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Abstract

Among the existing self-supervised learning (SSL)
methods for graphs, graph contrastive learning
(GCL) frameworks usually automatically gener-
ate supervision by transforming the same graph
into different views through graph augmentation
operations. The computation-efficient augmenta-
tion techniques enable the prevalent usage of GCL
to alleviate the supervision shortage issue. Despite
the remarkable performance of those GCL meth-
ods, the InfoMax principle used to guide the op-
timization of GCL has been proven to be insuffi-
cient to avoid redundant information without los-
ing important features. In light of this, we intro-
duce the Graph Contrastive Learning with Cross-
View Reconstruction (GCVR), aiming to learn ro-
bust and sufficient representation from graph data.
Specifically, GCVR introduces a cross-view recon-
struction mechanism based on conventional graph
contrastive learning to elicit those essential fea-
tures from raw graphs. Besides, we introduce an
extra adversarial view perturbed from the original
view in the contrastive loss to pursue the intactness
of the graph semantics and strengthen the repre-
sentation robustness. We empirically demonstrate
that our proposed model outperforms the state-of-
the-art baselines on graph classification tasks over
multiple benchmark datasets.

1 INTRODUCTION

As a kind of ubiquitous data form, graph-structured data is
known for modeling complex interaction systems in the real
world. Among the existing techniques proposed to model
the patterns behind graph-structured data, Graph Neural
Networks (GNNs) [Kipf and Welling, 2017, Velickovi¢
et al., 2018, Hamilton et al., 2017, Xu et al., 2019] have

achieved remarkable performance and thereby been em-
ployed in many applications, like user preference prediction,
recommendation systems, and molecule property predic-
tion [McAuley et al., 2015, Hu et al., 2020a, Wen et al.,
2023, Ouyang et al., 2024]. Despite their success, GNNs
are often constrained by the supervised learning paradigm,
which necessitates a substantial volume of labeled data—a
requirement that is frequently costly or impractical. There-
fore, extracting the rich underlying knowledge from the
unlabeled graphs has attracted increasing attention and stim-
ulated a series of research about self-supervised learning
(SSL) on graphs [Qiu et al., 2020, Hassani and Khasahmadi,
2020, Sun et al., 2019, Zhao et al., 2021a], where only mini-
mal or no labels are required. Existing graph SSL strategies
will design different pre-training tasks for optimization to
fully utilize the information from unlabeled graphs, where
graph contrastive learning (GCL) follows the mutual in-
formation maximization principle (InfoMax) [Velickovié
et al., 2019] to maximize the agreements of the positive
pairs while minimizing that of the negative pairs in the em-
bedding space. However, the GCL paradigm has been em-
pirically and theoretically proved to be insufficient to learn
robust and transferable representation [Suresh et al., 2021,
Zhao et al., 2021b]. State-of-the-art GCL methods [Qiu
et al., 2020, Hassani and Khasahmadi, 2020, You et al.,
2020] usually rely on applying specific graph augmentation
operations (e.g., Edge Removing and Subgraph Sampling)
on anchor graph G to generate a positive pair of samples.
Then, the graph feature encoder f will be trained to ensure
representation consistency within the positive pair. Thus,
the choice of augmentation operators and their strength can
yield significant impacts on the final optimization result.
Moderate graph augmentation will push encoders to cap-
ture redundant and biased information [Tschannen et al.,
2019], adversely impacting the transferability of represen-
tations through "shortcut" solutions [Geirhos et al., 2020,
Minderer et al., 2020, Robinson et al., 2021]. This is visually
depicted in Figure 1(a), where the shared part of the two
augmentation views includes both predictive information
(the overlapping area with y) and non-predictive informa-
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Figure 1: Illustration of the relation between graph G, label
y, predictive feature subsets G and non-predictive feature
subset G in terms of information entropy. Ideally, the green
areas in the three figures are null. (a) The usual optimiza-
tion result of graph contrastive learning, where the shared
features of two augmentation views are extracted for the
learned representation z. Owing to the lack of supervision
or domain knowledge, redundant and biased information
(shadow area) is usually included in z; (b) GP cover the fea-
ture subset which is sufficient to make correct graph label
identification (I(y; G | GP) = 0), other features (G°) is
either useless or misguiding; (c) GP and G are supposed to
be mutually excluded with each other (I(G?; G¢) = 0). The
union of them covers all the features of the original data.

tion (shadow area). This phenomenon is also empirically
proved by many previous GCL works [Suresh et al., 2021,
Liet al., 2022, Yang et al., 2021], where lower contrastive
loss does not necessarily lead to better performance and
robustness, especially under the out-of-distribution (OOD)
setting [Ye et al., 2021]. Conversely, overly aggressive aug-
mentation also proves suboptimal, as it indiscriminately
disregards both predictive and trivial features in the absence
of additional guiding knowledge [Chen et al., 2021].

To address the dilemma, recent works [Suresh et al., 2021,
Li et al., 2022, You et al., 2021] propose to modify the
existing graph augmentation techniques in an automated
manner. These methods operate under the premise that the
most salient substructures, which are resistant to graph aug-
mentation, are adequate for downstream label identification.
Consequently, they introduce trainable regularization on the
graph topological structure to eliminate trivial substructures.
While these approaches mitigate the feature suppression
issue to a degree, they are constrained by the same opti-
mization principles, inheriting similar limitations. The harsh
regularization on graph topology tends to narrow the focus
of encoders to ’shallower’ features, such as graph size and
central node, in the absence of external knowledge [Bevilac-
qua et al., 2021], thereby impairing generalization in tasks
requiring more comprehensive understanding. Therefore,
the GCL methods, guided by the saliency philosophy, have
not yet optimally balanced representation sufficiency and
robustness. To learn better graph representation, an SSL
graph method that can better reconcile the information re-
dundancy and sufficiency is in urgent need. The optimal
representation, as suggested by the information bottleneck

(IB) principle [Tishby et al., 2000], should extract minimal
yet sufficient information during the learning process. Em-
pirical evidence supports the superiority of representations
aligning with the IB principle, demonstrating enhanced ro-
bustness and transferability across various domains [Wu
et al., 2020]. Consider an input graph G, with G? represent-
ing its predictive feature subset and G¢ the complementary
non-predictive feature subset. Recent studies on rationale
invariance discovery [Wu et al., 2022b,a] suggest that these
subsets satisfy the sufficiency condition I(y; G | GP) =0
and the disentanglement condition I(G?; G¢) = 0. The rela-
tionships among G, GP, and G¢ are depicted in Figure 1 (b)
and (c). The representation ideally adhering to the IB princi-
ple would include all the features in GP while minimizing
the information in G. Although it is impossible to elimi-
nate the redundant information across different downstream
tasks since there will be a variance between the knowledge
required for different applications, a graph representation
less suppressed by G° is expected to generalize better on dif-
ferent downstream tasks. Furthermore, achieving this goal
in the self-supervised setting is even more challenging.

