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Abstract

Large Language and Vision-Language Models (LLMs/VLMs) are increasingly deployed in
high-stakes domains where predictive failures can be costly. Conformal Prediction (CP)
offers distribution-free uncertainty quantification with finite-sample coverage guarantees,
but its reliance on a globally fixed risk level enforces a uniform trade-off between coverage
and informativeness, misaligned with the instance-specific uncertainty patterns of modern
foundation models. We propose the framework of Conformalized Abstention Policy (CAP),
a novel framework that integrates CP with deep Reinforcement Learning (RL) to learn
per-instance abstention policies. CAP trains a utility-driven policy to dynamically select
the conformal risk level for each input, balancing point prediction, set prediction, and
full abstention based on downstream utility. We specifically introduce Policy-Calibrated
Coverage, a theoretical guarantee ensuring that the empirical coverage of the learned policy
reliably estimates its true expected performance. Extensive experiments show that CAP
maintains the 90% target coverage while substantially outperforming static CP baselines:
improving hallucination detection AUROC by up to 22.2%, uncertainty-guided selective
generation AUARC by 21.2%, and reducing calibration error by over 70%. CAP also extends
to free-form generation by managing the trade-off between a detailed and factual response
on a per-instance basis by learning an optimal risk level for sub-claim retention.
Keywords: Conformal prediction; LLM/VLM; Risk Management

1. Introduction

Large Language and Vision-Language Models (LLMs/VLMs) are increasingly deployed in
high-stakes domains, from medical diagnostics to autonomous navigation, where predictive
failures can have severe consequences. Despite their advanced capabilities, these models
remain prone to complex and semantically nuanced failures, such as factual hallucinations,
harmful biases, and unpredictable reasoning errors, which are difficult to anticipate and
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mitigate Abdali et al. (2024). A critical requirement for their safe deployment is the ability
to reliably quantify uncertainty and abstain from making predictions when confidence is low.

Conformal Prediction (CP) has emerged as a powerful framework for uncertainty quan-
tification, offering distribution-free, finite-sample coverage guarantees Vovk et al. (2005).
By constructing prediction sets guaranteed to contain the true label with a user-specified
probability (e.g., 90%), CP provides a principled mechanism for risk management. However,
standard CP applies a globally fixed risk level a, imposing a uniform trade-off between
coverage and informativeness (i.e., prediction set size) across all inputs. This one-size-fits-all
approach is fundamentally misaligned with modern foundation models, where the nature
and severity of potential failures vary dramatically across inputs. For example, a model
may be highly certain on simple factual queries but dangerously overconfident on complex
multi-step reasoning. Static risk control fails to capture such instance-specific uncertainty.

This presents a central challenge: how can we move beyond static, global risk levels toward
adaptive, per-instance risk assessment that responds to the uncertainty inherent in each
input? Existing adaptive methods fall short. Heuristic approaches lack formal guarantees,
while methods such as Adaptive Prediction Sets (APS) Romano et al. (2020) and Least
Ambiguous Classifiers (LAC) Sadinle et al. (2019) optimize set size but do not learn a
data-driven abstention policy for a specific utility function. Importantly, the essential goal
is not only to construct prediction sets, but to decide when to abstain, when to return a set,
and when to make a confident point prediction, thereby optimizing downstream utility.

To address this gap, we introduce the Conformalized Abstention Policy (CAP), a frame-
work that frames adaptive risk management as a learned, utility-maximizing decision process.
CAP integrates the formal guarantees of CP with the adaptive power of Reinforcement
Learning (RL). By learning an instance-conditional policy, CAP dynamically selects the risk
level for each input, trading off coverage, precision, and abstention to maximize a defined
utility function. Our contributions are:

1. Framework for Learned Conformal Abstention. We propose the first principled
integration of deep RL with CP for adaptive risk control in LLMs/VLMs. We formulate the
selection of the conformal risk level o as a learned, instance-conditional policy that maps
inputs to optimal risk levels to control abstention.

2. Utility-Driven Policy Optimization. We introduce a dual-threshold conformal
mechanism, controlled by an RL agent, that learns a policy to choose among confident
prediction, partial abstention (returning a set), or full abstention. This policy is optimized
to maximize a flexible utility function that balances the costs of different errors, bridging
statistical guarantees with application needs.

3. Theoretical and Empirical Validation. We provide a formal guarantee of Policy-
Calibrated Coverage, showing that our learned policy’s empirical coverage is a reliable
estimate of its true expected performance. We validate CAP on hallucination detection and
selective generation benchmarks, where it substantially improves performance: boosting
hallucination detection by up to 22%, improving selective generation by over 20%, and
reducing calibration error by 70-85% versus static baselines, all while maintaining guarantees.
We also show CAP’s efficacy in free-form factuality checking (FActScore, NQ, MATH),
where it retains 8-13% more factual sub-claims than the best prior conformal baseline while
holding factuality at 90%.
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2. Related Works

2.1. Uncertainty Quantification in Foundation Models

The deployment of Foundation Models such as LLMs and VLMs in high-stakes applications
has made Uncertainty Quantification (UQ) a critical area of research Gawlikowski et al.
(2023). Classical UQ paradigms, however, face significant scalability challenges. Bayesian
neural networks, while offering a principled measure of uncertainty, are difficult to scale, as
true posterior inference over billions of parameters is computationally intractable. Practical
approximations such as Monte Carlo dropout Gal and Ghahramani (2016) and deep ensembles
Lakshminarayanan et al. (2017) require multiple forward passes at inference time, which is
prohibitively expensive for foundation-scale models. As a result, research has shifted toward
more efficient UQ methods, which can be broadly categorized into intrinsic and extrinsic.

