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Abstract

Policy gradient methods have enabled deep rein-
forcement learning (RL) to approach challenging
continuous control problems, even when the un-
derlying systems involve highly nonlinear dynam-
ics that generate complex non-smooth optimiza-
tion landscapes. We develop a rigorous frame-
work for understanding how policy gradient meth-
ods mollify non-smooth optimization landscapes
to enable effective policy search, as well as the
downside of it: while making the objective func-
tion smoother and easier to optimize, the stochas-
tic objective deviates further from the original
problem. We demonstrate the equivalence be-
tween policy gradient methods and solving back-
ward heat equations. Following the ill-posedness
of backward heat equations from PDE theory, we
present a fundamental challenge to the use of pol-
icy gradient under stochasticity. Moreover, we
make the connection between this limitation and
the uncertainty principle in harmonic analysis to
understand the effects of exploration with stochas-
tic policies in RL. We also provide experimental
results to illustrate both the positive and negative
aspects of mollification effects in practice.

1. Introduction
Deep reinforcement learning (RL), especially methods
based on policy gradients (Silver et al., 2014; Lillicrap et al.,
2015; Schulman et al., 2017), has been successfully used
to solve challenging nonlinear control problems (Gu et al.,
2016; Kim et al., 2022). The approach considers control
design as an optimization problem over the parameter space
of the policy, and thus the effectiveness of policy gradi-
ent methods depend heavily on the optimization landscape
in the policy space. Although the global convergence of
policy gradient methods has been established for restricted
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Figure 1. The Gaussian kernel in the policy gradient mollifies the
optimization landscape. However, when the variance σ2 is too
small, the landscape remains highly non-smooth. Conversely, if
the variance is too large, the Gaussian kernel over-smooths the
landscape, eliminating the optimal solution. Both of these lead to
failures in the hopper stand task. Details are avaliable in Section 6.

classes of systems such as linear dynamics or tabular state
spaces (Fazel et al., 2018; Agarwal et al., 2021), its observed
effectiveness for nonlinear systems is not well understood.
In fact, it has been shown that in many control settings, espe-
cially those with chaotic dynamics, the RL formulation can
generate highly non-smooth optimization landscapes (Suh
et al., 2022; Wang et al., 2023) that should challenge the use
of gradient-based optimization methods including policy
gradient. Existing attempts on bridging this gap have mostly
focused on the effectiveness of exploration (Haarnoja et al.,
2018a; Cai et al., 2020). However, while exploration is a
common element in every search-based algorithm, it alone
does not fully explain the success of RL over other schemes
in high-dimensional spaces.

Given that the true gradient of the objective function may
not exist in many robotics systems, we aim to understand
the effectiveness of policy gradient methods through the
analytic perspectives of partial differential equations (PDEs)
and stochastic dynamical systems. We view the Gaussian
noise introduced in the stochastic policies as a smoothing
kernel that mollifies the objective function. Mollification is a
concept in analysis that corresponds to smoothing the sharp
features of a non-smooth function while remaining close to
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the original one. In effect, regardless of whether the original
landscape is smooth or not, policy gradient methods can be
consistently applied to estimate the gradient of the mollified
objective. We draw on PDE theory and establish the equiv-
alence between policy gradient methods and the Cauchy
problem for heat equations. In particular, we show that
training a policy by stochastic policy gradient algorithms
is equivalent to performing gradient ascent for the solution
of the corresponding heat equation in the spatio-temporal
domain. In control problems where deterministic control
policies are expected as the outcome, the RL learning pro-
cess corresponds to a time-reversed heat process. However,
the backward Cauchy problem for heat equations is ill-posed
in terms of the stability of the solution, which becomes less
smooth as time decreases (Höllig, 1983; Kabanikhin, 2008);
this suggests that reducing the variance of stochastic policy
can result in a more non-smooth objective. This effect is
especially pronounced when the MDP is chaotic, causing
the true value function to contain significant high-frequency
components.

Importantly, the results illustrate a fundamental limitation of
policy gradient methods. While the mollification smooths
the optimization landscape, it unavoidably changes the orig-
inal objective. This trade-off can be precisely formulated
by the uncertainty principle from harmonic analysis, as we
visualize in Figure 1. That is, when the variance of the
stochastic policy is too large, the mollified function will
deviate too much from the true objective, which makes the
estimated gradient no longer informative. On the other hand,
if the variance is too small, the mollification effect is weak
and hence leads to another highly-oscillating landscape. In
either case, the training process becomes unstable, suggest-
ing the existence of an optimal variance for the stochastic
policy in policy gradient methods.

Equipped with the theoretical results, we conduct experi-
ments to illustrate how our framework can be applied to
explain both the successes and failures in practice. In partic-
ular, from the view of mollification, we can characterize a
class of control problems where RL algorithms consistently
face challenges: the region of attraction for the optimal pol-
icy is extremely small and thus can be entirely eliminated by
the Gaussian kernel in stochastic policies. It also explains
why policy gradient methods always encounter difficulties
when solving quadrotor-related problems and a detailed
discussion is presented in Section 6.

