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Abstract
We present a general causal generative modelling
framework for accurate estimation of high fidelity
image counterfactuals with deep structural causal
models. Estimation of interventional and coun-
terfactual queries for high-dimensional structured
variables, such as images, remains a challenging
task. We leverage ideas from causal mediation
analysis and advances in generative modelling
to design new deep causal mechanisms for struc-
tured variables in causal models. Our experiments
demonstrate that our proposed mechanisms are
capable of accurate abduction and estimation of
direct, indirect and total effects as measured by
axiomatic soundness of counterfactuals.

1. Introduction
Many real-world challenges still prevent the adoption
of Deep Learning (DL) systems in safety-critical set-
tings (D’Amour et al., 2022). It has been argued that such
obstacles arise partly from a purely statistical treatment of
predictive modelling, wherein notions of causality are not
taken into account (Pearl, 2009; Bengio et al., 2013; Kusner
et al., 2017; Peters et al., 2017). Consequently, research on
causality and representation learning has garnered signifi-
cant interest (Schölkopf et al., 2021; Schölkopf, 2022).

Scientific inquiry is invariably motivated by causal ques-
tions: “how effective is X in preventing Y ?”, or “what
would have happened to Y had X been x?”. Such ques-
tions cannot be answered using statistical tools alone (Pearl,
2009). As such, a mathematical framework is required to
precisely express and answer such questions using observed
data. A causal model represents our assumptions about how
nature assigns values to variables of interest in a system.
The relationships between variables in a causal model are di-
rected from cause to effect, and intervening on a cause ought
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to change the effect and not the other way around. The goal
is to leverage causal models to estimate the causal effect of
actions, even in hypothetical (counterfactual) scenarios.

The ability to generate plausible counterfactuals has wide
scientific applicability and is particularly valuable in fields
like medical imaging, wherein data are scarce and under-
representation of subgroups is prevalent (Pawlowski et al.,
2020; Castro et al., 2020; Seyyed-Kalantari et al., 2020;
Glocker et al., 2023). Suppose we are granted access to
medical imaging data alongside reliable meta-data of the
respective patients, e.g. annotations of their protected at-
tributes. In such cases, if we can make sensible medically-
informed causal assumptions about the underlying data gen-
erating process, we may be able to construct a causal model
which better reflects reality. Furthermore, we argue that the
ability to answer counterfactual queries like ”why?” and
”what if..?” expressed in the language of causality could
greatly benefit several other important areas: (i) explainabil-
ity (Wachter et al., 2017; Mothilal et al., 2020), e.g. through
causal mediation effects as studied herein; (ii) data augmen-
tation, e.g. mitigating data scarcity and underrepresentation
of subgroups (Kaushik et al., 2020; Xia et al., 2022a); (iii)
robustness, to e.g. spurious correlations (Simon, 1954; Bal-
ashankar et al., 2021), and (iv) fairness notions in both
observed and counterfactual outcomes (Kusner et al., 2017;
Zhang & Bareinboim, 2018). Despite recent progress, accu-
rate estimation of interventional and counterfactual queries
for high-dimensional structured variables (e.g. images) re-
mains an open problem (Pawlowski et al., 2020; Yang et al.,
2021; Schut et al., 2021; Sanchez & Tsaftaris, 2021).

Our research bolsters an ongoing effort to combine causal-
ity and deep representation learning (Bengio et al., 2013;
Schölkopf et al., 2021). However, few previous works
have attempted to fulfil all three rungs of Pearl’s ladder
of causation (Pearl, 2009): association (L1); intervention
(L2) and counterfactuals (L3) in a principled manner using
deep models. Notable exceptions include Deep Structural
Causal Models (DSCMs) (Pawlowski et al., 2020) and Neu-
ral Causal Models (NCMs) (Xia et al., 2021; 2023), both
of which our research builds upon. Contrary to preceding
studies, our main focus is on exploring the practical limits
and possibilities of estimating and empirically evaluating
high-fidelity image counterfactuals of real-world data. For
this purpose, we introduce a specific system and method.
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Our main contributions can be summarised as follows:

(i) We present a general causal generative modelling
framework for producing high-fidelity image counter-
factuals with Markovian probabilistic causal models;

(ii) Inspired by causal mediation analysis, our proposed
deep causal mechanisms can plausibly estimate di-
rect, indirect, and total treatment effects on high-
dimensional structured variables (i.e. images);

(iii) We demonstrate the soundness of our counterfactuals
by evaluating axiomatic properties that must hold true
in all causal models: effectiveness and composition.

2. Background
2.1. Structural Causal Models

A Structural Causal Model (SCM) (Pearl, 2009; Peters et al.,
2017) is a triple M := ⟨X,U, F ⟩ consisting of two sets
of variables, X = {x1, . . . , xN} and U = {u1, . . . , uN},
and a set of functions F = {f1, . . . , fN}. The value of
each variable xk ∈ X is a function of its direct cause(s)
pak ⊆ X \ {xk}, and an exogenous noise variable uk ∈ U :

xk := fk(pak, uk), k = 1, . . . , N. (1)

The variables in X are called endogenous since they are
caused by the variables in the model X ∪ U , whereas vari-
ables in U are exogenous as they are caused by factors
which are external to the model. The functions in F are
known as structural assignments or causal mechanisms. A
causal world is a pair ⟨M,u⟩ where u is a realization of
the exogenous variables U , and a probabilistic causal model
⟨M, P (U)⟩ is a distribution over causal worlds.

Observational Distribution. If the structural assignments
are acyclic, the SCM can be represented by a Directed
Acyclic Graph (DAG) with edges pointing from causes
to effects. If the exogenous variables are jointly indepen-
dent P (U) =

∏N
k=1 P (uk), the model is called Marko-

vian. Every Markovian causal model induces a unique joint
observational distribution over the endogenous variables:
PM(X) = PM(x1, . . . , xN ) =

∏N
k=1 P (xk | pak), sat-

isfying the causal Markov condition; that each variable is
independent of its nondescendants given its direct causes.

Interventional Distribution. SCMs can predict the causal
effects of actions by performing interventions on the endoge-
nous variables. Interventions answer questions like “what
would xk be if X \ {xk} had been fixed to certain values?”.
An intervention is the action of replacing one or several of
the structural assignments using the do-operator. A hard
intervention replaces fk by setting xk to some constant c,
denoted as do(xk := c) or do(c). A soft intervention is more

general and can consist of replacing fk by some new mech-
anism, e.g. do(xk := f̃k(pak, ũk)) (Peters et al., 2017).
Intervening on an SCM M by do(c) induces a submodel
Mc. The entailed distribution of Mc is called an inter-
ventional distribution PMc

(X | do(c)), and it is generally
different from the observational distribution entailed by M.

Counterfactuals. SCMs further enable us to consider hy-
pothetical scenarios and answer counterfactual questions
like: “given that we observed X , what would xk have been
had X\{xk} been fixed to certain values?”. Counterfactuals
are the result of interventions in the context of a particular
observation of X . Computing counterfactuals involves the
following three-step procedure (Pearl, 2009):

(i) Abduction: Update P (U) given observed evidence,
i.e infer the posterior noise distribution P (U | X).

(ii) Action: Perform an intervention, e.g. do(x̃k := c), to
obtain the modified submodel Mc.

(iii) Prediction: Use the model ⟨Mc, P (U | X)⟩ to com-
pute the probability of a counterfactual.

2.2. Hierarchical Latent Variable Models

A Hierarchical Latent Variable Model (HLVM) defines a
generative model for data x using a prior over L layers of
hierarchical latent variables {zi}Li=1, factorizing as:

p(x, z1:L) = p(x | z1:L)p(zL)
L−1∏

i=1

p(zi | z>i). (2)

Hierarchical Variational Autoencoders (HVAEs) (Kingma
et al., 2016; Sønderby et al., 2016; Burda et al., 2015) extend
standard VAEs (Kingma & Welling, 2013; Rezende et al.,
2014) to L > 1. HVAEs train a hierarchical generative
model pθ(x, z1:L), by introducing a variational inference
model qϕ(z1:L | x) and maximizing the Evidence Lower
Bound (ELBO) on the marginal log-likelihood of the data:

log pθ(x) ≥ Eqϕ(z1:L|x)[log pθ(x | z1:L)] (3)

−DKL(qϕ(z1:L | x) ∥ pθ(z1:L)) = L(θ, ϕ;x).
The goal is to optimize the ELBO via the trainable parame-
ters θ and ϕ such that the marginal pθ(x) is close to a given
data distribution pdata(x). Sønderby et al. (2016) proposed
the Ladder VAE, featuring a top-down inference model:

qϕ(z1:L | x) = qϕ(zL | x)
L−1∏

i=1

qϕ(zi | z>i,x), (4)

which infers the latent variables in the same top-down or-
der as the generative model, rather than in the standard
reverse generative order (bottom-up inference). More re-
cently, this top-down inference structure has featured in
much deeper state-of-the-art HVAEs (Maaløe et al., 2019;
Vahdat & Kautz, 2020; Child, 2020; Shu & Ermon, 2022).
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Figure 1: Proposed conditional HVAE (3 layer example).
(a) Top-down inference model. (b) Proposed conditional
generative model with an exogenous prior. (c) Alternative
to (b) with a conditional prior. Red arrows denote shared
layers between the inference (a) and generative (b-c) models.
Circles are stochastic nodes, diamonds are deterministic,
and shaded are observed. Black circles denote conditioning.

3. Methods
In general, we assume a probabilistic Markovian SCM of
data M := ⟨X,U, F, P (U)⟩, in which an endogenous high-
dimensional structured variable x ∈ X (e.g. an image) is
caused by K lower dimensional endogenous parent vari-
ables pax ⊆ X \ {x} (e.g. attributes). Ancestors of x:
anx ⊇ pax, are not assumed to be independent, so we learn
their mechanisms from observed data (further details in Ap-
pendix A.1). The set of mechanisms in F are learned using
deep learning components inspired by DSCMs (Pawlowski
et al., 2020) and NCMs (Xia et al., 2021; 2023).

