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ABSTRACT

Spatial confounding poses a significant challenge in scientific studies involving
spatial data, where unobserved spatial variables can influence both treatment and
outcome, possibly leading to spurious associations. To address this problem,
we introduce SpaCE: The Spatial Confounding Environment, the first toolkit to
provide realistic benchmark datasets and tools for systematically evaluating causal
inference methods designed to alleviate spatial confounding. Each dataset includes
training data, true counterfactuals, a spatial graph with coordinates, and smoothness
and confounding scores characterizing the effect of a missing spatial confounder.
It also includes realistic semi-synthetic outcomes and counterfactuals, generated
using state-of-the-art machine learning ensembles, following best practices for
causal inference benchmarks. The datasets cover real treatment and covariates from
diverse domains, including climate, health and social sciences. SpaCE facilitates
an automated end-to-end pipeline, simplifying data loading, experimental setup,
and evaluating machine learning and causal inference models. The SpaCE project
provides several dozens of datasets of diverse sizes and spatial complexity. It is
publicly available as a Python package, encouraging community feedback and
contributions.

1 INTRODUCTION

Spatial data is paramount in several scientific domains, such as public health, social science, eco-
nomics, climate science, and epidemiology. Spatial patterns may take various forms, such as
geographical coordinates or network-defined adjacencies. These spatial patterns add complexity to
statistical inference problems and constrain our ability to answer important questions surrounding
the causal effects that a treatment variable has on an outcome of interest. A fundamental concern
is spatial confounding, which occurs when an unobserved spatial variable influences the outcome
and treatment simultaneously, which may lead to spurious associations between them, potentially
resulting in biased estimates of causal effects (Gilbert et al., 2021b).

Consider, for example, a nationwide study estimating the effect of air pollution on cardiovascular
hospitalizations. Urbanization is a confounder since it is correlated with air pollution exposure and
is associated with other risks leading to higher hospitalization rates (Wu et al., 2020). If the study
does not control for urban development, it may lead to incorrect estimates of the health effects of air
pollution exposure. Since urbanization also varies smoothly in space (an urban area is likely to be
located next to an urban area), it is a spatial confounder. In this specific scenario, one could account
for urbanization using population density. However, confounders may be unknown, or measurements
of a known confounder might not exist. The field of spatial confounding in causal inference aims to
control for potential unobserved confounders by exploiting the spatial structure of the data, under the
hypothesis that the confounding mechanism varies smoothly in space.
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Spatial confounding methods seek to leverage spatial patterns to account for unobserved variables
that vary smoothly in space (Gilbert et al., 2021a; Papadogeorgou et al., 2019; Tec et al., 2023). While
there is an increasing interest in developing flexible machine-learning methods specifically tailored to
alleviate spatial confounding (Gilbert et al., 2021b; Veitch et al., 2019). realistic benchmark datasets
to measure a method’s ability to reduce confounding are currently lacking. A likely reason for this
absence is that counterfactuals and missing confounders cannot, by definition, be observed in real
data, a challenge often known as the “fundamental problem of causal inference" (Holland, 1986).

Figure 1: SpaCE encapsulates essential compo-
nents necessary for causal effect estimation algo-
rithms using spatial data, including ground-truth
counterfactuals.

To address this challenge, we present SpaCE:
The Spatial Confounding Environment, a com-
prehensive set of software tools and datasets
for evaluating machine-learning methods to ad-
dress spatial confounding in causal inference.
SpaCE datasets comprise real treatment and
confounder data from publicly available sources
commonly used in environmental health, social
science, economics, and climate science studies,
among other domains. Core to our approach
is generating realistic semi-synthetic outcomes
approximating true outcomes of interest using
state-of-art machine-learning ensembles (Erick-
son et al., 2020) paired with cross-validation procedures for spatial data (Roberts et al., 2017) and
spatial correlation modeling. In each dataset, there is a set of masked spatially-varying covariates
inducing spatial confounding, and categorized by degree of spatial smoothness. SpaCE datasets
contain spatial information in an adjacency graph and/or geographical coordinates that methods can
utilize. The diversity of SpaCE datasets, illustrated by Fig. 1, spans multiple treatment types (binary,
continuous), spatial formats (graph, coordinates), and evaluation metrics (average causal effects,
dose-response curves, or counterfactual prediction at the unit level). In addition to our SpaCE Python
package, we provide tools to reproduce existing datasets and generate new ones from a user’s data.1

Insufficiency of current solutions Benchmark datasets that are currently used in causal inference
lack a spatial structure and thus cannot be used for evaluating spatial confounding methods. Nonethe-
less, there has been an increasing interest in establishing best practices for the evaluation of causal
inference methods outside of the spatial confounding literature (Cheng et al., 2022; Curth et al., 2021).
There are three predominant approaches. The first one uses fully simulated treatment, confounders
and outcome data by sampling from known probability distributions to verify the theoretical properties
of a method in controlled settings (Morris et al., 2019). While simulation studies play an important
role in developing new methods, they are insufficient for evaluating a method’s performance in
practice in a wide range of settings, particularly in the context of machine learning (Breiman, 2001).
A second approach is to use only real data and create benchmark datasets using biased sampling from
randomized controlled trials (RCTs) (Gentzel et al., 2021). However, RCTs are not available for
spatial data. Additionally, RCT methods do not support the generation of counterfactuals. The third
approach combines synthetic outcomes with real covariate and treatment data. These methods can be
categorized as those using data-driven methods for generating a synthetic outcome (Neal et al., 2020)
and those using random user-specified probability distributions without referencing actual outcome
data. The latter category has the advantage of generating a large number of diverse benchmark
datasets (e.g., Dorie et al. (2019)), but has recently received criticism since it lacks representativity
of real data and can artificially favor arbitrary algorithms (Curth et al., 2021). The Infant Health
Development Program (IHDP) dataset is the best-known example (Hill, 2011). By contrast, SpaCE
belongs to the former category by using ensemble methods to approximate real outcomes.

2 BACKGROUND ON SPATIAL CONFOUNDING

We introduce some notation using the potential outcomes commonly used in the causal inference
literature (Rubin, 2005). Let As and Ys be the treatment and outcome of interest at each location s ∈ S.
Xs indicates the vector of confounders. Boldface notation indexes spatial processes, for example,
X = (Xs)s∈S. The spatial structure in S is determined by a discrete graph or by a continuous

1The SpaCE source code is available at https://anonymous.4open.science/r/space-BC93
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(a) True outcome Ys (b) Synthetic outcome Ỹs (c) True residuals R̂s and
synthetic residuals Rs

(d) Counterfactuals (po-
tential outcomes)

Figure 3: Example synthetic outcome and residuals from the synthetic data generation in the
healthd_pollutn_mortality_cont environment.

coordinate system. Y a
s represent the potential outcomes under a potential treatment assignment a at

location s. We also refer to potential outcomes as counterfactuals.