Intrinsic methods leverage the model’s own outputs, such as the entropy of the softmax
distribution or verbalized confidence, where the model is prompted to express its certainty
Huang et al. (2023). A notable recent example is semantic entropy, which measures diversity
in the semantic space of multiple generated samples to detect hallucinations Farquhar et al.
(2024). Extrinsic methods include post-hoc calibration techniques, such as temperature
scaling and Platt scaling, to align model probabilities with empirical correctness Kadavath
et al. (2022). Recent approaches also explore prompting-based calibration Zhao et al. (2021)
and selective decoding to trade off coverage for correctness in language generation Lee et al.
(2024). While these techniques are effective for ranking predictions by confidence, they lack
the formal, distribution-free statistical guarantees needed for reliable risk management. This
limitation motivates our use of CP or actionable risk control.

2.2. Conformal Prediction in LLMs/VLMs

CP has emerged as a powerful framework for providing rigorous, model-agnostic uncertainty
guarantees Angelopoulos and Bates (2021). By calibrating model outputs on a hold-out
set, it constructs prediction sets that are guaranteed to contain the true label with a user-
specified probability. The key challenge in applying CP to LLMs and VLMs lies in adapting
a framework originally designed for structured classification and regression to the inherently
unstructured and variable-length nature of text and multimodal generation.

A major line of work addresses this by designing novel non-conformity scores for sequences,
enabling conformal language modeling Quach et al. (2023). Other related approaches extend
CP to handle generative tasks, including selective decoding with conformal guarantees Lee
et al. (2024), and have begun to explore CP-based methods for multimodal models as well
Tumu et al. (2024). Other research focuses on leveraging CP for selective classification
and hallucination mitigation. For example, Cherian et al. (2024) improves the underlying
confidence estimates used by CP to enhance abstention performance. Closer to our work,
Yadkori et al. (2024) uses CP to trigger abstention based on the semantic consistency of
multiple sampled responses, but employs a single, globally-fixed risk threshold for abstention.

While these approaches have advanced the field, they either focus on engineering improved
non-conformity scores or apply a static risk-control policy. In contrast, our work introduces a
different direction: we propose learning a dynamic, instance-adaptive policy that selects the
operational risk level («) on a per-instance basis. By formulating this as an RL problem, CAP
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learns an explicit, context-aware trade-off between coverage, accuracy, and informativeness,
moving beyond static guarantees to achieve adaptive risk control.

2.3. Selective Classification and Learning with Rejection

Selective classification, or “learning with a reject option,” enables models to abstain when
uncertain, thereby enabling a principle foundational to trustworthy AI. Chow’s seminal work
Chow (1970) established that a Bayes-optimal classifier should reject when the maximum
posterior falls below a threshold. The goal is to optimize a utility function that balances
prediction errors against the cost of abstention Hendrickx et al. (2024). This binary predict-
or-reject setup has been extended to partial abstention, where models output a subset of
plausible labels Pugnana et al. (2024), aligning naturally with the set-valued outputs of CP,
which provides rigorous coverage guarantees.

Recent efforts have integrated selective classification with CP’s statistical validity. For
instance, Sadinle et al. Sadinle et al. (2019) introduced the LAC, which minimizes set size
while ensuring coverage. However, such approaches still assume globally fixed risk-reward
trade-offs. Additional work on selective prediction and abstention includes SelectiveNet
Geifman and El-Yaniv (2019), which jointly trains for prediction and rejection, and Bayesian
ensemble methods for confidence-based abstention Mukhoti et al. (2023). In the context of
LLMs, recent efforts explore abstention via semantic consistency Yadkori et al. (2024) and
explicit rejection prompts Varshney et al. (2022), though without formal guarantees.

CAP offers a principled extension. Instead of static thresholds tied to a global utility
function, CAP uses RL to learn a flexible, input-dependent abstention policy. By mapping
each input to optimal conformal parameters («, 3), CAP dynamically chooses between
confident prediction, set-valued output, or full abstention. This allows CAP to maximize an
empirical reward that reflects instance-level trade-offs, enabling adaptive and effective risk
management in foundation models.

3. Conformalized Abstention Policy (CAP)

We propose CAP, a framework that combines the statistical guarantees of CP with the
adaptive decision-making capabilities of RL. In standard CP, the risk level « is globally
fixed, imposing a uniform trade-off between coverage and informativeness across all inputs.
This is suboptimal for LLMs/VLMs, whose failure modes are complex and semantically
nuanced. CAP introduces an instance-conditional policy, mg(c|x), that dynamically selects
the risk level per input, adapting to varying uncertainty and risk. This reframes risk
selection as a learned utility maximization problem, allowing the policy to explicitly model
input-dependent failure modes. Unlike prior conformal abstention methods based on static
thresholds or heuristic score calibration, CAP provides the first principled integration of
RL-driven abstention with CP’s statistical guarantees, specifically for LLM/VLM settings.