3.1. Deep Mechanisms for Structured Variables

The goal is to learn a mechanism for a high-dimensional
structured variable, x := fθ(pax,ux), which we can in-
vert to abduct the exogenous noise: ux = f−1

θ (pax,x).
Pawlowski et al. (2020) proposed a VAE setup in which
the mechanism for x is separated into an invertible h(·)
and a non-invertible component gθ(·) (decoder): x :=
fθ(pax,ux) = h(ϵ; gθ(z,pax)), representing a factored
exogenous noise decomposition: p(ux) = pθ(z)p(ϵ). The
invertible mechanism h(·) is a reparameterization of gθ(·)’s
output mean and variance: x = µ(z,pax)+σ(z,pax)⊙ ϵ,
ϵ ∼ N (0, I). The exogenous noise ux is then approxi-
mately abducted via variational inference: p(ux|x,pax) ≈
qϕ(z|x,pax)δ(ϵ|x,pax), where ϵ = h−1(x; gθ(z,pax)).

In practice, Pawlowski et al. (2020) used VAEs with lim-
ited capacity and near-deterministic likelihoods σ2 → 0

for low resolution data. Although this near-deterministic
design choice was motivated by optimization difficulties,
there is an alternative nontrivial explanation for its practical
success. Notably, Nielsen et al. (2020) argued that determin-
istic VAEs optimize an exact log-likelihood like normalizing
flows, stating that the VAE encoder inverts the decoder (self-
consistency). Reizinger et al. (2022) recently proved VAE
self-consistency in the near-deterministic regime. As such,
Pawlowski et al. (2020)’s near-deterministic VAE setup inci-
dentally emulates a normalizing flow and attempts to deter-
ministically abduct x’s exogenous noise, which also partly
explains the poor random sample quality achieved (see Fig-
ure 7 in Appendix A). To address this and generate plausible
high-fidelity image counterfactuals, a powerful generative
causal mechanism capable of accurate abduction is required.

We propose two deep causal mechanisms based on HVAEs.
The first mechanism (Section 3.2) is designed to be directly
compatible with standard DSCMs. The second mechanism
(Section 3.3) involves an alternative causal model which is
inspired by causal mediation analysis. Notably, our HVAE
mechanisms are not trained in the near-deterministic regime
and therefore induce a distribution over causal worlds in
their associated probabilistic SCMs ⟨M, P (U)⟩.

3.2. Conditional HVAE with an Exogenous Prior

In DSCMs, the VAE’s latent code z is defined as part of
the exogenous noise for x, so the associated prior p(z) must
be unconditional due to the underlying Markovian SCM.
However, in state-of-the-art HVAEs (Vahdat & Kautz, 2020;
Child, 2020), the prior is not fixed as N (0, I) but is learned
from data. Therefore, some modifications to the genera-
tive model are needed to enable sampling conditioned on
pax while keeping the prior exogenous. Conditioning on
(counterfactual) parents p̃ax is required to generate counter-
factuals x̃. As shown in Figure 1, we propose a simple con-
ditional HVAE structure that decouples the prior from the
conditioning on pax whilst retaining conditional sampling
capability. The generative model is: pθ(x, z1:L | pax) =

pθ(x | z1:L,pax)pθ(zL)
L−1∏

i=1

pθ(zi | z>i), (5)

where we introduce zi and pax into each layer of the top-
down hierarchy via a parameterized function fωi as:

hi = hi+1 + fωi (zi,pax), zi ∼ pθ(zi | z>i), (6)

for i = L − 1, . . . , 1. Note that the initial hinit is a vec-
tor of learned parameters, and h1 is the size of x. With
this conditioning structure, the prior pθ(z1:L) becomes in-
dependent of pax (exogenous), but the likelihood is not:
pθ(x | z1:L,pax) = N (x | µθ(h1),σθ(h1)), allowing
us to retain conditional sampling capabilities as required.
Figures 2a and 2b depict the resulting causal mechanism for
x and the associated SCM’s twin network representation.
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Figure 2: Graphical model of x’s HVAE mechanism (a), and twin network representations of the deep SCMs proposed (b-c).
(a) The parameters θ and ϕ pertain to the generative and inference models respectively. The mechanism h(·) is invertible
and conditioned on (z1:L,pax) using, e.g. reparameterisation. (b) Markovian SCM of (a), with an unconditional prior over
z1:L, where z1:L is part of x’s exogenous noise Ux. (c) Latent mediator model which is the result of a conditional prior.
Here z1:L becomes a latent mediator since it’s no longer exogenous due to the dependence on endogenous variables pax.

Discretized Likelihood & Counterfactuals Figure 2a
depicts the causal mechanism for x. Here we make the
observation that since p(ϵ) is a Dirac delta distribution
with no learned parameters of its own, training with the
invertible mechanism h as in Pawlowski et al. (2020) is
not strictly necessary. That is, rather than using a change-
of-variables to evaluate the conditional density of x at
ϵ = h−1(x; gθ(z1:L,pax)) during training:

p(x | z1:L,pax) = pN (0,I)(ϵ) |detJh(ϵ)|−1
, (7)

which requires dequantization of the input data, we can train
using more stable likelihoods (e.g. discretized Gaussian (Ho
et al., 2020)), and infer ϵ for counterfactuals only. Formally,
since we assume a Gaussian observational distribution for
x, sampling from it entails: x = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I).
Thus, sampling from the counterfactual distribution involves
the same ϵ noise: x̃ = µ̃+ σ̃ ⊙ ϵ, where ϵ = (x−µ)⊘σ.
Here (µ,σ) are per pixel mean/std. outputs of the decoder
gθ(z1:L,pax), and similarly (µ̃, σ̃) = gθ(z1:L, p̃ax).

3.3. Hierarchical Latent Mediator Model

In Markovian SCMs, all causal effects are identifiable from
observed data (Pearl, 2009), which motivated our setup in
Section 3.2. However, when a VAE’s prior p(z) is uncondi-
tional (exogenous), the VAE is unidentifiable in the general
case (Locatello et al., 2019). This means we are not guaran-
teed to recover the true parameters of the generative model
given infinite data. Using such a VAE for x’s mechanism
may affect the abduction step in our associated SCM since
there can be multiple solutions for z which yield the same
likelihood pθ(x). Khemakhem et al. (2020) showed that
VAE identifiability can be established up to equivalence per-
mutation if the prior is conditioned on additionally observed
variables (Hyvarinen et al., 2019). In our HVAE mechanism
for x, this amounts to having a prior on z1:L conditioned on

the endogenous causes of x as: pθ(z1:L | pax) =

pθ(zL | pax)
L−1∏

i=1

pθ(zi | z>i,pax). (8)

The resulting generative model can be seen in Figures 1c &
6, and the new associated SCM is shown in Figure 2c.

This model differs from the one in Section 3.2 due to
z1:L’s dependence on pax: i.e. the role of z1:L has shifted
from being part of x’s exogenous noise, to being a la-
tent mediator we must infer. Despite the conditional prior
on z1:L, we show that this model is still Markovian, as
we have jointly independent exogenous noise variables:
p(U) = p(Ux)

∏K
k=1 p(Upak

)
∏L
i=1 p(Uzi

). To compute
counterfactuals x̃, we must now infer the counterfactual
mediator z̃1:L. If we somehow have access to true coun-
terfactuals x̃, the counterfactual mediator could be inferred
directly via: z̃1:L ∼ qϕ(z̃1:L | x̃, p̃ax), where z̃1:L is sam-
pled using the same noise Uz1:L

used for sampling z1:L. In
most cases we do not know x̃ so we must rely on approxi-
mations. We propose to first infer the factual mediator z1:L
consistent with (x,pax) in the anticausal direction as:

x := fθ(z1:L,pax,Ux) ≈ pθ(x | z1:L,pax) (9)

z1:L = f−1
θ (x,pax,Ux) ≈ qϕ(z1:L | x,pax), (10)

where Ux ∼ N (0, I). As shown in equation (10), this
approximately inverts x’s mechanism (decoder) w.r.t. the
mediator. Recall that the optimal VAE encoder inverts the
decoder (self-consistency (Reizinger et al., 2022)). Since
each inferred zi ∼ qϕ(zi | z>i,x,pax) is Gaussian dis-
tributed, we can invert the reparameterized sampling to
abduct the exogenous noise Uzi

∼ N (0, I) at each layer:

Uzi
= (zi − µqi (z>i,x,pax))⊘ σqi (z>i,x,pax). (11)

The same abducted exogenous noise components are then
used to sample the respective counterfactual mediator z̃1:L.
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To help preserve the identity of observations (x,pax) in
their inferred counterfactuals x̃, we found it beneficial to
construct a mixture distribution of the counterfactual prior
and the factual posterior as: r(z̃i | z̃>i,x,pax, p̃ax) =

πpθ(z̃i | z̃>i, p̃ax) + (1− π)qϕ(zi | z>i,x,pax), (12)

where 0 ≤ π ≤ 1. We then sample each z̃i ∼ r(z̃i |
z̃>i,x,pax, p̃ax) using the (abducted) noise from eq. (11):

z̃i = µ
r
i (z̃>i, p̃ax) + σ

r
i (z̃>i, p̃ax)⊙Uzi . (13)

This way each underlying mechanism z̃i := f(p̃azi
,Uzi

),
with p̃azi

= {z̃>i, p̃ax}, is approximated by the mixture
distribution rather than only by the counterfactual prior.
Finally, to sample counterfactuals x̃ given (x,pax) and p̃a
(e.g. result of an intervention do(pa := p̃a)) we have:

Ux = (x− µ(z1:L,pax))⊘ σ(z1:L,pax), (14)

x̃ = µ(z̃1:L, p̃ax) + σ(z̃1:L, p̃ax)⊙Ux, (15)

where µ(·), σ(·) are the decoder’s output mean and std.
Here Ux is the (only) exogenous noise for x; it assumes a
similar role to ϵ in the exogenous prior model of Section 3.2.

Direct, Indirect & Total Effects. The proposed latent
mediator model allows us to compute causal effects w.r.t.
the parents pax and the mediator z1:L separately. Let
g(pax, z1:L) denote the output of our generative model
for x; the following causal quantities can be computed:

DEx(p̃a) = g(p̃ax, z1:L)− g(pax, z1:L) (16)
IEx(z̃1:L) = g(pax, z̃1:L)− g(pax, z1:L) (17)

TEx(p̃a, z̃1:L) = g(p̃ax, z̃1:L)− g(pax, z1:L), (18)

which are known as the Direct (DE), Indirect (IE), and Total
Effects (TE) in causal mediation analysis and epidemiol-
ogy (Robins & Greenland, 1992; Pearl, 2001). For example,
x̃ = g(pax, z̃1:L) is the counterfactual outcome of x given
the observed parents pax and the (counterfactual) mediator
we would have observed z̃1:L had the parents been p̃ax.
This is known as a cross-world or apriori counterfactual.
We argue that the above causal quantities could be useful
for offering causal explanations of outcomes when applied
to high-dimensional structured variables such as images.