The goal of causal inference is to estimate some function of the counterfactuals that we commonly
refer to as causal effects. Examples include the average treatment effect τate = |S|−1

∑
s∈S(Ỹ

1
s −

Ỹ 0
s ) for a binary treatment, the exposure-response function τerf(a) = |S|−1

∑
s∈S Ỹ

a
s , and the

counterfactuals themselves. It is well known that when all confounders are observed—that is,
when there are no unobserved variables affecting As and Y a

s simultaneously—then E[Y a
s |Xs] =

E[Ys|As = a,Xs]. The left-hand side in this last expression involves counterfactuals, whereas the
right-hand side can be estimated via regression. This result is known as identification. When a
confounder is missing, identification is not guaranteed, that is, E[Y a

s |Xs] ̸= E[Ys|Xs, As = a]
(Rubin, 2005; Pearl, 2009).

Spatial confounding results from the co-occurrence of two conditions: there is an unobserved
confounder (say, Xs = (Xobs

s , Xmiss
s )), and the process Xmiss shows strong spatial auto-correlation.

The closer locations s are s′ are, the more correlated Xmiss
s and Xmiss

s′ become (as illustrated in Fig. 2).
A pronounced spatial distribution of a missing confounder suggests a similar confounding nature
between nearby locations s and s′. This lack of identification is what methods for spatial confounding
aim to address, exploiting knowledge of the spatial structure. While this goal may be achieved in
different ways in different methods, the general strategy can intuitively be described as learning some
function of space Zs so that identification holds, that is, E[Y a

s |Xs, Zs] ≈ E[Ys|As = a,Xs, Zs].

Figure 2: Causal diagram of spa-
tial confounding with neighbors
s and s′. Arrows represent causal
relations; undirected dotted lines
represent non-necessarily causal
associations. The correlations in-
crease as the distance between s
and s′ decreases.

As a technical remark, the spatial confounding literature typically
assumes that the treatments of one unit do not affect the outcomes
of other units, a condition known as interference (Forastiere et al.,
2021). Much like spatial confounding, interference can bias
causal estimates. However, their underlying mechanisms and
solutions are distinct (Ogburn & VanderWeele, 2014; Gilbert
et al., 2021b; Papadogeorgou & Samanta, 2023). It is worth
noting that failing to address spatial confounding may give the
false impression of interference even if the latter is not present
in the data (Papadogeorgou & Samanta, 2023). Here, we focus
on spatial confounding, deferring interference to future work (we
provide additional discussion in Section 6).

Lastly, notice that the term spatial confounding has been used
inconsistently across research, sometimes without a clear causal
inference interpretation (Gilbert et al., 2021b; Khan & Berrett,
2023). For instance, spatial confounding has sometimes been
characterized as a property of statistical models (Dupont et al.,
2022), specifically, as the correlation between the spatial random effects of a model and the treatment
variable. Another definition has been concerned primarily with variance adjustments for spatially
autocorrelated data (Khan & Calder, 2022; Reich et al., 2006).
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Figure 4: (Top): The semi-synthetic data generation pipeline and acquisition. (Bottom): Summary of
the key terms used in SpaCE.

3 SpaCE: THE SPATIAL CONFOUNDING ENVIRONMENT

We first explain the design goals and overview of the SpaCE pipeline and its components. Next, we
provide details about the various implementations of these components.

Design goals The first requirement is that the generated datasets are representative of real data. We
will achieve this by using real covariate and treatment data with realistic, semi-synthetic outcomes and
counterfactuals. We will provide details later in this section. Data generating mechanisms producing
datasets that could artificially favor a specific model type during causal evaluation should be ideally
avoided (Curth et al., 2021). The spatial autocorrelation of the residuals (the unexplained variation
in the outcome) should also be represented accurately since various spatial confounding adjustment
methods are based on adding “spatial effects" to a predictive model (Dupont et al., 2022), and their
performance in resolving confounding is affected by the spatial autocorrelation pattern in the data.

Overview of the pipeline The SpaCE pipeline consists of two stages: (1) generate a synthetic
data environment by selecting a treatment, outcome, and covariates from a publicly available data
collection based on a realistic scientific question; and (2) obtain a benchmark dataset with controlled
spatial confounding by masking a group of spatial covariates in the environment. To illustrate
the idea with an example, let us consider the treatment is air pollution exposure and the outcome
is hospitalizations. First, we will fit a predictive model using air pollution and a set of observed
confounders, such as socio-demographic characteristics, including urbanization. For the residuals, we
will then use a probabilistic model to obtain an independent sample of a spatial process approximating
the distribution of this model’s errors. Finally, we would create a benchmark dataset by masking a
group of confounders, such as urbanization variables. This example is present in SpaCE, with the
generated data displayed in Fig. 3, showing the counterfactuals, outcomes, and residuals alongside
the real data, highlighting their striking resemblance.

Key terminology We introduce three key terms that will facilitate the presentation of our data
generation pipeline and are used throughout the SpaCE API. These terms are illustrated in Fig. 4.
First, a DataCollection comprises variables from publicly available data surrounding a theme or
topic of interest. From each of these collections, we can obtain various causal inference environments,
or SpaceEnvs, after specifying a treatment, outcome, and set of confounders—emulating a realistic
study—and implementing our data fitting and generation method. Each environment contains semi-
synthetic counterfactuals with important metadata, such as a list of edges or geographic coordinates.
Environments are stored on a server where it is publicly accessible, versioned, and documented.
Lastly, each environment yields various benchmarking datasets, or SpaceDatasets, obtained by
masking a group of related confounders varying smoothly in space. Every SpaceDataset contains
metadata about the degree of spatial smoothness and a “confounding score" determined by their
respective omitted group of confounders.

Data Collections DataCollections are the entry-point to the semi-synthetic data-generating
algorithm. Currently, SpaCE offers six DataCollections from various domains and sizes,
summarized below and in Table 1. Appendix A provides additional details about the public data
sources composing each collection.

The smallest dataset represents a spatial graph of 3, 109 nodes, while the largest has nearly 4
million nodes. Notice, however, that the size of the smaller datasets may already be computationally
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Table 1: List of DataCollections and SpaceEnvs A SpaceEnv name has four components: the
prefix is the code for the source DataCollection (cdcsvi, climate, healthd, county), it is followed
by the treatment and outcome codes, and ends with the code for the treatment type (cont, disc).