The contributions of this paper are summarized as follows:

• We establish a framework that builds the connection be-
tween policy gradient methods and heat equations to study
their mollification effects. It provides an explanation why
policy gradient can still yield effective ascent directions
even when the optimization landscape is fractal.

• We analyze the fundamental trade-off of policy gradient
from the perspective of harmonic analysis. In particular, we
demonstrate that the variance of stochastic policies should
be carefully balanced. The training process loses stability if
it is either too small or too large.

• Numerical results are presented to substantiate our theoret-
ical results. We show that policy gradient methods exhibit
limited effectiveness in specific MDPs, such as the quadrotor
system. In these cases, the policy landscape has a spike-like
structure around the optimal policy, which is then filtered
by the mollification effect of policy gradient.

2. Related Work
Optimization Landscapes in RL. When the state space
in an RL problem is assumed to be finite, the corresponding
policy landscape is smooth (though may be non-convex).
This allows for various gradient-based algorithms to con-
verge towards the optimal policy (Agarwal et al., 2021;
Bhandari & Russo, 2021; Xiao, 2022; Zeng et al., 2023).
Similar results can be obtained for some simple continu-
ous state-space MDPs, such as in linear-quadratic regulator
(LQR) (Fazel et al., 2018), linear-quadratic-Gaussian con-
trol (LQG) (Tang et al., 2021) and robust control (Zhang
et al., 2021). For general control settings, however, even
the smoothness of objective function is not guaranteed. In
particular, it has been shown that the variance of the gradient
estimator in chaotic systems is very likely to explode (Par-
mas et al., 2018; Metz et al., 2021) due to the long chain of
non-linear computations. This phenomenon is a reflection
of the fractal structure in both value and policy landscapes
(Wang et al., 2023). There has been work on mitigating the
effect of non-smooth landscapes, such as local smoothing
via Gaussian kernels that act as low-pass filters to block
high-frequency components (Parmas et al., 2018; Suh et al.,
2022; Zhang et al., 2023), as well as reparameterization
techniques (Parmas, 2018; Parmas & Sugiyama, 2021). Our
work contributes to this line by providing a theoretical anal-
ysis of the strengths and limitations of the smoothing effect
produced by policy gradient methods in the case of fractal
landscapes.

Policy Gradient over Non-Smooth Landscapes. It is ob-
served that policy gradient methods can still provide good
solutions when the optimization landscape is non-smooth
or fractal (Lillicrap et al., 2015; Schulman et al., 2015a). A
widely-accepted explanation for its effectiveness is that it
encourages the policy to keep exploring undiscovered, high-
reward actions (Schulman et al., 2017; Cai et al., 2020) that
are out of the current policy distribution, thereby increas-
ing the likelihood of discovering better policies. Various
exploration schemes can be found in actor-critic approaches
(Haarnoja et al., 2018a), Q-learning methods (Sutton &
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Figure 2. Fractal landscapes occur in chaotic MDPs. For instance,
the objective landscape of the double pendulum system as shown
in (a) has a fractal structure, in contrast to the non-chaotic single
pendulum system in (b). Both systems are controlled by determin-
istic neural network policies.

Barto, 1998; Jin et al., 2018) and traditional control algo-
rithms (Shkolnik et al., 2009).

Most deep RL algorithms including policy gradient
can be considered as generalized policy iteration meth-
ods (Williams, 1992; Sutton et al., 1999; Kakade, 2001;
Silver et al., 2014; Schulman et al., 2015a; 2017). Typically,
they consist of two interacting stages: value approximation
and policy improvement. Q-learning is one of the popular
methods in model-free settings (Watkins & Dayan, 1992;
van Hasselt et al., 2016; Hester et al., 2018), aiming to es-
timate the Q-function to guide future actions. Actor-critic
is another framework that interactively updates the value
function and current policy (Konda & Tsitsiklis, 1999; Pe-
ters & Schaal, 2008; Fujimoto et al., 2018; Haarnoja et al.,
2018b). There are also works studying value approximation
from both theoretical and practical sides (Schaul et al., 2015;
Wang et al., 2019; Jin et al., 2020). In this paper, we will
focus on the policy improvement stage and presume that the
value function is exact.

Mollification in Stochastic Optimization. Policy gradi-
ent is not the only domain where stochasticity demonstrates
its strength in mollifying the potentially non-smooth objec-
tive functions. Algorithms in stochastic optimization, as
well as those in zeroth-order optimization, benefit from the
mollification effect. (Wierstra et al., 2014; Shamir, 2015;
Wang et al., 2018; Boţ & Böhm, 2020). Their ability to gen-
eralize the non-smoothness in objective functions, which is
intractable for classical methods, motivates a line of appli-
cations in machine learning (Agarwal et al., 2012; Lin et al.,
2022; Chen et al., 2023).