3.1. Leveraging Conformal Prediction for Adaptive Risk Control

Standard inductive CP provides finite-sample, distribution-free coverage guarantees. Given

a calibration set Dea) = { (x4, ¥i) }I~; and a non-conformity score s(x,y), scores s; = s(Xi, ¥;)

[(n+1)(-a)]

are computed. For a desired risk level «, the threshold ¢ is the -th quantile
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of calibration scores. The resulting prediction set I'(x;) = {y € Y : s(x¢,y) < ¢} satisfies
P(y, € T'(x¢)) > 1 — a. We leverage this framework by casting adaptive risk management as
a decision-theoretic problem for CAP. For any input x, the model must select an action:
provide a single confident prediction, return a set of plausible options (partial abstention),
or abstain entirely. The optimal choice depends on the utility of each outcome.

While prior works have explored static or globally-optimized abstention thresholds, these
approaches cannot adapt to the highly variable uncertainty landscape of LLM/VLM outputs.
CAP addresses this by introducing a learnable, instance-conditional abstention mechanism
driven by RL, which jointly optimizes predictive utility and formal risk control. We formalize
this via a utility function U(y, ©O), where O is the model’s output given the true label y.
The output O is a tuple (7,I',a), where § € Y is a point prediction, I' C ) is a prediction
set, and a € {predict, set, abstain} is the action. The utility is defined as:

Uy, O) = — (cerrll(yj # y A a = predict) + cget (|T'])I(a = set) + capsl(a = abstain)), (1)

where ce is the cost of a misprediction, cge(|I'|) penalizes large prediction sets (lack of
informativeness), and c,ps is the cost of abstention. Thereby, the goal of CAP is to learn a
policy 7 : X — {predict, set, abstain} that maximizes expected utility:

T = arg mSXE(x,y)ND[U@/: W(X))] (2)

3.2. Policy-Driven Risk Control via Conformal RL

Directly optimizing Equation 2 is intractable, as it requires knowledge of y at test time. CAP
addresses this by using a dual-threshold conformal mechanism to define the action space and
RL to learn a policy that approximates utility maximization in a data-driven manner. The
policy 7y learns an instance-conditional risk vector (a, 3) € [0,1]? for each input x. These
parameters configure a dual-threshold conformal system that partitions model uncertainty,
as measured by the non-conformity score s(x), into three actions: confident prediction,
partial abstention, or full abstention. The thresholds gpredict () and Gabstain(5) are computed
from calibration scores {s;}I" ; derived from a calibration set Dcyy.

This setup enables utility maximization via policy gradient RL. For each input x (state),
the agent samples an action («, ) from its policy, configures the conformal system accordingly,
and receives a reward based on performance on a batch of data. The reward serves as an
empirical proxy for the utility function U. It is defined as the negative of the following cost:

C(a, B) = (1 — acc) + AjavgSet + Agabstention — Azcoverage — Aqdiv, (3)

with R(a,8) = —C(a,5). Each term reflects the utilities of our framework: (1 — acc)
estimates cerr, while avgSet and abstention approximate cget and caps, respectively. The
reward includes a coverage bonus and an information-theoretic regularizer (Shannon entropy,
div) to promote exploration. We note that the reward is non-stationary during training,
as statistics such as acc and avgSet depend on the evolving policy my. However, we find
that a standard policy gradient approach with a sufficiently small learning rate yields stable
training and converges effectively to a policy that maximizes expected utility.
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3.3. Policy Optimization via Stochastic Gradient Ascent

The policy parameters 6 are optimized to maximize the expected utility defined in Equation 2,
which we achieve by maximizing the expected reward J(6) = Exp (a,8)~m(x) L (v, B)].
Because the reward depends on non-differentiable components (quantile functions and
discrete metrics), we employ a model-free policy gradient algorithm. Specifically, we use
REINFORCE to update the policy by ascending the gradient of the expected reward, which
allows us to optimize € without requiring differentiability of the reward function. For our
setting, REINFORCE provides a Monte Carlo estimate of this gradient. The expectation is
approximated by sampling from the policy and the data distribution. For each input x;, we
sample an action a; = (o, B;) ~ mg(-|x¢) and compute the resulting reward R, = R(ay, B¢).
The gradient is then approximated as:

Vo J(0) ~ R(a, B)Vglog mg(ax, B]x). (4)

The policy parameters are updated via stochastic gradient ascent on a mini-batch of samples:
L

Ory1 < O+ (N ; R;Vglog We(az‘\sz‘)> 5 (5)

where 7 is the learning rate, N is the batch size, and R; is the reward obtained from action
a; in state s;. While the REINFORCE gradient estimator is unbiased, it is known to exhibit
high variance. To mitigate this, we incorporate a baseline b(x), subtracting it from the
reward: VyJ(0) = (R(«, 8) —b(x))Vglog mg(c, 5 | x). We use the moving average of rewards
as the baseline, which significantly stabilizes training. This update couples the conformal
thresholds to the RL objective to learn a principled trade-off between predictive certainty
and abstention risk. The full procedure is summarized in supplementary material.