DataCollection Treatment Spatial Unit Region #Covariates #Nodes #Edges
SpaceEnv Type #SpaceDatasets

Social Vulnerability and Welfare census tract Texas 16 6,828 21,585
cdcsvi_limteng_hburdic_cont continuous 12
cdcsvi_nohsdp_poverty_cont continuous 11
cdcsvi_nohsdp_poverty_disc binary 11

Heat Exposure and Wildfires census tract California 22 8,616 26,695
climate_relhum_wfsmoke_cont continuous 8
climate_wfsmoke_minrty_disc binary 10

Air Pollution and Mortality county USA 34 3,109 9,237
healthd_dmgrcs_mortality_disc binary 9
healthd_hhinco_mortality_cont continuous 10
healthd_pollutn_mortality_cont continuous 9
Welfare and Elections county USA 45 3,109 9,237
county_educatn_election_cont continuous 14
county_phyactiv_lifexpcy_cont continuous 16

county_dmgrcs_election_disc binary 14
PM2.5 Components 1× 1 km USA 6 3,882,956 7,647,552

pm25_hires_no3_pm_cont continuous 4
pm25_hires_so2_pm_cont continuous 4

Socioeconomic Status and Broadband Usage zip code USA 16 30,383 174,345
zcta_income_broadband_disc discrete 5

zcta_age_broadband_cont continuous 4

demanding for some spatial confounding algorithms with polynomial space complexity. In our
experiments, we found this to be true using many practical implementations of spatial regression
methods, such as those based on the pysal library (Rey & Anselin, 2007). Further, the literature on
spatial confounding has focused strongly on developing

√
n-consistent estimators that have quick

convergence with high performance on similarly sized or smaller datasets (Gilbert et al., 2023).
Notably, our benchmark dataset sample sizes surpass those in many simulation studies of these
methods. On the other hand, the largest datasets can be interesting for the performance of scalable
methods, such as neural networks.

4 DETAILS ABOUT THE DATA GENERATION PIPELINE

We now provide technical details about the data-generating mechanism in SpaCE.

Spatial Semi-synthetic Data Generation: From DataCollection to SpaceEnv Given a
DataCollection, we select a set of treatment, outcome, and covariates to represent a realistic
scientific question. Each combination produces a semi-synthetic outcome and counterfactuals,
resulting in a unique SpaceEnv. Let X,A, and Y denote the confounders, treatment, and outcome.
We approximate the distribution of the outcome as Ỹs = f(Xs, As) +Rs such that Pr(Y |A,X) ≈
Pr(Ỹ |A,X). We learn f and R for each SpaceEnv. We can then generate counterfactuals by
evaluating on any treatment value:

Ỹ a
s = f(Xs, a) +Rs (1)

The strategy to generate counterfactuals has four steps. First, we learn f that best predicts Ys from
(Xs, As) using AutoML. Second, we estimate the empirical additive errors R̂s = Ys − f(Xs, As)

and their joint (spatial) distribution R̂ ∼ PR. Third, we replace these endogenous residuals with
an independent similarly distributed exogenous noise R ∼ PR. Finally, we obtain counterfactuals
with Eq. (1) by varying the treatment while holding constant the confounders and the exogenous
noise. The methodology implementing these steps pursues the following desirable properties: (a) f
captures non-linear relations and interactions; (b) R exhibits a similar spatial autocorrelation as the
one observed in the data when f captures all the causal relations from (X,A) to Y ; (c) the resulting
dataset does not exhibit additional unobserved confounding. Sampling R independently ensures that
the synthetic residuals are independent of the treatment, and therefore, the only possible confounders
are those in X by the backdoor criterion (Pearl, 2009). Below, we provide more details about the
implementation.

Predictive model. For (a), we learn f using ensembles of machine-learning models where the
ensemble weights are determined by their predictive ability on validation data. We do this to
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avoid favoring causal algorithms based on a specific type of model, as recommended by Curth
et al. (2021), who discuss best practices for causal inference benchmarks. We fit the ensemble
using the AutoGluon Python package (Erickson et al., 2020) to reduce human intervention,
automatically selecting the best hyperparameters and performing various overfitting reduction
techniques. The package options and configuration are described in Table 5 in the supplement.
We found it critical to implement a spatially-aware train-validation data split (Roberts et al.,
2017), resulting in extreme overfitting without it, caused by the duplicity of training data in the
validation set due to spatial correlations. The spatially-aware splitting scheme selects a small
subset of validation nodes and uses breadth-first search to remove their surrounding neighbors
from the training subset. This algorithm is described in Algorithm 1 in the supplement.

Residual sampling. For (b) and (c), residual sampling, we use a Gaussian Markov Ran-
dom Field (GMRF) from a spatial graph, a convenient and scalable spatial process (Rue
& Held, 2005; Tec et al., 2019). More precisely, we sample the synthetic residuals as
R ∼iid MultivariateNormal(0, λ̂(D− ρ̂AD)−1), where A is the adjacency matrix of the spatial
graph; D is a diagonal matrix with the number of neighbors of each location; ρ̂ determines the
correlation between an observation and its neighbors, learned from the true residuals (the errors of
the predictive model in Step 1); and λ̂ is chosen to match the variance of the true residuals exactly.
A key technical element in our implementation was sampling from a large Gaussian random field
using matrix factorizations for sparse matrices (Chen et al., 2008), enabling scalability to massive
spatial graphs (such as in the PM2.5 Components DataCollection).

Table 2: Contents of a SpaceDataset.

Name Description

Training data Xobs,A and Ỹ

Counterfactuals Ỹ a for each treatment value a ∈ A,
computed with Eq. (1). For contin-
uous treatments, a discretization of
|A| = 100 values is used

Graph and coordinates A list of edges and coordinate matrix
Treatment type An indicator if |A| = 2 (binary) or

|A| = 100 (continuous)
Spatial smoothness score Auto-correlation of Xmiss

Confounding score A metric of the degree of confound-
ing induced by Xmiss. .

Panel (c) in Fig. 3 illustrated the marginal distri-
bution of the fitted residuals compared with the
original ones. Further, panel (d) showed the fit-
ted counterfactuals, which are visualized as func-
tions of the treatment/exposure passing through
the observed data points. Fig. 6 in the appendix
provides additional visualizations comparing the
synthetic and real residuals. In particular, panel
(b) compares the Moran I measure for spatial au-
tocorrelation across all of the SpaCE datasets,
indicating a strong correspondence validating
the learning procedure.

Inducing Spatial Confounding: From SpaceEnv to SpaceDataset A benchmark dataset is
obtained by masking a group of related confounders in a SpaceEnv. Masking entails removing a
group of related covariates from the training data. A dataset object encapsulates the essential compo-
nents required for estimating causal effects and comparing the performance of spatial confounding
methods. The contents of a SpaceDataset are summarized in Table 2. The variable names in the
space datasets are anonymized to discourage inappropriate use of our benchmark datasets to infer
effects in the original data collections. We provide additional discussion in Section 6.

Eq. (1) specifies an additive noise model (ANM) used for counterfactual generation. While this
model is additive, SpaceDatasets can exhibit more complex forms of non-additive noise due to
the interactions with the missing confounder. Nonetheless, it is worth noticing that ANMs remain
the focus and leading open challenge in the spatial confounding literature (c.f., Akbari et al. (2023)).
Even when outcomes are count-based or binary, which could indicate non-additive noise, simple
techniques from generalized linear models (e.g., Poisson regression) or outcome transformations
(e.g., logarithms) have been adapted to complement spatial confounding methods (c.f., Urdangarin
et al. (2023)). Thus, SpaceDatasets are highly relevant to the current state of the art in spatial
confounding adjustment. The ANM will be a sensible model when the empirical residuals are
approximately symmetric and continuously supported, as exemplified in Fig. 3c. Documentation of
the outcome transformations and histograms of the empirical and synthetic residuals are stored with
each SpaceEnv in the Harvard Dataverse platform.