3. Preliminaries
We consider infinite-horizon MDPs with state space S ⊆ Rn

and action space A = Rm. The initial state s0 is sampled
from distribution ρ0, and at each step k ≥ 0, the action ak

at state sk is obtained from the (stochastic or deterministic)
policy πθ(·|sk), parameterized by θ ∈ RN . The objective
of the RL problem is to maximize the performance metric:

J(θ) = Eak∼πθ(·|sk),s0∼ρ0
[

∞∑
k=0

γkR(sk, ak)] (1)

=

∫
S
ρπθ (s)

∫
A
Qπθ (s, a)πθ(a|s) dads (2)

where γ ∈ (0, 1) is the discount factor and R(s, a) is the
reward function. We will assume that the state space S is
compact and the objective function J(θ) is bounded. In the
integral form above, ρπ(·) is the discounted visitation den-
sity under π (assuming it exists) and Qπ is the Q-function
of π.

Policy gradient methods. The policy gradient theorem
provides an explicit form of the gradient of the performance
objective over the policy parameters that can be estimated
by state-action samples (Sutton et al., 1999):

∇θJ(θ) ∝
∫
S
ρπ(s)

∫
A
Qπ(s, a)∇θπθ(a|s) dads, (3)

Dropping θ from πθ in ρπ and Qπ here is intentional, to
highlight the core of the theorem in showing that the gradient
operator ∇θ only needs to be applied to the πθ(a|s) part of
the integrand (Sutton et al., 1999). It follows that ∇θJ(θ)
can be estimated by

∇θJ(θ) ≃ Ês,a∼πθ
[Aπθ (s, a)∇θπθ(a|s)] (4)

where Aπθ (s, a) = Qπθ (s, a) − V πθ (s) is the advantage
function and V πθ is the value function of πθ (Schulman
et al., 2015b), and Ê denotes sampled mean, which con-
verges to the integral of (3) under some necessary smooth-
ness assumptions.

Fractal landscapes in RL. One fundamental assumption
for policy gradient methods to work is that the objective
function J(θ) does have a gradient, so that (4) can provide
a close estimate of it. This assumption, however, may not
hold when the underlying MDP is chaotic and has a positive
maximal Lyapunov exponent (MLE). Indeed, we have the
following result that characterizes the fractal structure in the
policy space:

Proposition 3.1. (Wang et al., 2023) Assume that the dy-
namics, reward function and policy are all Lipschitz con-
tinuous with respect to their input variables. Let πθ be a
deterministic policy and λ(θ) denote the MLE of the system.
Suppose that λ(θ) > − log γ, then

• V πθ (·) is − log γ
λ(θ) -Hölder continuous;

• J(·) is − log γ
λ(θ) -Hölder continuous.
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Note that a function f(x) is α-Hölder continuous at x if
|f(x)−f(x′)| ≤ K|x−x′|α for some constant K > 0 when
|x− x′| is small, which typically indicates non-smoothness
when α < 1. It reduces to Lipschitz continuity when α = 1.
In general, the true gradient ∇J(θ) may not exist if the MLE
is positive. This prompts us to understand the mechanism
of (4) from the perspective of mollification, rather than
focusing solely on gradient estimation.

Cauchy problem for heat equations. The heat equation,
as known as the diffusion equation, describes the evolution
of the distribution of temperature in the space Rm (Evans,
2010):{

2ut −∆u = 0, (x, t) ∈ Rm × (0,∞)

u = g, (x, t) ∈ Rm × {0}.
(5)

where x ∈ Rm is the position and t ∈ [0,∞) is the time,
u(x, t) is the temperature at (x, t) ∈ Rm, ∆u = ux1x1+...+
uxmxm is the Laplacian of u and g is the initial distribution
of temperature at t = 0. The solution to this PDE system is
given by

u(x, t) =

∫
Rm

g(z)Φ(x− z, t) dz, (6)

where Φ(x−z, t) = 1
(2πt)m/2 e

−∥x−z∥2/2t is the heat kernel.
The solution u(x, t) becomes smooth as t increases, regard-
less of how non-smooth the original function g is. This is
due to the mollification effect of the heat kernel Φ(x− z, t),
as shown in Figure 3 (a).

4. The Dynamics of Policy Improvement
In this section, we will establish the connection between
policy gradient methods and the heat equation. We will fo-
cus on analyzing policies that are parameterized as isotropic
Gaussian distributions, i.e. πθ(a|s) = N (µ(s), σ2Im) for
fixed state s ∈ S , where µ(s) ∈ Rm and σ2Im is the co-
variance matrix with nonzero scalar σ > 0 and Im being
the m ×m identity matrix. Consider the inner integral of
(3), namely

Ls(θ) :=

∫
A
Qπ(s, a)πθ(a|s) da, (7)

which is a mollification of Qπ in the action space and hence
is smooth with respect to θ even in the case of chaotic MDPs.
This is because the policy density function πθ(a|s) works
as a smoothing kernel that mollifies the (often non-smooth)
landscape of Qπ(s, a) in A. Since (7) is where mollification
occurs, we mainly focus on Ls(θ).