3.4. Theoretical Guarantees on the RL-Learned Abstention Policy

A central theoretical question is how CAP’s adaptivity interacts with the formal guarantees
of CP. Our framework inherits a rigorous conditional coverage guarantee directly from
CP. For any risk level a(x) selected by the policy for input x, the resulting prediction set
I'(x; a(x)) satisfies, under exchangeability:

P (Y € T(x;a(x)) |x) > 1—a(x). (6)

This ensures that each decision to produce a prediction set is backed by a valid statistical
guarantee for its chosen risk level. We discuss the following constructs towards this:

Conditional Coverage Guarantee. For any input x, the policy-selected risk level a(x)
yields a conformal prediction set I'(x; a(x)) such that:

P(Y el'(x;a(x)) | x) > 1—a(x). (7)

However, this conditional result does not fully characterize the aggregate, long-run behavior
of an adaptive policy. Practitioners require assurance that observed performance on finite
datasets reliably reflects the policy’s expected behavior. We address this with two comple-
mentary results: a bound on the deviation between target and true expected coverage, and
a high-confidence guarantee on empirical coverage estimates.
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Proposition 1 (Bound on Expected Coverage Deviation). Let my be a fixed policy,
and assume the conformal p-values p(x,y) are continuously distributed. Then the expected
coverage of the policy satisfies:

EgeapCovim)] 2 1~ Exupla()] - 0 (). ®)
where n = | D, is the size of the calibration set, and the expectation is over the data.
Proof sketch. For each input x and chosen threshold a(x), the conformal coverage is given
by P(p(x,Y) > a(x)) > 1 — a(x). This inequality holds in finite samples by CP’s marginal
validity. Averaging over the randomness of the calibration set yields a deviation of order
O(1/n). Taking the expectation over x ~ D completes the result.

Proposition 2 (Policy-Calibrated Coverage). We introduce the novel notion of policy-
calibrated coverage. Let mg be a fixed policy learned by CAP. For a test set Diest =
{(xi,y:) }i" ¢ of m ii.d. samples, define the empirical coverage as:

m

Covp(mp) = %ZH (yi € T'(x4;a(x5))) - 9)

i=1

Then, for any § > 0, the following concentration inequality holds:

P (\Covm(mg) — E[Cov(ny)]| < W) >1-4. (10)

2m

This result, a direct application of Hoeffding’s inequality, ensures that the empirical coverage
observed on any sufficiently large test set is a reliable estimator of the policy’s long-run
performance. It provides a crucial confidence guarantee: empirical metrics reported in
practice are not artifacts of chance but concentrate tightly around their expected value.

Together, Propositions 1 and 2 offer a strong theoretical foundation for CAP: it combines
the local optimality and distribution-free guarantees of CP with the global adaptivity of RL.
While the theoretical gap between E[Cov(my)] and 1 — E[a(x)] remains an open question,
our results demonstrate that empirically learned policies can produce reliable, statistically
valid predictions in practice. Future work may pursue tighter guarantees using risk-sensitive
regularization, variance-reduced policy gradients, or conformal scores tailored to generative
LLM outputs, which is currently an open question.

4. Experiments
4.1. Experimental Setup

Datasets: We design our evaluation framework around multiple-choice question-answering
(MCQA) to enable standardized and controlled comparison of uncertainty estimates. We
use ten benchmark datasets spanning diverse reasoning tasks. For VLMs, we evaluate five
datasets reformatted to four- or six-choice MCQA: MMBench, OODCV-VQA (Digits
subset), ScienceQA, SEEDBench, and AI2D. For LLMs, we use five tasks standardized
to six-choice format (including “I don’t know” as an explicit abstention option): MMLU,
CosmosQA, HellaSwag, HaluDial, and HaluSum. This selection spans knowledge
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recall, multi-hop reasoning, and robustness under ambiguity, providing a comprehensive test
bed for abstention and uncertainty evaluation.

Models: We evaluate a range of LLMs and VLMs spanning 2.7B to 34B parameters. For
VLMs, we report results for the LLaVA-v1.6 series (34B, 13B, 7B). For LLMs, we include
Yi-34B and Qwen (7B, 14B). We briefly describe the characteristics of these models and
datasets in supplementary material.

Implementation Details: Each dataset is split 50% for the calibration set (D.,1) and 50%
for the test set. The policy network fy is a lightweight multi-layer perceptron (MLP), trained
for 200 epochs with learning rate n = 0.001. The scaling constant ¢ in the sigmoid functions
for action probability calculation is set to 5. The cost function weights are: Ay = 0.3 (set
size), A2 = 0.3 (abstention), A3 = 0.4 (coverage), Ay = 0.2 (diversity), with an additional
penalty weight A5 = 0.5 to discourage extreme policy outputs. For the tested LLM/VLMs,
temperature is set to 0.3, with top — p = 0.9.

Evaluation Metrics: We evaluate CAP and baseline methods using the following metrics
to assess both predictive performance and the reliability of UQ:

Accuracy: For a test input X; with true label Y}, let C'(X;) denote the generated prediction
set. If a single prediction Y; is produced (e.g., in confident scenarios under CAP), accuracy is
binary: 1 if Y, = Y;, and 0 otherwise. For set predictions, accuracy is computed fractionally,
inversely proportional to the size of C'(X;) when Y; € C(X3).

Coverage: Coverage measures the fraction of instances where the true label is included in the
model’s output—either as a single prediction or within a prediction set. In abstention setups,
coverage also accounts for instances where the model abstains from an incorrect explicit
prediction. This metric verifies whether the conformal method achieves target coverage.

Set Sizes (SS): Set Size measures the average number of labels in prediction sets, excluding
single predictions and abstentions. It reflects model uncertainty: larger sets indicate higher
uncertainty, smaller sets indicate greater confidence.

Area Under the Receiver Operating Characteristic (AUROC): AUROC evaluates the model’s
ability to distinguish correct from incorrect predictions based on confidence scores Davis and
Goadrich (2006). A higher AUROC indicates more reliable ranking of predictions, critical
for tasks such as hallucination detection.