Tasks and Metrics Tasks in SpaCE are determined by a causal effect target which, in turn, de-
termines the metrics used to evaluate performance. Not all algorithms can estimate all types of
causal effects, and the relevant effects also depend on whether the treatment is binary or continuous.
Section 4 summarizes the causal effect targets currently supported in SpaCE and the associated
metrics which can be computed from the counterfactuals. SpaCE provides an auxiliary class called
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Table 3: Supported causal estimation tasks and metrics. τ∗ denotes a causal effect and τ̂∗ is an estimate,
where ∗ is the name of the task. For the last column, Ŷ a

s is an estimate of the counterfactual Ỹ a
s for each location

s and treatment a. For continuous treatment types, we assume |A| = 100. The metrics are standardized by the
standard deviation of Ỹs, denoted σy .

Causal Effect Treatment type Metric

average treatment effect (ATE) binary absolute bias (BIAS)
τate = |S|−1 ∑

s∈S(Ỹ
1
s − Ỹ 0

s ) σ−1
y |τ̂ate − τate|

exposure-response function (ERF) continuous root mean integrated-squared error (
√

MISE)
∀a ∈ A : τerf(a) = |S|−1 ∑

s∈S Ỹ
a
s σ−1

y

√
|A|−1

∑
a∈A(τ̂erf(a)− τerf(a))2

individualized treatment effects (ITE)
∀a ∈ A, s ∈ S : Ỹ a

s

binary and continuous precision at estimating heterogeneous effects (PEHE)

σ−1
y

√
|A|−1S|−1

∑
s∈S,a∈A(Ỹ

a
s − Ŷ a

s )
2

DatasetEvaluator to estimate these quantities. The performance metrics are standardized by
the standard deviation of the synthetic outcome so that they are comparable across datasets and
environments.

The three causal estimands currently supported in SpaCE are the average treatment effect (ATE) (for
binary treatments), the exposure-response function (ERF) (also known as the average dose-response
curve), and the individualized treatment effects (ITE). The value of these metrics is defined in
terms of potential outcomes in the first column of Section 4. The ATE and ERF are averaged across
the population, while the ITE is simply the counterfactual value for each unit. We will measure
performance based on metrics commonly used in the machine learning literature for these estimands
(c.f., (Cheng et al., 2022)): the absolute bias BIAS for the ATE (Hill, 2011; Shi et al., 2019); the mean
integrated squared error MISE for the ERF (Schwab et al., 2020; Nie et al., 2020); and the precision
in estimating heterogeneous effects PEHE for the ITE (Hill, 2011; Shi et al., 2019). The names of
these metrics vary in the literature, but the definitions are consistent or present small variations. The
standard deviation of the outcome normalizes all effects so they are comparable across datasets.

Confounding score and smoothness scores These scores characterize the properties of the masked
confounders of a SpaceDataset. Smoothness scores are calculated using Moran’s I statistic,
which is an approximate form of spatial correlation and takes values in [−1, 1] (Moran, 1950). The
confounding score is computed as a baseline model’s change in causal estimates when masking a
set of confounders. We use the same AutoML configuration of the predictive model as the baseline.
Each causal estimand defined in Section 4 has an associated confounding score for each benchmark
dataset. For ease of presentation, we use the confounding score of the exposure-response function as
the single reference. We will also classify datasets in low or high confounding/smoothness, using the
median across all datasets as the threshold.

5 EXAMPLES AND EXPERIMENTS

Our first experiment investigates whether or not the generated SpaceDatasets have the property
that (1) the causal effects can be learned from the generated semi-synthetic outcomes and (2) masking
confounders reduces the estimation performance. To assess this, we collected the estimation errors
of three baselines when using the unmasked full covariates and when learning with masked spatial
confounders based on the cdcsvi_nohsdp_poverty_cont environment. The baselines con-
sidered are ordinary least-squares (OLS), gradient boosting (XGBOOST), and a multi-layer perception
(MLP). We did not tune for the best architecture in this experiment since the purpose was not to
discover the best method but to evaluate points (1) and (2) just mentioned.

The results of the experiment are shown in Fig. 5. In all cases, training with the masked
SpaceDatasets decreases performance compared to using all the confounders. The MLP is
the best performer, also corroborated by the examples of fitted curves in panel (a), which are reason-
ably acurate. Another takeaway is that a method cannot perfectly estimate the true causal effects due
to model limitations and finite sample error, even when using all the confounders.

Our second experiment illustrates the evaluation of spatial confounding methods. It is worth noting
that linear models have dominated this literature without strict attention to scalability. Thus, due to
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(a) ERF estimation in one SpaceDataset. (b) Errors across
SpaceDatasets.
.Figure 5: Examples using the cdcsvi_nohsdp_poverty_cont environment.

limitations in the scalability of some of the baselines taken into account below, we only conducted
this experiment on the first four data collections in Section 4.

We first include two baseline models from the PySAL Python library (Rey & Anselin, 2007).
These models are the Spatial Two Stage Least Squares (Anselin, 1988) (S2SLS), implementing an
outcome auto-regressive model, and the General Methods of Moments Estimation of the Spatial
Error (Kelejian & Prucha, 1999; 1998) (GLMERR), implementing a residual auto-regressive model.
Next, we consider the SPATIAL and SPATIAL+ models, which use spatial splines and a two-stage
regression procedure to account for the spatial portion of the treatment (Dupont et al., 2022). We
also consider a Graph Convolutional Neural Network (Kipf & Welling, 2016) (GCNN), which uses
neighboring information similarly to S2SLS but can also model non-linear relations from a potentially
longer range of spatial dependencies. Thus, while not typically considered a spatial confounding
method, it is worth evaluating its performance. Next, we consider the distance-adjusted propensity
score method (DAPSM) (Papadogeorgou et al., 2019), which uses a matching estimator (Rubin, 1973)
that prioritizes nearby matches. This method finds pairs of treated and untreated units to compare
their outcomes as an estimate of the causal effect (only applicable in the binary case).

To ensure a fair comparison, we use the RAY TUNE (Liaw et al., 2018) framework for hyperparameter
tuning. In all cases but DAPSM, we use the out-of-sample prediction as the tuning criterion. For
DAPSM we use the covariate balance criterion following Papadogeorgou et al. (2019). Appendix D
provides additional details about the tuning hyperparameters of each method. Importantly, we use
the spatially-aware train-validation splitting for computing the tuning metric since random splitting
would result in extreme overfitting (Roberts et al., 2017).