To see its connection with the Cauchy problem for heat
equations, let us first ignore the policy parameterization and

(a) (b)

Figure 3. (a) The heat equation smooths the initial temperature
distribution as t increases; (b) The gradient flow of u(µ, σ2) in the
solution space.

only take the mean and variance of πθ into account, i.e.,
assume Ls(θ) = Ls(µ, σ

2) for now, which further has

Ls(µ, σ
2) =

∫
Rm

Qπ(s, z)Φ(µ− z, σ2) dz.

Thus, if we consider µ and σ2 as position and time, respec-
tively, then Ls(µ, σ

2) is exactly the solution of (5). Indeed,
we have the formal connection between them:
Proposition 4.1. Let Ls(µ, σ

2) is given by (7) where
πθ ∼ N (µ, σ2Im), then Ls(µ, σ

2) is the solution of the
heat equation (5).

This connection enables us to analyze the dynamics of policy
gradient methods from the view of PDE theory.

Smoothing by mollication. Essentially, the heat equation
mollifies the solution through the Gaussian kernel, which
acts as a low-pass filter and blocks high-frequency com-
ponents. Consider the one-dimensional case in which we
expand the initial condition g(x) =

∑∞
k=−∞ Bke

ikx in
Fourier series (here we assume its existence for the purpose
of illustration), the solution of (5) is given by

ũ(x, t) =

∞∑
k=−∞

Bke
−k2teikx

where t ≥ 0. Therefore, for any frequency k ∈ Z, the
magnitude of this frequency |Bke

−k2t| decays exponentially
fast as t increases, especially for higher frequencies (larger
k). It means that the heat equation mollifies functions by
suppressing their high-frequency components that cause
fractal structures in the optimization landscape.

Mollified optimization landscape. Understanding that
policy gradient methods are equivalent to performing gradi-
ent descent on the solution u(µ, σ2) in (5) over the (µ, σ2)-
space allows us to better predict the behavior of policy gra-
dient in the solution space of the heat equation (Figure 3(b)).
In particular, an important property of the heat equation is
the strong maximum principle:
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Proposition 4.2 (Strong Maximum Principle (Evans, 2010)).
Let u be the solution of (5). Suppose that (x0, t0) ∈ Rd ×
(0,∞), then for any δ1 > 0 and δ2 ∈ (0, t0), exactly one of
the following statements is true:

(I) There exists (x′, t′) ∈ B(x0, δ1)× (t0− δ2, t0) such that
u(x′, t′) > u(x, t);

(II) u is constant in B(x0, δ1)× [0, t0].

This results states that for any (x0, t0), it cannot be a strict
local maximum of u(x, t) when t0 > 0. Following the
equivalence shown in Proposition 4.1, we see that for any
mean-variance pair (µ, σ2) with some positive t, there al-
ways exists at least one increasing direction in a neighbor-
hood of (µ, σ2). It also explains why policy gradient algo-
rithms can improve the performance even in the case that
the true optimization landscape is fractal. The convergence
modes of policy gradient follow from the connection:

Theorem 4.3. Let πθ be an isotropic Gaussian policy
N (µ, σ2Im). Suppose that ∇(µ,σ2)Ls(µ, σ

2) = 0, then
either πθ is deterministic, or πθ is stochastic and θ is not
a strict local maximum of Ls(θ). Then exactly one of the
following statements holds:

(I) πθ is deterministic;

(II) πθ is stochastic and θ is not a strict local maximum of
Ls(θ).

Proof. Suppose that the policy is stochastic, i.e., σ > 0. Ac-
cording to Proposition 4.2, for any δ1, δ2 > 0, Ls(µ, σ

2) is
either constant in B(µ0, δ1)× [0, σ2

0 ], or there exists another
[µ′, σ′2] ∈ B(µ, δ1)× (σ2 − δ2, σ

2), which implies that πθ

cannot be a strict local maximum of Ls(θ).

Similar results can be obtained for the gradient-descent case
using the Strong Minimum Principle. In other words, if
policy gradient converges toward a strict local maximum
of Ls(µ, σ

2), we know that the final policy must be deter-
ministic. It confirms the appropriate use of policy gradient
methods in continuous control problems, where the control
policy used in practice should be deterministic.

