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Abstract

Magnetic resonance imaging (MRI) is widely used by neurologists to detect brain1

abnormalities such as strokes, tumors, and various forms of dementia, includ-2

ing Alzheimer’s disease. However, accurately diagnosing the different stages of3

Alzheimer’s disease remains a challenge, with nearly one in five patients misdi-4

agnosed due to symptom overlap with other conditions. This paper introduces5

QViSTA, a novel hybrid quantum vision transformer (QViT) model that exploits6

quantum parallelism to improve early diagnosis and differentiation of Alzheimer’s7

disease stages. By integrating quantum variational circuits (VQCs) with vision8

transformers (ViTs), QViSTA addresses the data scalability and computational9

efficiency limitations of classical machine learning models. Using a balanced,10

multi-class dataset of 40,000 MRI images, QViSTA achieved a validation area11

under the receiver operating characteristic (AUC) of 87.86% and a test AUC of12

86.67%, closely matching the performance of a benchmarked classical ViT while13

reducing feature space by 3.18%. Early and accurate detection of Alzheimer’s14

disease is critical, as it allows for timely interventions that can significantly improve15

the quality of life for patients and their caregivers. As more hospitals adopt AI16

for biomedical imaging, QViSTA’s innovative approach could dramatically reduce17

misdiagnosis rates, improve patient outcomes, and reduce costs.18

1 Introduction19

Alzheimer’s disease (AD) is the leading progressive neurodegenerative disorder globally, accounting20

for nearly 70% of all dementia cases. Alzheimer’s leads to cognitive decline and severe memory loss.21

The prevalence of dementia is projected to nearly double every 20 years, reaching 78 million by 203022

and 139 million by 2050, posing substantial challenges to global healthcare systems and society [1, 2].23

Despite these statistics, the cause and validated disease-modifying treatments for AD remain unknown.24

Consequently, there is a 20-25% misdiagnosis rate due to overlap with other conditions like Lewy25

body dementia and mild cognitive impairment (MCI) [3, 4]. Past studies have leveraged artificial26

intelligence (AI) to address the challenges of early diagnosis and differentiation of AD. For instance,27

Bi et al. [5] developed a deep learning model combining transfer learning and multi-task learning to28

improve the accuracy of Alzheimer’s diagnosis, achieving improvements over traditional methods.29

For a comprehensive review, Zhao et al. [6] provides an overview of AI advancements in diagnosing30

Alzheimer’s. However, these studies primarily focus on classical machine learning and deep learning31

models, which suffer from data scalability and computational efficiency limitations. Hence, we32

introduce QViSTA, a novel hybrid quantum vision transformer (QViT) model, to address these33

challenges. Kim [7] introduced the first quantum machine learning (QML) approach by leveraging a34

hybrid quantum convolutional neural network (QCNN) for Alzheimer’s classification. However, the35
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approach was limited to a binary classification task (non-demented and demented images), utilized a36

small dataset, and used CNNs. In contrast, QViSTA handles a multiclassification task to better reflect37

real-world usage in a clinical setting. Additionally, QViSTA employs a larger and balanced dataset to38

leverage the superior performance of hybrid QML models compared to classical models when dealing39

with larger datasets, due to their inherent parallelism and ability to explore vast solution spaces [8].40

Maurício et al. [9] compares CNNs with ViTs, demonstrating that ViTs’ self-attention mechanism41

allows overall image information to be accessible from the surface to the deepest layers and that42

their parameter efficiency provides higher accuracy while using fewer computational resources and43

reduced training time. As QViSTA leverages a hybrid version of a ViT, it can capitalize on the44

strengths of ViTs, making it better suited for image classification tasks.45

2 Methodology46

2.1 Dataset and Preprocessing47

To conduct our multi-class classification experiments, we use the dataset published by uraninjo48

[10] on Kaggle. This dataset contains 40,384 skull-stripped, pre-augmented MRI images. The49

dataset is categorized into four stages of Alzheimer’s disease: Non-Demented, Very Mildly De-50

mented, Mildly Demented, and Moderately Demented. However, we find a significant class51

imbalance among the labels, which could lead to a biased model. To address this, we apply52

additional augmentations (random flips and 5◦rotations) to upsample underrepresented classes53

to 10,000 images and downsample classes over 10,000 images, ultimately achieving a balanced54

dataset of 40,000 images. To prepare the dataset for model development, we convert the im-55

ages to grayscale to reduce dimensionality and better replicate MRI scans. We further reduce56

the dimensionality of the images to 128 by 128 pixels and normalize them using mean and stan-57

dard deviation normalization. Finally, we perform an 80-10-10 training-validation-test split to run58

our experiments. Sample images from the final dataset(https://www.kaggle.com/datasets/59

aryansinghal10/alzheimers-multiclass-dataset-equal-and-augmented) are depicted60

in Figure 1. The codebase for QViSTA can be found in the following GitHub repository:61

https://github.com/3x-dev/QViSTA.