To fill this gap, we propose Graph Contrastive Learning with
Cross-View Reconstruction (GCVR), to pursue the target
optimization objective. GCVR is comprised of a graph en-
coder and two distinct decoders, each specialized in extract-
ing information pertinent to predictive and non-predictive
features, respectively. The model endeavors to fulfill the
disentanglement objective through an innovative cross-view
representation reconstruction scheme. This scheme involves
both intra-view and inter-view reconstructions, aiming to
reconstruct the initial learned representation using the bifur-
cated feature subsets. Furthermore, the encoded represen-
tation from the original view perturbed in the adversarial
fashion serves as the third view when computing the con-
trastive loss, apart from the predictive relevant representa-
tions of the two augmentation views, to further improve the
representations’ robustness and prevent them from collaps-
ing into partial solution. We present a theoretical analysis
illustrating GCVR’s proficiency in approximating the In-
formation Bottleneck (IB) principle, thus enhancing repre-
sentation robustness without compromising on sufficiency.
Finally, empirical validation of GCVR’s effectiveness is
conducted through extensive experiments on public graph
benchmark datasets. The experimental results demonstrate
that GCVR achieves significant performance gains over dif-
ferent datasets and settings compared with state-of-the-art
baselines. The main contributions of this work are sum-
marized from three aspects: (i) We propose the GCVR to
alleviate the feature suppression issue with the cross-view
reconstruction mechanism; (ii) We provide solid theoret-
ical analysis on our model designs; (iii) Thorough exper-
iments are conducted to demonstrate the robustness and
transferability of the learned representations via GCVR. The
source code of our proposed GCVR is publicly available at
https://github.com/HoytWen/GCVR
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2 PRELIMINARIES

2.1 GRAPH REPRESENTATION LEARNING

In this work, we focus on the graph-level task, let G =
{G; = (V;, Ei)}i\il denote a graph dataset with N graphs,
where V; and E; are the node set and edge set of graph
G, respectively. We use z,, € R4 and z, € R? to denote
the attribute vector of each node v € V; and edge e € F;.
Each graph is associated with a label, denoted as y;, the goal
of the graph representation learning is to learn an encoder
f : G; — R% 5o that the learned representation z; = f(G;)
is sufficient to predict y; related to the downstream task. We
clarify the sufficiency of z; as containing no less informa-
tion of the label of G; [Achille and Soatto, 2018], and it is
formulated as:

I(Gi;yi | 2:) =0, (D

where I (;) denotes the mutual information between two
variables.

2.2 CONTRASTIVE LEARNING

Contrastive Learning (CL) is a self-supervised representa-
tion learning method that leverages instance-level identity
for supervision. During the training phase, each graph G
firstly goes through proper data augmentation to generate
two data augmentation views t1(G) and ¢t2(G), where ¢4 ()
and t5(-) are two augmentation operators. Then, the CL
method encourages the encoder f (a backbone network plus
a projection layer) to map ¢;(x) and ¢5(x) closer in the
hidden space so that the learned representations z; and zo
maintain all the information shared by ¢1(G) and t2(G). The
learning of the encoder is usually directed by a contrastive
loss, such as NCE loss [Wu et al., 2018b], InfoNCE loss
[van den Oord et al., 2018], and NT-Xent loss [Chen et al.,
2020]. In Graph Contrastive Learning (GCL), we usually
adopt a GNN, such as GCN [Kipf and Welling, 2017] or
GIN [Xu et al., 2019], as the backbone network, and the
commonly-used graph data augmentation operators [ You
et al., 2020], such as node dropping, edge perturbation, sub-
graph sampling, and attribute masking.

All the GCL-based methods are built on the assumption that
augmentations do not break the sufficiency requirement to
make correct predictions. Here, we follow [Federici et al.,
2020] to clear up the definition of mutual redundancy. ¢1(G)
is redundant to ¢2(G) with respect of y iff ¢1 (G) and t2(G)
share the same predictive information. Mathematically, the
mutual redundancy in CL exists when:

I(t:1(G)iy | 12(G)) = I(t2(G)sy | 12(G)) = 0. (D)

Although GCL-based methods are usually capable of ex-
tracting useful information for label identification, it is un-
avoidable to include non-predictive features under the SSL
setting owing lack of explicit domain knowledge. There

exists the situation (e.g., OOD setting) that the latent space
of learned representation is dominated by non-predictive
features in SSL [Chen et al., 2021] and is not informative
enough to make the correct prediction. Therefore, feature
suppression is not just a prevalent issue in supervised learn-
ing, but also in SSL.

2.3 FEATURE SUPPRESSION

In this section, we will follow the previous works [Chen
et al., 2021, Robinson et al., 2021] to present a more formal
definition of feature suppression and clarify its relation with
contrastive learning. First of all, we assume graph data G
has n feature sub-spaces, G, ..., G™, where each G’ ¢
G corresponds to a distinct feature of G. To quantify the
relation between G and its feature sub-spaces, we need to
measure the conditional probability of G given a specific
kind of feature sub-space G* (i < [n]), denoted as p(G |
G'). Finally, we define an injective map g : G — G to
produce observation G = g(G?). Due to the reason that G*
is not explicit, so we aim to train an encoder f : G; — R% to
map input graph data G into a latent space to extract useful
high-level information z’ corresponding to each feature
sub-space G’ of input data G during contrastive learning.
Therefore, we use p(G | z') as the approximated value of
the measurement p(G | G*). Then we have,

* For any feature sub-space G and its complementary
feature sub-subspace G*, f suppress feature i < [n] if
we have p(G | z*) = p(G | %)

* For any feature sub-space G’ and its complementary
feature sub-subspace G, f distinguish feature i < [n]
if p(G | z*) and p(G | z°) have disjoint support.

To sum up, a feature is suppressed if it does not make any dif-
ference to the instance discrimination. One of the common
acknowledgments for unsupervised learning strategy is that
it can usually produce representation with uniform feature
space distribution due to the lack of supervision, i.e., every
feature sub-space is equally treated without feature suppres-
sion. However, it could not be the situation in contrastive
learning. Taking the commonly used InfoNCE [van den
Oord et al., 2018] as an example, it can be divided into two
parts, i.e. align term and uniform term [Chen et al., 2020],
as follows:

1
SpmfoNCE _ 1 Z sim (24, 2;)
m i
[:ali;nfmem
- 2m (3)
o Z log kzl Lkzq) exp (sim (24, 25) /7) -
[ o=
Eunifmm

Aligning the positive pair will distinguish the shared feature
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Figure 2: The illustration of the proposed GCVR. (1) Graph augmentations are applied to the input graph G to produce two
augmented graphs, which are then fed into the shared graph encoder f(-) to generate two graph embeddings z; and zs. (2)
z1 and z, are used as the inputs of the two decoders to generate two pairs of graph embeddings, z” captures the predictive
factors and z¢ keep other complementary non-predictive features. Then we use the two pairs of representations to reconstruct
z1 and z5 in both the intra-view and inter-view. (3) An adversarial sample generated by G goes through the same procedure

P
to generate z, ;,

subspace G*. Meanwhile, there also exits random negative
samples that might own the same factors in G, so the uni-
form term might suppress the feature sub-space G*. There-
fore, for any feature ¢  [n], the optimization process can
either suppress or distinguish it, but both of them can reach
lower contrastive loss. From the analysis, we can derive the
conclusion mentioned in Section 1 that lower contrastive
loss might not yield better performance.