Policy parameterization. In policy gradient methods,
the mean of the Gaussian policy is typically parameter-
ized through some differentiable representation, namely
µ = µ(s0; ζ) where ζ ∈ RN0 denotes the parameters in
the representation, such as weights and biases in a neural
network. In this case, we have θ = [ζ, σ2] as the policy
parameters. Note that

∇ζLs(ζ, σ
2) = ∇µu(µ(s0; ζ)

∂µ

∂ζ

∣∣∣
s=s0

,

where ∂µ
∂ζ is the Jacobian matrix of µ with respect to the

parameter ζ, and the full gradient is given as

∇θLs(θ) = [∇µu(µ(ζ), t)
∂µ

∂ζ

∣∣∣
s=s0

, uσ2(µ(ζ), σ2))]T .

(8)
Therefore, the degeneracy of the parameterization µ(s0; ζ)
plays a crucial role in analyzing the gradient flow of (8):
given an arbitrary initial state s0, the Jacobian ∂µ(s;ζ)

∂ζ

∣∣∣
s=s0

is a linear transformation from the action space A = Rm

to the representation parameter space RN0 . This mapping
is non-degenerate if it is injective, i.e., ker ∂µ

∂ζ

∣∣∣
s=s0

= {0},

which establishes a one-to-one correspondence between the
gradient flow in Theorem 4.3 and in the new parameteriza-
tion space RN0 :
Theorem 4.4. Let πθ(·|s0) ∼ N (µ, σ2Id) be an isotropic
Gaussian policy where µ = µ(s0; ζ) is parameterized by

ζ ∈ RN0 . Also, assume that ∂µ
∂ζ

∣∣∣
s=s0

is injective. Suppose

that ∇θLs0(θ) = 0 where θ = [ζ, σ2]T , then exactly one of
the following statements holds:

(I) πθ is deterministic;

(II) πθ is stochastic and θ is not a strict local maximum of
Ls0(θ).

This result also encourages the use of complex representa-
tions, such as neural networks, since the more parameters
they contain, the more likely the Jacobian ∂µ(x;ζ)

∂ζ

∣∣∣
x=s

is
to be non-degenerate for arbitrary s0 ∈ S. For the whole
gradient estimator ∇θĴ , the component ∇ζ Ĵ is given by

∇ζ Ĵ =

∫
S
ρπ(s)∇ζLs(θ) ds

=

∫
S
ρπ(s)∇µu(µ(s; ζ), t)

∂µ(x; ζ)

∂ζ

∣∣∣
x=s

ds,

where ρπ(s) acts as a weighting function on ∇θLs(θ). It
should note that the results in Theorem 4.4 no longer hold
true, as the gradient directions at different states may cancel
out. Therefore, while we can still have a gradient estimate
even if the true policy objective is non-differentiable, there
is no guarantee that policy gradient algorithms will converge
towards some good solutions in general.

Anisotropic Gaussian distributions. Now let us con-
sider the case of diagonal covariance matrices Σ =
diag(r1, ..., rm) with r1, ..., rm > 0, which is a common
practice in most policy gradient methods (Schulman et al.,
2015a; 2017). Similar to heat equations, we will show that
the strong maximum principle still holds for (9). Let t ≥ 0
and consider the following parabolic equation

ut −
1

2

m∑
i=1

ri uxixi
= 0, (9)
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which has u(µ, t) = Ls(µ, tr), where r = [r1, ..., rm]T .
According to the maximum principle of parabolic equations
(Evans, 2010), the same claims as in Proposition 4.2 hold
for (9). Since any small neighborhood of the point (µ, 1)
can always be embedded into a neighborhood of (µ, r), we
have proved the following result:
Theorem 4.5. Let πθ be a Gaussian policy N (µ, diag(r))
with diagonal covariance matrix where r = [r1, ..., rm]T

is independent of states. Suppose that ∇(µ,r)Ls(µ, v) = 0,
then exactly one of the following statements holds:

(I) ri = 0 for some i = 1, ...,m;

(II) ri are all positive and θ is not a strict local maximum of
Ls(θ).

5. The Limitations of Mollification
In the previous section, we have shown that policy gradi-
ent methods are closely related to the heat equation whose
solution mollifies the initial condition and hence enables
gradient-based algorithms. In this section, we will move
to analyze the downsides of mollification effects and de-
scribe the fundamental trade-off of policy gradient methods
between smoothing and approximating.

5.1. Convergence to deterministic policies

In control tasks, the policy gradient is expected to converge
towards some deterministic policy, which prompts us to
ask whether there exists a smooth gradient flow in a neigh-
borhood of Rm × {0} in the (µ, σ2)-space. Unfortunately,
the answer is NO in the general case: as the heat equation
makes the solution smoother and smoother as t increases,
moving backwards in time will make u(x, t) less smooth,
as illustrated in Figure 3 (a). In other words, the gradi-
ent flow can be smoothly extended to Rm × {0} only if
limt→0+

∫
Rm g(z)∂Φ(x−z,t)

∂t dz exists for every x ∈ Rm,
which is true for smooth functions and is discussed in Ap-
pendix D. However, the solution can become highly non-
smooth when approaching t = 0 if g is non-differentiable
and even fractal. For instance, the following result shows
how complex the fractal landscape can be in the one-
dimensional case:
Proposition 5.1. [Theorem 1.2, (Posey & Vaughan, 1986)]
Let η ∈ C(R) be nowhere differentiable in [a, b], then the
set of its local maximum (minimum) is dense in [a, b].