3.4. Ignored Counterfactual Conditioning

A primary issue with conditional generative models is that
they are free to ignore conditioning c by finding a solution
satisfying pθ(x|c) = pθ(x) (Chen et al., 2016). In our case,
the decoder may not learn to disentangle the effect of the ex-
ogenous noise z1:L and the parents pax on the output. This
also affects what we call counterfactual conditioning, i.e.
the act of conditioning the generative model on the counter-
factual parents p̃ax, holding x’s abducted noise z1:L fixed,

to generate a counterfactual x̃. We find that counterfactual
conditioning can be ignored, even when observational con-
ditioning is not (e.g. in random conditional sampling). To
mitigate this problem, we propose an information theory
inspired strategy for enforcing counterfactual conditioning.

Counterfactual Training. Counterfactuals x̃ should obey
counterfactual conditioning on p̃ak (e.g. result of an in-
tervention do(pak := p̃ak)) by manifesting semantically
meaningful changes from x. Thus, the Mutual Informa-
tion (MI) between a counterfactual x̃ and p̃ak should be:
I(p̃ak; x̃) > 0. Maximizing this MI term directly is in-
tractable, but we can use a variational technique (Barber &
Agakov, 2004) to lower bound it as: I(p̃ak; x̃) =

Ep(p̃ak,x̃)

[
log

(
p(p̃ak | x̃)
p(p̃ak)

· qψ(p̃ak | x̃)
qψ(p̃ak | x̃)

)]
(19)

= Ep(p̃ak,x̃)

[
log

qψ(p̃ak | x̃)
p(pak)

]
(20)

+ Ep(x̃)DKL(p(p̃ak | x̃) ∥ qψ(p̃ak | x̃))
≥ Ep(p̃ak,x̃)

[log qψ(p̃ak | x̃)]−H(p̃ak), (21)

where qψ(p̃ak | x̃) is a learned variational distribution for
approximating p(p̃ak | x̃). This MI bound motivates the
optimization of a probabilistic predictor qψ(p̃ak | x̃) for
each parent, as a way to enforce counterfactual conditioning.

In practice, we optimize the following modified objective
with H(p̃ak) held constant. We perform random interven-
tions on pax by sampling each parent independently from
its marginal distribution p̃ak ∼ p(pak), and maximize the
log-likelihood of the probabilistic predictors given a sam-
pled counterfactual x̃ from the counterfactual distribution:

max
PM,qψ

Epdata(x,pax)
[−LCT(M;x,pax)] , (22)

where the counterfactual loss is: LCT(M;x,pax) =

−
K∑

k=1

E
p̃ak∼p(pak),

x̃∼PM(x̃|do(p̃ak),x)

[
log qψk

(p̃ak | x̃)
]
. (23)

Recall that all the mechanisms in our SCM M have opti-
mizable parameters, i.e. the generative and inference pa-
rameters {θ, ϕ} pertaining to x’s HVAE mechanism, and
ω denoting the parameters of all other mechanisms. The
objective in equation (22) can be optimized by a variant of
the Wake-Sleep algorithm (Hinton et al., 1995), alternating
between optimizing the parameters of the SCM mechanisms
{θ, ϕ,ω} with the parent predictors parameters ψ fixed and
vice-versa. In practice, we found it more effective to pre-
train all the SCM mechanisms and parent predictors on
observational data first, yielding {θ̂, ϕ̂, ω̂, ψ̂}. Then, opti-
mize equation (22) by fine-tuning x’s mechanism only, i.e.
updating the HVAE’s parameters {θ̂, ϕ̂} with {ω̂, ψ̂} fixed.
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(a) Latent mediator SCM for Morpho-
MNIST. Observed variables in the
graph: image (x), digit (y), stroke
thickness (t) and pixel intensity (i).

Figure 3: Morpho-MNIST counterfactuals from our latent mediator SCM. Direct, indirect and total causal effects of
interventions are shown (red: increase; blue: decrease). Recall that x̃IE ∼ g(pax, z̃1:L) are cross-world counterfactuals, i.e.
the potential outcome of x given pax and the (counterfactual) mediator we would have observed z̃1:L had pax been p̃ax.

Constrained Counterfactual Training. One issue with
fine-tuning x’s HVAE mechanism with counterfactual
training is that the original performance on observational
data can deteriorate as we update {θ̂, ϕ̂}. To mitigate
this, we propose to reframe counterfactual training as
a Lagrangian optimization problem, using the differen-
tial multiplier method (Platt & Barr, 1987). Our pro-
posed constraint is the pre-trained HVAE’s negative ELBO
(free energy FFE) averaged over the observational data:
c := Epdata(x,pax)

[FFE(θ̂, ϕ̂;x,pax)], which should not
increase during counterfactual training. Formally, the con-
strained counterfactual optimization problem is

argmin
θ,ϕ

Epdata(x,pax)
[LCT(M;x,pax)] (24)

s.t. FFE(θ, ϕ;x,pax) ≤ c, (25)

rewritten as the Lagrangian: LLg(θ, ϕ, λ;x,pax) =

LCT(M;x,pax)− λ(c−FFE(θ, ϕ;x,pax)). (26)

Optimizing this Lagrangian involves performing gradient
descent on the HVAE’s parameters θ and ϕ, and gradient
ascent on the Lagrange multiplier λ. The intended effect is
to fine-tune x’s HVAE mechanism to improve counterfactual
conditioning by maximizing I(p̃ak; x̃), without degrading
the original performance on observational data.

4. Experiments
We present 3 case studies on counterfactual inference of
high-dimensional structured variables1. To quantitatively
evaluate our deep SCMs, we measure effectiveness and com-
position, which are axiomatic properties of counterfactuals

1
https://github.com/biomedia-mira/causal-gen

that hold true in all causal models (Pearl, 2009; Monteiro
et al., 2023). Effectiveness is measured via the anticausal
parent predictors from Section 3.4, and composition is mea-
sured via the distortion of x’s HVAE mechanism upon null-
interventions. Please refer to Appendix B for more details.

4.1. Causal Mediation on Morpho-MNIST

Causal mediation studies the extent to which the effect of a
treatment is mediated by another variable in order to help ex-
plain why/how individuals respond to certain stimulus (Imai
et al., 2010). To demonstrate this concept on structured vari-
ables, we extend the causal modelling scenario presented
by Pawlowski et al. (2020) using the Morpho-MNIST (Cas-
tro et al., 2019) dataset. The dataset is generated from a
known causal graph shown in Figure 3a and Appendix C,
where we introduced an additional digit class variable y to
study discrete counterfactuals. We use normalizing flows to
model the causal mechanisms of variables t, i and y as in Ap-
pendix A.1, and use the proposed HVAE-based mechanisms
for x. Figure 3a demonstrates our latent mediator model’s
ability to estimate the direct, indirect and total causal effects
of interventions. Notably, direct effect counterfactuals pre-
serve the identity and modify only the parents pax, whereas
indirect effect (cross-world) counterfactuals preserve pax
whilst changing the style according to the counterfactual
mediator z̃1:L we would have observed had pax been p̃ax.
Our total effect counterfactuals are a combination of direct
and indirect effects, which agrees with causal mediation
theory (Robins & Greenland, 1992; Pearl, 2001).

Since the generative process is known, we can measure
the quality of our counterfactual approximations using the
ground truth mechanisms. For variable y, we used an accu-
rate digit classifier with ≃99.5% test acc. instead. Table 1
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Table 1: Quantitative evaluation of generated counterfactuals for the Morpho-MNIST test set. Identical learned SCM
mechanisms for t, i, and y are used in all cases to enable direct comparison of causal mechanisms for x. ‘Baseline’ refers to
the original DSCM (Pawlowski et al., 2020), EXODE denotes our exogenous prior HVAE, whereas MEDDE and MEDTE
refer to direct and total effect counterfactuals from our latent mediator model respectively. ‘bpd’ denotes bits per dimension,
i.e distortion of null-interventions plus the rate (DKL(q ∥ p)). ‘∼ Prior’ denotes random samples from the model directly
above. Accompanying table reporting standard deviations of multiple runs and extra ablations are shown in Appendix C.

THICKNESS (t) MAE ↓ INTENSITY (i) MAE ↓ DIGIT (y) Acc. (%) ↑
METHOD β bpd ↓ do(t) do(i) do(y) mix do(t) do(i) do(y) mix do(t) do(i) do(y) mix

Baseline 1 2.04 .112 .178 .175 .177 8.31 8.10 10.4 9.61 99.20 99.08 83.18 89.54
∼ Prior 1 N/A .193 .225 .191 .209 10.5 11.1 10.6 10.8 82.75 81.10 82.62 81.99
Baseline 3 2.17 .126 .185 .149 .171 14.1 15.5 15.1 15.6 99.47 99.34 97.89 98.34

EXODE 1 .674 .125 .140 .149 .148 1.78 2.08 1.87 2.24 99.31 98.88 99.49 99.23
∼ Prior 1 N/A .178 .192 .175 .186 2.18 3.08 2.20 2.74 98.30 97.68 98.49 97.95
EXODE 3 .942 .129 .133 .142 .139 1.83 2.70 1.77 2.32 99.46 99.01 99.73 99.34

MEDDE 1 .682 .125 .137 .157 .149 1.65 1.48 1.80 1.89 99.38 98.73 99.47 99.09
MEDTE 1 .682 .141 .153 .146 .150 1.72 2.17 1.78 2.01 99.75 99.30 99.68 99.41
MEDDE 3 .941 .133 .146 .139 .145 1.94 2.71 1.94 2.45 99.45 99.15 99.62 99.40
MEDTE 3 .941 .130 .141 .135 .138 2.10 3.11 2.13 2.69 99.85 99.65 99.79 99.71
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(a) Deep SCM for UK Biobank.
MRI Seq. (m), age (a), sex (s),
brain (b) & ventricle (v) volume.