Table 4 shows the results, which vary strongly across settings. Notably, the SPATIAL+ algorithm
excels in estimating binary average treatment effects yet underperforms in continuous treatment
scenarios. In the latter case, the GMERROR seems to yield the best performance, but without statistical
significance. Another interesting result is that linear models consistently outperform GCNN, even
when they cannot inherently account for effect heterogeneity as the neural network. Although the
GCNN could perform well in various experiments, it would sometimes lead to large errors, affecting
the final metric. In general, models highly sensitive to overfitting were more challenged by the
challenges of hyper-parameter tuning due to the spatial correlations.

Fig. 10 in the appendix summarizes the experiment results grouped by SpaceEnv. One takeaway is
that the linear spatial regression baselines GMERR and SL2SLS offer only a very small improvement
over a baseline OLS in all environments. This result could indicate the need to focus on expanding the
literature on machine-learning-driven models. We can see that the GCNN had a better performance
than the other models in the two environments from the Heat Exposure and Wildfires collection (see
Table 1) despite its overall worst performance, warranting future investigation of what properties of
this collection allowed for a better performance of the GCNN.

Lastly, we analyzed the baselines’ performance by smoothness and confounding score. For this
purpose, we use a linear mixed effects model (Gałecki et al., 2013). See Appendix F for additional
details of the model specification. The results of this analysis, shown in Table 9 of the appendix,
indicate that the errors were lower as the smoothness score was higher for all baselines. DAPSM
benefited the most from higher smoothness. Conversely, a higher confounding score is associated
with higher errors in all but one case. Many of the effects are moderately statistically significant. This
analysis provides additional evidence that the smoothness and confounding scores are meaningful in
describing the complexity of a benchmark dataset, although with high variance.
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Table 4: Benchmarks are collected across all datasets. Table entries show the mean with 95% confi-
dence intervals using the asymptotic normal formula. "High smoothness" and "high confounding"
denote datasets in the top 50% based on spatial smoothness and confounding score. Sample sizes,
depicted in Fig. 8, reflect dataset combinations of smoothness, confounding, and treatment type.

BINARY TREATMENT CONTINUOUS TREATMENT
SMOOTHNESS CONFOUNDING METHOD ATE ITE ERF ITE

HIGH HIGH DAPSM 0.29 ± 0.20 0.25 ± 0.15 N/A N/A
GCNN 0.16 ± 0.07 0.25 ± 0.08 0.49 ± 0.14 0.72 ± 0.16
GMERROR 0.07 ± 0.04 0.14 ± 0.05 0.26 ± 0.07 0.45 ± 0.11
S2SLS 0.11 ± 0.06 0.15 ± 0.07 0.26 ± 0.07 0.45 ± 0.11
SPATIAL+ 0.03 ± 0.03 0.13 ± 0.05 0.42 ± 0.13 0.56 ± 0.14
SPATIAL 0.05 ± 0.03 0.13 ± 0.06 0.26 ± 0.08 0.44 ± 0.11

LOW DAPSM 0.39 ± 0.16 0.37 ± 0.09 N/A N/A
GCNN 0.14 ± 0.04 0.28 ± 0.04 0.44 ± 0.11 0.58 ± 0.12
GMERROR 0.05 ± 0.02 0.18 ± 0.04 0.37 ± 0.19 0.43 ± 0.19
S2SLS 0.04 ± 0.02 0.18 ± 0.04 0.86 ± 1.01 0.94 ± 1.06
SPATIAL+ 0.03 ± 0.01 0.18 ± 0.04 0.41 ± 0.19 0.47 ± 0.19
SPATIAL 0.04 ± 0.01 0.18 ± 0.04 0.37 ± 0.19 0.42 ± 0.19

LOW HIGH DAPSM 0.18 ± 0.11 0.19 ± 0.10 N/A N/A
GCNN 0.14 ± 0.06 0.18 ± 0.08 0.31 ± 0.08 0.57 ± 0.07
GMERROR 0.09 ± 0.02 0.16 ± 0.06 0.31 ± 0.07 0.48 ± 0.10
S2SLS 0.09 ± 0.01 0.16 ± 0.06 0.31 ± 0.07 0.48 ± 0.10
SPATIAL+ 0.05 ± 0.03 0.15 ± 0.06 0.47 ± 0.12 0.60 ± 0.13
SPATIAL 0.06 ± 0.03 0.15 ± 0.06 0.31 ± 0.07 0.48 ± 0.10

LOW DAPSM 0.53 ± 0.15 0.45 ± 0.08 N/A N/A
GCNN 0.17 ± 0.04 0.34 ± 0.03 0.36 ± 0.09 0.50 ± 0.09
GMERROR 0.06 ± 0.02 0.18 ± 0.04 0.32 ± 0.19 0.37 ± 0.19
S2SLS 0.08 ± 0.05 0.19 ± 0.05 0.70 ± 0.57 0.77 ± 0.59
SPATIAL 0.05 ± 0.02 0.18 ± 0.04 0.34 ± 0.21 0.39 ± 0.20
SPATIAL+ 0.03 ± 0.01 0.18 ± 0.04 0.35 ± 0.19 0.40 ± 0.19

6 CONCLUSION AND DISCUSSION

By enabling a systematic evaluation and comparison of spatial confounding in realistic scenarios,
SpaCE represents a significant step towards addressing spatial confounding, a fundamental issue
in many scientific problems with spatial data. SpaCE advances causal inference in spatial data by
providing a well-structured, adaptable environment for benchmarking and improving existing and
future methods. We will continuously grow the available environments in the SpaCE Python package
to include additional DataCollections from various domains.

There are exciting opportunities for future work. One possible extension is temporal confounding,
which shares mechanisms with spatial confounding when a confounder has lagged effects and varies
smoothly in time (Imai et al., 2021; Papadogeorgou et al., 2022). Our methods to generate semi-
synthetic data may be reused. In particular, our approach to function estimation could use time series
methods and our residual generation could be generalized to a spatio-temporal graph (Tec et al.,
2019). However, the methods to resolve temporal and spatial confounding can differ significantly. For
instance, difference-in-differences methods are only used with longitudinal data. Similarly, baselines
will be different, as well as residual sampling strategies.

Another possible extension is interference, also known as spill-overs, in which the treatment of
neighbors affects the outcomes of other units. However, significant additional work is needed for this
extension. First, ensembles of mainstream machine learning models (e.g. boosting, random forests,
MLPs) are not suitable for data with unknown interference (Bhattacharya et al., 2020). GNNs are
promising tools, but much evaluation is still needed (Ma & Tresp, 2021), and, for best practices,
ensembling methods should not rely on a single type of generative model (Curth et al., 2021). Second,
the interference literature focuses on estimating spillover effects (Hudgens & Halloran, 2008). Metrics
and evaluation tools for this task need careful design. Third, the data domains of interest in the spill-
overs literature may vary. For instance, it has concentrated more often on social networks (Forastiere
et al., 2021), while they have been of less interest in spatial confounding.