Figure 1: Sample images for each stage of Alzheimer’s from the final dataset.
62

2.2 QViSTA Development63

To develop QViSTA we first leverage a multi-layer perceptron (MLP), described as a composition of64

elementwise non-linearities (activation function) with affine transformations of the data [11].65

The affine transformation is defined as:66

a(x) =Wx+ b,

and the activation function is applied to each component of the output vector a:67

f(x) = σ(a(x)),

where σ denotes the activation function. For our activation function, we use Gaussian Error Linear68

Unit (GeLU) [12], defined as:69

GELU(x) = xΦ(x),

Apart from MLP, we leverage the main building block of a transformer architecture [13] by taking70

a matrix X ∈ RN×D and transforming it. Each of these layers has two sub-layers: a multi-head71

self-attention mechanism (MHA), the core of the transformer, and a simple MLP:72

Z = X + LayerNorm(MHA(X,X,X)),
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Figure 2: QViSTA architecture overview for Alzheimer’s classification.

73
X ′ = Z + LayerNorm(MLP(Z)).

The attention function is vital, allowing the transformer to focus on specific input patches. The74

attention function is defined as [13]:75

Attention(Q,K, V ) = softmax
(
QKT

√
Dk

)
V,

where Dk is the dimension of the keys. The baseline vision transformer [14] divides the image into76

patches given by N = HW
P 2 and then transforms it into patch embeddings:77

z0i = Ex′i + pi

In quantum computing, the fundamental unit of information is the qubit which can exist in a78

superposition state to represent non-binary states. Qubits can be defined with the unit vector |ψ⟩ in79

the Hilbert space C2n . A quantum circuit is a series of "gates" to change a qubit state represented by80

U |ψ⟩ where U is a 2n × 2n. For QViSTA, we use an Rx gate, which performs a single qubit rotation81

along the x-axis, and the CNOT gate, which operates over two qubits and flips the target qubit only if82

the first qubit is |ψ⟩, represented by the following matrices:83

RX(θ) =

[
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

]
84

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
As with the classical ViT, the image is split into patches linearly embedded with position embeddings85

defined by the patch size. For QViSTA, however, these patches are fed to the Quantum Transformer86

Encoder, which employs VQCs in the multi-head attention (MHA) and multi-layer perceptron (MLP)87

components. An overview of QViSTA’s architecture is depicted in Figure 21. The configuration of88

the VQC we use is depicted in Figure 32. Initially, each feature of the vector x = (x0, . . . , xn−1) is89

converted into rotation angles and embedded into the qubits. Subsequently, a layer of single-qubit90

rotations, parameterized by θ = (θ0, . . . , θn−1), operates on each qubit. These parameters are91

optimized alongside the other model parameters. Following this, a ring of CNOT gates is applied to92

entangle the qubit states, emulating the effect of matrix multiplication. Finally, each qubit is measured,93

and the output proceeds to the subsequent component of the encoder. We use Ray Tune [16] to tune94

the hyperparameters and employ its advanced algorithms, such as Population Based Training (PBT)95

and HyperBand/ASHA [17], to optimize QViSTA for maximum robustness and efficiency. Both96

1The figure is inspired by [14], but has been modified to reflect the architecture for QViSTA.
2The configuration is inspired by [15], but has been modified to reflect the configuration for QViSTA.
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Table 1: Tuned hyperparameters used to define QViSTA’s network.

