embedding:

n0 = µ′(DX , G)Wn0 .

5: Fixed-Point Iterations: For ℓ = 0, . . . , L − 1, apply DAG-Attention and adaptive normalization:

nℓ+1 = h(DAM(nℓ, zemb) zemb + nℓ) ,

where h(·) includes adaptive LayerNorm whose scale and shift depend on µ′(DX , G).
6: Output Projection: After L iterations, project the final state:

T (z, DX , G) = nLWout ∈ Rd.

7: Training Objective: Minimize reconstruction loss over random samples z ∼ PX :

LT = ES∼PS , z∼PX

[
∥ T (z, DX , G) − F (z) ∥2

2
]

.

21

Published in Transactions on Machine Learning Research (12/2025)

B Details on Experiment Setup

B.1 AVICI Benchmark

We use the synthetic data generation procedure proposed by Lorch et al. (2022) to generate SCMs in our
empirical study. It provides access to a wide variety of SCMs, hence making it an excellent setting for
amortized training.

• Graphs: We have the option to sample graphs as per the following schemes: Erods-Renyi (Erdos &
Renyi, 1959), scale-free models (Barabási & Albert, 1999), Watts-Strogatz (Watts & Strogatz, 1998),
and stochastic block models (Holland et al., 1983).

• Noise Variables: To sample noise variables, we can choose from either the gaussian or laplace
distribution where variances are sampled randomly.

• Functional Mechanisms: We can control the complexity of causal relationships: either we set them
to be linear (LIN) functions randomly sampled, or use random fourier features (RFF) for generating
random non-linear causal relationships.

We construct two distribution of SCMs PIN, and POUT, which vary based on the choice for sampling causal
graphs, noise variables, and causal relationships. The classification aids in understanding the creation of train
and test datasets.

• In-Distribution (PIN): We sample causal graphs using the Erods-Renyi and scale-free models
schemes. Noise variables are sampled from the gaussian distribution, and we allow for both LIN and
RFF causal relationships.

• Out-of-Distribution (POUT): Causal graphs are drawn from Watts-Strogatz and stochastic block
models schemes. Noise variables follow the laplace distribution, and both the LIN and RFF cases
are used to sample functions. However, the parameters of these distributions are sampled from a
different range as compared to PIN to create a distribution shift.

We provide further details on the shift in the support of parameters for functional mechanisms below. For
complete details please refer to Table 3, Appendix in Lorch et al. (2022).

• Linear Functional Mechanism.

– In-Distribution (PIN)
∗ Weights: ∼ U±(1, 3), Bias ∼ U(−3, 3).

– Out-of-Distribution (POUT)
∗ Weights: ∼ U±(0.5, 2) ∪ U±(2, 4), Bias ∼ U(−3, 3).

• RFF Functional Mechanism.

– In-Distribution (PIN)
∗ Length Scale: ∼ U(7, 10), Output Scale: ∼ U(5, 8) ∪ U(8, 12), Bias ∼ U±(−3, 3).

– Out-of-Distribution (POUT):
∗ Length Scale: ∼ U(10, 20), Output Scale: ∼ U(8, 12) ∪ U(18, 22), Bias ∼ U±(−3, 3).

22

Published in Transactions on Machine Learning Research (12/2025)

Test Datasets.

• LIN IN: SCMs sampled from PIN with linear causal mechanisms. We have 3 different options for
sampling graphs in this case, and we randomly sample 3 different SCMs for each scenario, leading to
a total of 9 instances.

• RFF IN: SCMs sampled from PIN with non-linear causal mechanisms. We have 3 different options
for sampling graphs in this case, and we randomly sample 3 different SCMs for each scenario, leading
to a total of 9 instances.

• LIN OUT: SCMs sampled from POUT with linear causal mechanisms. We have 2 different options
for sampling graphs in this case, and we randomly sample 3 different SCMs for each scenario, leading
to a total of 6 instances.

• RFF OUT: SCMs sampled from POUT with non-linear causal mechanisms. We have 2 different
options for sampling graphs in this case, and we randomly sample 3 different SCMs for each scenario,
leading to a total of 6 instances.

B.2 CSuite Benchmark

CSuite (Geffner et al., 2022) is a collection of synthetic structural causal models (SCMs) designed to
evaluate causal discovery and effect estimation methods. The benchmark covers a diverse set of settings
by varying graph structures, functional forms, and noise distributions, thereby testing models under both
linear and nonlinear, Gaussian and non-Gaussian conditions, etc. We use the lingauss, linexp, nonlingauss,
nonlin-simpson, symprod-simpson, large-backdoor, and weak-arrow tasks from their paper.

To conduct more OOD evaluations, we modify the noise distribution of the Large Backdoor and Weak Arrow
datasets from the Csuite benchmark such that the noise variables are sampled from a guassian mixture model
(GMM). We considered the following cases for the GMM noise distribution.

• Noise is sampled with equal probability from either N(−2, 1) and N(2, 1).

• Noise is sampled with equal probability from either N(−2, 2) and N(2, 2).

• Noise is sampled with equal probability from either N(−2, 1) and N(2, 2).

• Noise is sampled with equal probability from either N(−5, 1) and N(5, 1).

• Noise is sampled with equal probability from either N(−5, 2) and N(5, 2).

• Noise is sampled with equal probability from either N(−5, 1) and N(5, 2).

This leads to a total of 12 experimental setting with 6 different GMM noise distribution for both the Large
Backdoor and Weak Arrow datasets from the CSuite benchmark.

23

Published in Transactions on Machine Learning Research (12/2025)

B.3 Model Architecture and Training Details

For both the dataset encoder and cond-FiP, we set the embedding dimension to dh = 256 and the hidden
dimension of MLP blocks to 512. Both of our transformer-based models contains 4 attention layers and
each attention consists of 8 attention heads. The models were trained for a total of 10k epochs with the
Adam optimizer (Paszke et al., 2017), where we used a learning rate of 1e − 4 and a weight decay of 5e − 9.
Each epoch contains ≃ 400 randomly generated datasets from the distribution PIN. We also use the EMA
implementation of (Karras et al., 2023) to train our models.

Memory Requirements. We trained Cond-FiP on a single L40 GPU with 48GB of memory, using an
effective batch size of 8 with gradient accumulation. We outline the detailed memory computation as follows:

• Each batch consists of n = 400 samples with dimension d = 20 requiring less than 1 MiB of data in
FP32 precision. Also, storing the model on the GPU requires under 100 MiB.

• Our transformer architecture has 4 attention layers, a 256-dimensional embedding space, and a
512-dimensional feedforward network. Using a standard (non-flash) attention implementation, a
forward pass consumes approximately 30 GiB of GPU memory.

Compared to the baselines, Cond-FiP has similar memory requirements to DECI (Geffner et al., 2022) and
FiP (Scetbon et al., 2024), as all three train neural networks of comparable size. The main exception is
DoWhy (Blöbaum et al., 2022), which fits simpler models for each node, but this approach does not scale
well as the graph size increases.

C Complete Results for Cond-FiP on AVICI Benchmark

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.03 (0.0) 0.13 (0.02) 0.04 (0.01) 0.11 (0.01)
DECI 10 0.09 (0.01) 0.23 (0.03) 0.12 (0.01) 0.23 (0.03)
FiP 10 0.04 (0.0) 0.09 (0.01) 0.06 (0.01) 0.08 (0.01)
Cond-FiP 10 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.10 (0.01)

DoWhy 20 0.03 (0.01) 0.15 (0.02) 0.03 (0.0) 0.23 (0.01)
DECI 20 0.10 (0.02) 0.21 (0.03) 0.08 (0.02) 0.23 (0.02)
FiP 20 0.04 (0.0) 0.12 (0.02) 0.05 (0.0) 0.15 (0.02)
Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.07 (0.0) 0.12 (0.0)

DoWhy 50 0.03 (0.0) 0.18 (0.03) 0.03 (0.0) 0.29 (0.03)
DECI 50 0.09 (0.01) 0.24 (0.02) 0.07 (0.01) 0.29 (0.02)
FiP 50 0.04 (0.0) 0.14 (0.03) 0.04 (0.0) 0.23 (0.04)
Cond-FiP 50 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.14 (0.01)

DoWhy 100 0.03 (0.0) 0.20 (0.03) 0.03 (0.0) 0.31 (0.02)
DECI 100 0.08 (0.02) 0.26 (0.03) 0.07 (0.01) 0.30 (0.02)
FiP 100 0.04 (0.0) 0.16 (0.03) 0.04 (0.0) 0.24 (0.02)
Cond-FiP 100 0.05 (0.0) 0.10 (0.01) 0.07 (0.01) 0.16 (0.01)

Table 3: Results for Noise Prediction. We compare Cond-FiP against the baselines for the task of
predicting noise variables from the input observations. Each cell reports the mean (standard error) RMSE
over the multiple test datasets for each scenario. Shaded rows denote the case where the graph size is
larger than the train graph sizes (d = 20) for Cond-FiP. Results show that Cond-FiP generalizes to both
in-distribution and OOD instances.