It suggests that in the case of fractal landscapes, there are
so many local maximum points that it is challenging to
determine where policy gradient converges towards. The
gradient flow also loses stability as the policy approaches a
deterministic limit, and even a small perturbation may result
in a totally different trajectory in the policy space.

In fact, reaching the initial condition u(x, 0) from a future

time t = T > 0 involves solving the backward heat equation
(Renardy & Rogers, 1993):{

2ut +∆u = 0, (x, t) ∈ Rm × (−∞, T )

u = gT , (x, t) ∈ Rm × {T}.
(10)

where gT = u(x, T ) is the solution at time t = T . It is well-
known in PDE theory that (10) is ill-posed (Kabanikhin,
2008). The physical intuition is that we cannot reverse
diffusion, which is an information-losing process over time.
Indeed, a PDE system is called ill-posed if it does not have a
solution, or the solution is not unique, or if the solution does
not change continuously with respect to the initial (terminal)
conditions.

To better understand the ill-posedness of (10), the following
theorem states that an arbitrarily small perturbation of the
terminal condition gT can preclude the existence of the
solution:

Theorem 5.2 (Ill-posedness around deterministic policies).
For any σ > 0, terminal condition gσ2 ∈ L2(Rm) and ϵ >
0, there exists g′σ2 ∈ L2(Rm) with ∥gσ2 − g′σ2∥L2(Rm) < ϵ
and the solution of (10) does not exist for the terminal
condition u(µ, σ2) = g′σ2 .

The complete proof can found in Appendix C. This result
suggests that policy gradient methods are inherently ill-
posed when reducing the variance. In this sense, even a
small perturbation of the current state may significantly
change the limit to which it converges.

Existence of optimal variance. It has shown that as the
variance σ2 decreases, the mollified surrogate objective be-
comes less smooth and eventually converges to the fractal
landscape of deterministic policy. On the other hand, note
that the term Qπ(s, a)πθ(a|s) is a random variable with
a ∼ πθ(·|s), the variance of Qπ(s, a)πθ(a|s) will grows
as well and the training process becomes more random as
σ increases. For instance, consider the gradient-ascent al-
gorithm Xk+1 = Xk + δGk where Gk is the estimated
gradient and δ > 0 is the stepsize. Suppose that we just
obtained Xk, the conditional variance of the next parameter
is given as V ar(Xk+1|Xk) = δ2 V ar(Gk) (here we used
V ar(Xk|Xk) = 0), which means that the uncertainty in
the gradient will propagate into the optimization parame-
ters, and eventually affect the stability of the training curve.
Combining these two facts together hints that there should
exist an optimal value of σ for the policy gradient and we
conclude with the following assertion:

Remark 5.3. For chaotic MDPs where the optimization
landscapes are fractal, there exists an optimal variance σ∗

for the Gaussian policy that minimizes the uncertainty in
training.
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(a) (b) (c) (d)

Figure 4. Hopper stand: the hopper failed to learn standing when σ = 0.005.

(a) (b) (c) (d)

Figure 5. Hopper stand: the hopper successfully learned to stand when σ = 0.05.

5.2. The uncertainty principle

The uncertainty principle, also known as the Heisenberg
uncertainty principle, is a fundamental underlying law in
harmonic analysis. It states that a function and its Fourier
transform cannot be localized at the origin simultaneously.
First, let us present the definition of Fourier transform:

Definition 5.4 (Fourier transform). Let ϕ ∈ S(Rd) belong
to the space of rapidly decreasing functions on Rd that
consists of all indefinitely differentiable functions f on Rd

such that sup |xα( ∂
∂x )

βf(x)| < ∞ for all multi-index α
and β, then the Fourier transform of ϕ is defined as

F(ξ) =

∫
Rd

ϕ(x)e−2πi⟨x,ξ⟩ dx, ξ ∈ Rd,

where ⟨x, ξ⟩ is the inner product of x and ξ.

An important property connecting Fourier transform and
convolution is that F(ϕ1 ∗ ϕ2) = F(ϕ1)F(ϕ2) for any
ϕ1, ϕ2 ∈ S(Rd). As mentioned in Section 4, ϕ̂ describes the
frequency and thus the non-smoothness of ϕ. The rigorous
formulation of the uncertainty principle is given as follows:

Proposition 5.5 (Uncertainty Principle (Stein & Shakarchi,
2003)). If ϕ ∈ S(Rd) satisfies

∫
Rd |ϕ(x)|2 dx = 1, then

(

∫
Rd

|x|2|ϕ(x)|2 dx)(
∫
Rd

|ξ|2|ϕ̂(ξ)|2 dξ) ≥ d2

16π2
, (11)

where ϕ̂ is the Fourier transform of ϕ and S(Rd) denotes
the space of rapid decreasing functions. The equality holds
when ϕ is a Gaussian function.