3 PROPOSED MODEL

In this section, we introduce the details of our proposed
GCVR whose framework is shown in Figure 2. Correspond-
ing theoretical analyses are provided to justify the rational-
ity of our designs. Before diving into the details of GCVR,
we briefly introduce the overall framework of our model.
Given G as the input graph instance and f(-) as the graph
encoder, we add two decoders to map the graph represen-
tation z = f(G) € R? into two different feature spaces
(zP,z°), where zP € R is expected to be specific to the
predictive information GP, and z° € R? is optimized to
elicit the complementary non-predictive factors G¢. Later,
we reconstruct the representation z with the feature subsets
mapped from the same and different augmentation views to
reduce the overlapping between z” and z¢. By doing so, we
approximate the disentanglement objective demonstrated
in Figure | and the z? is optimized to be the invariant part
across different augmentation views. More importantly, the
proposed reconstruction procedure and added adversarial
views will push the learned z” to be as comprehensive and
robust as possible for the convenience of representation re-

. We take it as the third view besides z} and z} in CL guarantee the z” can guarantee the robustness.

construction. To sum up, instead of implementing harsh
regularization on the graph structure, our GCVR proposed
a new optimization strategy to elicit the most predictive
features with the reconstruction task, thereby alleviating the
feature suppression issue of the cost of information suffi-
ciency. More details of GCVR will be introduced next.

3.1 DISENTANGLEMENT BY CROSS-VIEW
RECONSTRUCTION

In GCL, we usually leverage a graph encoder, such as a
GCN [Kipf and Welling, 2017] or a GIN [Xu et al., 2019],
to encode the graph data into its representation. There are
multiple choices of graph encoders in GCL, including GCN
[Kipf and Welling, 2017] and GIN [Xu et al., 2019], etc.
In this work, we adopt GIN as the backbone network f
for simplicity. Note that any other commonly used graph
encoders can also be adapted to our model. Given two aug-
mentation views t1(G) and t1(G) (where t1(-) and t5(-)
are IID sampled from the same family of augmentation 7),
we firstly use the encoder f(-) to map them into a lower
dimension hidden space for the two embeddings, z; and zs.
Instead of directly maximizing the agreement between the
two representations z; and zo, we further feed each of them
into a pair decoders (gp, g.) (both of them are MLP-based
networks or GNN and they share the same architecture) and
optimize the two decoders to map each of the presentations
into the two disentangled feature sub-spaces:

[2° = g,(f(£(G))). 2° = g(f(RH(G)))], &



where a pair of embeddings for both ¢;(G) and t2(G) are
generated. Ideally, z} and z5 suffice the mutual redundancy
assumption stated in 2.2 because 1 (G) and t1(G) are aug-
mented from the same original graph, and thus naturally
share the same predictive factors.

Here, we clarify the lower bound of the mutual information
between the augmented view t;(G) and the two learned
predictive representations in Theorem | and we can get the
same conclusion with another augmented view t5(G).

Theorem 1. Suppose f(-) is a GNN encoder as powerful
as 1-WL test. Let z and zb be specific to the predictive
information of G, meanwhile z§ and z$ account for the
complementary non-predictive factors of t1(G) and t2(QG).
Then we have:

I(t1(G);25,25) = I (27;25)

where G € G and ¢1(+), t2(+) € T. The detailed proof is pro-
vided in Appendix E. Given the lower bound, we substitute
the objective by the mutual information between the two
representations in the predictive view (z} and z5) to max-
imize the consistency between the information of the two
views. Therefore, we derive the objective function ensuring
view invariance as follows:

1 N
Epre = N Z LCL(ZZ{JW Zg,i)v (5)

i=1

where Lcp(+) is the adopted InfoNCE loss [van den Oord
et al., 2018]. To further pursue the feature disentanglement
as illustrated in Figure 1(c), we propose the cross-view re-
construction mechanism. To be specific, we would like the
representation pair (z?,z¢) within and cross the augmen-
tation views to be able to recover the raw data so that the
two objectives can be approached simultaneously. Due to
the fact that graphs are non-Euclidean structured data, we
instead try to recover z = f(t(G)) given (z° and zP).

More specifically, we first perform the reconstruction within
the augmentation view, namely mapping (z2,, z¢)) to z,,,
where w € {1, 2} representing the augmentation view. Then,
we define the (z!,, z<,) as a cross-view representation pair
and the reconstruction procedure is repeated on it to predict
Z,,, aiming to minimize the overlapping between z? and z¢,
where w = 1,w’ = 2 orw = 2,w’ = 1. Intuitively, the
reconstruction process is capable of separating the informa-
tion of the shared feature sets from the one resided in the
unique feature sets between the two augmentation views.
Since the two IID sampled augmentation operators (¢;(+)
and ¢ (-)) are expected to preserve the predictive/rational
features while varying the augmentation-related ones, we
disentangle the rational features from G according to the
rationale discover studies [Chang et al., 2020] to ensure
the features’ robustness for downstream tasks. Here, we

formulate the reconstruction procedures as:
zy, = 9r (25, O 2,), 2 = gr (2, Ozy,),  (6)

where g, is the parameterized reconstruction model and ©
is a free-to-choose fusion operators, such as element-wise
product or concatenation. The reconstruction procedures
are optimized by minimizing the entropy H (z,, | 2}, z5)),
where w = w’ or w # w'. Ideally, we reach the op-
timal sufficiency and disentanglement conditions illus-
trated in Figure 1(b) and I(c) iff H (z,, |2!,,25) =
*]Ep(zw,Zf’U/,Z&) [logp (2. | 2,,25)] = 0, where z,, is
exactly recovered given its complementary representation
and the predictive representation of any view. Nevertheless,
the condition probability p (z,, | 2 ,, z¢)) is intractable, we
hence use the variational distribution approximated by g,
instead, denoted as q (z,, | 2L, z¢,). We provide the upper
z¢,) in Theorem 2.

bound of H (z,, | z¥

w’?
Theorem 2. Assume q is a Gaussian distribution, g, is the

parameterized reconstruction model which infers z., from
(2" ,,25,). Then we have:

H (2, | 2,2, < |20 — . (2}, O 2|5,

where w = w’ or w # w’. The detailed proof is demon-
strated in Appendix E. Since we adopt two augmentation
views, the objective function constraining representation
disentanglement can be formulated as:

1 N 2
Erecon = ﬁ 7;1 1;1 [sz,i — Z;g!

2 e — 23] @

3.2 ADVERSARIAL CONTRASTIVE VIEW

With the cross-view reconstruction mechanism above, the
two learned representations stated above are optimized to-
ward the disentangled manner. However, it is still necessary
to further prevent the learned predictive representation from
focusing on the partial features, because we do not have
access to the explicit domain knowledge and such a small
scope will increase the risk of a shortcut solution. Therefore,
we extend the Equation 5 to three contrastive views and add
an extra global view without topological perturbation as the
third view to guarantee the learned z” maintain the global
semantics instead of partial or even trivial features, i.e.,
z] ~ G and z§ ~ G. During the experiments, we find an
adversarial graph sample perturbed from the original graph
view that can help the model achieve stronger robustness.
A possible explanation is that there is still redundant infor-
mation that is not predictive left in the shared information
of the two zP’s in the two augmentation views, especially
when the implemented augmentations are moderate. An ad-
versarial view may further alleviate redundancy. We define
the adversarial objective as follows:

6% = argmaxLaay (24,25, Zagy + ) , (8)
6], <e



where the adversarial sample z,q4, + ¢ together with the two
augmentation views, i.e., z] and z) are employed as the
positive pair. Our crafted perturbation is spurred by recent
work [Yang et al., 2021] that add perturbation 4 on the out-
put of first hidden layer h"), since it is empirically proved
to generate more challenging views than adding perturba-
tion on the initial node feature. Therefore, the adversarial
contrastive objective is defined as:

| N2
Lagvy = N Z Z max Lco (Zﬁw Zaay +0%), (9

where the optimized perturbation ¢’ is solved by projected
gradient descent (PGD) [Madry et al., 2018]. Finally, we
derive the joint objective of GCVR by combining all of the
objectives above together. The joint objective is as follows:

Hflin EGEG |:£'pre + )\T»Crecon + )\a max L:adv ) (10)

g 161l <e

where A, and ), are the coefficients to balance the mag-
nitude of each loss term. Our proposed model is able to
approximate the optimal representation illustrated in Figure
1(c) with the joint objective.

4 EXPERIMENTS

In this section, we first demonstrate the empirical evalua-
tion results of our proposed GCVR and the state-of-the-art
baselines on multiple public graph benchmark datasets un-
der different settings. An ablation study is also included
to evaluate the effectiveness of the designs in GCVR. We
further conduct experiments to study the robustness and the
representation disentanglement of the proposed GCVR with
extensive experiments. More content about dataset statistics,
training details, and other empirical analyses are provided
in Appendix C, D, F and G.

4.1 EXPERIMENTAL SETUPS

Datasets. For the unsupervised learning setting, we evaluate
our model on five graph benchmark datasets from the field
of bioinformatics, including MUTAG, PTC-MR, NCI1, DD,
and PROTEINS, and the other four are from the field of
social networks, which are COLLAB, IMDB-B, RDT-B,
and IMDB-M, for the task of graph-level property classifi-
cation. For the transfer learning setting, we follow previous
work [You et al., 2020, Xu et al., 2021b] to pre-train our
model on the ZINC-2M dataset, which contains 2 million
unlabeled molecule graphs sampled from MoleculeNet [Wu
et al., 2018a], then evaluate its performance on eight binary
classification datasets from chemistry domain, where the
eight datasets are split according to the scaffold to simulate
the out-of-distribution scenario in real-world. Additionally,
We use ogbg-molhiv from Open Graph Benchmark Dataset

[Hu et al., 2020a] to evaluate our model over large-scale
datasets under the semi-supervised setting. We provide more
details about dataset statistics in Appendix C.

Baselines. Under the unsupervised learning setting, we
compare GCVR with the eight SOTA self-supervised learn-
ing methods, including GraphCL [You et al., 2020], Info-
Graph[Sun et al., 2019], MVGRL [Hassani and Khasahmadi,
2020], AD-GCL[Suresh et al., 2021], GASSL[Yang et al.,
2021], InfoGCL[Xu et al., 2021a], RGCL [Li et al., 2022]
and DGCL[Li et al., 2021], as well as three classical unsuper-
vised representation learning methods, including node2vec
[Grover and Leskovec, 2016], graph2vec [Narayanan et al.,
2017], and GVAE [Kipf and Welling, 2016]. For the transfer
learning setting, we employ AttrMasking [Hu et al., 2020b],
ContextPred [Hu et al., 2020b], GraphCL [You et al., 2020],
GraphLoG [Xu et al., 2021b], AD-GCL [Suresh et al., 2021],
RGCL [Li et al., 2022] and GraphMAE [Hou et al., 2022]
as baselines to evaluate the effectiveness of our proposed
GCVR. Besides, we also compare our proposed methods
with GraphCL, SimGRACE Xia et al. [2022], AutoGCL Yin
et al. [2022] and DCL as the baselines to evaluate the effec-
tiveness of our proposed GCVR under the semi-supervised
learning setting.

Evaluation Protocol. For the unsupervised setting, we fol-
low the evaluation protocols of previous works [Sun et al.,
2019, You et al., 2020] to verify the effectiveness of our
model. The learned representation is fine-tuned by a linear
SVM classifier for task-specific prediction. We report the
mean test accuracy evaluated by 10-fold cross-validation
with the standard deviation of five random seeds as the final
performance. For the transfer learning setting, we follow the
finetuning procedures of previous work [You et al., 2020]
and report the mean ROC-AUC scores with a standard de-
viation of 10 repeated runs on each downstream dataset as
the final performance. In addition, we follow the setting of
semi-supervised representation learning from GraphCL on
the ogbg-molhiv dataset, with the finetune label rates as 1%,
10%, and 20%. The final performance is reported as the
mean ROC-AUC score of five repeated runs with different
initialization random seeds.

4.2 OVERALL PERFORMANCE COMPARISON

Unsupervised learning. The overall performance compari-
son is shown in Table 1 and we can have three observations:
(1) Graph Contrastive Learning (GCL)-based methods con-
sistently outperform traditional unsupervised learning tech-
niques, underscoring the benefits of incorporating instance-
level supervision. (2) The models RGCL, AD-GCL, and
GASSL exhibit advantages compared to GraphCL. This
finding lends empirical support to the hypothesis that the
InfoMax objective may introduce excessive redundant in-
formation, leading to issues with feature suppression. (3)
Notably, our proposed models, GCVR and DGCL, consis-



Table 1: Overall comparison on multiple graph classification benchmarks under unsupervised learning setting. Results are
reported as mean+std%, the best performance is bolded and runner-ups are underlined. "-" indicates the result is not reported

in the original papers.

MUTAG PTC-MR COLLAB NCI1 PROTEINS IMDB-B RDT-B IMDB-M DD
node2vec  72.6+x10.2 58.6+8.0 - 54.9+1.6 57.5%£3.6 - - - -
graph2vec 83.2+9.3  60.2+6.9 - 73.2+1.8 73.3+2.1 71.1+£0.5 75.8+1.0 50.4+0.9 -
InfoGraph 89.0+1.1 61.7+1.4 70.7¢1.1  76.2+1.1 74.4+0.3 73.0+£0.9 82.5+1.4 49.7+0.5 72.9+1.8

VGAE 87.7x0.7  61.2+1.8 - - - 70.7£0.7 87.1+0.1 49.3+0.4 -
MVGRL 89.7+1.1 62.5+1.7 - - - 74.2+£0.7 84.5£0.6 51.2+0.5 -
GraphCL 86.8+x1.3  63.6x1.8 71.4+1.2 77.9+04 74.4+0.5 71.1£0.4  89.5+0.8 - 78.6+0.4
InfoGCL 91.2+1.3  63.5+1.5 80.0+1.3  80.2+0.6 - 75.1£0.9 - 51.4+0.8 -

DGCL 92.1+0.8  65.8+1.5 81.2+0.3  81.9+0.2 76.4+0.5 75.9+0.7 91.840.2 51.9+04 -
AD-GCL 89.7+1.0 - 73.320.6  69.7+0.5 73.8+0.5 72.3£0.6  85.5+0.8 49.9+0.7 75.1x0.4