24

Published in Transactions on Machine Learning Research (12/2025)

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.05 (0.0) 0.18 (0.03) 0.06 (0.01) 0.12 (0.02)
DECI 10 0.15 (0.02) 0.33 (0.04) 0.16 (0.02) 0.27 (0.03)
FiP 10 0.07 (0.0) 0.13 (0.02) 0.08 (0.01) 0.11 (0.02)
Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

DoWhy 20 0.06 (0.01) 0.27 (0.05) 0.05 (0.0) 0.39 (0.04)
DECI 20 0.16 (0.02) 0.39 (0.05) 0.13 (0.02) 0.44 (0.04)
FiP 20 0.08 (0.01) 0.23 (0.05) 0.08 (0.01) 0.27 (0.04)
Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.30 (0.03)

DoWhy 50 0.08 (0.01) 0.35 (0.09) 0.06 (0.01) 0.54 (0.06)
DECI 50 0.15 (0.01) 0.46 (0.06) 0.13 (0.02) 0.67 (0.06)
FiP 50 0.09 (0.01) 0.26 (0.05) 0.08 (0.01) 0.48 (0.06)
Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.0) 0.48 (0.07)

DoWhy 100 0.06 (0.0) 0.33 (0.07) 0.06 (0.01) 0.63 (0.07)
DECI 100 0.14 (0.02) 0.50 (0.09) 0.14 (0.02) 0.71 (0.08)
FiP 100 0.08 (0.01) 0.3 (0.06) 0.09 (0.01) 0.55 (0.08)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 4: Results for Sample Generation. We compare Cond-FiP against the baselines for the task of
generating samples from the input noise variables. Each cell reports the mean (standard error) RMSE over
the multiple test datasets for each scenario. Shaded rows denote the case where the graph size is larger than
the train graph sizes (d = 20) for Cond-FiP. Results show that Cond-FiP generalizes to both in-distribution
and OOD instances.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.08 (0.03) 0.19 (0.04) 0.05 (0.01) 0.12 (0.02)
DECI 10 0.17 (0.02) 0.34 (0.04) 0.13 (0.02) 0.25 (0.03)
FiP 10 0.08 (0.01) 0.15 (0.02) 0.07 (0.01) 0.09 (0.01)
Cond-FiP 10 0.10 (0.03) 0.21 (0.03) 0.07 (0.01) 0.11 (0.01)

DoWhy 20 0.06 (0.01) 0.27 (0.06) 0.05 (0.0) 0.36 (0.03)
DECI 20 0.16 (0.02) 0.38 (0.05) 0.15 (0.04) 0.42 (0.03)
FiP 20 0.09 (0.01) 0.23 (0.05) 0.12 (0.04) 0.25 (0.03)
Cond-FiP 20 0.09 (0.01) 0.24 (0.05) 0.14 (0.03) 0.31 (0.03)

DoWhy 50 0.08 (0.01) 0.29 (0.05) 0.06 (0.01) 0.53 (0.06)
DECI 50 0.17 (0.02) 0.44 (0.06) 0.13 (0.02) 0.64 (0.06)
FiP 50 0.11 (0.02) 0.25 (0.05) 0.09 (0.01) 0.46 (0.06)
Cond-FiP 50 0.13 (0.02) 0.27 (0.04) 0.12 (0.02) 0.48 (0.07)

DoWhy 100 0.05 (0.0) 0.33 (0.07) 0.06 (0.01) 0.60 (0.07)
DECI 100 0.14 (0.02) 0.49 (0.08) 0.15 (0.02) 0.70 (0.08)
FiP 100 0.08 (0.01) 0.29 (0.07) 0.10 (0.01) 0.54 (0.08)
Cond-FiP 100 0.10 (0.01) 0.30 (0.06) 0.14 (0.02) 0.56 (0.07)

Table 5: Results for Interventional Generation. We compare Cond-FiP against the baselines for the
task of generating interventional data from the input noise variables. Each cell reports the mean (standard
error) RMSE over the multiple test datasets for each scenario. Shaded rows denote the case where the graph
size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that Cond-FiP generalizes to
both in-distribution and OOD instances.

25

Published in Transactions on Machine Learning Research (12/2025)

D Experiments on Sensitivity to Distribution Shifts on AVICI benchmark

In Appendix C (Table 3, Table 4, Table 5), we tested OOD genrealization with datasets sampled from SCM
following a different distribution (LIN OUT, RFF OUT) than the datasets used for training Cond-FiP (LIN
IN, RFF IN). We now analyze how sensitive is Cond-FiP to distribution shifts by comparing its performance
across scenarios as the severity of the distribution shift is increased.

To illustrate how we control the magnitude of distribution shift, we discuss the difference in the distribution of
causal mechanisms across PIN and POUT. The distribution shift arises because the support of the parameters
of causal mechanisms changes from PIN to POUT. For example, for linear causal mechanism case, the weights
in PIN are sampled uniformly from (−3, −1) ∪ (1, 3); while in POUT they are sampled from uniformly from
(0.5, 4). We now change the support set of the parameters in POUT to (0.5α, 4α), so that by increasing α we
make the distribution shift more severe. We follow this procedure for the support set of all the parameters
associated with functional mechanisms and generate distributions (POUT(α)) with varying shift w.r.t PIN by
changing α. Note that α = 1 corresponds to the same POUT as the one used for sampling datasets in our
main results.

We conduct two experiments for evaluating the robustness of Cond-FiP to distribution shifts, described ahead.

• Controlling Shift in Causal Mechanisms. We start with the parameter configuration of POUT
from the setup in main results; and then control the magnitude of shift by changing the support set
of parameters of causal mechanisms.

• Controlling Shift in Noise Variables. We start with the parameter configuration of POUT from
the setup in main results; and then control the magnitude of shift by changing the support set of
parameters of noise distribution.

Tables 6, 7, and 8 provide results for the case of controlling shift via causal mechanisms, for the task of noise
prediction, sample generation, and interventional generation respectively. We find that the performance of
Cond-FiP does not change much as we increase α, indicating that Cond-FiP is robust to the varying levels of
distribution shits in causal mechanisms.

However, for the case of controlling shift via noise variables (Table 9, 10, and 11) we find that Cond-FiP is
quite sensitive to the varying levels of distribution shift in noise variables. The performance of Cond-FiP
degrades with increasing magnitude of the shift (α) for all the tasks.

26

Published in Transactions on Machine Learning Research (12/2025)

Total Nodes Shift Level (α) LIN OUT RFF OUT
10 1 0.07 (0.01) 0.10 (0.01)
10 2 0.06 (0.01) 0.10 (0.01)
10 5 0.05 (0.01) 0.10 (0.01)
10 10 0.05 (0.01) 0.10 (0.01)

20 1 0.07 (0.0) 0.12 (0.0)
20 2 0.06 (0.0) 0.13 (0.01)
20 5 0.05 (0.0) 0.11 (0.01)
20 10 0.05 (0.0) 0.10 (0.01)

50 1 0.07 (0.01) 0.14 (0.01)
50 2 0.05 (0.01) 0.17 (0.01)
50 5 0.05 (0.01) 0.14 (0.01)
50 10 0.04 (0.0) 0.14 (0.01)

100 1 0.07 (0.01) 0.16 (0.01)
100 2 0.05 (0.01) 0.18 (0.0)
100 5 0.05 (0.0) 0.17 (0.01)
100 10 0.05 (0.0) 0.16 (0.01)

Table 6: Results for Noise Prediction under Distribution Shifts in Causal Mechanisms. We
evaluate the robustness of Cond-FiP to distribution shifts in the parametrization of causal mechanisms. We
vary the distribution shift controlled by α, where α = 1 corresponds to the results in Table 3. Each cell
reports the mean (standard error) RMSE over the multiple test datasets for each scenario. We find that
Cond-FiP is robust to varying levels of distribution shift in causal mechanisms.

Total Nodes Shift Level (α) LIN OUT RFF OUT
10 1 0.05 (0.01) 0.08 (0.01)
10 2 0.05 (0.0) 0.07 (0.01)
10 5 0.05 (0.0) 0.07 (0.01)
10 10 0.06 (0.0) 0.06 (0.01)

20 1 0.07 (0.01) 0.30 (0.03)
20 2 0.06 (0.01) 0.34 (0.05)
20 5 0.06 (0.01) 0.35 (0.05)
20 10 0.06 (0.01) 0.29 (0.07)

50 1 0.07 (0.0) 0.48 (0.07)
50 2 0.07 (0.0) 0.47 (0.07)
50 5 0.07 (0.01) 0.38 (0.06)
50 10 0.07 (0.01) 0.32 (0.06)

100 1 0.09 (0.01) 0.57 (0.07)
100 2 0.09 (0.01) 0.60 (0.05)
100 5 0.09 (0.01) 0.58 (0.05)
100 10 0.12 (0.02) 0.56 (0.06)

Table 7: Results for Sample Generation under Distribution Shifts in Causal Mechanisms. We
evaluate the robustness of Cond-FiP to distribution shifts in the parametrization of causal mechanisms. We
vary the distribution shift controlled by α, where α = 1 corresponds to the results in Table 4. Each cell
reports the mean (standard error) RMSE over the multiple test datasets for each scenario. We find that
Cond-FiP is robust to varying levels of distribution shift in causal mechanisms.