Addressing these future work opportunities here would have required substantial developments that
are beyond the scope of spatial confounding. It must be highlighted that some solutions for these
extensions already exist (Cheng et al., 2022), while SpaCE addresses a fundamental gap in spatial
confounding, for which no solution with realistic data currently exists.
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ETHICS STATEMENT AND BROADER IMPACT

We consider several ethical aspects while designing and deploying SpaCE. First, we take several
actions to minimize potential harm due to misusing semi-synthetic datasets to derive conclusions and
inferences about causal effects in real data: we (1) anonymize variable names in SpaceDataset,
(2) issue warning statements clarifying limitations when users import the Python package, and (3)
emphasize the synthetic nature the data in the description of each environment in a data repository
where they are available publicly. Second, to increase transparency and reproducibility, we provide
detailed instructions for full reproducibility, including publicly available and accessible code. Third,
while our work does not directly address concerns about fairness and societal biases, our data
collections integrate sources commonly used in studies of social vulnerability and health equity,
driving methodology improvement for social good.
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APPENDIX

A DATA COLLECTIONS

We provide additional details of each DataCollection. See also the Code and API paragraph in
the next section describing their documentation in the package repository.

The Social Vulnerability and Welfare collection covers data related to the Social Vulnerability Index
(SVI) provided by the Agency for Toxic Substances and Disease Registry (ATSDR) (Centers for
Disease Control and Prevention, 2020). The SVI is a widely used index provided by the Centers
for Disease Control (CDC). This collection is built with census tract-level variables for the state
of Texas, USA, and incorporates data on unemployment, racial and ethnic minority status, and
disability (US Census Bureau, 2010).

The Heat Exposure and Wildfires collection includes information about the monthly weather and
climate conditions during the summer of 2020 in California. It covers factors like tempera-
ture, wildfire smoke, wind speed, and relative humidity and population density aggregated in
the U.S. Census tract level. These are sourced from Parameter-elevation Regressions on Inde-
pendent Slopes Model (PRISM) (PRISM Climate Group), the ambient wildfire smoke PM2.5

model (Childs et al., 2022), and National Oceanic and Atmospheric Administration (NOAA).
The Air Pollution and Mortality collection incorporates mortality data from respiratory and cardio-

vascular diseases among the elderly sourced from the CDC, along with air pollution exposure
variables (Di et al., 2019), risk factors from BRFSS (CDC, 2010), and Census data (US Census
Bureau, 2010) covering the mainland US at the county level for 2010.

The Welfare and Elections collection is a subset of the US County data on election outcomes,
specifically the percentage of the population in each county that voted for the Democratic Party
in 2020 (McGovern & Morris, 2016). It is expanded with demographics, such as educational
attainment and health (University of Wisconsin Population Health Institute, 2021; Glasmeier,
Amy K. Living Wage Calculator, 2020; Institute for Health Metrics and Evaluation, 2014),
crime (Washington Post, 2020), and employment statistics (Bureau of Labor Statistics, 2019),
from 2019 and 2020.

The PM2.5 Components collection combines the high resolution total PM2.5 dataset of Di et al.
(2019) with the PM2.5 composition data from Amini et al. (2022), both available at high spatial
resolution of 1× 1 km grid. We use the datasets corresponding to the annual average for 2000.

The Socioeconomic Status and Broadband Usage collection obtains 2010 zip-code level broadband
usage from Pereira et al. (2021) and combines it with socioeconomic status variables from the
census (US Census Bureau, 2010).

B SpaceEnv GENERATION DETAILS

This section explains the training procedure for obtaining the SpaceEnv from a
DataCollection.

Recall from Section 3 that we learn a generative model of outcome and obtain semi-synthetic
counterfactuals as Ỹ a

s = f(Xs, a) + Rs where f is obtained using AutoML and R = (Rs)s∈S is
learned as a Gaussian Markov random field matching the spatial distribution of the observed residuals
in the training data. Below, we describe each step of the environment generation proceedure and the
API that a user can use to generate new SpaceEnvs.

Training f using AutoML The predictor f is obtained using auto machine-learning (AutoML)
techniques implemented with the AutoGluon package in Python (Erickson et al., 2020). This package
trains an ensemble of models and computes a weighted ensemble where the weights are based on
the cross-validation performance. Table 5 describes the default settings used for Autogluon. It is
important to note that our models have minimal manual tuning, since we aim that training with real
data drives the generated synthetic outcomes.

We used a special train-validation split since the default random split led to extreme overfitting
caused by spatial correlations. Intuitively, spatial correlations create duplicates in the data. As a
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Table 5: Hyperparameters used in AutoML

Parameter Value
package AutoGluon v0.7.0
fit.presets good_quality
fit.tuning_data custom with Algorithm 1
fit.use_bag_holdout false
fit.time_limit 3600
feature_importance.time_limit 3600

result, a random split creates almost identical copies in the train and validation sets. This means
the cross-validation procedures will always choose algorithms that overfit more since they would
minimize the error on the identical copies in the validations set.

To solve over-fitting due to spatial correlations, our spatially-aware validation splitting algorithm is
explained in Algorithm 1, using breadth-first search (BFS) to obtain a spatially contiguous validation
set with a buffer. The algorithm relies on specifying a number of initial seeds for the validation
set obtained with random sampling. It expands the validation set with a specified number of BFS
neighbors. It removes additional BFS levels from training and validation. Using the default parameters
specified in Algorithm 1, we consistently obtain training splits of size 50%− 70% and validations
splits of size 10%− 20%. We recommend checking if adjusting these values is required when using
new data collections.

(a) A comparison of the true and synthetic residuals on the healthd_hhinco_mortality_cont envi-
ronment. Coordinates represent latitude and longitude. Missing data is shown in white in the left figure. The
synthetic residuals can be sampled in missing are regions because the treatment and confounders are available.

(b) A comparison of the spatial smoothness (measured by Moran’s I) between the true residuals from the AutoML
predictive model and the synthetic residuals from the Gaussian Markov Random Field.

Figure 6: Additional visualizations of the synthetic residuals.

Sampling R using a Gaussian Markov Random Field We sample the synthetic residuals as

R ∼iid MultivariateNormal(0, λ̂(D− ρ̂AD)−1),
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Algorithm 1 Spatially-aware validation split selection
Input: Graph as map of neighbors s → Ns where Ns ⊂ S is the set of neighbors of s.
Params: Fraction α of seed validation points (default α = 0.02); number of BFS levels L to include in the

validation set (default L = 1); buffer size B indicating the number of BFS levels to leave outside training
and validation (default B = 1).