Figure 4: Brain MRI counterfactuals from our deep SCM. Direct causal effect is shown (red: increase; blue: decrease).
We observe qualitatively sharp 192×192 counterfactuals that manifest localized interventional changes according to the
associated causal graph in (a), whilst preserving the identity of the observation. Counterfactual uncertainty is also shown.

reports counterfactual evaluation results from random inter-
ventions on each parent. We find that our exogenous prior
and latent mediator HVAE x mechanisms perform similarly,
and both outperform baselines (Pawlowski et al., 2020) by
a wide margin especially on digit (discrete) counterfactuals
which are more challenging. Total effect counterfactuals
(MEDTE) are generally more faithful to counterfactual con-
ditioning than direct effect counterparts (MEDDE) but are
more likely to deviate from the identity of observations.

4.2. Brain Imaging Counterfactuals

To demonstrate our model’s ability to produce faithful high-
fidelity counterfactuals of real data, we extend our approach

to a real-world scenario involving brain MRI scans from the
UK Biobank (Sudlow et al., 2015). As before, we start with
an assumed causal generative process involving a set of ob-
served variables as shown in Figure 4a. The causal graph is
medically informed and extends the scenario in Pawlowski
et al. (2020) by: (i) introducing an additional MRI Sequence
(T1/T2) binary variable m to enable discrete counterfactu-
als; (ii) having s → x directly. We used a scaled-up version
of our exogenous prior HVAE as x’s mechanism and used
(conditional) normalizing flows for the other mechanisms
(see Appendix A.1). As shown in Figure 4, our deep SCM is
capable of producing qualitatively sharp 192×192 counter-
factuals with localised changes according to the intervened
upon parent(s) and the associated causal graph. Importantly,
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(a) Deep SCM for MIMIC-CXR.
The variables in the causal graph
are: age (a), sex (s), race (r), dis-
ease (d) and chest x-ray (x). The
disease d is pleural effusion.

Figure 5: Chest X-ray counterfactuals from our deep SCM. Direct causal effect is shown (red: increase; blue: decrease).
We observe qualitatively sharp 192×192 counterfactuals that manifest localized interventional changes according to the
associated causal graph in (a), whilst preserving the identity of the observation. Counterfactual uncertainty is also shown.

the identity of subjects is well preserved in all cases includ-
ing null-interventions (i.e. do(·) nothing). Table 2 shows
the counterfactual effectiveness results from random inter-
ventions on each variable. We observed satisfactory initial
counterfactual effectiveness and significant improvements
of post counterfactual training, demonstrating the merit of
the proposed approach. Please refer to Appendix A.2 for
notes on abduction uncertainty and D for additional results.

4.3. Chest X-ray Imaging Counterfactuals

We further extend the proposed approach to the MIMIC-
CXR dataset (Johnson et al., 2019) to demonstrate our
model’s ability to estimate high-fidelity counterfactuals of
real chest X-ray images. This is motivated by the need for a
better understanding of algorithmic bias and reported sub-
group disparities (Bernhardt et al., 2022). We begin with an
assumed causal generative process of data involving the fol-
lowing observed variables: age (a), sex (s), race (r), disease
(d), and chest X-ray image (x). Notably, we assume that age
a causes disease d (pleural effusion) which requires infer-
ence of discrete counterfactuals from upstream interventions
on age. For details on computing discrete counterfactuals
and other experiments, please refer to Appendix E. Follow-
ing the general setup in Section 4.2, we used a scaled-up
version of our exogenous prior HVAE for x’s mechanism.
We trained for relatively few iterations on MIMIC-CXR;
≃210K. The quantitative counterfactual evaluation results
from random interventions on each variable are reported
in Table 2. We observed significant improvements in coun-
terfactual effectiveness post counterfactual training, partic-
ularly for race, age and disease attributes. For extensive
visual evaluation results please refer to Appendix E.4.

5. Related Work
Our work bolsters an ongoing effort to combine representa-
tion learning and causality (Bengio et al., 2013; Schölkopf
et al., 2021). Causal representation learning is also closely
linked to disentanglement, where the goal is to uncover
the true underlying (disentangled) generative factors of
data (Higgins et al., 2017; Locatello et al., 2019; Kim &
Mnih, 2018; Chen et al., 2018). Generative models such as
VAEs (Kingma & Welling, 2013), GANs (Goodfellow et al.,
2020), Normalizing Flows (Tabak & Vanden-Eijnden, 2010;
Rezende & Mohamed, 2015) and Diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b)
have become indispensable tools for causal representation
learning. They have been leveraged for causal effect estima-
tion (Louizos et al., 2017; Kocaoglu et al., 2017; Tran & Blei,
2017), causal discovery (Yang et al., 2021; Sanchez et al.,
2022b; Geffner et al., 2022), and various other extensions
have enabled modelling of conditional (Trippe & Turner,
2018; Mirza & Osindero, 2014; Sohn et al., 2015; Dhariwal
& Nichol, 2021) and interventional distributions (Kocaoglu
et al., 2018; Ke et al., 2019; Xia et al., 2021; Zečević et al.,
2021). However, few works have focused on fulfilling all
three rungs of Pearl’s ladder of causation: (i) association;
(ii) intervention; (iii) counterfactuals (Pearl, 2009; Barein-
boim et al., 2022) in a principled manner using deep models.

Our work is most closely related to DSCMs (Pawlowski
et al., 2020) and NCMs (Xia et al., 2021; 2023) in that we
leverage deep learning components to learn causal mech-
anisms. However, our focus is on the practical estimation
and evaluation of plausible high-fidelity image counterfac-
tuals, whereas previous work mostly focused on theoretical
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Table 2: Quantitative evaluation of generated test set counterfactuals for UK Biobank (Top) and MIMIC-CXR (Bottom).
Random interventions on each variable were performed and counterfactual effectiveness was measured via attribute predictors.
‘mixed’ denotes also randomizing the intervened upon variable. Results in brackets (↑ ·), (↓ ·) are the absolute differences in
effectiveness between regular training and with fine-tuning x’s mechanism using counterfactual training (see Appendix F).

INTERVENTION SEX (s) MRI (m) AGE (a) BRAIN VOL. (b) VENTRICLE VOL. (v)
(UK Biobank) ROCAUC ↑ ROCAUC ↑ MAE (years) ↓ MAE (ml) ↓ MAE (ml) ↓

do(s) 0.9905 (↑ 0.172) 1.0 (-) 4.849 (↓ 0.018) 24.55 (↓ 24.5) 1.854 (↓ 0.322)
do(m) 0.9893 (↑ 0.023) 1.0 (-) 4.846 (-) 26.14 (↓ 1.88) 1.932 (↓ 0.092)
do(a) 0.9892 (↑ 0.016) 1.0 (-) 4.937 (↑ 0.004) 26.24 (↓ 7.31) 1.890 (↓ 0.451)
do(b) 0.9944 (↑ 0.069) 1.0 (-) 5.059 (↓ 0.032) 25.49 (↓ 38.6) 1.846 (↓ 0.933)
do(v) 0.9893 (↑ 0.031) 1.0 (-) 6.045 (↓ 0.102) 25.69 (↓ 3.22) 1.826 (↓ 2.115)
mixed 0.9899 (↑ 0.061) 1.0 (-) 5.128 (↓ 0.046) 25.41 (↓ 15.1) 1.900 (↓ 0.822)

INTERVENTION SEX (s) RACE (r) AGE (a) DISEASE (d)

(MIMIC-CXR) ROCAUC ↑ ROCAUC ↑ MAE (years) ↓ ROCAUC ↑
do(s) 1.000 (↑0.078) 0.839 (↑0.094) 6.485 (↓0.198) 0.969 (↑0.038)
do(r) 0.997 (↑0.002) 0.867 (↑0.283) 6.311 (↓0.115) 0.874 (↑0.008)
do(a) 0.997 (↑0.002) 0.807 (↑0.058) 6.643 (↓3.426) 0.916 (↑0.033)
do(d) 0.997 (↑0.001) 0.793 (↑0.041) 6.568 (↓0.189) 0.982 (↑0.258)
mixed 0.998 (↑0.015) 0.828 (↑0.116) 6.497 (↓0.866) 0.950 (↑0.076)

and/or proof-of-concept low-resolution settings. Sanchez &
Tsaftaris (2021); Sanchez et al. (2022a) proposed Diffusion
SCMs (Diff-SCMs) for high-fidelity counterfactuals, but
considered only two-variable causal models. Our approach
is inspired by recent identifiability results in deep generative
models (Khemakhem et al., 2020; Hyvarinen et al., 2019), as
well as modern HVAE architectures (Vahdat & Kautz, 2020;
Child, 2020) which are readily amenable to explicit, identity-
preserving abduction. Causal mediation analysis concepts
like direct, indirect and total effects (Robins & Greenland,
1992; Imai et al., 2010; Pearl, 2001) also guided our latent
mediator SCM setup. Many image-to-image translation
approaches (Isola et al., 2017; Liu et al., 2017; Su et al.,
2022; Saharia et al., 2022; Brooks et al., 2022; Preechakul
et al., 2022) are also related to counterfactual inference, but
only in an informal sense as they do not explicitly perform
abduction, model interventions, nor use causal structure.

6. Conclusion
We present a pragmatic causal generative modelling frame-
work for estimating high-fidelity image counterfactuals us-
ing deep SCMs. Our proposed deep causal mechanisms are
inspired by recent identifiability results for deep generative
models, as well as causal mediation analysis theory. We
show how to plausibly estimate direct, indirect, and total
causal effects on high-dimensional structured variables such
as images, and provide abduction uncertainty estimates. We
quantify the soundness of our counterfactuals by evaluating
axiomatic properties that hold true in all causal models: i.e.
effectiveness and composition. We believe the ability to
generate plausible counterfactuals could greatly benefit sev-

eral important areas: (i) explainability, e.g. through causal
mediation effects as studied here; (ii) data augmentation,
e.g. mitigating data scarcity and underrepresentation of sub-
groups; (iii) robustness, to e.g. spurious correlations. Our
work contributes primarily to the empirical and theoretical
advancement of counterfactual inference models – valuable
extensions for future work include demonstrating the advan-
tage of using counterfactuals in the aforementioned areas.