27

Published in Transactions on Machine Learning Research (12/2025)

Total Nodes Shift Level (α) LIN OUT RFF OUT
10 1 0.07 (0.01) 0.11 (0.01)
10 2 0.07 (0.01) 0.11 (0.01)
10 5 0.07 (0.01) 0.10 (0.01)
10 10 0.06 (0.01) 0.10 (0.01)

20 1 0.14 (0.03) 0.31 (0.03)
20 2 0.10 (0.02) 0.33 (0.04)
20 5 0.17 (0.1) 0.34 (0.04)
20 10 0.10 (0.03) 0.28 (0.05)

50 1 0.12 (0.02) 0.48 (0.07)
50 2 0.12 (0.03) 0.47 (0.07)
50 5 0.11 (0.01) 0.39 (0.06)
50 10 0.11 (0.02) 0.32 (0.06)

100 1 0.14 (0.02) 0.58 (0.07)
100 2 0.13 (0.02) 0.60 (0.06)
100 5 0.14 (0.03) 0.58 (0.05)
100 10 0.18 (0.04) 0.55 (0.06)

Table 8: Results for Interventional Generation under Distribution Shifts in Causal Mechanisms.
We evaluate the robustness of Cond-FiP to distribution shifts in the parametrization of causal mechanisms.
We vary the distribution shift controlled by α, where α = 1 corresponds to the results in Table 5. Each cell
reports the mean (standard error) RMSE over the multiple test datasets for each scenario. We find that
Cond-FiP is robust to varying levels of distribution shift in causal mechanisms.

Total Nodes Shift Level (α) LIN OUT RFF OUT
10 1 0.07 (0.01) 0.10 (0.01)
10 2 0.07 (0.01) 0.11 (0.01)
10 5 0.07 (0.01) 0.18 (0.02)
10 10 0.08 (0.01) 0.26 (0.04)

20 1 0.07 (0.0) 0.12 (0.0)
20 2 0.07 (0.0) 0.16 (0.01)
20 5 0.07 (0.0) 0.30 (0.01)
20 10 0.07 (0.0) 0.41 (0.02)

50 1 0.07 (0.01) 0.14 (0.01)
50 2 0.07 (0.01) 0.19 (0.01)
50 5 0.07 (0.01) 0.33 (0.02)
50 10 0.07 (0.01) 0.44 (0.02)

100 1 0.07 (0.01) 0.16 (0.01)
100 2 0.07 (0.01) 0.22 (0.0)
100 5 0.07 (0.01) 0.35 (0.01)
100 10 0.07 (0.01) 0.44 (0.01)

Table 9: Results for Noise Prediction under Distribution Shifts in Noise Variables. We evaluate
the robustness of Cond-FiP to distribution shifts in the parametrization of noise distribution. We vary the
distribution shift controlled by α, where α = 1 corresponds to the results in Table 3. Each cell reports the
mean (standard error) RMSE over the multiple test datasets for each scenario. We find that Cond-FiP is
sensitive to varying levels of distribution shift in noise variables, its performance decreases with increasing
magnitude of the shift.

28

Published in Transactions on Machine Learning Research (12/2025)

Total Nodes Shift Level (α) LIN OUT RFF OUT
10 1 0.05 (0.01) 0.08 (0.01)
10 2 0.05 (0.0) 0.13 (0.03)
10 5 0.05 (0.01) 0.28 (0.06)
10 10 0.05 (0.01) 0.36 (0.08)

20 1 0.07 (0.01) 0.30 (0.03)
20 2 0.07 (0.01) 0.45 (0.04)
20 5 0.07 (0.01) 0.59 (0.03)
20 10 0.07 (0.01) 0.58 (0.02)

50 1 0.07 (0.0) 0.48 (0.07)
50 2 0.07 (0.0) 0.59 (0.06)
50 5 0.07 (0.0) 0.64 (0.03)
50 10 0.07 (0.0) 0.58 (0.02)

100 1 0.09 (0.01) 0.57 (0.07)
100 2 0.09 (0.01) 0.63 (0.05)
100 5 0.09 (0.01) 0.65 (0.03)
100 10 0.09 (0.01) 0.59 (0.02)

Table 10: Results for Sample Generation under Distribution Shifts in Noise Variables. We evaluate
the robustness of Cond-FiP to distribution shifts in the parametrization of noise distribution. We vary the
distribution shift controlled by α, where α = 1 corresponds to the results in Table 4. Each cell reports the
mean (standard error) RMSE over the multiple test datasets for each scenario. We find that Cond-FiP is
sensitive to varying levels of distribution shift in noise variables, its performance decreases with increasing
magnitude of the shift.

Total Nodes Shift Level (α) LIN OUT RFF OUT
10 1 0.07 (0.01) 0.11 (0.01)
10 2 0.07 (0.01) 0.14 (0.02)
10 5 0.07 (0.01) 0.25 (0.05)
10 10 0.07 (0.01) 0.32 (0.06)

20 1 0.14 (0.03) 0.31 (0.03)
20 2 0.14 (0.03) 0.42 (0.03)
20 5 0.14 (0.03) 0.57 (0.03)
20 10 0.14 (0.03) 0.56 (0.02)

50 1 0.12 (0.02) 0.48 (0.07)
50 2 0.12 (0.01) 0.58 (0.06)
50 5 0.12 (0.01) 0.65 (0.04)
50 10 0.12 (0.01) 0.59 (0.02)

100 1 0.14 (0.02) 0.58 (0.07)
100 2 0.14 (0.02) 0.65 (0.06)
100 5 0.14 (0.02) 0.67 (0.04)
100 10 0.14 (0.02) 0.60 (0.03)

Table 11: Results for Interventional Generation under Distribution Shifts in Noise Variables.
We evaluate the robustness of Cond-FiP to distribution shifts in the parametrization of noise distribution.
We vary the distribution shift controlled by α, where α = 1 corresponds to the results in Table 5. Each cell
reports the mean (standard error) RMSE over the multiple test datasets for each scenario. We find that
Cond-FiP is sensitive to varying levels of distribution shift in noise variables, its performance decreases with
increasing magnitude of the shift.

29

Published in Transactions on Machine Learning Research (12/2025)

E Experiment on Generalization in Scarce Data Regime on AVICI benchmark

E.1 Experiments with nDtest = 100

In this section we benchmark Cond-FiP against the baselines for the scenario when test datasets in the
input context have smaller sample size (nDtest = 100) as compared to the train datasets (nDtest = 400)
in Appendix C.

We report the results for the task of noise prediction, sample generation, and interventional generation in
Table 12, Table 13, and Table 14 respectively. We find that Cond-FiP exhibits superior generalization as
compared to baselines. For example, in the case of RFF IN, Cond-FiP is even better than FiP for all the
tasks! This can be attributed to the advantage of amortized inference; as the sample size in test dataset
decreases, the generalization of baselines would be affected a lot since they require training from scratch
on these datasets. However, amortized inference methods would be impacted less as they do not have to
trained from scratch, and the inductive bias learned by them can help them generalize even with smaller
input context.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.06 (0.01) 0.22 (0.03) 0.09 (0.01) 0.16 (0.03)
DECI 10 0.15 (0.01) 0.3 (0.02) 0.22 (0.01) 0.3 (0.03)
FiP 10 0.07 (0.01) 0.18 (0.01) 0.12 (0.01) 0.11 (0.01)
Cond-FiP 10 0.07 (0.01) 0.14 (0.01) 0.09 (0.01) 0.14 (0.01)

DoWhy 20 0.06 (0.01) 0.27 (0.05) 0.07 (0.01) 0.37 (0.01)
DECI 20 0.15 (0.02) 0.33 (0.02) 0.17 (0.02) 0.35 (0.03)
FiP 20 0.09 (0.01) 0.21 (0.03) 0.1 (0.01) 0.27 (0.03)
Cond-FiP 20 0.08 (0.01) 0.12 (0.01) 0.1 (0.01) 0.15 (0.01)

DoWhy 50 0.06 (0.01) 0.29 (0.04) 0.05 (0.01) 0.47 (0.04)
DECI 50 0.14 (0.01) 0.33 (0.02) 0.14 (0.02) 0.4 (0.03)
FiP 50 0.08 (0.01) 0.23 (0.03) 0.08 (0.01) 0.37 (0.04)
Cond-FiP 50 0.08 (0.0) 0.12 (0.01) 0.08 (0.01) 0.15 (0.01)

DoWhy 100 0.06 (0.01) 0.31 (0.04) 0.06 (0.01) 0.5 (0.03)
DECI 100 0.13 (0.01) 0.36 (0.03) 0.12 (0.02) 0.44 (0.02)
FiP 100 0.08 (0.01) 0.25 (0.04) 0.1 (0.01) 0.39 (0.03)
Cond-FiP 100 0.07 (0.0) 0.13 (0.01) 0.08 (0.01) 0.17 (0.01)

Table 12: Results for Noise Prediction with Smaller Sample Size (nDtest = 100). We compare
Cond-FiP against the baselines for the task of predicting noise variable from input observations. Each test
dataset contains 100 samples, as opposed to 400 samples in Table 3. Each cell reports the mean (standard
error) RMSE over the multiple test datasets for each scenario. Shaded rows deonte the case where the graph
size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that Cond-FiP generalizes much
better than the baselines in this low-data regime.