Hyperparameter Value
Batch Size 16
Epochs 30
Patch Size 64
Hidden Size 6
Hidden MLP Size 5
Number of Transformer Blocks 6
Number of Attention Heads 3
Optimizer AdamW
Gradient Clipping Norm 1
Learning Rate Scheduler Linear warmup (9K steps: 0 to 10−3); cosine decay (70K steps)

Total number of hyperparameters θ: 25,390 for quantum; 26,224 for classical

QViSTA and the classical ViT are trained with the same hyperparameters for consistent comparison.97

We use the AdamW optimizer with gradient clipping to ensure stability and robustness by preventing98

large gradients from hindering optimization. A cosine annealing learning rate scheduler with warm-99

up and cosine decay is employed for smooth convergence, particularly beneficial for transformer100

models [18]. A detailed breakdown of the model hyperparameters is shown in Table 1. To evaluate101

the performance of QViSTA, we use the Receiver Operating Characteristic (ROC) curve. For AD102

classification, this curve represents the model’s ability to correctly predict a scan (TPR: true positive103

rate) versus its ability to incorrectly predict a scan (FPR: false positive rate). For each epoch of each104

model configuration, we compute the area under the ROC curve (AUC). After all epochs are run,105

we select the parameters from the epoch with the highest validation AUC and re-evaluate them on a106

separate test batch to obtain the final test AUC. We use Google’s JAX [19] and Flax [20] libraries107

to implement and train the classical components of QViSTA and the classical baseline (ViT). In108

addition, we use TensorCircuit [21] to implement, train, and execute the VQCs through mathematical109

simulations on an Intel CPU. TensorCircuit enables rapid training of the quantum model, achieving110

approximately two minutes per epoch.

Figure 3: VQC configuration where Rx denotes rotations around the X-axis.
111

3 Results and Discussion112

QViSTA and the baseline ViT’s AUC scores and confusion matrices are depicted in Figure 4. We find113

that QViSTA achieved a validation AUC of 87.86% and a test AUC of 86.67%. The baseline ViT114

had a validation AUC of 88.39% and a test AUC of 88.39%. The ROC curve for QViSTA indicates115

that it performs best in classifying Moderate Demented cases with an AUC of 0.96 and worst in116

classifying Very Mild Demented cases with an AUC of 0.70. The ViT follows a similar performance117

pattern, performing best for Moderate Demented cases with an AUC of 0.97 and worst for Very118

Mild Demented cases with an AUC of 0.74. Observing the confusion matrices, QViSTA achieves119

the highest TPR for Moderate Demented cases, with 861 correctly identified out of 900. Very Mild120

Demented cases demonstrate the highest misclassification rates, with only 483 correctly identified.121

In comparison, the baseline ViT also shows strong performance in identifying Moderate Demented122

cases, with 880 correct classifications. Similar to QViSTA, the Very Mild Demented cases perform123
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Figure 4: Images on the right: ROC curves for QViSTA and baseline ViT. The black dashed line
represents the performance of a random classifier. Images on the left: Multiclass label confusion
matrices for QViSTA and baseline ViT.

the worst, with only 438 correctly identified instances. We believe the models performed better124

on the Moderate Demented cases as they present more pronounced symptoms, leading to higher125

classification accuracy as the models can more easily identify the more significant deviations in the126

data. Conversely, the models performed poorer on Non Demented and Very Mild Demented cases127

as the subtle differences in symptoms and features between these stages make it challenging for the128

models to differentiate them accurately. Both models peak at epoch 30, suggesting an equal rate of129

convergence. We observed that QViSTA performed very similarly to ViT, with a slight difference130

in test accuracy and slightly higher ROC areas for ViT. However, parameter usage seemed to favor131

QViSTA, placing it as the lighter and potentially more efficient of the two. This may imply better132

use on hospital computers. We believe that the simulation of qubits resulted in significant memory133

consumption and reduced accuracy. While accuracy ended up being slightly lower for QViSTA, the134

simulation of qubits seemed to play a prominent role in the difference. We hypothesize that it is135

harder for the optimizer to find good parameters for these mathematically simulated VQCs, resulting136

in a slightly lower accuracy score for QViSTA. In addition, these simulated VQCs are not able to truly137

exploit quantum parallelism, resulting in naturally inferior robustness compared to a true quantum138

computer.139

4 Conclusions and Future Work140

In this paper, we introduced QViSTA, a novel QViT architecture designed for multi-stage early141

diagnosis of Alzheimer’s. The novelty comes from applying this architecture for multi-stage early142

Alzheimer’s diagnosis and introducing optimized VQCs designed for this task. QViSTA was bench-143

marked against a classical ViT and used a smaller feature space to achieve comparable performance.144

We aim to advance QViSTA by implementing multimodality with PET scans and genetic data. Fur-145

thermore, we aim to include other quantum-inspired optimization algorithms, such as Quantum146

Annealing [22]. Finally, we hope to leverage actual quantum hardware3, for QViSTA and investigate147

its performance.148

3https://www.ibm.com/quantum
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