Limitations. This work considers only Markovian SCMs,
wherein all causal effects are identifiable from observed
data under the assumption of no unobserved confounding.
Markovianity is a common assumption in academic litera-
ture but may be too restrictive in some real-world scenarios.
We take a pragmatic empirical approach to counterfactual
evaluation by measuring their axiomatic soundness rather
than being bound by a lack of theoretical identifiability in
the limit of infinite data. Nonetheless, extensions to Semi-
and/or Non-Markovian settings would boost the practicality
of our approach, but this is highly non-trivial for structured
variables. Further, we stress that any conclusions drawn
using our approach are strictly dependent on the correctness
of the assumed SCM. We urge practitioners to carefully con-
sider the ethical implications of their modelling assumptions
when applying this framework in real-world settings.
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A. Supplementary Methods
A.1. Invertible Mechanisms for Attributes
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Figure 6: Conditional HVAE generative model struc-
tures for the proposed latent mediator model. The as-
sociated inference model is the same as in Figure 1a.
(a) Like the ladder VAE (Sønderby et al., 2016), each
conditional prior distribution pθ(zi | z>i) at each layer i
is corrected by a data-dependent likelihood contribution
from the posterior of the layer above via hi+1. Unlike
(a), the conditional prior distributions at each layer of
(b) do not depend on the posterior, but each posterior
still depends on the prior from the layer above.

Attributes which are ancestors of the image x, anx =
{a1, . . . , aN−1} ⊇ pax, are generally not assumed to be in-
dependent, so we learn their structural assignments from data.
To enable tractable abduction for anx, we learn invertible mech-
anisms fk using conditional normalizing flows (Trippe & Turner,
2018) as suggested by Pawlowski et al. (2020). Each attribute’s
mechanism ak := fk(uk;pak) is a conditional flow, where ak
is expressed as a parameterised function of pak and samples
from a base distribution uk ∼ pu(uk). The conditional density
is given by

p(ak | pak) = pu(uk) |detJfk(uk)|−1
, (27)

where uk = f−1
k (ak;pak), and Jfk(uk) is the Jacobian ma-

trix of all partial derivatives of fk with respect to uk. The
base distribution for the exogenous noise is typically assumed
to be Gaussian, which may be restrictive. Moreover, we
note that uk here is not strictly latent (unobserved) as de-
scribed in SCM theory, since knowing (ak,pak) uniquely
determines uk. A counterfactual attribute ãk is given by
forwarding the mechanism using its counterfactual parents
and the abducted exogenous noise: ãk := fk(uk; p̃ak). In
practice, we use standard Gaussians as base distributions for
the exogenous noise and leverage available PyTorch (Paszke
et al., 2019) & Pyro (Bingham et al., 2019) implementations.

A.2. Distribution over Causal Worlds
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Figure 7: Showing a (1 stochastic layer)
VAE collapsing to a deterministic AE
throughout training on Morpho-MNIST (3
random seeds used). We observe that the
marginal posterior scale tends towards zero
when the image (Gaussian) likelihood scale
is fixed in the near-deterministic regime.
This observation is consistent with the VAE
self-consistency claims of Nielsen et al.
(2020) and Reizinger et al. (2022).

As explained in Section 3.1, the original DSCM (Pawlowski et al., 2020)
framework’s VAE-based causal mechanism for x was trained in the near-
deterministic regime, thereby incidentally attempting to deterministically
abduct x’s exogenous like a normalizing flow. Consequently, the model
struggled to: (i) produce realistic random samples from the SCM; (ii) rep-
resent abduction uncertainty; (iii) induce a distribution over causal worlds.
Our proposed HVAE-based deep causal mechanisms address these issues.

The counterfactual distribution of x̃: PM(x̃ | do(p̃ak),x), is our dis-
tribution of interest associated with the modified probabilistic SCM
⟨Mdo(p̃ak)

, P (U |X)⟩, after the three-step procedure (Section 2.1). The
prior and posterior distributions over the exogenous noise variables (with
an exogenous prior HVAE mechanism for x) are given by

P (U) = pθ(z1:L)p(ϵ)︸ ︷︷ ︸
p(ux)

N−1∏

i=1

p(ui), (28)

P (U |X) ≈ qϕ(z1:L | x,pax)δ(ϵ | x,pax)︸ ︷︷ ︸
≈p(ux|x,pax)

N−1∏

i=1

δ(ui | ai,pai). (29)

Since abduction is non-deterministic in this model, we can sample different realisations of the exogenous variables from
P (U |X) by sampling from the HVAE encoder qϕ(z1:L|x,pax), thereby inducing a distribution over causal worlds and
yielding varied counterfactuals of x. Note that the Delta distributed δ(·) exogenous variable posteriors are a result of
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Table 3: Comparing counterfactual effectiveness of random interventions using our latent mediator model (β=1) when
trained with and without conditioning dropout (CD) as described in Section A.3. We find that effectiveness of digit
counterfactuals improves significantly with CD at the cost of slightly worse composition (higher bits per dimension).

THICKNESS (t) MAE ↓ INTENSITY (i) MAE ↓ DIGIT (y) Acc. (%) ↑
METHOD CD bpd ↓ do(t) do(i) do(y) mix do(t) do(i) do(y) mix do(t) do(i) do(y) mix

MEDDE N .676 .127 .133 .252 .202 1.70 2.04 1.85 2.17 99.30 99.06 81.07 88.37
MEDTE N .676 .162 .168 .225 .200 1.73 2.60 1.79 2.22 99.74 99.36 94.28 95.87

MEDDE Y .682 .125 .137 .157 .149 1.65 1.48 1.80 1.89 99.38 98.73 99.47 99.09
MEDTE Y .682 .141 .153 .146 .150 1.72 2.17 1.78 2.01 99.75 99.30 99.68 99.41

deterministic abduction (e.g. from inverting a normalizing flow mechanism). Furthermore, we can calculate the first and
second moments of the counterfactual distribution:

µx̃ = EP (U |X)

[
PM(x̃ | do(p̃ak),x)

]
, σx̃ = VarP (U |X)

[
PM(x̃ | do(p̃ak),x)

] 1
2 , (30)

where µx̃ can be interpreted as the most likely counterfactual of x and σx̃ as a measure of counterfactual uncertainty.

A.3. Latent Mediator Architectures

As shown in Figure 6b, we can alter the conditional generative model structure of the latent mediator model, such that the
conditional prior distributions no longer receive data-dependent corrections from previous layer posteriors as in the Ladder
VAE (Sønderby et al., 2016). We find that this architecture (Figure 6b) is less prone to ignored counterfactual conditioning,
especially when trained with parent conditioning dropout (see comparative results in Table 3). Parent conditioning dropout
consists of randomly selecting when pax is merged into the downstream. We can either drop the pax merge connections
between each hi and zi (deterministic path) or between each zi and zi−1 (stochastic path), whilst holding the other fixed.
Parent conditioning dropout is somewhat reminiscent of classifier-free guidance (Ho & Salimans, 2022) in diffusion models
but the application and motivations here are different; to prevent the model from prioritising one conditioning path over the
other and improve counterfactual conditioning on p̃ax in the forward model with the abducted noise z1:L fixed.

B. Axiomatic Counterfactual Evaluation
In order to quantitatively evaluate our approximate counterfactual inference models, we measure the axiomatic properties of
counterfactuals: (i) composition; (ii) effectiveness; (iii) reversibility (Pearl, 2009; Monteiro et al., 2023), which hold true in
all causal models. The soundness (Galles & Pearl, 1998) and completeness (Halpern, 1998) theorems state that composition,
effectiveness and reversibility are the necessary and sufficient properties of counterfactuals in any causal model. The three
axiomatic properties of counterfactuals can be summarised as follows:

(i) Composition: Intervening on a variable to have a value it would have had without our intervention will not affect the
other variables in the system;

(ii) Effectiveness: Intervening on a variable to have a specific value will cause the variable to take on that value;

(iii) Reversibility: Precludes multiple solutions due to feedback loops, and follows directly from composition in recursive
systems such as DAGs. Refer for (Pearl, 2009) for further details on non-recursive systems.

Following the counterfactual evaluation framework proposed by Monteiro et al. (2023), we measure counterfactual ef-
fectiveness using a ‘pseudo-oracle’ function’s accuracy/error (i.e. calculated from our parent predictors), and measure
composition via the distortion induced by x’s mechanism from (repeated) null-interventions. In the case of a HVAE-based
causal mechanism for x, composition can be understood as reconstructing the input given observed parents, and reversibility
as the act of cycling back between factual and counterfactual parent interventions. In both cases, distance metrics can be
used to measure differences between counterfactual and factual images (e.g. L1 image distance per-pixel).
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Figure 8: Evidence lower bound, distortion and rate throughout training on Morpho-MNIST (shown in nats per dimension).
Top row corresponds to our exogenous prior HVAE, and the bottom row to the HVAE for our latent mediator model. Identical
architectures were used in both cases, leading to similar results despite the change in conditioning structure. Dashed and
solid lines correspond to training and validation respectively.
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Figure 9: Rate-distortion curves for our exogenous prior HVAE (Top) and the latent mediator model’s HVAE (Bottom)
trained on Morpho-MNIST (shown in nats per dimension). For both models, we can see that increasing β reduces the rate
whilst increasing distortion, encouraging the model to ignore imperceptible details and focus more on semantic compression.
This helps explain why increasing β can improve counterfactual conditioning, since the model is discouraged from focusing
mostly on improving distortion (image likelihood) and finding a solution pθ(x) = pθ(x|c) by ignoring conditioning c.
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Table 4: Additional quantitative evaluation of generated counterfactuals for the Morpho-MNIST test set. Supplementary to
Table 1 in the main text and includes further ablations on the β penalty used during training.