30

Published in Transactions on Machine Learning Research (12/2025)

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.1 (0.01) 0.3 (0.06) 0.12 (0.02) 0.19 (0.03)
DECI 10 0.23 (0.01) 0.45 (0.04) 0.31 (0.02) 0.38 (0.04)
FiP 10 0.13 (0.01) 0.29 (0.04) 0.18 (0.02) 0.15 (0.03)
Cond-FiP 10 0.09 (0.01) 0.2 (0.03) 0.09 (0.02) 0.14 (0.02)

DoWhy 20 0.11 (0.01) 0.47 (0.15) 0.11 (0.02) 0.5 (0.03)
DECI 20 0.26 (0.02) 0.53 (0.05) 0.26 (0.03) 0.57 (0.04)
FiP 20 0.17 (0.02) 0.34 (0.06) 0.17 (0.02) 0.39 (0.03)
Cond-FiP 20 0.08 (0.0) 0.31 (0.06) 0.13 (0.01) 0.37 (0.02)

DoWhy 50 0.11 (0.01) 0.42 (0.08) 0.09 (0.01) 0.66 (0.06)
DECI 50 0.23 (0.02) 0.59 (0.08) 0.27 (0.04) 0.73 (0.06)
FiP 50 0.13 (0.01) 0.38 (0.07) 0.14 (0.01) 0.58 (0.06)
Cond-FiP 50 0.1 (0.01) 0.32 (0.05) 0.12 (0.01) 0.54 (0.05)

DoWhy 100 0.11 (0.01) 0.44 (0.08) 0.11 (0.01) 0.74 (0.05)
DECI 100 0.25 (0.02) 0.62 (0.08) 0.25 (0.01) 0.78 (0.07)
FiP 100 0.15 (0.01) 0.4 (0.07) 0.19 (0.02) 0.67 (0.07)
Cond-FiP 100 0.11 (0.01) 0.35 (0.07) 0.14 (0.02) 0.63 (0.07)

Table 13: Results for Sample Generation with Smaller Sample Size (nDtest = 100). We compare
Cond-FiP against the baselines for the task of generating samples from the input noise variable. Each test
dataset contains 100 samples, as opposed to 400 samples in Table 4. Each cell reports the mean (standard
error) RMSE over the multiple test datasets for each scenario. Shaded rows deonte the case where the graph
size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that Cond-FiP generalizes much
better than the baselines in this low-data regime.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.09 (0.01) 0.34 (0.08) 0.11 (0.01) 0.2 (0.04)
DECI 10 0.24 (0.02) 0.43 (0.04) 0.26 (0.03) 0.35 (0.04)
FiP 10 0.13 (0.01) 0.29 (0.04) 0.14 (0.02) 0.14 (0.03)
Cond-FiP 10 0.09 (0.02) 0.21 (0.03) 0.09 (0.01) 0.12 (0.02)

DoWhy 20 0.1 (0.01) 0.37 (0.08) 0.11 (0.02) 0.49 (0.04)
DECI 20 0.25 (0.03) 0.5 (0.05) 0.28 (0.03) 0.54 (0.04)
FiP 20 0.16 (0.01) 0.33 (0.06) 0.2 (0.03) 0.38 (0.03)
Cond-FiP 20 0.1 (0.01) 0.27 (0.05) 0.15 (0.02) 0.29 (0.03)

DoWhy 50 0.12 (0.02) 0.49 (0.14) 0.09 (0.01) 0.64 (0.07)
DECI 50 0.26 (0.03) 0.56 (0.07) 0.26 (0.03) 0.72 (0.06)
FiP 50 0.16 (0.02) 0.36 (0.06) 0.15 (0.01) 0.57 (0.06)
Cond-FiP 50 0.13 (0.02) 0.29 (0.04) 0.12 (0.01) 0.49 (0.07)

DoWhy 100 0.11 (0.01) 0.46 (0.07) 0.11 (0.01) 1.16 (0.38)
DECI 100 0.24 (0.02) 0.62 (0.08) 0.26 (0.01) 0.78 (0.07)
FiP 100 0.16 (0.02) 0.39 (0.07) 0.2 (0.02) 0.66 (0.07)
Cond-FiP 100 0.12 (0.02) 0.32 (0.07) 0.13 (0.01) 0.58 (0.07)

Table 14: Results for Interventional Generation with Smaller Sample Size (nDtest = 100). We
compare Cond-FiP against the baselines for the task of generating interventional data from the input noise
variable. Each test dataset contains 100 samples, as opposed to 400 samples in Table 5. Each cell reports the
mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded rows deonte the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that Cond-FiP
generalizes much better than the baselines in this low-data regime.

31

Published in Transactions on Machine Learning Research (12/2025)

E.2 Experiments with nDtest = 50

We conduct more experiments for the smaller sample size scenarios, where decrease the sample size even
further to nDtest = 50 samples. We report the results for the task of noise prediction, sample generation, and
interventional generation in Table 15, Table 16, and Table 17 respectively. We find that baselines perform
much worse than Cond-FiP for the all different SCM distributions, highlighting the efficacy of Cond-FiP for
inferring causal mechanisms when the input context has smaller sample size. Note that there were issues
with training DoWhy for such a small dataset, hence we do not consider them for this scenario.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DECI 10 0.19 (0.02) 0.41 (0.03) 0.2 (0.02) 0.42 (0.04)
FiP 10 0.13 (0.03) 0.27 (0.03) 0.15 (0.02) 0.21 (0.03)
Cond-FiP 10 0.09 (0.01) 0.17 (0.01) 0.11 (0.01) 0.16 (0.01)

DECI 20 0.2 (0.01) 0.42 (0.03) 0.25 (0.04) 0.45 (0.05)
FiP 20 0.12 (0.01) 0.33 (0.04) 0.15 (0.02) 0.35 (0.04)
Cond-FiP 20 0.1 (0.01) 0.16 (0.01) 0.11 (0.01) 0.17 (0.01)

DECI 50 0.2 (0.02) 0.43 (0.02) 0.2 (0.03) 0.5 (0.05)
FiP 50 0.13 (0.01) 0.32 (0.03) 0.13 (0.01) 0.49 (0.05)
Cond-FiP 50 0.1 (0.01) 0.16 (0.0) 0.1 (0.01) 0.17 (0.01)

DECI 100 0.19 (0.02) 0.43 (0.03) 0.21 (0.01) 0.53 (0.02)
FiP 100 0.11 (0.01) 0.32 (0.04) 0.13 (0.01) 0.48 (0.02)
Cond-FiP 100 0.09 (0.01) 0.16 (0.01) 0.09 (0.01) 0.18 (0.01)

Table 15: Results for Noise Prediction with Smaller Sample Size (nDtest = 50). We compare Cond-FiP
against the baselines for the task of predicting noise variable from input observations. Each test dataset
contains 50 samples, as opposed to 400 samples in Table 3. Each cell reports the mean (standard error)
RMSE over the multiple test datasets for each scenario. Shaded rows denote the case where the graph size is
larger than the train graph sizes (d = 20) for Cond-FiP. Results show that Cond-FiP generalizes much better
than the baselines in this low-data regime.

32

Published in Transactions on Machine Learning Research (12/2025)

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DECI 10 0.31 (0.02) 0.58 (0.05) 0.27 (0.04) 0.49 (0.07)
FiP 10 0.2 (0.03) 0.4 (0.05) 0.21 (0.03) 0.25 (0.04)
Cond-FiP 10 0.12 (0.02) 0.28 (0.03) 0.12 (0.01) 0.18 (0.03)

DECI 20 0.34 (0.02) 0.66 (0.08) 0.39 (0.07) 0.68 (0.05)
FiP 20 0.2 (0.01) 0.51 (0.08) 0.25 (0.04) 0.51 (0.02)
Cond-FiP 20 0.13 (0.01) 0.4 (0.06) 0.19 (0.02) 0.43 (0.02)

DECI 50 0.32 (0.02) 0.66 (0.06) 0.36 (0.02) 0.8 (0.06)
FiP 50 0.2 (0.01) 0.48 (0.07) 0.22 (0.02) 0.69 (0.06)
Cond-FiP 50 0.15 (0.02) 0.4 (0.05) 0.16 (0.01) 0.59 (0.06)

DECI 100 0.36 (0.04) 0.68 (0.08) 0.39 (0.03) 0.84 (0.06)
FiP 100 0.2 (0.02) 0.49 (0.09) 0.28 (0.03) 0.73 (0.07)
Cond-FiP 100 0.16 (0.01) 0.42 (0.07) 0.22 (0.01) 0.65 (0.06)

Table 16: Results for Sample Generation with Smaller Sample Size (nDtest = 50). We compare
Cond-FiP against the baselines for the task of generating samples from the input noise variable. Each test
dataset contains 50 samples, as opposed to 400 samples in Table 4. Each cell reports the mean (standard
error) RMSE over the multiple test datasets for each scenario. Shaded rows denote the case where the graph
size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that Cond-FiP generalizes much
better than the baselines in this low-data regime.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DECI 10 0.3 (0.03) 0.53 (0.05) 0.26 (0.04) 0.42 (0.05)
FiP 10 0.21 (0.04) 0.35 (0.04) 0.2 (0.03) 0.22 (0.03)
Cond-FiP 10 0.12 (0.01) 0.19 (0.03) 0.07 (0.01) 0.14 (0.02)