RGCL 87.7x1.0 - 70.9+0.7  78.1%1.1 75.0+0.4 71.9£0.8  90.3x0.6 - 78.9+0.5
GASSL 90.9£7.9  64.6£6.1 78.0+£2.0  80.2+1.9 - 74.2+0.5 - 51.7£2.5 -

GraphMAE  91.2+1.3 - 80.3+0.5  80.4+0.3 75.3+x0.4 75.5¢0.7 88.0£0.2  51.6+0.5 -

GCVR 92.3+0.7 67.4x1.3  80.5+0.5 82.0+1.0 76.8+0.4 75.6£0.4 92.4+0.9 52.2+0.5 80.5+0.5

ogbg-molhiv Ablation Study

tently surpass other baseline models in performance, illus-
trating the efficacy of disentangled representation. Partic-
ularly, GCVR achieves state-of-the-art results on the ma-
jority of datasets, highlighting its effectiveness in this do-
main. We think the possible reason behind the impressive
performances of DGCL on COLLAB and IMDB-B could
stem from its adaptable setting of the disentanglement head
number, which enables larger hyperparameter search space
but also requires more effort to find the best configuration.
Though less optimal on COLLAB and IMDB-B compared
with DGCL, our proposed GCVR achieves the best per-
formance on all the other datasets under an unsupervised
learning setting.

Transfer learning. Table 2 presents the experimental out-
comes in the context of transfer learning. In this setting,
the *No Pre-Train’ approach omits the self-supervised pre-
training phase on the ZINC-2M dataset before the fine-
tuning process. The results presented in Table 2 illustrate
that no baseline achieves consistently superior performance
across all eight datasets, which includes advanced models
like GraphLoG and GraphMAE. On the other hand, sev-
eral competitive baselines, such as AttrMasking and Con-
textPred, benefit from the incorporation of domain-specific
knowledge during training Hu et al. [2020b], however, all
the graph SSL baselines and our proposed GCVR are in the
absence of such specialized knowledge. Under this condi-
tion, our proposed GCVR still achieves the best performance
on three of the eight datasets and the second-best perfor-
mance on another three datasets. Notably, GCVR achieves
the highest average performance across the datasets. These
results demonstrate GCVR’s notable proficiency in address-
ing transfer learning challenges, affirming its effectiveness
in this demanding context. In the meantime, JOAO, RGCL,
and GCVR, all derivatives of GraphCL, surpass GraphCL
in average performance. This finding empirically shows the

= GraphCL
80 SIMGRACE
m— AutoGCL
DGCL
= GCVR

©
o

~
o

ROC-AUC(%)
<
N
Accuracy(%)
N
Lo

o o
> ©
~ ~
N o

coLLAB PROTEINS IMDB-B )

Dataset

1% 10% 20%
Label Rate

Figure 3: (right) Performance comparison of semi-
supervised learning on ogbg-molhiv. (left) Performance
comparison between the GCVR and four model variants.

detrimental impact of biased information in these models
and highlights the critical need for strategies to mitigate
such biases.

Semi-supervised learning. The experimental results, illus-
trated in Figure 3, show that our model significantly out-
performs all baselines across three label-rate fine-tuning
scenarios. Notably, there is a clear correlation between in-
creasing label rates and performance improvements, with
gains of 1.3%, 2.4%, and 2.9% observed at label rates of 1%,
10%, and 20%, respectively. This trend may be explained
by the hypothesis that higher volumes of trainable data in-
troduce more redundant information, thereby exacerbating
the feature suppression problem. The effective removal of
this redundant information is crucial, as it seems to play a
key role in the observed enhancements in performance.

4.3 ABLATION STUDY

To further assess the individual contributions of the various
modules in our proposed GCVR, we conducted ablation
studies. These studies involved the construction of two mod-



Table 2: Overall comparison on multiple graph classification benchmarks under transfer learning setting. Results are reported
as meanz*std%, the best performance is bolded and runner-ups are underlined.

BBBP Tox21 ToxCast SIDER  ClinTox MUV HIV BACE AVG

No Pre-Train 65.8+4.5 74.0#0.8 63.4+0.6 57.3+1.6 58.0+44 71.8%2.5 753+1.9 70.1£54 67.0
AttrMasking  64.3+2.8 76.7+0.4 64.2+0.5 61.0£0.7 71.8¢4.1 74714 77.2+1.1 79.3x1.6 71.1
ContextPred  68.0£2.0 75.7+0.7 63.9+0.6 60.9+0.6 659+3.8 75.8+1.7 773+1.0 79.6x1.2 70.9
GraphCL 69.5£0.5 754+09 63.8+04 60.8+0.7 70.1x1.9 74.5+1.3 77.6£09 78.2+1.2 70.8
GraphLoG ~ 72.5+0.8 75.7#0.5 63.5£0.7 61.2+1.1 76.7#3.3 76.0+1.1 77.8+0.8 83.5+1.2 734
JOAO 70.2¢1.0 75.0+£0.3 62.9+0.5 60.0+£0.8 81.3£2.5 71.7x1.4 76.7£1.2 51.5+04 71.9
RGCL 71.4+0.7 752403 63.3+x02 614+0.6 83409 76.7+1.0 77.9+0.8 76.0+0.8 732
GraphMAE  72.0+0.6 75.5£0.6 64.1£0.3 60.3x1.1 82312 763+24 77.2+1.0 83.1+09 738
GCVR 72.1£0.5 75.9+0.6 63.0+0.5 62.2+0.7 83.6x1.5 76.6+0.7 78.1%1.1 80.8+x1.8 74.0

ified versions of the model: (1)w/o Intra, which excludes
the intra-view reconstruction; (2)w/o Inter, which excludes
the inter-view reconstruction; (3) w/o CV Recon, which
completely excludes the cross-view reconstruction process;
and (4) w/o Adv. Training, which omits the adversarial
training component. The performance of these variants is
demonstrated in the left subplot of Figure 3. An analysis of
the results indicates that the integration of reconstruction
from both views and adversarial view in the GCVR model
yields superior performance compared to the variants. The
absence of the reconstruction process from either view can
impede the model’s ability to optimize representations in
a disentangled fashion, as evidenced in Figure 1(c). This
omission leads to persistent issues with feature suppression
in the resultant representations. Additionally, the model vari-
ant lacking the adversarial view exhibits tendencies towards
representation collapse and accrues unnecessary redundant
information, resulting in less optimal performance in down-
stream tasks.

4.4 ROBUSTNESS ANALYSIS

In this section, additional experiments are conducted on the
ogbg-molhiv dataset to assess the robustness of representa-
tion under aggressive augmentation and perturbation. The
corresponding results are presented in the left two subplots
of Figure 4. Our method is compared with GASSL across
varying perturbation bounds and attack steps to evaluate
their resiliences against adversarial attacks. Given that both
our model and GASSL utilize the GIN as the underlying
backbone network, the performance of GIN is also included
as a baseline for comparison. Despite the notable perfor-
mance decline induced by aggressive adversarial attacks,
our proposed GCVR model achieves comparable or better
performance with GIN across a majority of perturbation
scenarios and demonstrates more impressive resilience than
that of GASSL.
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Figure 4: The model performance on ogbg-molhiv under
different perturbation bound and attack steps.