To see how it is related to the mollification, let us con-
sider the probability density function ϕ(x) ∈ S(Rd). Let

g(a) = Qπ(s0, a) for simplicity, the convolution g ∗ ϕ is
close to g when ϕ concentrates at x = 0, i.e., the quan-
tity

∫
Rd |x|2|ϕ(x)|2 dx is small. On the other hand, g ∗ ϕ is

smooth when ϕ̂ concentrates at ξ = 0, which is equivalent to
having small

∫
Rd |ξ|2|ϕ̂(ξ)|2 dξ. However, the uncertainty

principle prohibits us to achieve these two things at the
same time, which leads to a fundamental limitation: when
the policy gradient mollifies and explores the landscape, it
inevitably increases the risk of over-smoothing in the mean-
time. In particular, if the region of attraction of the optimal
policy is small, the Gaussian kernel in policy gradient may
completely eliminate that region and the problem will be-
come unsolvable (see Planar quadrotor balance experiment
in Section 6 for details). Therefore, policy gradient methods
are inherently limited when reducing the variance to zero,
fundamentally challenging their applications in control and
robotics.

6. Experiments
In this part, we will apply the theory established in previous
sections to explain when policy gradient methods can/cannot
solve certain control problems. The controls are linearly
parameterized as u = −Ks + b in the planar quadrotor
task, and u = −Ks in the double pendulum example. The
optimal solution to those problems are obtained using the
LQR method in optimal control. In the hopper stand task,
we use a 2-layer neural network as controller. More details
of experiments are provided in Appendix F and G.

Hopper stand. We begin with a standard example in the
OpenAI GYM documentation (Brockman et al., 2016). As
shown in Figure 6(e), the policy landscape for a randomly

7
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initialized policy is fractal due to the chaoticness in the
underlying dynamics. To penalize any deviation from the
balanced standing position, we apply a negative quadratic
cost so that the total reward is always non-positive. Here
we conduct 4 sets of parallel experiments with different
standard deviations for the Gaussian policy, and each set is
repeated across five random seeds.

In Figure 6 (a), the resulted variance of the return sequence
{J(θk)}100k=0 is even greater when σ = 0.005. This is at-
tributed to the weak mollification effect, resulting in an
optimization landscape very close to the fractal landscape
generated by the deterministic policy. It shows that both
σ = 0.05 and σ = 0.5 achieve nice and stable performance
than the other two standard deviations, which agrees with
the statement in Section 5 that the variance of stochastic
policies cannot be too large or too small. The behaviors
of the hopper in simulation are presented in Appendix G,
and we can observe that the policy gradient with a standard
deviation of σ = 0.05 discovers a policy that successfully
stabilizes the hopper.

In Figure 6 (f), after 100 epochs, the trained policy entered
into a smooth region which corresponds to a stable dynamics
of the hopper, compared to the fractal landscape around the
initial policy θ0 in (e). It demonstrates that policy gradient
is capable of guiding chaotic environments towards stability
in some tasks with a proper sampling variance.

Double pendulum stabilization. It is well-known that
the double pendulum system can exhibit chaotic behavior
which leads to a fractal optimization landscape. In this
experiment, we adopt the dynamics from (Chang et al.,
2019) and the initial policy θ0 = [K0, b0]

T is selected to be
close to the stabilizing region, but still generates an unstable
trajectory. The initial state s0 = [−0.2, 0.2, 0, 0]T and the
reward function is quadratic. As depicted in Figure 7 (a),
the trained policy successfully stabilizes the system towards
the origin (upright position) after 50 epochs. As in Figure 7
(b), the Q-function landscape of the trained policy θ50 is
smooth, indicating that the system is well-behaved. This
example suggests a scenario where policy gradient methods
can exhibit its full strength: fine-tuning an initial policy that
is close enough to the desired policies.