Output: Set of training nodes T ⊂ S and validation nodes V ⊂ S.
1: # Initialize validation set with seed nodes
2: V = SampleWithoutReplacement(S, α)
3: # Expand validation set with neighbors
4: for ℓ ∈ {0, . . . , L− 1} do
5: tmp = V
6: for s ∈ tmp do
7: V = V ∪ Ns

8: end for
9: end for

10: # Compute buffer
11: B = V
12: for b ∈ {0, . . . , B − 1} do
13: tmp = B
14: for s ∈ tmp do
15: B = B ∪ Ns

16: end for
17: end for
18: # Exclude buffer for training set
19: T = S \ B
20: return T,V

where A is the adjacency matrix of the spatial graph; D is a diagonal matrix with the number of
neighbors of each location; ρ̂ determines the correlation between an observation and its neighbors,
learned from the true residuals (the errors of the predictive model in Step 1); and λ̂ is chosen to match
the variance of the true residuals exactly. We sample R independently to ensure that the synthetic
residuals are independent of the treatment, and therefore, by the backdoor criterion (Pearl, 2009),
the only possible confounders are those in X . The parameter ρ̂ by first computing the vector of the
neighbors’ mean for each node in the graph and then taking the correlation between the nodes and the
neighbor’s means. Fig. 6 contains a visual example in a spatial map of true and generated residuals
and a comparison of the smoothness of the true and synthetic residuals across all SpaceEnvs,
entailing an almost exact match.

Code and API The codebase for generating an environment is provided separately from the main
package at https://anonymous.4open.science/r/space-data-0C73. Users can use
this codebase to generate new SpaceEnvs from existing or new data collections using the steps
outlined below. See the repository’s documentation for details.

Each environment is specified by a config file using the Hydra framework (Yadan, 2019) and located
in the code repository under conf/spaceenv/ as a .yaml file. The generation process starts
with a simple command:

python train_spaceenv.py spaceenv=<config_name>

For example, config_name=healthd_dmgrcs_mortality_disc corresponds to the con-
fig file illustrated in Fig. 7.

It is possible to use the config file system to generate transforms of variables (for example, to binarize
or take logarithms), change the AutoML engine defaults (see Table 5), etc. The training script will
try to download the contents of data_path (which points to a data collection) and graph_path
from our Harvard Dataverse repository when not found locally. It also allows users to use their own
Datavererse repositories. For instance, larger datasets may require extending the time_limit
parameter in Table 5. See the repository documentation for details.
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data_collection: air_pollution_mortality_us
treatment: qd_mean_pm25
outcome: cdc_mortality_pct
covariate_groups:

- cs_poverty
- race:

- cs_hispanic
- cs_white

- [...]

Figure 7: Config file example: conf/spaceenv/healthd_dmgrcs_mortality_disc.yaml.

Smoothness Confounding Binary Continuous

high high 7 22
low 15 17

low high 7 27
low 15 14

Figure 8: (Top left): Spatial smoothness scores for all covariates in all environments; (Top right):
confounding scores for all covariates in all environments; (Bottom): number of datasets in each
combination of low and high smoothness and confounding.

Sharing and documentation of collections and environments The SpaceEnvs supported in
our Python package are publicly available through our Harvard Dataverse research repository. The
metadata for each generated environment is contained in their corresponding entry at our Harvard
Dataverse repository, including the full config file for reproducibility with the API explained above.
It is also saved as a property of a SpaceEnv object when using the Python package.

Each DataCollection is documented in the package repository and documentation. We include a
description of the data sources, purpose, exploratory data analysis, and other relevant information. The
contents of the documentation is inspired by data nutrition labels (Stoyanovich & Howe, 2019). This
documentation can be accessed (anonymized) at https://anonymous.4open.science/r/
space-data-0C73.

Distribution of spatial and confounding scores Fig. 8 shows the distribution of the spatial
smoothness and confounding scores (from the exposure-response function) among all covariates of
all environments. The median across all datasets is indicated as a vertical red line. The smoothness
scores appears to be distributed uniformly across environments, while the confounding scores are
heavily skewed.
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(a) Creating a benchmark environment.

(b) Evaluating the performance of a method on a dataset.

Figure 9: Examples of SpaCE Python package usage.
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C SpaCE API: ACCESSING ENVIRONMENTS, MAKING BENCHMARK
DATASETS, AND EVALUATING THEM

Recall that to obtain a benchmark dataset for spatial confounding, we must 1) create a SpaceEnv
which contains real treatment and confounder data, and a realistic semi-synthetic outcome, 2) create
a SpaceDataset which masks a spatially-varying confounder and facilitates the data loading pipeline
for causal inference. Fig. 9 illustrates the use of the SpaCE package. The top panel illustrates how to
generate a SpaceEnv simply by calling the constructor from the environment name (which takes care
of downloading the necessary data) and using the make() method to obtain the SpaceDataset
(which masks the missing confounder and packages the dataset elements to facilitate data loading for
causal inference methods). As with any software tool, the API is subject to change based on feedback
from users.

D HYPER-PARAMETER TUNING AND ADDITIONAL DETAILS OF BENCHMARKS

Implementations of the baselines discussed in Section 5 are given in the SpaCE package under
the spacebench.algorithms submodule of the SpaCE python package. They usage is doc-
umented in the package documentation. The benchmarks/ folder in the implementation code
contains all the scripts to replicate the reported baselines.

For the experiments, we looped over all possible SpaceEnvs and all over possible
SpaceDatasets, 124 in total. We implemented automatic hyper-parameters for the relevant
baseline models using the library Ray Tune, thereby minimizing human-induced biases. For all but
DAPSm, the tuning metric is implemented as the out-of-sample mean-squared error (MSE) from a
validation set obtained with the spatially-conscious splitting method of Algorithm 1. After selecting
the best hyperparameters, the method was retrained in the full data. One exception is DAPSm, for
which the tuning metric was “covariate balance," as originally proposed by the authors. Notice
that test MSE is not a metric tailored to causal inference. However, it is reasonable to expect the
method that performs less overfitting would also perform better at estimating causal effects in the
training data, but this need not always be the case. Unfortunately, no obvious widely applicable
hyperparameter selection criteria exist for causal inference. Table 6 summarizes our hyperparameter
search space for different baseline models.

Model Iterations Tuning Metric Value

GCNN 2,500 Dimension of the hidden layers (hid-
den_dim)

16 or 64

Number of hidden layers (hidden_layers) 1 or 2
Weight decay (weight_decay) 1e-6 to 1e-1

SPATIAL+ 2,500 lam_t loguniform between 1e-5 and 1.0
lam_y loguniform between 1e-5 and 1.0

SPATIAL 2,500 lam loguniform between 1e-5 and 1.0

DAPSM N/A propensity_score_penalty_value Choice among [0.001, 0.01, 0.1, 1.0]
propensity_score_penalty_type Choice between l1 and l2
spatial_weight Uniform between 0.0 and 0.1
caliper_type daps
matching_algorithm optimal

Table 6: Hyperparameters tuning for different baseline models. The models are tested with a validation
set from spatially aware folds as a breadth-first search with 2% of points and their neighbors, resulting
in about 10% of the data.