4.5 DISENTANGLEMENT ANALYSIS

To investigate whether the feature suppression problem is
equally serious in z” and z¢, we conduct experiments to
compare the performance of the two representations on
downstream tasks. The comparison results are shown in Ta-
ble 3. It is easy to observe that there is a large performance
gap between the two learned representations, indicating
the different feature suppression issues between them and
the features subset that are more robust to augmentation is
more informative and transferable than those sensitive to
augmentations. To further study the influence of the disen-
tanglement design in GCVR on the optimization process, we
use the InfoNCE loss [van den Oord et al., 2018] to dynami-
cally measure the representation difference between the two
augmentation graph views based on the two disentangled
representations. For simplicity, we only demonstrate the
first 100 pre-training epochs of PROTEINS and COLLAB
in Figure 5, we can observe similar phenomena on other
datasets. From the loss curves in Figure 5 we can find that
contrastive loss between predictive representations, i.e., z?,
gradually decreases, indicating the predictive representation
is optimized to capture all the shared information between
the two augmentation views. Meanwhile, the loss between
the non-predictive representations, i.e., z¢, achieves a notice-
able increase, which is consistent with our expectation that



Table 3: Performance comparison of the two learned representations. Results are reported as mean+std%.

MUTAG PTC-MR COLLAB NCI1 PROTEINS IMDB-B RDT-B IMDB-M DD ogbg-molhiv
z¢ 88.1x1.2  58.6x2.0 75.1+£0.7  72.2+2.0 73.5+0.8 71.8+0.9 89.4+£1.0 47.8+0.9 75.8+0.6 69.70+2.8
zP 92.3+0.7 67.4+1.3  80.5+0.5 82.0+1.0 76.8+0.4 75.60.4 925409 52.2+0.5 80.5+0.5 75.36+1.4

PROTEINS COLLAB heterogeneous latent factors of the representations, therefore
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Figure 5: InfoNCE loss of the two disentangled representa-
tions, where orange lines are the InfoNCE loss between z{
and z$, blue lines are the InfoNCE loss between z} and z5.

the two independent sampled augmentation operators cause
a distribution shift between the two augmentation views.
Given the empirical analysis above, we believe our pro-
posed GCVR can further alleviate the feature suppression
issue with the disentanglement design.

S RELATED WORK

Graph contrastive learning. Contrastive learning was first
proposed in the compute vision field [Chen et al., 2020] and
has raised a surge of interest in the area of self-supervised
graph representation learning. The principle behind con-
trastive learning is to utilize the instance-level identity as
supervision and maximize the consistency between positive
pairs in hidden space through the designed contrast mode.
Previous graph contrastive learning works generally rely on
various graph augmentation techniques [Velickovié et al.,
2019, Qiu et al., 2020, Hassani and Khasahmadi, 2020, You
et al., 2020, Zhao et al., 2023] to generate positive pairs from
original data as similar samples. Recent works in this field
try to improve the effectiveness of graph contrastive learn-
ing by finding a more challenging view [Suresh et al., 2021,
You et al., 2021] or adding adversarial perturbation [Yang
et al., 2021]. However, most of the existing methods suffer
from the feature suppression issue in contrastive learning
[Chen et al., 2021, Robinson et al., 2021, Zhang et al., 2023],
where the predictive features and trivial ones are equally
possible to be omitted during the training phase. Our model
is spared from the issue by proposing corresponding designs
to discern the essential features from those trivial and easily
disturbed ones.

Disentangled representation learning. Disentangled rep-
resentation learning arises from the computer vision field
[Hsieh et al., 2018, Zhao et al., 2021b] to disentangle the

making the representations more robust and interpretable
[Bengio et al., 2013]. This idea has now been widely adopted
in graph representation learning, [Liu et al., 2020, Ma et al.,
2019] utilizes a neighborhood routing mechanism to identify
the latent factors in the node representations. Some other
generative models [Kipf and Welling, 2016, Simonovsky
and Komodakis, 2018] utilize Variational Autoencoders to
balance reconstruction and disentanglement. The study of
learning disentangled representations also outspreads self-
supervised graph learning [Li et al., 2021] by contrasting
the factorized representations. Recent works [Wen et al.,
2022] further demonstrate the impressive robustness and
explainability of disentangled representations in dynamic
graphs. Despite the significant benefit obtained from the
representation disentanglement, the underlined excessive
information could still overload the model, thus resulting in
limited capacities. Our model targets the issue by removing
the redundant information that is considered irrelevant to
the graph property.

Graph information bottleneck. The Information bottle-
neck (IB) [Tishby et al., 2000] has been widely adopted
as a critical principle of representation learning. A repre-
sentation containing minimal yet sufficient information is
considered to be in compliance with the IB principle and
many works [Alemi et al., 2017, Shwartz-Ziv and Tishby,
2017, Federici et al., 2020] have empirically and theoreti-
cally proved that representation agrees with the IB principle
is both informative and robust. Recently, the IB principle is
also borrowed to guide the representation learning of graph
structure data. Current methods [Wu et al., 2020, Xu et al.,
2021a, Suresh et al., 2021, Li et al., 2022] usually design
different regularizations to learn compressed yet informative
representations following the IB principle. We follow the
information bottleneck to learn the expressive and robust
representation in this work.

6 CONCLUSION

In this paper, we study the feature suppression problem in
self-supervised graph representation learning. To avoid the
predictive features being suppressed in learned represen-
tation, we propose a novel model, namely GCVR, which
is designed following the information bottleneck principle.
The cross-view reconstruction in GCVR can disentangle
those more robust and transferable features from those triv-
ial ones. Meanwhile, we also add an adversarial view as the



third view of contrastive learning to guarantee the global
semantics and further enhance representation robustness. In
addition, we theoretically analyze the working mechanism
of our design and derive the objective based on the anal-
ysis. Extensive experiments on multiple graph benchmark
datasets and different settings prove the ability of GCVR
to learn robust and transferable graph representation. In the
future, we can explore how to come up with a practical
objective to further decrease the upper bound of the mutual
information between the disentangled representations and
try to utilize more efficient training strategies to make the
proposed model more time-saving on large-scale graphs.
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A  TRAINING ALGORITHM

In this section, we summarized the details of our proposed method in the following Algorithm.

Algorithm 1 The training algorithm of GCVR

Input: Graph dataset G = {G; = (V;, E,)}f\il, augmentation family 7; loss coefficient \,., A,; ascernt step T'; ascent
step size «; perturbation bound e.
Output: The disentangled predictive representations ZP = {zf }f;l
for each training epoch do
for sampled minibatch B = {Gi}ﬁll do
for G; € Bdo
Zy,; = f (tl(Gi)), Zo; = f (tg(Gi)), where tl('), tg(') eT
21 ;= 9p (21,0) 25 ; = gp (21.)
29, = 9c (21,), 25 ; = gc (21,:)
end for
Calculate L, according to Equation 6
Calculate L;econ according to Equation 8
L~ ‘Cpre + ArLrecon
0o <« U(—¢,¢€)
end for
foreacht = 1to T do
Calculate the £,4, according to Equation 10
Oy «— 041 + aVsLagy Update perturbation to maximize L,qy
L L+ %Ly

end for

Update the parameter § of f and g with the gradient V£ (6, B) over a minibatch;
end for N
ZP = {27}, |, where z; = g, (f(G,))

B OUT-OF-DISTRIBUTION SCENARIO ON GRAPH

In this section, we will illustrate the out-of-distribution scenario in the graph learning task. During molecule property study,
A specific kind of property (e.g., toxicity and lipophilicity) of a molecule is usually dependent on if it has corresponding
sub-structures (termed as functional group). For example, hydrophilic molecules usually have the oxhydryl group (—OH)
Therefore, a well-trained GNN model on molecule graph prediction task is capable of reflecting the sub-structure information
in the graph representation. However, it is usually the case in a real-world scenario that the predictive functional group is
usually accompanied by some irrelevant groups in some environments, thus causing spurious correlations. This correlation
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Figure 6: An out-of-distribution situation in molecule graph prediction task. The casual functional sub-structure (red) are
spuriously correlated with different trivial sub-structures in training and test set. The statistical correlations can lead to poor
robustness and transferability.