THICKNESS (t) MAE ↓ INTENSITY (i) MAE ↓ DIGIT (y) Acc. (%) ↑
METHOD β bpd ↓ do(t) do(i) do(y) mix do(t) do(i) do(y) mix do(t) do(i) do(y) mix

Baseline 3 2.17 .126 .185 .149 .171 14.1 15.5 15.1 15.6 99.47 99.34 97.89 98.34
∼ Prior 3 N/A .174 .222 .173 .201 15.4 17.1 15.3 16.4 96.21 96.01 96.39 96.27

EXODE 5 1.08 .137 .158 .137 .149 2.91 4.09 2.82 3.59 99.62 99.28 99.82 99.49

MEDDE 5 1.07 .139 .149 .140 .145 2.66 4.28 2.61 3.57 99.61 99.26 99.76 99.52
MEDTE 5 1.07 .126 .141 .127 .134 2.96 4.87 2.94 4.04 99.86 99.60 99.82 99.66

Table 5: Quantitative evaluation of generated counterfactuals for the Morpho-MNIST test set. Sister table of results in
Tables 1 & 4 in the main text reporting the standard deviations of results from three random seed runs.

THICKNESS (t) MAE ↓ INTENSITY (i) MAE ↓ DIGIT (y) Acc. (%) ↑
METHOD β bpd ↓ do(t) do(i) do(y) mix do(t) do(i) do(y) mix do(t) do(i) do(y) mix

Baseline 1 2.04 1e-3 1e-3 2e-3 1e-3 1e-3 2e-2 3e-2 4e-3 4e-4 8e-4 7e-4 2e-3
∼ Prior 1 N/A 3e-3 5e-4 1e-3 2e-3 5e-2 3e-2 9e-3 1e-2 3e-3 2e-3 3e-3 3e-3
Baseline 3 2.17 2e-3 1e-3 8e-4 1e-3 4e-2 1e-2 8e-2 0.13 6e-4 5e-4 1e-3 1e-3
∼ Prior 3 N/A 9e-4 1e-3 2e-3 1e-3 3e-2 0.146 6e-2 0.122 1e-3 5e-5 1e-3 1e-3

EXODE 1 .674 9e-4 2e-4 6e-4 2e-3 2e-2 3e-2 1e-2 4e-2 5e-4 5e-4 3e-4 3e-4
∼ Prior 1 N/A 2e-3 9e-4 2e-3 8e-5 1e-2 3e-2 1e-2 9e-3 3e-4 1e-3 1e-3 3e-4
EXODE 3 .942 1e-3 1e-3 2e-4 2e-3 1e-2 4e-2 6e-3 1e-2 1e-4 6e-4 3e-4 1e-3
EXODE 5 1.08 1e-3 4e-4 8e-4 4e-4 1e-2 1e-2 7e-3 6e-2 2e-4 1e-4 3e-4 1e-4

MEDDE 1 .682 6e-4 4e-5 1e-3 2e-3 2e-2 2e-2 1e-2 3e-4 3e-4 6e-4 4e-5 3e-4
MEDTE 1 .682 2e-4 6e-4 1e-3 7e-4 2e-2 1e-2 5e-3 3e-3 4e-4 5e-4 4e-4 3e-4
MEDDE 3 .941 8e-4 2e-4 1e-3 4e-4 9e-3 2e-2 9e-3 3e-2 1e-4 2e-4 8e-4 2e-4
MEDTE 3 .941 3e-4 8e-4 9e-4 2e-3 1e-2 4e-2 3e-2 4e-2 4e-4 1e-3 6e-4 1e-3
MEDDE 5 1.07 4e-4 6e-4 9e-4 5e-4 1e-2 4e-2 2e-2 8e-2 2e-4 4e-4 7e-4 8e-5
MEDTE 5 1.07 1e-3 4e-4 8e-4 6e-4 2e-2 1e-2 1e-2 9e-3 3e-4 3e-4 2e-4 4e-4

C. Morpho-MNIST
C.1. Dataset Details

For our Morpho-MNIST experiments, we construct a similar scenario to Pawlowski et al. (2020) in which a dataset is
generated according to the following known structural causal model:

y := fy(uy), uy ∼ MNIST (31)
t := ft(ut) = 0.5 + ut, ut ∼ Gamma(10, 5) (32)
i := fi(t, ui) = 191 · σ(0.5ui + 2t− 5), ui ∼ N (0, 1) (33)
x := fx(i, t, y, ux) = Seti(i, y,Sett(t, y, ux)), ux ∼ MNIST, (34)

The Seti(·) and Sett(·) are morphological operations that act on an image and set its intensity i and thickness t. We’ve
introduced the categorical variable y for digit class, to increase the complexity of the learning problem and extend
counterfactual inference to the discrete case. The resulting dataset follows the original MNIST dataset splits.

C.2. Experiment Setup

Our deep SCMs are implemented in Pyro and Pytorch. Unlike Pawlowski et al. (2020), we train the causal mechanisms
(normalizing flows) for all variables except the image x concurrently in Pyro, whereas x’s causal mechanism is trained
separately in Pytorch. Training x’s HVAE mechanism separately from the flow mechanisms allows us to compare different
versions of the x’s mechanism fairly while keeping the rest of the SCM’s mechanisms fixed. Once all the SCM components
are trained they are combined into a single PyTorch module for counterfactual training and inference.

17



High Fidelity Image Counterfactuals with Probabilistic Causal Models

ReLU

ReLU

GELU

GELU

GELU

GELU

CONV 1x1

CONV 3x3

CONV 3x3

CONV 1x1

CONV 3x3

CONV 3x3

Figure 10: The residual blocks used to build our
HVAEs. The block on the RHS tends to perform
better but requires more GPU memory to run, so
we used the LHS one for the Brain MRI dataset.

Architecture. For the experiments on the Morpho-MNIST dataset,
we built upon the general setup of the very deep VAE (VDVAE)
from Child (2020) and introduced structural modifications to accom-
modate both parent conditioning and abduction in our exogenous prior
and latent mediator models described in the text. The architecture
itself is largely based on the ResNet-VAE of (Kingma et al., 2016) but
contains many more layers of stochastic latent variables. The prior and
posterior are diagonal Gaussian distributions and the model is trained
end-to-end by optimizing the variational bound on the log-likelihood
(ELBO) (Kingma & Welling, 2013; Kingma et al., 2016; Maaløe et al.,
2019). Both our exogenous prior and latent mediator HVAEs for
Morpho-MNIST have 20 stochastic latent variables spanning 5 reso-
lution scales up to the 32×32 input resolution: {12, 42, 82, 162, 322}.
Each resolution scale contains 4 inverted residual blocks (Figure 10),
and each latent variable has 16 channels. We use variable widths per
resolution of: {16, 32, 64, 128, 256}, and the total trainable parameter
count is ≃2M. For downsampling we use average pooling layers and
for upsampling we use nearest neighbour interpolation followed by
convolution. In order to condition our HVAEs, we expand and con-
catenate pax with the latent variables zi at each layer of the hierarchy
in the locations specified in Figures 1 and 6. The resulting tensor is
then merged into the downstream via a 1×1 convolution.

Training Details. We trained our HVAEs for ≃1M steps using a batch size of 32 and the AdamW optimizer (Loshchilov
& Hutter, 2017). We used an initial learning rate of 1e-3 with 100 linear warmup steps, β1 = 0.9, β2 = 0.9 and a weight
decay of 0.01. We set gradient clipping to 350 and set a gradient update skipping threshold of 500 (based on L2 norm). No
significant training instability was observed. The final artefact is an exponential moving average of the model parameters
with a rate of 0.999 which we use at inference time. For data-augmentation, we applied zero-padding of 4 on all borders
and random cropped to 32×32 resolution. Pixel intensities we rescaled to [−1, 1] for and validation/test images were
zero-padded to 32×32.

Figure 11: Figure credit belongs solely to Sanchez & Tsaftaris (2021) – reused here for qualitative comparison purposes
only. From visual inspection alone, we can observe that the counterfactuals generated from our proposed deep SCM (e.g.
see Appendix C.3) are far superior in both counterfactual effectiveness and composition compared to the previous methods
shown (Sanchez & Tsaftaris, 2021; Schut et al., 2021; Van Looveren & Klaise, 2021).
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C.3. Extra Results
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Figure 12: Visualizing additional random Morpho-MNIST test set counterfactuals from our latent mediator model (β=1).
Direct, indirect and total effects are also shown. We observe counterfactuals which are faithful to interventions and the
associated causal graph (e.g. intervening on thickness causes intensity to increase/decrease.). Intervening on the parents
preserves observational identity (e.g. writing style). Recall that cross-world (indirect effect, row(s) 3) counterfactuals
x̃IE ∼ g(pax, z̃1:L) are the outcome of x given observed pax and the counterfactual mediator we would have observed
z̃1:L had pax been p̃ax. We can see that the effect of the parents is mediated by z1:L, which mostly affects the writing style,
and changes according to which counterfactual parent caused the (inferred) counterfactual mediator z̃1:L.
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Figure 13: Test set counterfactuals produced by our latent mediator model using the Colour-MNIST dataset from (Monteiro
et al., 2023). In this case, the SCM is very simple and consists of only 3 variables: digit y, colour c and image x. There
are 10 different discrete colours, there is no assumed causal relationship between y & c, and both y and c cause x. We
can observe clear localised changes based on the intervened upon parent variable whilst the identity of the observation is
preserved. There is also no (visible) causal influence from y to c or vice-versa like in the thickness t and intensity i scenario
from Morpho-MNIST where t caused i. Direct, indirect and total causal effects are also shown.
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Figure 14: Evidence lower bound, distortion and rate throughout training of our exogenous prior HVAE mechanism on UK
Biobank (shown in nats per dimension, top row). Dashed and solid lines correspond to training and validation respectively.
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Figure 15: Rate-distortion curves of our exogenous prior HVAE mechanism on UK Biobank. We can again observe higher
β penalty encourages higher semantic compression, which leads to improvements in counterfactual conditioning (in terms
of counterfactual effectiveness) at the cost of worse distortion (counterfactual composition).

D. Brain MRI (UK Biobank)
D.1. Dataset Details

In terms of data generation and pre-processing, we follow the original pipeline used by Alfaro-Almagro et al. (2018)
and Pawlowski et al. (2020). The pre-processing entails skull removal, bias field correction, segmentation of brain structures,
and registration. Mid-axial 2D slices were then extracted and max-min normalised to [0, 255] inside the brain mask, whereas
background pixels were set to zero. The attributes for each subject (age, sex, brain/ventricle volume) were retrieved from the
UK Biobank dataset. In addition, we use both T1-weighted and T2-FLAIR brain MRI scans (when available) and include a
binary indicator variable (m) for the scan modality in our structural causal models. We randomly split the full dataset into
subsets of 19466 training, 3500 validation and 3500 test samples. Further, we ensure no overlapping subjects between the
training and evaluation datasets exist.