Area Under the Accuracy-Rejection Curve (AUARC): AUARC measures the area under the
accuracy-rejection curve, capturing the trade-off between predictive accuracy and the retained
data fraction Krishnan et al. (2024). A higher AUARC indicates a more effective uncertainty
estimate, enabling to abstain on difficult (likely predictively inaccurate) instances.

Ezpected Calibration Error (ECE): ECE quantifies the discrepancy between a model’s average
prediction confidence and its empirical accuracy Naeini et al. (2015). It is computed as the
weighted average of the absolute difference between accuracy and confidence across bins:

Mbins
B
ECE = ; ’Z\f| }acc(Bb) - conf(Bb)‘. (11)
A lower ECE indicates that the model’s confidence scores are better calibrated and more
aligned with the true likelihood of correctness.
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Prompting Strategies: To ensure standardized evaluation, we use specific prompting
templates for both VLMs and LLMs. For VLMs, we adapt the MCQA template from
LLaVA Liu et al. (2024). Each prompt includes the input image, the question, and a list of
lettered options (e.g., A—F). The model is instructed to return only the letter corresponding
to its selected answer (e.g., “A”), yielding a well-defined logit distribution over the fixed
choices. We use official model-specific templates to ensure compatibility and omit few-shot
examples due to typical single-image input constraints. For LLMs, we use the zero-shot
Base Prompt strategy Zheng et al. (2023), which concatenates the question and all options
into a single prompt and instructs the model to provide its answer following the prefix
“Answer:”. Detailed examples of prompt templates are provided in supplementary material.

4.2. Results and Analysis
4.2.1. HALLUCINATION DETECTION AND SELECTIVE GENERATION

We assess CAP’s ability to detect hallucinations in MCQA tasks, using AUROC as the
primary metric Farquhar et al. (2024) to reflect the ranking quality of uncertainty signals.
Table 1 shows that CAP consistently outperforms two strong baselines—APS Romano et al.
(2020) and LAC Sadinle et al. (2019)—across all datasets and model scales.

For VLMs, CAP improves average AUROC by up to 10.17% over APS and 8.12% over
LAC, with peak gains of 22.19% on SQA using LLaVA-13B. These gains are especially
notable given the formal coverage guarantees of the baselines. CAP’s edge stems from its
ability to adapt abstention thresholds to instance-specific features, capturing finer-grained
semantic uncertainty than global or class-wise methods. Similar trends hold for LLMs,
where CAP yields strong gains on HDial, CQA, and HSwg, including for smaller models
like Qwen-7B where baseline performance is weaker. This suggests CAP not only better
aligns with risk-awareness but also mitigates epistemic uncertainty in lower-capacity models.
These results support our central claim: combining CP with input-conditional abstention
policies leads to statistically grounded and behaviorally robust improvements.

We also evaluated each method’s ability to support selective generation—abstaining from
uncertain predictions to improve reliability. Performance is measured using AUARC Farquhar
et al. (2024); Krishnan et al. (2024), which quantifies how effectively uncertainty estimates
enable graceful degradation—i.e., maintaining high accuracy on retained predictions as
abstention increases. Higher AUARC indicates alignment between uncertainty and error.

As shown in Table 1, CAP consistently outperforms APS and LAC across all evaluated
VLMs and LLMs. It improves average AUARC by up to 9.43%, with peak gains of
21.17% on MMB using LLaVA-13B. These improvements hold across both high-capacity
models (e.g., Yi-34B, LLaVA-34B) and lower-capacity ones (e.g., Qwen-7B), demonstrating
CAP’s robustness across architectures and domains. In these results, CAP yields steeper
accuracy-rejection curves and better utility under constraint. By abstaining in a risk-aware,
utility-preserving manner, CAP enhances reliability in settings like dialogue, reasoning, and
multimodal QA where overgeneration is costly, establishing a new standard for principled
uncertainty-guided generation in LLMs and VLMs.

4.2.2. COVERAGE GUARANTEE AND SET SIZE TRADE-OFF

A fundamental requirement for any conformal prediction method is to satisfy the target
marginal coverage with finite-sample guarantees. As evidenced in Table 2, CAP consistently
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Table 1: Comparison of CAP (ours) with Benchmarking LLMs via Uncertainty Quantification
Ye et al. (2024), and Uncertainty-Aware Evaluation Kostumov et al. (2024). Results are
reported for VLMs and LLMs, evaluated on AUROC (hallucination detection) and AUARC
(uncertainty-guided selective generation). Best values are shown in bold.

Models Method AUROC 1 AUARC 1

VLMs MMB OOD SQA SB AI2D Avg.MMB OOD SQA SB AI2D Avg.

LLaVA-v1.6-34B APS 0.72 0.70 0.72 0.56 0.84 0.71| 096 091 0.93 0.92 0.93 0.93
LAC 0.78 0.70 0.80 0.56 0.85 0.74| 094 090 091 0.88 0.92 091

VLM-Bench 0.75 0.70 0.76 0.56 0.85 0.73| 095 091 0.92 0.90 0.93 0.92

Ours 0.80 0.78 0.86 0.65 0.90 0.80| 0.98 0.97 0.98 0.94 0.99 0.97

LLaVA-v1.6-13B APS 0.49 0.59 0.53 0.49 0.78 0.57| 0.96 0.88 0.94 0.93 0.91  0.92
LAC 0.68 0.59 0.60 0.50 0.75 0.63| 093 0.85 0.89 0.88 0.90 0.89