DECI 20 0.33 (0.02) 0.6 (0.06) 0.43 (0.07) 0.63 (0.04)
FiP 20 0.21 (0.02) 0.46 (0.07) 0.29 (0.04) 0.49 (0.02)
Cond-FiP 20 0.11 (0.01) 0.29 (0.06) 0.15 (0.02) 0.32 (0.03)

DECI 50 0.34 (0.02) 0.66 (0.07) 0.34 (0.02) 0.78 (0.06)
FiP 50 0.21 (0.02) 0.46 (0.07) 0.23 (0.02) 0.68 (0.06)
Cond-FiP 50 0.13 (0.02) 0.31 (0.05) 0.12 (0.02) 0.51 (0.07)

DECI 100 0.37 (0.04) 0.67 (0.08) 0.4 (0.04) 0.84 (0.06)
FiP 100 0.21 (0.02) 0.49 (0.08) 0.28 (0.03) 0.73 (0.07)
Cond-FiP 100 0.12 (0.01) 0.33 (0.07) 0.14 (0.01) 0.58 (0.07)

Table 17: Results for Interventional Generation with Smaller Sample Size (nDtest = 50). We
compare Cond-FiP against the baselines for the task of generating interventional data from the input noise
variable. Each test dataset contains 50 samples, as opposed to 400 samples in Table 5. Each cell reports the
mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded rows deonte the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results show that Cond-FiP
generalizes much better than the baselines in this low-data regime.

33

Published in Transactions on Machine Learning Research (12/2025)

F Experiments without True Causal Graph on AVICI Benchmark

Results in Appendix C (Table 3, Table 4, Table 5) require the knowledge of true graph (G) as part of the
input context to Cond-FiP. In this section we conduct where we don’t provide the true graph in the input
context, rather we infer the graph Ĝ using an amortized causal discovery approach (AVICI (Lorch et al.,
2022)) from the observational data DX . We chose AVICI for this task since it can enable to amortized
inference of causal graphs, hence allowing the combined pipeline of AVICI + Cond-FiP can perform amortized
inference of SCMs. More precisely, AVICI infers the graph from a novel instance G from input context DX

without updating any parameters, and we pass (Ĝ, DX) as the input context for Cond-FiP. Therefore, for any
z ∈ Rd, Cond-FiP (T (z, DX , Ĝ)) aims to replicate the functional mechanism F (z) of the underlying SCM.

The results for benchmarking Cond-FiP with inferred graphs using AVICI for the task of noise prediction,
sample generation, and interventional generation are provided in Table 18, Table 19, and Table 20 respectively.
For a fair comparison, the baselines FiP, DECI, and DoWhy also use the inferred graph (Ĝ) by AVICI instead
of the true graph (G). We find that Cond-FiP remains competitive to baselines even for the scenario of
unknown true causal graph. Hence, our training procedure can be extended for amortized inference of both
causal graphs and causal mechanisms of the SCM.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.16 (0.05) 0.24 (0.04) 0.12 (0.03) 0.12 (0.02)
DECI 10 0.21 (0.05) 0.29 (0.04) 0.16 (0.03) 0.19 (0.04)
FiP 10 0.16 (0.05) 0.2 (0.04) 0.13 (0.03) 0.09 (0.01)
Cond-FiP 10 0.15 (0.05) 0.2 (0.04) 0.13 (0.03) 0.11 (0.01)

DoWhy 20 0.19 (0.05) 0.22 (0.03) 0.2 (0.03) 0.26 (0.01)
DECI 20 0.23 (0.05) 0.28 (0.03) 0.24 (0.04) 0.28 (0.02)
FiP 20 0.2 (0.05) 0.2 (0.03) 0.21 (0.03) 0.21 (0.02)
Cond-FiP 20 0.18 (0.05) 0.17 (0.02) 0.21 (0.03) 0.16 (0.02)

DoWhy 50 0.44 (0.05) 0.3 (0.03) 0.51 (0.03) 0.38 (0.04)
DECI 50 0.46 (0.05) 0.33 (0.04) 0.52 (0.03) 0.42 (0.05)
FiP 50 0.44 (0.05) 0.28 (0.04) 0.51 (0.03) 0.35 (0.05)
Cond-FiP 50 0.43 (0.05) 0.24 (0.03) 0.53 (0.03) 0.29 (0.04)

DoWhy 100 0.49 (0.06) 0.38 (0.03) 0.64 (0.03) 0.53 (0.04)
DECI 100 0.5 (0.06) 0.41 (0.03) 0.64 (0.03) 0.55 (0.03)
FiP 100 0.49 (0.06) 0.37 (0.03) 0.64 (0.03) 0.51 (0.04)
Cond-FiP 100 0.48 (0.06) 0.34 (0.03) 0.64 (0.03) 0.49 (0.04)

Table 18: Results for Noise Prediction without True Graph. We compare Cond-FiP against the
baselines for the task of predicting noise variable from input observations. Unlike experiments in Table 3,
the true graph G is not present in input context, rather its inferred via AVICI (Lorch et al., 2022). Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded rows
deonte the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results
indicate Cond-FiP can generalize to novel instances even in the absence of true graph.

34

Published in Transactions on Machine Learning Research (12/2025)

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.22 (0.07) 0.29 (0.05) 0.13 (0.04) 0.14 (0.02)
DECI 10 0.29 (0.06) 0.39 (0.05) 0.18 (0.04) 0.22 (0.05)
FiP 10 0.23 (0.06) 0.26 (0.05) 0.15 (0.04) 0.12 (0.02)
Cond-FiP 10 0.22 (0.07) 0.26 (0.05) 0.13 (0.04) 0.11 (0.02)

DoWhy 20 0.25 (0.05) 0.38 (0.06) 0.29 (0.06) 0.42 (0.03)
DECI 20 0.3 (0.06) 0.52 (0.07) 0.34 (0.06) 0.47 (0.04)
FiP 20 0.26 (0.05) 0.37 (0.07) 0.3 (0.06) 0.33 (0.04)
Cond-FiP 20 0.24 (0.05) 0.36 (0.06) 0.29 (0.06) 0.35 (0.03)

DoWhy 50 0.53 (0.07) 0.46 (0.06) 0.58 (0.03) 0.59 (0.07)
DECI 50 0.55 (0.07) 0.54 (0.07) 0.59 (0.02) 0.66 (0.06)
FiP 50 0.53 (0.07) 0.44 (0.05) 0.58 (0.02) 0.53 (0.07)
Cond-FiP 50 0.52 (0.07) 0.43 (0.05) 0.58 (0.02) 0.53 (0.07)

DoWhy 100 0.67 (0.07) 0.52 (0.06) 0.69 (0.02) 0.68 (0.04)
DECI 100 0.69 (0.08) 0.57 (0.08) 0.69 (0.02) 0.71 (0.04)
FiP 100 0.66 (0.07) 0.5 (0.07) 0.68 (0.02) 0.64 (0.05)
Cond-FiP 100 0.64 (0.06) 0.49 (0.06) 0.68 (0.02) 0.63 (0.05)

Table 19: Results for Sample Generation without True Graph. We compare Cond-FiP against the
baselines for the task of generating samples from the input noise variable. Unlike experiments in Table 4,
the true graph G is not present in input context, rather its inferred via AVICI (Lorch et al., 2022).. Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded rows
deonte the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results
indicate Cond-FiP can generalize to novel instances even in the absence of true graph.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.32 (0.09) 0.3 (0.05) 0.13 (0.04) 0.13 (0.02)
DECI 10 0.37 (0.08) 0.39 (0.05) 0.17 (0.03) 0.21 (0.04)
FiP 10 0.32 (0.08) 0.27 (0.05) 0.14 (0.04) 0.1 (0.02)
Cond-FiP 10 0.31 (0.08) 0.3 (0.05) 0.14 (0.04) 0.13 (0.02)

DoWhy 20 0.29 (0.06) 0.38 (0.07) 0.37 (0.05) 0.4 (0.03)
DECI 20 0.34 (0.06) 0.51 (0.07) 0.41 (0.05) 0.43 (0.03)
FiP 20 0.3 (0.06) 0.37 (0.07) 0.38 (0.05) 0.31 (0.03)
Cond-FiP 20 0.29 (0.06) 0.37 (0.06) 0.37 (0.05) 0.33 (0.03)

DoWhy 50 0.54 (0.08) 0.45 (0.06) 0.62 (0.04) 0.57 (0.06)
DECI 50 0.57 (0.08) 0.52 (0.07) 0.63 (0.03) 0.64 (0.06)
FiP 50 0.55 (0.08) 0.43 (0.05) 0.62 (0.03) 0.51 (0.07)
Cond-FiP 50 0.54 (0.08) 0.43 (0.05) 0.62 (0.03) 0.51 (0.06)

DoWhy 100 0.66 (0.06) 0.52 (0.07) 0.71 (0.05) 0.65 (0.05)
DECI 100 0.68 (0.07) 0.58 (0.09) 0.71 (0.05) 0.7 (0.04)
FiP 100 0.65 (0.06) 0.51 (0.07) 0.71 (0.05) 0.62 (0.05)
Cond-FiP 100 0.64 (0.06) 0.49 (0.06) 0.7 (0.04) 0.62 (0.05)

Table 20: Results for Interventional Generation without True Graph. We compare Cond-FiP against
the baselines for the task of interventional data from the input noise variable. Unlike experiments in Table 5,
the true graph G is not present in input context, rather its inferred via AVICI (Lorch et al., 2022). Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Shaded rows
deonte the case where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP. Results
indicate Cond-FiP can generalize to novel instances even in the absence of true graph.