Table 4: Statistics of TU-datasets and OGB dataset.

Dataset #Graphs Avg #Nodes Avg #Edges #Class Metric Category
MUTAG 188 17.93 19.79 2 Accuracy biochemical
PTC-MR 344 14.29 14.69 2 Accuracy biochemical
PROTEINS 1,113 39.06 72.82 2 Accuracy biochemical
NCI1 4,110 29.87 32.30 2 Accuracy biochemical
DD 1,178 284.32 715.66 2 Accuracy biochemical
COLLAB 5,000 74.49 2457.78 3 Accuracy  social network
IMDB-B 1,000 19.77 96.53 2 Accuracy  social network
RDT-B 2,000 429.63 497.75 2 Accuracy  social network
IMDB-M 1,500 13.00 65.94 3 Accuracy  social network
ogbg-molhiv 41,127 25.50 27.50 2 ROC-AUC  MoleculeNet

usually leads to poor generalization performance when the model is evaluated in another environment with different spurious
correlations. Figure 6 intuitively demonstrates this kind of scenario, where the red subgraph is the feature we can rely on to
make the casual prediction. But it usually shows up with a green subgraph that does not serve as the functional graph of the
property in the training set. Consequently, the model is easily misguided that the green subgraph is an important indicator of
the property. When we evaluate the model on the testing set where the casual graph is correlated with another kind of group
(yellow subgraph), there usually exists a huge gap between its performances on the two sets.

C SUMMARY OF DATASETS

In this work, we use nine datasets from TU Benchmark Datasets [Morris et al., 2020] to evaluate our proposed GCVR under
the unsupervised setting, where five of them are biochemical datasets and the other four belong to social network datasets.
We also utilize the ogng-molhiv dataset from Open Graph Benchmark (OGB) [Hu et al., 2020a] to further evaluate GCVR
under the semi-supervised setting. Besides, the datasets sampled from MoleculeNet [Wu et al., 2018a] are employed to
evaluate our model under the transfer learning setting. The statistics of these datasets are shown in Table 4 and 5.

All of the eleven datasets are publicly available, we attach their links as follows:

e TU datasets: https://chrsmrrs.github.io/datasets/docs/datasets/
* MoleculeNet datasets: http://snap.stanford.edu/gnn-pretrain/
* ogbg-molhiv dataset: https://ogb.stanford.edu/docs/graphprop/#ogbg-mol
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Table 5: Statistics of MoleculeNet datasets.
Dataset  #Graphs Avg #Nodes Avg Degree #Tasks Metric Category

ZINC-2M 2,000,000 26.62 57.72 - - biochemical
BBBP 2,039 24.06 51.90 1 ROC-AUC biochemical
Tox21 7,813 18.57 38.58 12 ROC-AUC biochemical

ToxCast 8,576 18.78 38.62 617 ROC-AUC biochemical
SIDER 1,427 33.64 70.71 27 ROC-AUC biochemical
ClinTox 1,477 26.15 55.76 2 ROC-AUC biochemical
MUV 93,087 24.23 52.55 17 ROC-AUC biochemical
HIV 41,127 25.51 54.93 1 ROC-AUC biochemical
BACE 1,513 34.08 73.71 1 ROC-AUC biochemical

D IMPLEMENTATION DETAILS

All experiments are conducted with the following settings:

* Operating System: Ubuntu 18.04.5 LTS

CPU: AMD(R) Ryzen 9 3900x

GPU: NVIDIA GeForce RTX 2080ti

 Software: Python 3.8.5; Pytorch 1.10.1; PyTorch Geometric 2.0.4; PyGCL 0.1.2; Numpy 1.20.1; scikit-learn 0.24.1.

We implement our framework with PyTorch and PyGCL library [Zhu et al., 2021]. We choose GIN [Xu et al., 2019]
as the backbone graph encoder and the model is optimized through Adam optimizer. We follow [You et al., 2020, Yang
et al., 2021, Li et al., 2021] to employ a linear SVM classifier for downstream task-specific classification. The graph
augmentation operations used in our work are the same as [You et al., 2020], including node dropping, edge perturbation,
attribute masking, and subgraph sampling, all of them are borrowed from the implementation of [Zhu et al., 2021]. There
are two specific hyper-parameters in our model, namely A, and \,, the search space of them are {0.0, 1.0, 3.0, 5.0, 10.0}
and {0.0,0.25,0.5,0.75, 1.0}, respectively. For other important hyper-parameters, we find the best value of learning rate
from {0.01, 0.005,0.001, 0.0005, 0.0001}, embedding dimension from {32, 64, 128, 256, 512}, number of GNN layers from
{2, 3,4, 5}, batch size from {32, 64, 128, 256, 512} (except for ogbg-molhiv {64, 128,256, 512, 1024}). Besides, we fix the
perturbation bound e, ascent step size «, and ascent step 7" as 0.008, 0.008, and 5 during hyper-parameter fine-tuning. For
the implementation details of transfer learning, we follow the pre-training setting of previous works [You et al., 2020].

E PROOF
E.1 PROOF OF THEOREM 1

Theorem 1. Suppose f(-) is a GNN encoder as powerful as 1-WL test. Let g,(-) elicits only the augmentation information
from z meanwhile g.(-) extracts the essential factors of G from z, and zo. Then we have:

I(t1(G);z5,25) = I (2;25) where G € G and t1(-),t2() € T.

Proof. According to the assumption in Theorem 1, for any two graphs G, G’ € G, if G =~ G’ then we have z = z’, where
z = f(G)andz' = f(G').
Besides, zP = g,(z) is specific to the predictive factors and z° = g.(z) is particular to the non-predictive factors, which

means zP and z¢ are mutually excluded and zP ~ G. So we have,

p(z¥,2°) = p(2") p(2°)

p (a2 | 1G)) = p(2 | HO)) p(a° | H(C). (an

Then, we want to prove that given three random variables a, b and c, if they satisfy p (b,¢) = p(b)p(c) and p (b,c | a) =



p(b|a)p(c|a),wehaveI (a,b|c)=1/(a,b). According to the definition of mutual information, we have,

I(a;b]c)=
Zalzblzclp(a,b,c)logp(a,c)p(b,c)
p(b7c|a)p(c)
_ZZZP p(bre|a)log 7RSS
_ZZZP p(bla)p (C|a)logw -
p(cla)p(b) (12)
- a p(b|a)
ZZP Pl ©To0)
_EEPablog b(|)a)

:I(a;b).