VLM-Bench 0.59 0.59 0.57 0.50 0.77 0.60| 0.95 0.87 0.92 091 091 091

Ours 0.64 0.71 0.67 0.61 0.81 0.69| 0.98 0.96 0.96 0.93 0.98 0.96

LLaVA-v1.6-7B APS 0.70 0.34 0.61 0.57 0.82 0.61| 0.96 0.87 0.91 0.92 0.90 0.91
LAC 0.68 0.48 0.56 0.50 0.69 0.58| 0.92 0.81 0.87 0.87 0.87  0.87

VLM-Bench 0.69 041 0.59 0.54 0.76 0.60| 094 0.84 0.89 0.90 0.89 0.89

Ours 0.70 0.56 0.62 0.59 0.76 0.65| 0.97 0.93 0.94 0.94 0.97 0.95

LLMs HSwg HDial CQA HSum MMLU Avg. ‘HSwg HDial CQA HSum MMLU Avg.

Yi-34B APS 091 0.51 0.84 0.56 0.59 0.68| 0.97 0.73 0.94 0.79 0.88  0.86
LAC 0.95 0.57 0.93 0.42 0.68 0.71| 097 0.71 0.93 0.75 0.86 0.85

LLM-Bench 0.93 0.54 0.89 0.49 0.64 0.70| 0.97 0.72 0.94 0.77 0.87  0.86

Ours 0.97 0.70 0.96 0.62 0.74 0.80| 1.00 0.96 1.00 0.93 0.97 0.97

Qwen-14B APS 0.84 0.53 0.79 0.26 0.64 0.61| 098 0.83 0.97 0.63 0.86  0.85
LAC 0.92 048 091 0.13 0.54 0.60| 097 0.80 0.97 0.57 0.82 0.83

LLM-Bench 0.88 0.51 0.85 0.20 0.59 0.61| 098 0.82 0.97 0.60 0.84 0.84

Ours 0.94 0.62 0.93 035 0.65 0.70| 0.99 0.93 0.99 0.71 0.95 0.92

Qwen-7B LLM-Bench 0.51 0.35 0.70 0.22 0.47 0.45| 0.68 0.75 0.89 0.50 0.73 0.71
Ours 0.64 0.50 0.80 0.44 0.61 0.60| 0.93 0.92 0.98 0.68 0.95 0.89

meets this requirement (set as 90% coverage) across all evaluated models and datasets,
demonstrating robust statistical calibration. In contrast, APS achieves high empirical
coverage but does so by significantly inflating prediction sets, reflecting overconservatism
rather than meaningful uncertainty quantification. LAC, while aiming for compactness,
often undercovers, violating the intended guarantee. This contrast highlights a core trade-off
in conformal inference: ensuring valid coverage while maintaining informative and actionable
prediction sets. CAP strikes this balance by adaptively selecting instance-wise risk levels
through its learned abstention policy.

As demonstrated in Table 3, CAP achieves a favorable balance between predictive
accuracy and set compactness. It substantially reduces prediction set sizes relative to
APS—often by over 25% without sacrificing coverage, indicating that APS’s large sets
are unnecessarily conservative. At the same time, CAP consistently outperforms LAC in
accuracy across nearly all datasets and models, while avoiding LAC’s frequent undercoverage
due to overly narrow sets. Notably, CAP maintains calibration closely aligned with the
nominal coverage target, with no systematic bias toward over- or under-coverage, reflecting a
robust generalization capability across both VLM and LLM settings. This highlights CAP’s
ability to learn context-sensitive abstention thresholds that retain statistical validity.
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Table 2: Coverage (%) comparison of CAP (ours), Benchmarking LLMs via Uncertainty
Quantification Ye et al. (2024), and Uncertainty-Aware Evaluation Kostumov et al. (2024)
across VLMs and LLMs. CAP consistently meets the 90% coverage guarantee while
maintaining tighter set sizes.

Model Method | VLMs (Coverage %) 1 | LLMs (Coverage %) 1
| MMB OOD SQA  SB  Avg. |HSwg HDial CQA MMLU Avg.

91.53 92.43 94.02 92.79 92.69
LLaVA-34B/Qwen-7B 91.96 91.70 95.68 91.32 92.16

Bench 94.49 93.14 93.37 93.02 93.57
Ours 93.97 93.25 93.07 91.41 93.43

LLaVA-13B/Qwen-14B Bench ‘94.59 93.60 94.28 93.60 94.02‘95.29 91.92 95.2 92.58 93.75

Ours 95.57 92.48 92.06 90.67 93.18 | 94.88 90.96 95.66 91.62 92.68

LLaVA-7B/Yi-34B

Bench 93.86 93.5 93.85 93.47 93.67 | 96.89 92.63 97.04 93.54 94.16
Ours 92.96 91.63 90.49 91.23 91.94 | 96.48 9256 96.40 93.34 93.92

Table 3: Accuracy (%) and set size comparison of CAP (Ours) with Benchmarking LLMs via
Uncertainty Quantification Ye et al. (2024), and Uncertainty-Aware Evaluation Kostumov
et al. (2024). CAP achieves the highest average accuracy while maintaining balanced set
sizes. Highest accuracies are in bold, and well-calibrated set sizes are underlined.

Models Method Accuracy (%) T SS |
VLMs MMB OOD SQA SB AI2D Avg.[MMB OOD SQA SB AI2D Avg.