Computing and hardware resources The computations in this paper were run on a Mac OS M1
with ten cores in approximately 24 hours. most of the computation driven by training the graph neural
network benchmarks.

E LICENSES OF NEW AND REUSED ASSETS

We provide the following free and open source resources:
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Resource name License

Python package SpaCE 2 MIT
Model-training software repository space-data 3 MIT
Benchmark data collection hosted at Harvard Dataverse CC0 1.0

Table 7: Provided new resources

The DataCollections used for generating SpaceEnvs aggregate various data sources. The
licenses of these data sources are summarized in Table 8, which allow sharing and reuse for non-
commercial purposes.

Data source Reference License
Synthetic Medicare

Data for
Environmental
Health Studies

https://doi.org/10.
7910/DVN/L7YF2G

CC0 1.0

NOAA

https:
//www.nauticalcharts.

noaa.gov/data/
data-licensing.html

CC0 1.0

CDC https://wonder.cdc.gov/
DataUse.html

Public domain

U.S. Census Bureau

https://ask.census.gov/
prweb/PRServletCustom?

pyActivity=
pyMobileSnapStart&
ArticleID=KCP-4928

Public domain

The Bureau of Labor
Statistics (BLS)

https:
//www.bls.gov/opub/

copyright-information.
html

Public domain

PRISM https://prism.
oregonstate.edu/terms/

Open for non-
commercial

purposes

Police shooting by
the Washington Post

https://github.com/
washingtonpost/

data-police-shootings

CC
BY-NC-SA

4.0

US Broadband Data
https:

//github.com/microsoft/
USBroadbandUsagePercentages

Open Use of
Data

Agreement
v1.0

Total PM2.5
https://sedac.ciesin.
columbia.edu/data/set/
aqdh-pm2-5-concentrations-contiguous-us-1-km-2000-2016

Public domain

PM2.5 Components
https://www.ciesin.

columbia.edu/data/aqdh/
pm25component-EC-NH4-NO3-OC-SO4-2000-2019/

Public domain

Table 8: Major existing reused data resources

F ADDITIONAL EXPERIMENT ANALYSIS

This section contains supporting figures and tables for the experiment results presented in Section 5.

• Fig. 10 presents visual outcomes (means and error bars) for various environments. Error bars
represent 95% asymptotic normal confidence intervals.

• Table 9 contains the results of a mixed-effects model (Gałecki et al., 2013) to evaluate the interaction
between the methods and the confounding and smoothness scores. The dependent variable is
the error in causal effect estimation. Specifically, it is the RMISE when estimating the ERF.
The independent variables are indicator variables of the spatial confounding methods and their
interactions with the smoothness and confounding scores. A positive coefficient means more
error, and a negative coefficient means less error. The model controls for random effects by
SpaceDataset. The t-value statistic indicates statistical significance.

See Section 5 for discussion of the results.
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Figure 10: Baseline model results by SpaceEnv. Models with lower bars (errors) perform best. The
model can be described as

TERM COEFFICIENT STD. ERROR T-VALUE

(INTERCEPT) 0.15 0.07 2.22
SPATIAL 0.02 0.08 0.26
SPATIAL+ 0.00 0.08 0.06
GCNN 0.10 0.09 1.17
DAPSM 0.78 0.19 4.13
GMERROR 0.00 0.08 0.01
S2SLS -0.01 0.08 -0.08
OLS:SMOOTHNESS -0.15 0.10 -1.51
SPATIAL:SMOOTHNESS -0.19 0.10 -1.88
SPATIAL+:SMOOTHNESS -0.09 0.10 -0.94
GCNN:SMOOTHNESS -0.21 0.13 -1.66
DAPSM:SMOOTHNESS -0.80 0.15 -5.29
GMERROR:SMOOTHNESS -0.15 0.10 -1.53
S2SLS:SMOOTHNESS -0.14 0.10 -1.46
OLS:CONFOUNDING 0.61 0.34 1.77
SPATIAL:CONFOUNDING 0.98 0.34 2.86
SPATIAL+:CONFOUNDING 1.09 0.34 3.17
GCNN:CONFOUNDING 0.73 0.37 1.96
DAPSM:CONFOUNDING -2.94 2.38 -1.23
GMERROR:CONFOUNDING 0.61 0.34 1.78
S2SLS:CONFOUNDING 0.63 0.34 1.83

Table 9: Coefficients of a statistical linear model for the error in ERF estimation with random effects
per dataset and environment and fixed effects by algorithm and environment complexity (smoothness
and confounding).
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G Q&A

Q: Why use AutoML for synthetic data generation instead of causal alternatives such as Meta-
learners? Generating a valid SpaceEnv does not require that the first step of the AutoML is
causal. On the one hand, we need not claim that the counterfactuals of a SpaceEnv are causal
in the sense of the original data collection. On the other hand, using existing causal tools (like
meta-learners) was challenged by the availability of implementations for continuous treatments
and individualized effects that do not rely on specific models. AutoML offered several advantages
for automatic calibration, ensembling from a large model, etc. Putting everything in the balance,
relying on AutoML without Meta-learners seemed to achieve better the goals of reducing human
intervention in the data generation and avoiding favoring specific models other than others by using
large ensembles.

Q: Why inferences about the original data sources are not possible if the data is realistic? There are
three main reasons that result from the fundamental problem of causal inference of not observing
counterfactuals in real data. The first one is because we do not know if the original data collection
includes all relevant confounders; second, as highlighted in the previous answer, the synthetic data
generation step need not be causal; third, even if we were using causal methods in the synthetic data
generation step, estimation errors and model limitations would mean that we could still not consider
the results as a reference for the true causal effect, but simply an estimate. For these reasons, we
prefer to strongly advice against such interpretation.

Q: What measures are you using to avoid data misuse? Warnings are issued when loading the package
and loading environments and datasets in the Python package, as shown in Fig. 9. We also include
warning statements in the package documentation and Github repositories.

Q: Why not learning the joint distribution of (X,A,Y )?

Sampling from the joint distribution is attractive because it could have the advantage of generating
an infinite stream of benchmark datasets from a single data source. However, there could be some
limitations with respect to the specific aims of this work. First, we seek to maximize the use of real
data because we believe that the complexity of real data is hard to capture in a model. Sampling
from the full joint distribution approach would mean using only simulated data, even if grounded
on real data. Second, the single 1-dimensional conditional distribution of (Y |X,A) is simpler to
model than a complex multivariate distribution. Some flexible models allow us to learn complex
multivariate distributions, for example. However, relying on a single or a few generative models could
artificially favor some causal inference methods in benchmark tasks. Instead, we use an ensemble of
diverse predictive models for the 1-dimensional conditional distribution. Last, notice that standard
implementations of flexible generative models need not preserve the spatial correlation structure
and isolate unobserved confounding (Neal et al., 2020). Therefore, while a joint modeling approach
is promising and warrants future investigation, we feel that using the real observed data for the
covariates and treatment aligns better with this project’s scope.
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