35

Published in Transactions on Machine Learning Research (12/2025)

F.1 Analyzing Cond-FiP’s Sensitivity to Causal Graph Structure

To better understand the ability of Cond-FiP to capture graph-specific structure, we conduct a systematic
analysis by introducing random perturbations (p) to the true causal graph. Specifically, we randomly remove
a proportion p of the true edges, such that on average p × total edges are missing. We report results for
sample generation in the challenging OOD setting (d=100 & RFF OUT).

Our findings (Table 21) show that Cond-FiP’s performance shows significant difference after we remove 5
edges (p = 0.05). Across all tested levels of perturbation, Cond-FiP is competitive with FiP, a baseline trained
from scratch for each scenario. These results demonstrate that Cond-FiP exhibits robustness to moderate
errors in the input causal graph, comparable to a baseline trained from scratch. This provides more evidence
to our claim that Cond-FiP learns causal mechanisms during training and can adapt to new contexts at
test time by inferring functions that best explain the available information in the context (input graph and
observations), even when the input causal graph is inaccurate.

p = 0 p = 0.01 p = 0.02 p = 0.05 p = 0.1
FiP 0.55 (0.08) 0.55 (0.08) 0.57 (0.08) 0.62 (0.08) 0.68 (0.08)
Cond-FiP 0.57 (0.07) 0.58 (0.07) 0.59 (0.07) 0.62 (0.07) 0.67 (0.07)

Table 21: Robustness to causal graph errors. We compare Cond-FiP for varying levels of corruption (p)
to the true causal graph by randomly removing a proportion p of edges. Results show that Cond-FiP remains
competitive with FiP, even as the input graph becomes increasingly inaccurate, demonstrating robustness to
moderate structural errors and its ability to utilize the given imperfect causal information.

36

Published in Transactions on Machine Learning Research (12/2025)

G Ablation Study on AVICI benchmark

G.1 Analyzing the Effect of Pretraining Scale

To better understand the scaling of Cond-FiP w.r.t the pretraining data, we conduct experiments at smaller
scales, with a total of 1e5, 4e5, 1e6 SCMs, as opposed to using 4e6 SCMs in our main body results.

Table 22 reports sample-generation accuracy for the d = 20 setting. As expected, Cond-FiP benefits
consistently from additional pretraining data: all four metrics (LIN IN, RFF IN, LIN OUT, RFF OUT)
improve monotonically with scale. The most pronounced gains appear when increasing the pretraining size
from 1e5 to 4e5, while improvements become more incremental beyond 1e6. These results highlight that
Cond-FiP continues to leverage larger synthetic datasets, though the returns gradually diminish as scale
increases.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
Cond-FiP(1e5) 20 0.11 (0.01) 0.32 (0.06) 0.16 (0.03) 0.44 (0.04)
Cond-FiP(4e5) 20 0.07 (0.01) 0.28 (0.06) 0.11 (0.01) 0.37 (0.03)
Cond-FiP(1e6) 20 0.07 (0.01) 0.25 (0.06) 0.09 (0.01) 0.33 (0.03)
Cond-FiP(4e6) 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.30 (0.03)

Table 22: Effect of Pretraining Scale. Sample generation performance of Cond-FiP (d = 20) under varying
amounts of pretraining data. Larger synthetic SCM pretraining datasets lead to consistent improvements
across all scenarios, with diminishing but still positive gains beyond 1e6 SCMs.

G.2 Ablation Study of Encoder

We conduct an ablation study where we train two variants of the encoder in Cond-FiP described as follows:

• Cond-FiP (LIN): We sample SCMs with linear causal mechanisms during training of the encoder.

• Cond-FiP (RFF): We sample SCMs with non-linear causal mechanisms during training of the encoder.

Note that for the training the subsequent decoder, we sample SCMs with both linear and rff causal mechanisms
as in the main results (Table 3, Table 4, and Table 5). Note that in the main results, the encoder was
trained by sampling SCMs with both linear and rff functional relationships. Hence, this ablation helps us
to understand whether the strategy of training encoder on mixed functional relationships can bring more
generalization to the amortization process, or if we should have trained encoders specialized for linear and
non-linear functional relationships.

We present our results of the ablation study for the task of noise prediction, sample generation, and
interventional generation in Table 23, Table 24, Table 25 respectively. Our findings indicate that Cond-FiP is
robust to the choice of encoder training strategy! Even though the encoder for Cond-FiP (RFF) was only
trained on data from non-linear SCMs, its generalization performance is similar to Cond-FiP where the
encoder was trained on data from both linear and non-linear SCMs.

37

Published in Transactions on Machine Learning Research (12/2025)

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
Cond-FiP(LIN) 10 0.07 (0.01) 0.21 (0.02) 0.08 (0.01) 0.2 (0.03)
Cond-FiP(RFF) 10 0.06 (0.01) 0.11 (0.01) 0.07 (0.01) 0.09 (0.01)
Cond-FiP 10 0.06 (0.01) 0.1 (0.01) 0.07 (0.01) 0.1 (0.01)

Cond-FiP(LIN) 20 0.07 (0.01) 0.19 (0.02) 0.09 (0.01) 0.21 (0.01)
Cond-FiP(RFF) 20 0.06 (0.01) 0.09 (0.01) 0.1 (0.02) 0.11 (0.01)
Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.07 (0.0) 0.12 (0.0)

Cond-FiP(LIN) 50 0.07 (0.01) 0.21 (0.02) 0.07 (0.01) 0.24 (0.01)
Cond-FiP(RFF) 50 0.07 (0.01) 0.09 (0.01) 0.07 (0.0) 0.14 (0.01)
Cond-FiP 50 0.06 (0.01) 0.1 (0.01) 0.07 (0.01) 0.14 (0.01)

Cond-FiP(LIN) 100 0.06 (0.0) 0.22 (0.02) 0.07 (0.01) 0.26 (0.01)
Cond-FiP(RFF) 100 0.06 (0.01) 0.09 (0.01) 0.07 (0.01) 0.14 (0.01)
Cond-FiP 100 0.05 (0.0) 0.1 (0.01) 0.07 (0.01) 0.16 (0.01)

Table 23: Encoder Ablation for Noise Prediction. We compare Cond-FiP against the baselines for the
task of predicting noise variable from input observations against two variants. One variant corresponds to the
encoder trained on SCMs with only linear functional relationships, Cond-FiP(LIN). Similarly, we have another
variant where the decoder was trained on SCMs with only rff functional relationships, Cond-FiP(RFF). Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Results show
that training on only non-linear SCMs (Cond-FiP(RFF)) gives similar performance as training on both linear
and non-linear SCMs (Cond-FiP).

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
Cond-FiP(LIN) 10 0.05 (0.01) 0.14 (0.02) 0.06 (0.0) 0.08 (0.01)
Cond-FiP(RFF) 10 0.08 (0.01) 0.18 (0.06) 0.06 (0.0) 0.07 (0.01)
Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

Cond-FiP(LIN) 20 0.05 (0.01) 0.25 (0.06) 0.07 (0.01) 0.3 (0.03)
Cond-FiP(RFF) 20 0.08 (0.01) 0.22 (0.05) 0.11 (0.01) 0.29 (0.03)
Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.3 (0.03)

Cond-FiP(LIN) 50 0.08 (0.01) 0.26 (0.05) 0.11 (0.04) 0.52 (0.08)
Cond-FiP(RFF) 50 0.11 (0.01) 0.26 (0.05) 0.15 (0.02) 0.48 (0.07)
Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.0) 0.48 (0.07)

Cond-FiP(LIN) 100 0.07 (0.01) 0.27 (0.06) 0.08 (0.0) 0.57 (0.07)
Cond-FiP(RFF) 100 0.11 (0.01) 0.29 (0.08) 0.18 (0.03) 0.61 (0.08)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 24: Encoder Ablation for Sample Generation. We compare Cond-FiP against the baselines for
the task of generating samples from input noise variables against two variants. One variant corresponds to the
encoder trained on SCMs with only linear functional relationships, Cond-FiP(LIN). Similarly, we have another
variant where the decoder was trained on SCMs with only rff functional relationships, Cond-FiP(RFF). Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Results show
that training on only non-linear SCMs (Cond-FiP(RFF)) gives similar performance as training on both linear
and non-linear SCMs (Cond-FiP).