D.2. Experiment Setup

Architecture. For the Brain MRI experiments, we used a scaled-up version of our exogenous prior HVAE for x’s
mechanism to accommodate the higher resolution of 192×192 (see details in Appendix C). The stochastic latent variables in
our HVAE span 5 resolution scales up to 1

2 the input resolution: {12, 62, 122, 242, 482, 962}, and each respective resolution
scale contains the following number of residual blocks: {2, 4, 8, 12, 8, 4}. Each latent variable has 16 channels and the
feature map widths at each resolution scale are: {512, 192, 160, 128, 96, 64, 32}, where 32 refers to the width of the
final (deterministic) 192×192 upsampling residual block. The resulting architecture comprises a total of 38 stochastic
latent variables layers and ≃17M trainable parameters. Conditioning this HVAE on the parents pax follows the same
expansion/concatenation strategy as for the Morpho-MNIST experiments. It is likely that using a more sophisticated
conditioning strategy involving spatial/cross attention would perform better, but the one we used is simple and performed
well enough in our experiments so we leave further exploration to future work.

Training Details. We trained our HVAEs for ≃650K iterations with a batch size of 32 and the AdamW optimizer. We
used an initial learning rate of 1e-3 with 100 iterations of linear warmup, β1 = 0.9, β2 = 0.9 and a weight decay of
0.05. We set gradient clipping to 350 and used a gradient update skipping threshold of 500 based on the L2 norm of the
gradients. The final model is an exponential moving average of the parameters with a rate of 0.999 which we use for
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inference. For data-augmentation, we apply a zero-padding of 9 to all borders and perform random horizontal flips with
probability 0.5. Pixel intensities were normalised to a range of [−1, 1]. As explained in Section 3.2, rather than using the
(invertible) continuous likelihood mechanism proposed by Pawlowski et al. (2020) which requires dequantization of discrete
pixel intensities and inversion of the sampling mechanism h(·) during training, we used a discretized Gaussian likelihood
as is commonly used in Diffusion models (Ho et al., 2020) and infer the exogenous sampling noise for counterfactuals at
inference time only. We found this to be beneficial in terms of training stability and final performance. Following Ho et al.
(2020), we obtain discrete log likelihoods as follows:

pθ(x | z1:L,pax) =
D∏

i=1

∫ δ+(xi)

δ−(xi)

N (x | µiθ(z1:L,pax),σiθ(z1:L,pax)) dx

δ+(x) =

{
∞ if x = 1

x+ 1
255 if x < 1

δ−(x) =

{
−∞ if x = −1

x− 1
255 if x > −1

(35)

where D is the data dimensionality and the i superscript denotes a single coordinate.

Alternative Mechanisms. As our focus is on high fidelity counterfactual generation, we elected not to compare directly
with a simple VAE baseline for x’s mechanism in these experiments (e.g. (Pawlowski et al., 2020; Monteiro et al., 2023)), as
simple VAEs are known to perform poorly in these scenarios. We felt that the comparisons would not be apple-to-apples or
particularly meaningful. Early attempts to train Normalizing Flow based causal mechanisms (which are directly amenable to
abduction) revealed prohibitory training instabilities in large-scale high resolution settings, as also discussed in Pawlowski
et al. (2020). Furthermore, alternative deep generative models like GANs and Diffusion models are not directly amenable to
explicit abduction like HVAEs, so we leave the required practical/theoretical modifications to future work. Promising avenues
include variational diffusion models (Kingma et al., 2021), GAN inversion (Xia et al., 2022b), and the diffusion-based
approach studied by Sanchez & Tsaftaris (2021)(Diff-SCMs), albeit in simplistic two variable causal models.

Notably, counterfactuals from Diff-SCMs (Sanchez & Tsaftaris, 2021) can be susceptible to progressive loss of the
observation’s identity. This is partly because the abducted exogenous noise at time T from the DDIM (Song et al., 2021a)
forward diffusion process (using the learned model) is not guaranteed to be semantically meaningful (Preechakul et al.,
2022), or identity-preserving as one iteratively reverses diffusion towards the counterfactual parent conditioning. Preechakul
et al. (2022) attempt to address this lack of semantic meaning in diffusion model latents by introducing a two-part latent
code inspired by StyleGAN (Karras et al., 2019). The first part is a semantically meaningful code vector inferred from
an additional trained encoder, and the second part captures stochastic details via a diffusion model conditioned on the
first part. Nonetheless, they explain that certain image reasoning tasks may require more precise local latent variables, for
which 2D latent variable maps can be beneficial. This view validates our HVAE-based approach. Further, our HVAE-based
mechanisms were designed to adhere to structural equation modelling by explicitly attempting to disentangle the role of the
exogenous noise from the parent conditioning: x = fθ(pax,ux), where p(ux) = pθ(z1:L)p(ϵ). In this way, we leverage
the exact same hierarchy of semantically meaningful abducted exogenous noise components for computing both factuals
and counterfactuals, as stipulated by Pearl’s theory of interventional counterfactuals (Pearl, 2009).
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D.3. Extra Results
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Figure 16: Additional counterfactual results from performing random interventions of each attribute (non-cherrypicked).
We observed localized changes in accordance with the interventions performed and the associated assumed causal graph.
Crucially, the identity of the original observation is well preserved, indicating that the approximate abduction step is fairly
accurate even at high resolutions. As explained in the main text, the direct treatment effect is the difference between the
generated counterfactual and the null-intervened (reconstructed) outcome. The per-pixel counterfactual uncertainty maps
relate to the uncertainty in the abduction of the x’s exogenous noise, namely z1:L and ϵ, and were calculated as described in
Appendix A.2. using 50 samples from the posterior distribution of the exogenous noise.
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do(m=T1)
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Figure 17: Visualizing brain MRI Seq. (m) test set counterfactuals from our Deep SCM using the proposed exogenous prior
HVAE for x’s mechanism (non-cherrypicked). Direct treatment effects and per-pixel counterfactual uncertainty maps are
also shown. Counterfactuals were obtained from random interventions on T1/T2 (do(m)) before (rows 2 to 4) and after
counterfactual training (rows 5 to 7). T1 and T2 scans belonging to the same subject are shown side-by-side in pairs.
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Figure 18: Visualizing brain sex (s) test set counterfactuals from our Deep SCM using the proposed exogenous prior HVAE
for x’s mechanism (non-cherrypicked). Direct treatment effects and per-pixel counterfactual uncertainty maps are also
shown. Counterfactuals were obtained from random interventions on sex (do(s)) before (rows 2 to 4) and after counterfactual
training (rows 5 to 7).
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do(a=50.0)
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Figure 19: Visualizing brain age (a) test set counterfactuals from our Deep SCM using the proposed exogenous prior
HVAE for x’s mechanism (non-cherrypicked). Direct treatment effects and per-pixel counterfactual uncertainty maps
are also shown. Counterfactuals were obtained from random interventions on age (do(a)) before (rows 2 to 4) and after
counterfactual training (rows 5 to 7).
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do(b=1486.8)
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Figure 20: Visualizing brain volume (b) test set counterfactuals from our Deep SCM using the proposed exogenous prior
HVAE for x’s mechanism (non-cherrypicked). Direct treatment effects and per-pixel counterfactual uncertainty maps are
also shown. Counterfactuals were obtained from random interventions on brain vol. (do(b)) before (rows 2 to 4) and after
counterfactual training (rows 5 to 7).
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do(v=14.1)
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Figure 21: Visualizing ventricle volume (v) test set counterfactuals from our Deep SCM using the proposed exogenous prior
HVAE for x’s mechanism (non-cherrypicked). Direct treatment effects and per-pixel counterfactual uncertainty maps are
also shown. Counterfactuals were obtained from random interventions on ventricle vol. (do(v)) before (rows 2 to 4) and
after counterfactual training (rows 5 to 7).
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E. Chest X-ray (MIMIC-CXR)
E.1. Dataset details

We resized all the MIMIC-CXR chest X-ray images to 192×192 resolution and selected four attributes of interest from the
meta-data, namely: sex, race, age and disease. The assumed causal graph is presented in Figure 5. Notably, for disease we
only considered Pleural Effusion and filtered the dataset of other diseases. Therefore, our resulting dataset only contains
subjects that were either diagnosed as healthy (no finding) or with Pleural Effusion. Finally, we split the dataset into 62,336
subjects for training, 9,968 for validation and 30,535 for testing.

E.2. Experiment setup

Architecture. We used the same exogenous prior HVAE architecture as in the Brain MRI experiments (see Section D.2).

Training details. We trained our HVAEs for ≃210K steps using a batch size of 32 and the AdamW optimizer (Loshchilov
& Hutter, 2017). The rest of the training settings are the same as in Section D.2.

E.3. Discrete counterfactuals

For the MIMIC-CXR chest X-ray dataset, we assumed a causal model as shown in Figure 5. In this causal structure, age
a was the parent of disease d which represents the existence of Pleural Effusion. Since d is not a continuous variable,
normalizing flows could not be directly employed for modelling d’s (invertible) mechanism. To solve this, we adopted the
discrete mechanisms with the Gumbel-max parametrisation as suggested in Pawlowski et al. (2020), Appendix C. More
mathematical details can be found in Maddison & Tarlow (2017); Oberst & Sontag (2019).