LLaVA-v1.6-34B Bench 87.24 86.94 83.95 81.56 82.88 84.52| 1.95 1.49 2.01 2.12 2.06 1.93
Ours 88.57 88.19 86.46 81.64 88.36 86.64| 1.66 162 1.84 1.99 2.18 1.86

LLaVA-v1.6-13B Bench 76.75 72.93 70.56 70.37 73.67 72.85| 2.34 2.18 245 249 2.33  2.36
Ours 82.66 80.79 79.08 77.50 84.87 81.38| 2.62 2.23 2.18 2.28 231  2.32

LLaVA-v1.6-7TB  Bench 75.56 73.7 65.86 69.06 69.75 70.78| 2.37 234 245 2.53 237 241
Ours 82.19 81.20 75.34 76.34 81.83 79.38| 1.99 230 2.19 2.35 237 2.24

LLMs HSwg HDial CQA HSum MMLU Avg. [HSwg HDial CQA HSum MMLU Avg.
Yi-34B Bench 94.56 83.58 95.07 81.09 80.54 87.37| 2.01 172 1.79 1.62 221 1.88

Ours 96.17 85.56 96.12 83.09 82.90 88.77| 1.48 207 157 1.85 212 1.82
Qwen-14B Bench 91.00 73.90 91.52 49.33 64.25 74.00| 2.02 1.94 1.74 237 280 2.17

Ours 94.02 83.09 94.32 57.59 76.13 81.03| 1.38 187 1.33 2.38 2.55 1.90

Qwen-7B Bench 63.70 64.04 83.89 32.53 55.21 59.87| 2.28 2.51 2.15 292 3.26  2.63
Ours 73.79 75.81 90.06 47.75 72.25 71.93| 2.61 288 1.92 2.57 3.18  2.63

4.2.3. ACCURACY AND INFORMATIVENESS

We evaluate accuracy alongside prediction set size, a key proxy for informativeness. As
shown in Table 3, CAP consistently achieves the highest average accuracy across all models
and datasets, outperforming both APS and LAC. While APS often matches or approaches
CAP in accuracy, it does so by generating excessively large prediction sets—up to 3x the size
of CAP’s—thereby reducing informativeness. LAC, in contrast, produces smaller sets but
often fails to maintain statistical validity, resulting in lower accuracy. CAP uniquely balances
these objectives: it adaptively calibrates prediction sets that are significantly more compact
than APS while preserving the coverage guarantees absent in LAC. This demonstrates CAP’s
ability to jointly optimize for correctness and confidence, capturing fine-grained uncertainty
that static baselines fail to model in isolation.
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Table 4: Evaluation of Expected Calibration Error (ECE): Comparative analysis of the
proposed CAP framework (Ours) with Benchmarking LLMs via Uncertainty Quantification
Ye et al. (2024), Uncertainty-Aware Evaluation Kostumov et al. (2024) as well as with
standard LAC Sadinle et al. (2019), and APS Romano et al. (2020) methods. Evidently,
CAP achieves significantly lower ECE values, in bold, compared to baselines.

VLM Datasets (ECE |) | LLM Datasets (ECE |)

Method
MMB OOD SQA SB AI2D Avg. |HSwg HDial CQA HSum MMLU Avg.
LLaVA-v1.6-34B | Yi-34B
APS 0.13 0.13 021 014 024 017 | 0.11 0.32  0.16 0.22 0.25 0.21
LAC 0.07 0.11 011 013 0.16 0.11 | 0.05 0.27  0.10 0.19 0.17 0.16
Bench 0.10 0.12 0.16 0.14 020 0.14 | 0.08 0.30  0.13 0.21 0.21 0.18
Ours 0.01 0.03 0.03 0.03 0.04 0.03| 0.05 0.15 0.10 0.05 0.03 0.08
LLaVA-v1.6-13B | Qwen-14B
APS 0.16 0.22 019 016 0.27 020 | 0.09 0.20  0.10 0.29 0.27 0.19
LAC 0.13 0.17 0.16 018 0.19 0.17 | 0.02 0.16  0.03 0.34 0.23 0.15
Bench 0.06 0.02 01 011 0.03 006 | 0.05 0.18  0.06 0.31 0.25 0.17
Ours 0.02 0.02 0.04 0.06 0.03 0.03| 0.01 0.03 0.03 0.13 0.02 0.04
LLaVA-v1.6-7TB Qwen-7B
APS 0.16 0.24 021 017 0.26 021 | 0.35 0.30  0.23 0.41 0.40 0.34
LAC 0.13 020 0.19 018 020 0.18 | 0.32 0.27  0.15 0.44 0.35 0.30
Bench 0.07 0.04 0.10 0.11 0.03 007 | 0.33 0.28  0.19 0.42 0.37 0.32
Ours 0.04 0.03 0.05 0.06 0.01 0.04 | 0.08 0.03 0.08 0.14 0.05 0.07

* LLaVA-v1.6-34B (APS)
H LLaVA-v1.6-34B (LAC)
A LLaVA-v1.6-34B (Ours)

MMBench
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Figure 1: Accuracy vs. ECE for CAP against baseline across five VLM datasets. CAP
demonstrates substantially lower ECE, placing results closer to the ideal upper-left region.

4.2.4. CALIBRATION PERFORMANCE

We assess calibration quality using ECE, which quantifies the discrepancy between predicted
confidence and observed accuracy. As shown in Table 4, the proposed CAP framework
substantially outperforms APS and LAC across both vision-language and language-only
models. Averaged over all model-dataset pairs, CAP reduces ECE by 82.9% relative to APS
and 74.8% relative to LAC, indicating significantly improved confidence alignment. Notably,
CAP achieves this without compromising accuracy—and often improving it—demonstrating
that its uncertainty estimates are not only conservative but also sharp (Table 3). Visualized
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in Figure 1, CAP consistently lies in the upper-left quadrant of the accuracy-ECE frontier,
indicating both high correctness and strong reliability.