38

Published in Transactions on Machine Learning Research (12/2025)

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
Cond-FiP(LIN) 10 0.09 (0.02) 0.2 (0.03) 0.06 (0.01) 0.1 (0.01)
Cond-FiP(RFF) 10 0.13 (0.04) 0.23 (0.08) 0.08 (0.01) 0.1 (0.01)
Cond-FiP 10 0.1 (0.03) 0.21 (0.03) 0.07 (0.01) 0.11 (0.01)

Cond-FiP(LIN) 20 0.08 (0.01) 0.24 (0.05) 0.12 (0.04) 0.3 (0.03)
Cond-FiP(RFF) 20 0.13 (0.02) 0.23 (0.05) 0.13 (0.03) 0.31 (0.02)
Cond-FiP 20 0.09 (0.01) 0.24 (0.05) 0.14 (0.03) 0.31 (0.03)

Cond-FiP(LIN) 50 0.12 (0.02) 0.29 (0.05) 0.1 (0.01) 0.51 (0.07)
Cond-FiP(RFF) 50 0.14 (0.02) 0.29 (0.05) 0.18 (0.03) 0.47 (0.06)
Cond-FiP 50 0.13 (0.02) 0.27 (0.04) 0.12 (0.02) 0.48 (0.07)

Cond-FiP(LIN) 100 0.1 (0.01) 0.3 (0.06) 0.12 (0.01) 0.56 (0.07)
Cond-FiP(RFF) 100 0.12 (0.01) 0.31 (0.07) 0.2 (0.04) 0.6 (0.09)
Cond-FiP 100 0.1 (0.01) 0.3 (0.06) 0.14 (0.02) 0.58 (0.07)

Table 25: Encoder Ablation for Interventional Generation. We compare Cond-FiP against the
baselines for the task of generating interventional data from input noise variables against two variants. One
variant corresponds to the encoder trained on SCMs with only linear functional relationships, Cond-FiP(LIN).
Similarly, we have another variant where the decoder was trained on SCMs with only rff functional relationships,
Cond-FiP(RFF). Each cell reports the mean (standard error) RMSE over the multiple test datasets for each
scenario. Results show that training on only non-linear SCMs (Cond-FiP(RFF)) gives similar performance as
training on both linear and non-linear SCMs (Cond-FiP).

39

Published in Transactions on Machine Learning Research (12/2025)

G.3 Ablation Study of Decoder

We conduct an ablation study where we train two variants of the decoder Cond-FiP described as follows:

• Cond-FiP (LIN): We sample SCMs with linear functional relationships during training.

• Cond-FiP (RFF): We sample SCMs with non-linear functional relationships for training.

Note that in the main results (Table 4, Table 5) we show the performances of Cond-FiP trained by sampling
SCMs with both linear and non-linear causal mechanisms. Hence, this ablations helps us to understand
whether the strategy of training on mixed causal mechanisms can bring more generalization to the amortization
process, or if we should have trained decoders specialized for linear and non-linear functional relationships.

We present the results of our ablation study in Table 26 and Table 27, for the task of sample generation and
interventional generation respectively. Our findings indicate that Cond-FiP decoder trained for both linear
and non-linear functional relationships is able to specialize for both the scenarios. While Cond-FiP (LIN)
is only able to perform well for linear benchmarks, and similarly Cond-FiP (RFF) can only achieve decent
predictions for non-linear benchmarks, Cond-FiP is achieve the best performances on both the linear and
non-linear benchmarks.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
Cond-FiP(LIN) 10 0.07 (0.02) 0.4 (0.06) 0.07 (0.01) 0.25 (0.06)
Cond-FiP(RFF) 10 0.1 (0.02) 0.15 (0.02) 0.08 (0.01) 0.09 (0.01)
Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

Cond-FiP(LIN) 20 0.07 (0.01) 0.44 (0.07) 0.10 (0.01) 0.58 (0.02)
Cond-FiP(RFF) 20 0.11 (0.01) 0.26 (0.06) 0.14 (0.01) 0.31 (0.03)
Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.3 (0.03)

Cond-FiP(LIN) 50 0.10 (0.01) 0.5 (0.07) 0.14 (0.02) 0.69 (0.04)
Cond-FiP(RFF) 50 0.15 (0.02) 0.27 (0.05) 0.19 (0.02) 0.5 (0.07)
Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.0) 0.48 (0.07)

Cond-FiP(LIN) 100 0.1 (0.01) 0.51 (0.07) 0.15 (0.02) 0.72 (0.04)
Cond-FiP(RFF) 100 0.16 (0.03) 0.29 (0.07) 0.27 (0.04) 0.59 (0.06)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 26: Decoder Ablation for Sample Generation. We compare Cond-FiP for the task of generating
samples from input noise variables against two variants. One variant corresponds to a decoder trained on
SCMs with only linear functional relationships, Cond-FiP(LIN). Similarly, we have another variant where the
decoder was trained on SCMs with only rff functional relationships, Cond-FiP(RFF). Each cell reports the
mean (standard error) RMSE over the multiple test datasets for each scenario. Results indicate that training
on both linear and non-linear SCMs is crucial to generalize effectively in all scenarios.

40

Published in Transactions on Machine Learning Research (12/2025)

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
Cond-FiP(LIN) 10 0.09 (0.02) 0.40 (0.07) 0.06 (0.01) 0.22 (0.04)
Cond-FiP(RFF) 10 0.16 (0.05) 0.22 (0.03) 0.08 (0.01) 0.11 (0.01)
Cond-FiP 10 0.10 (0.03) 0.21 (0.03) 0.07 (0.01) 0.11 (0.01)

Cond-FiP(LIN) 20 0.10 (0.01) 0.45 (0.07) 0.16 (0.03) 0.57 (0.02)
Cond-FiP(RFF) 20 0.14 (0.02) 0.26 (0.05) 0.21 (0.03) 0.32 (0.02)
Cond-FiP 20 0.09 (0.01) 0.24 (0.05) 0.14 (0.03) 0.31 (0.03)

Cond-FiP(LIN) 50 0.14 (0.02) 0.49 (0.07) 0.14 (0.02) 0.68 (0.04)
Cond-FiP(RFF) 50 0.19 (0.03) 0.28 (0.05) 0.21 (0.03) 0.49 (0.06)
Cond-FiP 50 0.13 (0.02) 0.27 (0.04) 0.12 (0.02) 0.48 (0.07)

Cond-FiP(LIN) 100 0.12 (0.02) 0.52 (0.07) 0.18 (0.03) 0.71 (0.04)
Cond-FiP(RFF) 100 0.18 (0.03) 0.32 (0.07) 0.24 (0.04) 0.59 (0.07)
Cond-FiP 100 0.10 (0.01) 0.30 (0.06) 0.14 (0.02) 0.58 (0.07)

Table 27: Decoder Ablation for Interventional Generation. We compare Cond-FiP against two variants
for the task of interventional data from input noise variables. One variant corresponds to a decoder trained
on SCMs with only linear functional relationships, Cond-FiP(LIN). Similarly, we have another variant where
the decoder was trained on SCMs with only rff functional relationships, Cond-FiP(RFF). Each cell reports
the mean (standard error) RMSE over the multiple test datasets for each scenario. Results indicate that
training on both linear and non-linear SCMs is crucial to generalize effectively in all scenarios.

41

Published in Transactions on Machine Learning Research (12/2025)

H Comparing Cond-FiP with CausalNF

We also compare Cond-FiP with CausalNF (Javaloy et al., 2023) for the task of noise prediction (Table 28)
and sample generation (Table 29). The test datasets consist of ntest = 400 samples, exact same setup as in
our main results (Table 3, Table 4, and Table 5). To ensure a fair comparison, we provided CausalNF with
the true causal graph.

Our analysis reveals that CausalNF underperforms compared to Cond-FiP in both tasks, and it is also a
weaker baseline relative to FiP. Note also the authors did not experiment with large graphs for CausalNF;
the largest graph they used contained approximately 10 nodes. Also, they trained CausalNF on much larger
datasets with a sample size of 20k, while our setup has datasets with 400 samples only.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
CausalNF 10 0.16 (0.02) 0.41 (0.09) 0.38 (0.04) 0.35 (0.02)
Cond-FiP 10 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.10 (0.01)

CausalNF 20 0.18 (0.03) 0.45 (0.12) 0.29 (0.05) 0.36 (0.03)
Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.07 (0.00) 0.12 (0.00)

CausalNF 50 0.25 (0.03) 0.56 (0.09) 0.45 (0.06) 0.38 (0.04)
Cond-FiP 50 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.14 (0.01)

CausalNF 100 0.24 (0.02) 0.80 (0.1) 0.37 (0.06) 0.49 (0.05)
Cond-FiP 100 0.05 (0.0) 0.10 (0.01) 0.07 (0.01) 0.16 (0.01)

Table 28: Results for Noise Prediction with CausalNF. We compare Cond-FiP against CausalNF
for the task of predicting noise variables from input observations. We find that CausalNF underperforms
compared to Cond-FiP by a significant margin.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
CausalNF 10 0.27 (0.07) 0.29 (0.04) 0.20 (0.03) 0.20 (0.03)
Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

CausalNF 20 0.23 (0.02) 0.36 (0.05) 0.22 (0.02) 0.45 (0.02)
Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.30 (0.03)

CausalNF 50 1.5 (0.26) 0.93 (0.13) 3.09 (0.55) 0.95 (0.04)
Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.00) 0.48 (0.07)

CausalNF 100 1.23 (0.13) 0.85 (0.08) 1.67 (0.13) 0.96 (0.04)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 29: Results for Sample Generation with CausalNF. We compare Cond-FiP against CausalNF for
the task of generating samples from input noise variables. We find that CausalNF underperforms compared to
Cond-FiP by a significant margin.