The Gumbel-max trick is a method to draw a sample for a discrete distribution, given its probabilities over categories.
Suppose we have a discrete random variable y over K categories, with likelihood represented by logits λ:

p(y = k) =
eλk

∑K
n=1 e

λn
, (36)

Due to a special property of the Gumbel distribution, if we sample ŷ by:

ŷ := argmaxk′≤K(ϵk′ + λk′), ϵk′ ∼ Gumbel(0, 1), (37)

the resulting ŷ has exactly the same distribution as y. Furthermore, if we were to observe y = k, then we can infer the values
of ϵ by sampling from the exact posterior as follows:

ϵ̂k = Gk + log

K∑

l=1

eλl − λk, Gk ∼ Gumbel(0, 1), (38)

ϵ̂i = − log(e−Gi−λi + e−ϵ̂k − λk)− λi, Gi ∼ Gumbel(0, 1), i ̸= k. (39)

We can then formulate the (approximately) invertible mechanism for a discrete attribute y with parents pay by making λ a
function of pay via a neural network gy. Thus, the forward mechanism fy to generate y given its parents pay consists of
first computing the logits λ, then sampling via Eq. 37:

y := fy(ϵ,pay) = argmaxk′≤K(ϵk′ + λk′), λ = gy(pay), ϵk′ ∼ Gumbel(0, 1). (40)

Moreover, when we perform an upstream intervention on p̃ay yielding: λ̃ = g(p̃ay), we can (non-deterministically) compute
the counterfactual outcome ỹ by first inferring ϵ̂ from the exact posterior via Eq. 38 using the original (observational) logits
λ, and then computing ỹ via Eq. 37 using λ̃ and the inferred ϵ̂.
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E.4. Extra results
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Figure 22: Additional counterfactuals from random interventions of each attribute on the chest X-ray test set. We observed
localized changes in accordance with the interventions performed and the associated assumed causal graph. Crucially, the
identity of the original observation is well preserved, indicating that the approximate abduction step is fairly accurate even
at high resolutions. The direct causal effect is the difference between the generated counterfactual and the null-intervened
(reconstructed) outcome. The per-pixel counterfactual uncertainty maps relate to the uncertainty in the abduction of the x’s
exogenous noise and were calculated as described in Appendix A.2 using 32 samples from the posterior distribution.
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Figure 23: Visualizing chest sex (s) test set counterfactuals from our Deep SCM using the proposed exogenous prior HVAE
for x’s mechanism (non-cherrypicked). Direct treatment effects and per-pixel counterfactual uncertainty maps are also
shown. Counterfactuals were obtained from random interventions on sex (do(s)) before (rows 2 to 4) and after counterfactual
training (rows 5 to 7).
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Figure 24: Visualizing chest race (r) test set counterfactuals from our Deep SCM using the proposed exogenous prior
HVAE for x’s mechanism (non-cherrypicked). Direct treatment effects and per-pixel counterfactual uncertainty maps
are also shown. Counterfactuals were obtained from random interventions on race (do(r)) before (rows 2 to 4) and after
counterfactual training (rows 5 to 7).
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Figure 25: Visualizing chest age (age) test set counterfactuals from our Deep SCM using the proposed exogenous prior
HVAE for x’s mechanism (non-cherrypicked). Direct treatment effects and per-pixel counterfactual uncertainty maps are
also shown. Counterfactuals were obtained from random interventions on age (do(age)) before (rows 2 to 4) and after
counterfactual training (rows 5 to 7).
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d̃=pleural effusion

do(d=pleural effusion)

D
ir

ec
t

E
ff
ec

t
U

n
ce

rt
ai

nt
y

−20 −10 300 60 −20 −10 200 40 −60 −30 100 20 −60 −30 100 20 −20 −10 300 60 −20 −10 300 60 −80 −40 200 40 −60 −30 300 60

0.25 0.50 0.75 1.00
×10−1

0.25 0.50 0.75 1.00
×10−1

0.5 1.0
×10−1

0.25 0.50 0.75 1.00
×10−1

0.5 1.0
×10−1

2 4 6 8
×10−2

0.5 1.0 1.5
×10−1

0.5 1.0 1.5
×10−1

Post counterfactual training:

s̃=male, r̃=black, ã=65.0
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Figure 26: Visualizing chest disease (d) test set counterfactuals from our Deep SCM using the proposed exogenous prior
HVAE for x’s mechanism (non-cherrypicked). Direct treatment effects and per-pixel counterfactual uncertainty maps are
also shown. Counterfactuals were obtained from random interventions on disease (do(d)) before (rows 2 to 4) and after
counterfactual training (rows 5 to 7).
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F. Anticausal Predictors qψ(k | pak)
class MLP(nn.Module):

def __init__(self, num_inputs=1, width=32, num_outputs=1):
super().__init__()
activation = nn.LeakyReLU()
self.mlp = nn.Sequential(

nn.Linear(num_inputs, width, bias=False),
nn.BatchNorm1d(width),
activation,
nn.Linear(width, width, bias=False),
nn.BatchNorm1d(width),
activation,
nn.Linear(width, num_outputs),

)

def forward(self, x):
return self.mlp(x)

class CNN(nn.Module):
def __init__(self, in_shape, width=16, num_outputs=1, context_dim=0):

super().__init__()
in_channels = in_shape[0]
res = in_shape[1]
s = 2 if res > 64 else 1
activation = nn.LeakyReLU()
self.cnn = nn.Sequential(

nn.Conv2d(in_channels, width, 7, s, 3, bias=False),
nn.BatchNorm2d(width),
activation,
(nn.MaxPool2d(2, 2) if res > 32 else nn.Identity()),
nn.Conv2d(width, 2*width, 3, 2, 1, bias=False),
nn.BatchNorm2d(2*width),
activation,
nn.Conv2d(2*width, 2*width, 3, 1, 1, bias=False),
nn.BatchNorm2d(2*width),
activation,
nn.Conv2d(2*width, 4*width, 3, 2, 1, bias=False),
nn.BatchNorm2d(4*width),
activation,
nn.Conv2d(4*width, 4*width, 3, 1, 1, bias=False),
nn.BatchNorm2d(4*width),
activation,
nn.Conv2d(4*width, 8*width, 3, 2, 1, bias=False),
nn.BatchNorm2d(8*width),
activation

)
self.fc = nn.Sequential(

nn.Linear(8*width + context_dim, 8*width, bias=False),
nn.BatchNorm1d(8*width),
activation,
nn.Linear(8*width, num_outputs)

)

def forward(self, x, y=None):
x = self.cnn(x)
x = x.mean(dim=(-2, -1)) # avg pool
if y is not None:

x = torch.cat([x, y], dim=-1)
return self.fc(x)
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Table 6: Attribute predictor performance on UK Biobank observational data.

SEX (s) MRI (m) AGE (a) BRAIN VOL. (b) VENTRICLE VOL. (v)
ROCAUC ↑ ROCAUC ↑ MAE (years) ↓ MAE (ml) ↓ MAE (ml) ↓

0.9764 ± 2e-3 1.0 4.847 ± 7e-4 26.77 ± 0.39 1.958 ± 3e-2

Table 7: Attribute predictor performance on MIMIC-CXR observational data.

SEX (s) RACE (m) AGE (a) DISEASE (d)

ROCAUC ↑ ROCAUC ↑ MAE (years) ↓ ROCAUC ↑
0.9950 0.7496 6.219 0.9419

Architecture. The parent predictors (classifiers/regressors) shown in the PyTorch code above were used for both Morpho-
MNIST and the Brain MRI dataset and were trained using Pyro. For MIMIC-CXR dataset, we adopted the standard
ResNet-18 (He et al., 2016) architecture pre-defined in Torchvision (Paszke et al., 2019) for the parent predictors. These
predictors play two roles in our approach: (i) to serve as pseudo-oracles in evaluating the effectiveness of generated
counterfactuals; (ii) to provide guidance during our proposed counterfactual training technique. For both purposes, our
parent predictors are trained on observational data and in the anticausal direction with respect to each variable in the
assumed SCM. That is, each variable is predicted from its children. When a variable in the SCM is not a direct parent of the
image x, we use the MLP architecture for its predictor, otherwise, we use the CNN. As a side note, missing values for some
of the parents in our observed data can restrict the applicability of SCMs. In order to handle missing values, we can use
variational predictors to infer parent attributes in the anticausal direction. That is, when a certain parent is not present in an
observed datum, we can infer it given its observed children (imputation). The inferred parent may then be used downstream
as if it was observed to, e.g. compute approximate counterfactuals.

Predictor Training Details. For each dataset, we train the predictors for all parents simultaneously until convergence,
where the total loss is simply the sum of all the individual predictor losses. We use a batch size of 32, and use the AdamW
optimizer with a learning rate of 1e-4 and weight decay of 0.1 for UK Biobank, 0.01 for Morpho-MNIST and 0.05 for
MIMIC-CXR. The final artefacts are an exponential moving average of the predictor’s parameters with a rate of 0.999, which
we use at inference time. For data augmentation, we random crop with an all-border zero-padding of 4 for Morpho-MNIST
9 for UK Biobank and MIMIC-CXR. We further perform random horizontal flips with probability 0.5 for UK Biobank.
Pixel intensities were rescaled to [−1, 1] for all datasets.

Counterfactual Training Details. As described in the main text, once all the mechanisms in the SCM of interest have
been trained, they are combined into one PyTorch module which we use for counterfactual training/inference. For the Brain
MRI and Chext X-ray datasets, we found it most effective to freeze all other mechanisms (including parent predictors)
in the SCM during constrained counterfactual fine-tuning of x’s HVAE mechanism – since we care mostly about the
quality/faithfulness of x̃ counterfactuals. For counterfactual fine-tuning, we start with the exponential moving average of
the pre-trained HVAE parameters, and use the AdamW optimizer with a learning rate 10× smaller than what was used
to originally train the HVAE mechanism, 1e-4. All else remain the same as the original HVAE training setup except for
the batch size which was decreased to 24 due to GPU memory constraints. To train the Lagrange multiplier parameter λ,
we used a separate AdamW optimizer with a learning rate of 0.1, and initialised λ at 10. We optimize the Lagrangian in
Eq. (26) by performing stochastic gradient descent on the HVAE’s parameters and ascent on the Lagrange multiplier. We
observed that training for around 10K iterations was sufficient to achieve the desired effect on the brain MRI data, and
training for 6.5K iterations led to desirable performance on the chest X-ray data. Note that the efficacy of this strategy is
entirely dependent on the quality of the initial parent predictors used for counterfactual training. Moreover, in order to help
identify whether the model learned shortcuts in producing effective interventions, we ensured that we used separately trained
anticausal predictors for counterfactual training and for the subsequent counterfactual effectiveness evaluation. As is the case
with all types of classifier-based guidance, it is important to keep the possibility of shortcut learning in mind when using
counterfactual training, and to take precautions to mitigate it. Using more robust classifiers with smoother loss surfaces (e.g.
Bayesian predictors, adversarial training techniques etc) may prove particularly helpful.
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