After that, by applying the chain rule to I (t1(G); z5, z5), we have,
I(t1(G); 2y, 25) = 1 (11(G); 25 | 25) + 1 (11(G); 25)

(©) I(t1(G)§ZZ2)) + I (t1(G); z5)

(a)
> I(t1(G); 25)

(b) (13)
> I (2,27;25)

(2 c.
=1 (z4;2 2) +I(zl,z§)

(@) b p
> I(z7;23),
2) . . . . . (@) .. ) )
where = is derived from the conclusion we get in Equation 12, > is based on the non-negativity of mutual information,

®
ie, I(;) = 0, and > is because data processing inequality [Cover, 1999]. Finally, we reach to the lower bound of
I (t1(G); 2z, 2$) in Equation 12, thus we can maximize the consistency between the information we capture from the two
augmentation graph views by minimizing Lpr.

E.2 PROOF OF THEOREM 2

Theorem 2. Assume q is a Gaussian distribution, g, is the parameterized reconstruction model which infer z., from
(20 ,,2,). Then we have:

w's Ly
2
H(zy | 28,,25,) < |2w — gr (28, O 2,)|; where w = w’ or w # w'.
Proof. To reconstruct the entangled representation zw from its corresponding non-predictive representation zg, and the

predictive representation of any augmentation view z!, (w and w’ are not necessarily equal), we need to minimize the
conditional entropy:

H (2w | 20, 20) = ~By(y, 2p ey (108D (20 | 70,0, 25)] (14)

Since the real distribution of p (z,, | z¥,,z¢,) is unknown and intractable, we hereby introduce a variational distribution
q(zy | 2%, 25,) to approximate it. Therefore, we have,

B (auiat, ) H08D (20 | 20 20,)] =

Ep(z,w,z?,,zﬁJ [Iqu (Zw | ZZUZZ))] (15)
+ DKL (p (Zw | Zi,,ZZ}) Hq (Zw | Z{)u’vzicu)) .



Due to the non-negativity of KL-divergence between any two distributions, it 1is safe to say

fIEp(zwzi“z&) [logq(zy | 2,,25,)] is the upper bound of H (z, |z}, zS). Based on the assumption of Theo-
rem 2, let q(z,, | Z¥,,2¢,) being a Gaussian distribution A (z,, | g, (20, © z¢,) ,02I), where g,(-) is the reconstruct
network that predict z,, from (z,, z¢ ) and o is the variance. Thus we have,

H (Zw | Zﬁ)”z'tcv) < _Ep(zw,zi/,zfu) [lqu (Zw ‘ qu/’ z'zcﬂ)]

) 1 1yl lon))
= — § O e’ .
p(Zw-,Zw/ 7Zu7) g 277[0 (16)

2
=—-E » e\ |log ! — (20 — gr (2, ©23)) .
p(zw1zw/7zw) 27lo 20'2]:
Hence, we get the upper bound of H (z,, | z¥,,z¢) as Equation 16. To minimize the value of the unsolvable entropy, we
can instead minimize the value of its upper bound and thereby derive the objective function as follow by neglecting the
constant terms,

. 2
min Ep(zw,zg,,zg) |20 — gr (28, O zg,)]5 - 17

Since we adopt two augmentation views and propose the cross-view reconstruction mechanism in our method, we can
minimize the entropy by minimizing L;.con and thus guarantee the disentanglement of z” and z°.

F IMPACTS OF RECONSTRUCTION LOSS

In this work, we also conduct experiments to compare the effectiveness of different loss computation mechanisms for
reconstruction. Except for the mean square error (MSE) loss in Equation 7, we also include the scaled cosine error (SCE) loss
used in GraphMAE in this experiment. Previous work, like Barz and Denzler [2020], has demonstrated that Mean Squared
Error (MSE) loss is sensitive to data scale, meaning its effectiveness can vary significantly with the range of target values.
In contrast, the Scaled Cosine Error (SCE) utilized in GraphMAE is scale-insensitive, making it particularly effective in
applications where the direction or orientation of vectors is crucial. Consequently, MSE loss is more suitable for regression
problems where magnitude really matters, while cosine similarity loss usually can handle classification tasks better since it
mainly focuses on the angle between vectors. This suggests a potential opportunity for enhancing our model performance on
classification tasks by substituting MSE loss with SCE loss. To further investigate it, we test their effectiveness on four OGB
datasets Hu et al. [2020a], where two of them (ogbg-molbbp and ogbg-moltox21) are classification tasks and the other two
(ogbg-molesol and ogbg-molfreesolv) are regression tasks. The experimental results are shown in Table 6, from which we
can see the results above also support the conclusion drawn in previous works. We believe the choice between MSE loss and
SCE loss depends on the specific requirements of your task and the inherent properties of the data you are working with.

Table 6: Imapcts of different reconstruction loss computation methods.

ogbg-molbbbp ogbg-molbbbp ogbg-molesol ogbg-molfreesolv

GCVR-MSE 70.1+0.8 73.3%0.5 1.112+0.040 4.032+0.575
GCVR-SCE 70.8+1.2 74.240.5 1.225+0.076 4.520 £ 0.680

G HYPER-PARAMETER SENSITIVITY

In this section, we study the impacts of some important hyper-parameters in our method, including reconstruction loss
coefficient \,., adversarial loss coefficient ), embedding dimension d, batch size || and number of GNN layers L. Here,
we select four datasets, i.e., MUTAG, PROTEINS, RDT-B, and COLLAB, to report for simplicity because the four datasets
cover different domains and scales. We illustrate the impacts of these hyper-parameters in the figures below.

From the result demonstrated in Figure 7, we can see the optimal reconstruction loss coefficient A, is different dependent on
the specific dataset, but all the values in our experiment can enhance the performance compared with the non-reconstruction
variant, i.e., A, = 0, indicating the effectiveness of our proposed cross-view reconstruction mechanism.

Figure 8 shows that we could further raise the model performance through adversarial training, which proves a robust
representation with less redundant information usually achieve more performance gain compared with the brittle one.
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Figure 7: Impact of reconstruction loss coefficient A\, on different datasets, we specify the non-reconstruction situation

(A = 0) with the dashed line for comparison.
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Figure 8: Impact of adversarial loss coefficient )\, xon different datasets, we specify the non-adversarial situation (A, = 0)

with the dashed line for comparison.
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Figure 9: Impact of a embedding dimension d and GNN layer number L on different datasets.

During this process, we need to choose an appropriate adversarial loss coefficient ), otherwise a too large A, may hurt
the information sufficiency of the learned representation. We put the impacts of embedding dimension d and GNN layer
number L together because we can find a similar observation from their experimental results. From Figure 9, we observe
that the optimal values of the two hyper-parameters generally increase as the dataset scale increases. The reason behind
this phenomenon could be large datasets usually contain more latent factors than small datasets, therefore a model with a
larger capacity is needed to fit the large datasets. However, such a high-capacity message-passing model will deteriorate the
performance of a small dataset because it may cause the learned representation to over-smoothing and hence less informative.
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