Extended datasets and evaluation (supplementary). In addition to the ten main
MCQA benchmarks, we include supplementary results in 7?7 on extended datasets and
evaluation settings. These include detailed accuracy—calibration curves, ablations across
model scales, and extended comparisons on selective generation and hallucination detection
tasks. All supplementary datasets follow the same MCQA formatting and calibration—test
protocol as here. This extended evaluation further demonstrate the robustness of CAP
across diverse tasks and models, demonstrating its consistent ability to improve abstention
quality, calibration, and factuality in both multiple-choice and free-form settings.

4.2.5. EXTENSION TO FREE-FORM GENERATION

While our primary experiments focus on MCQA tasks to ensure controlled and standardized
evaluation, the CAP framework is also applicable to mitigating hallucinations in free-form
generation. In this setting, the goal shifts from abstaining on a discrete choice to controlling
the factuality and informativeness of a generated text. We adapt CAP by conceptualizing
the problem through the lens of sub-claim management, an approach validated in recent
work on conformal factuality Mohri and Hashimoto. Here, an initial free-form response
from a base LLM is first decomposed into a set of atomic sub-claims. The role of the CAP
policy, mg(c|z), is to learn an optimal risk level a that translates to a retention threshold
for these sub-claims. A higher risk level corresponds to a more aggressive removal of less
confident claims. The utility function (Equation 3) is updated to reward factuality (number
of correct claims retained) while penalizing loss of informativeness (number of total claims
removed). This allows CAP to dynamically manage the trade-off between generating a
detailed response and ensuring its factuality on a per-instance basis.

Original Generation (Yi-34B) CAP-Controlled

Zamlfir Ralli-Arbore (1848-1933) was a Romanian political activist and historian | Zamfir Ralli-Arbore, born in 1848,
from Bessarabia, who spent much of his life in exile. As a member of the | was a Romanian political activist
National Liberal Party, he campaigned for the union of his native region with | from Bessarabia. He was a noted
the Kingdom of Romania, and was a prominent opponent of Russian and | historian, specializing in the his-
Soviet policies. He was also a noted historian, specializing in the history of | tory of the Moldavia and Wal-
the Moldavia and Wallachia during the Middle Ages. lachia. He passed away in 1933.

Figure 2: An example of CAP’s application to free-form generation on the FActScore dataset.
The original text contains hallucinated details (highlighted in red) which are successfully
omitted by the CAP policy, preserving only the verified factual information.

Table 5 presents a comparative analysis using the experimental setup from Mohri
and Hashimoto. We compare against their Conformal Factuality (CF) framework on
the FActScore, Natural Questions (NQ), and MATH datasets. The metric shown is the
percentage of sub-claims retained while achieving a target factuality of 90%. As a baseline,
the unmodified base model (Yi-34B) has a much lower initial factuality.

The results indicate that CAP consistently outperforms the CF baseline. For instance,
on the challenging FActScore dataset, CAP retains up to 12.7% more information. This
superiority stems from CAP’s learned, instance-specific policy, which is more efficient at
identifying and removing only the truly non-factual claims, whereas the static threshold
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Table 5: Factuality of the base Yi-34B model and downstream claim-retention rate after
post-processing. CAP preserves markedly more content than Conformal Factuality (CF)
while satisfying the 90 % factuality target. “A” denotes the absolute retention gain of CAP.

Dataset Base Fact. (%) CF Ret. (%) CAP Ret. (%) A

FActScore  34.1 (100) 35.5 48.2 +12.7
NQ 76.5 (100) 74.8 83.1 +8.3
MATH 74.2 (100) 89.5 94.3 +4.8

in standard conformal methods can be overly conservative, removing correct-but-uncertain
claims. A qualitative example of this is shown in Figure 2. Ultimately, this extension
demonstrates that CAP’s core mechanism—Iearning a utility-maximizing abstention pol-
icy—is a powerful and flexible approach for risk management that generalizes effectively
from structured classification to open-ended generative tasks.

5. Conclusion and Future Work

We introduced a RL-based framework to adaptively configure conformal prediction thresholds
for selective abstention in LLMs and VLMs. By learning to adjust the decision boundary
between point predictions, set-valued outputs, and abstention, our method overcomes the
rigidity of static conformal approaches, enabling instance-specific coverage—informativeness
trade-offs and improved calibration. Extensive evaluations across diverse tasks demonstrate
that CAP consistently outperforms APS and LAC. CAP improves hallucination detection
(AUROC) by up to 22.2% and selective generation (AUARC) by 21.2%, reduces calibration
error by over 70%, and produces tighter prediction sets while preserving valid coverage
guarantees. It achieves higher accuracy than LAC and more compact, informative prediction
sets than APS, establishing a new standard for utility-aware abstention in foundation models.

However, integrating CP with RL introduces challenges. Learned policies may overfit to
calibration data, leading to biased abstention behaviors or compromising CP’s theoretical
guarantees. CAP also introduces additional parameters and depends on well-tuned reward
functions that may require adaptation to new data distributions. To mitigate these risks,
future work can explore distribution-aware regularization, policy validation using out-of-
sample data, and constrained reward design.
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