42

Published in Transactions on Machine Learning Research (12/2025)

I Limitations of Cond-FiP

I.1 Evaluating Generalization of Cond-Fip to Larger Sample Size

In the main results (Table 3, Table 4, and Table 5), we evaluated Cond-FiP’s generalization capabilities to
larger graphs (d = 50, d = 100) than those used for training (d = 20). In this section, we carry a similar
experiment where instead of increasing the total nodes in the graph, we test Cond-FiP on datasets with more
samples nDtest = 1000, while Cond-FiP was only trained for datasets with sample size nD = 400.

The results for the experiments are presented in Table 30, Table 31, and Table 32 for the task of noise
prediction, sample generation, and interventional generation respectively. Our findings indicate that Cond-FiP
is still able to compete with other baseline in this regime. However, we observe that the performances of
Cond-FiP did not improve by increasing the sample size compared to the results obtained for the 400 samples
case, meaning that the performance of our models depends exclusively on the setting used at training time.
We leave for future works the learning of a larger instance of Cond-FiP trained on larger sample size problems.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.02 (0.0) 0.10 (0.01) 0.21 (0.04) 0.23 (0.02)
DECI 10 0.05 (0.01) 0.12 (0.01) 0.21 (0.04) 0.27 (0.03)
FiP 10 0.03 (0.0) 0.06 (0.0) 0.21 (0.04) 0.23 (0.02)
Cond-FiP 10 0.05 (0.01) 0.11 (0.01) 0.21 (0.04) 0.25 (0.02)

DoWhy 20 0.02 (0.0) 0.11 (0.02) 0.16 (0.01) 0.3 (0.02)
DECI 20 0.04 (0.01) 0.11 (0.02) 0.16 (0.01) 0.29 (0.02)
FiP 20 0.03 (0.0) 0.08 (0.02) 0.16 (0.01) 0.26 (0.02)
Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.18 (0.01) 0.26 (0.01)

Table 30: Results for Noise Prediction with Larger Sample Size (nDtest = 1000). We compare
Cond-FiP against the baselines for the task of predicting noise variables from the input observations. Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Results
indicate that Cond-FiP does not yet benefit from larger context sizes at inference, suggesting the need to scale
both the model and training data for richer contexts.

43

Published in Transactions on Machine Learning Research (12/2025)

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.04 (0.0) 0.14 (0.02) 0.29 (0.04) 0.3 (0.03)
DECI 10 0.07 (0.01) 0.17 (0.02) 0.29 (0.04) 0.33 (0.04)
FiP 10 0.05 (0.0) 0.09 (0.01) 0.29 (0.04) 0.29 (0.03)
Cond-FiP 10 0.05 (0.01) 0.14 (0.02) 0.29 (0.04) 0.29 (0.03)

DoWhy 20 0.04 (0.01) 0.21 (0.05) 0.28 (0.01) 0.55 (0.06)
DECI 20 0.07 (0.01) 0.21 (0.04) 0.29 (0.01) 0.59 (0.06)
FiP 20 0.05 (0.0) 0.17 (0.04) 0.28 (0.01) 0.53 (0.06)
Cond-FiP 20 0.05 (0.0) 0.24 (0.05) 0.28 (0.01) 0.53 (0.06)

Table 31: Results for Sample Generation with Larger Sample Size (nDtest = 1000). We compare
Cond-FiP against the baselines for the task of generating samples from the input noise variables. Each cell
reports the mean (standard error) RMSE over the multiple test datasets for each scenario. Results indicate
that Cond-FiP does not yet benefit from larger context sizes at inference, suggesting the need to scale both the
model and training data for richer contexts.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.04 (0.01) 0.16 (0.03) 0.26 (0.03) 0.27 (0.03)
DECI 10 0.09 (0.01) 0.19 (0.02) 0.26 (0.03) 0.31 (0.04)
FiP 10 0.05 (0.01) 0.12 (0.02) 0.26 (0.03) 0.27 (0.03)
Cond-FiP 10 0.09 (0.02) 0.19 (0.03) 0.27 (0.03) 0.3 (0.03)

DoWhy 20 0.04 (0.0) 0.20 (0.04) 0.26 (0.01) 0.53 (0.06)
DECI 20 0.08 (0.01) 0.20 (0.03) 0.29 (0.02) 0.54 (0.05)
FiP 20 0.06 (0.01) 0.16 (0.04) 0.28 (0.02) 0.48 (0.06)
Cond-FiP 20 0.07 (0.01) 0.27 (0.05) 0.30 (0.02) 0.51 (0.06)

Table 32: Results for Interventional Generation with Larger Sample Size (nDtest = 1000). We
compare Cond-FiP against the baselines for the task of generating interventional data from the input noise
variables. Each cell reports the mean (standard error) RMSE over the multiple test datasets for each
scenario.Results indicate that Cond-FiP does not yet benefit from larger context sizes at inference, suggesting
the need to scale both the model and training data for richer contexts.

44

Published in Transactions on Machine Learning Research (12/2025)

I.2 Counterfactual Generation with Cond-FiP

We provide results (Table 33) for bechmarking Cond-FiP against baselines for the task of counterfactual
generation. We operate in the same setup as the one in our main results (nDtest = 400) Appendix C and all the
methods are provided with the true casual graph. We observe that Unlike the tasks of noise prediction, sample
& interventional generation, we find that Cond-FiP is worse than the baselines for the task of counterfactual
generation. This can be explained as the training of Cond-FiP decoder relies on the true noise variables,
and the model struggles to generalize the learned functional mechanisms when provided with inferred noise
variables. We leave the improvement of Cond-FiP for counterfactual generation as future work.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.03 (0.03) 0.13 (0.03) 0.0 (0.0) 0.04 (0.01)
DECI 10 0.1 (0.02) 0.2 (0.03) 0.04 (0.01) 0.11 (0.02)
FiP 10 0.03 (0.01) 0.09 (0.02) 0.02 (0.0) 0.03 (0.01)
Cond-FiP 10 0.09 (0.03) 0.21 (0.03) 0.05 (0.01) 0.11 (0.01)

DoWhy 20 0.01 (0.0) 0.12 (0.03) 0.0 (0.0) 0.13 (0.02)
DECI 20 0.06 (0.01) 0.15 (0.03) 0.07 (0.03) 0.15 (0.02)
FiP 20 0.03 (0.01) 0.1 (0.03) 0.06 (0.04) 0.09 (0.02)
Cond-FiP 20 0.09 (0.02) 0.26 (0.05) 0.13 (0.02) 0.3 (0.03)

DoWhy 50 0.0 (0.0) 0.09 (0.02) 0.0 (0.0) 0.17 (0.04)
DECI 50 0.04 (0.01) 0.11 (0.02) 0.03 (0.01) 0.18 (0.04)
FiP 50 0.03 (0.01) 0.08 (0.02) 0.03 (0.01) 0.14 (0.04)
Cond-FiP 50 0.1 (0.02) 0.26 (0.04) 0.1 (0.01) 0.46 (0.06)

DoWhy 100 0.0 (0.0) 0.08 (0.02) 0.0 (0.0) 0.2 (0.05)
DECI 100 0.02 (0.01) 0.1 (0.02) 0.02 (0.01) 0.22 (0.05)
FiP 100 0.01 (0.01) 0.07 (0.02) 0.02 (0.01) 0.19 (0.05)
Cond-FiP 100 0.09 (0.02) 0.29 (0.06) 0.13 (0.02) 0.56 (0.08)

Table 33: Results for Counterfactual Generation. We compare Cond-FiP against the baselines for the
task of generating counterfactual data from the input noise variables. Each cell reports the mean (standard
error) RMSE over the multiple test datasets for each scenario. Shaded rows denote the case where the graph
size is larger than the train graph sizes (d = 20) for Cond-FiP. Results indicate that Cond-FiP struggles with
counterfactual generation and cannot always match the performance of baselines trained from scratch.

45

	Introduction
	Related Works

	Amortized Causal Learning
	Brief Overview of Amortized Inference
	Problem Setup

	Methodology: Conditional FiP
	Dataset Encoder
	Cond-FiP: Conditional Fixed-Point Decoder
	Inference with Cond-FiP

	Experiments
	Setup
	Results

	Conclusion
	Appendix
	 Appendix
	Additional Details on Cond-FiP
	DAG-Attention Mechanism
	Details on Encoder Training
	Inference with Cond-FiP
	Pseduo Code

	Details on Experiment Setup
	AVICI Benchmark
	CSuite Benchmark
	Model Architecture and Training Details

	Complete Results for Cond-FiP on AVICI Benchmark
	Experiments on Sensitivity to Distribution Shifts on AVICI benchmark
	Experiment on Generalization in Scarce Data Regime on AVICI benchmark
	Experiments with nDtest=100
	Experiments with nDtest=50

	Experiments without True Causal Graph on AVICI Benchmark
	 Analyzing Cond-FiP’s Sensitivity to Causal Graph Structure

	Ablation Study on AVICI benchmark
	 Analyzing the Effect of Pretraining Scale
	Ablation Study of Encoder
	Ablation Study of Decoder

	Comparing Cond-FiP with CausalNF
	Limitations of Cond-FiP
	Evaluating Generalization of Cond-Fip to Larger Sample Size
	Counterfactual Generation with Cond-FiP