Planar quadrotor balance. Now let us evaluate the hard-
ness of the balance task of the planar quadrotor system
(Tedrake), and we will understand it from the view of mol-
lification effects. Consider the control system where the
two control inputs u1, u2 are the propelling force provided
by motors. The main difficulty of balancing the quadrotor
horizontally via RL algorithms is that the policy must learn
to generate equal control inputs at two propellers, otherwise
the quadrotor will immediately flip and fall. Therefore, even
a slight deviation from the balanced control results in a sig-
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Figure 6. Hopper: Training curves with different standard devia-
tions: (a) σ = 0.005; (b) σ = 0.05; (c) σ = 0.5; (d) σ = 5. The
x-axis is the number of epochs and the y-axis is the total reward.
We can see that training is successful when the variance is neither
too small nor too large (σ = 0.05 and 0.5); (e) policy landscapes
around the initial policy θ0; (f) policy landscapes around the fi-
nal policy θ100. When generating the landscapes, σ = 0.05 is
employed and we use the deterministic version of the policy for
plotting.
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Figure 7. Double pendulum: (a) the trained policy successfully
stabilizes the double pendulum system towards the origin, while
the initial policy does not; (b) the Q-landscape Qπ(s0, a) of the
trained policy in action space.

nificant divergence in the trajectory, which means that the
landscape around the optimal solution is highly non-smooth
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as shown in Figure 8 (a) despite the dynamics of quadrotor
is not chaotic. In particular, the objective landscape has
a spike at the origin (the optimal policy), which behaves
like a high-frequency signal in contrast to the surrounding
landscape.
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Figure 8. Planar quadrotor: (a) the policy landscape around the
optimal policy θ∗ is a spike, which is then easily eliminated by
the Gaussian kernel in the policy gradient; (b) the training curve
immediately falls after one epoch even the initial policy has already
been optimal.

As a consequence, even if we run the policy gradient algo-
rithm with the initial policy θ0 = θ∗ (the optimal policy),
the training curve immediately drops after one epoch and
never returns to the optimal policy θ∗ as shown in Figure 8
(b). This phenomenon is explained by the theoretical results
in Section 5 that the optimal solution is a high-frequency
noise and is filtered by the Gaussian kernel in policy gra-
dient. Traditional control methods presume that the torque
applied to the two motors must be equal, while model-free
RL algorithms have to figure this out via trial and error,
which leads to the aforementioned problem.

7. Concluding Remarks
A theoretical framework for understanding the mollification
effect of policy gradient methods is proposed in this paper.
From this perspective, we demonstrate that the mollification
effect of policy gradient can be both advantageous and a
bottleneck, depending on the practical cases in which it is
applied and how the algorithm is implemented. Given that
there are some control problems where policy gradient can
almost filter the true solution as high-frequency noise, its
strength should not be overestimated. Hence, a systematic
understanding of the role RL should play in control and
robotics needs to be established in the future.
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A. Convolution
We introduce some fundamental concepts in Fourier analysis. Let L1(RN ) = {f : RN → RN :

∫
D
|f | < ∞} denote the

space of integrable functions, and let L∞(RN ) = {f : RN → RN : |f(x)| ≤ M a.e. x ∈ RN for some M > 0} denote
the space of essentially bounded measurable functions.

Notation. To avoid any possible ambiguity, we collect the notations below for later reference. Unless mentioned otherwise,
let U ⊂ RN be an open set, and we have:

• C∞
c (U): The space of infinitely differentiable functions ϕ : U → R with compact support in U (i.e., the set

{θ ∈ RN : ϕ(θ) ̸= 0} is a compact subset of U ).

• L1
loc(U): The space of locally integrable functions on U (v ∈ L1

loc(U) means that for any compact set K ⊂ U , ϕ is
integrable on K).

• B(x, r): The open ball of radius r > 0 centered at x.

• S(Rd): The space of rapid decreasing functions that consists of all indefinitely differentiable functions f on Rd such
that sup |xα( ∂

∂x )
βf(x)| < ∞ for all multi-index α and β.

The convolution operator is defined as:

Definition A.1 (Convolution). Suppose that ϕ1 ∈ L1(RN) and ϕ2 ∈ L∞(RN), then their convolution ϕ1 ∗ ϕ2 ∈ L∞(RN)
is defined by

(ϕ1 ∗ ϕ2)(x) =

∫
RN

ϕ1(y)ϕ2(x− y) dy.

An important property of convolution is that for any variable xi, the partial derivative satisfies

∂(ϕ1 ∗ ϕ2)

∂xi
=

∂ϕ1

∂xi
∗ ϕ2 = ϕ1 ∗

∂ϕ2

∂xi

which implies that ϕ1 ∗ ϕ2 is smooth as long as one of ϕ1 and ϕ2 is smooth. In particular, we have ∇(ϕ1 ∗ ϕ2) = ϕ1 ∗ ∇ϕ2

when ϕ2 is smooth.

B. The Initial State Distribution ρ0

Here we briefly discuss why the distribution of initial states does not affect the smoothness of the original objective too
much. To demonstrate this, let us rewrite the value function V πθ (s) as V (s; θ) to emphasize its dependence on θ. Then, the
objective function is given by

J(θ) =

∫
V (s; θ)ρ0(s) ds.

Thus, if J(θ) is differentiable, we will be able to push the differentiation inside the integral as ρ0 is independent of θ, i.e.,

dJ

dθ
=

∫
∂V (s; θ)

∂θ
ρ0(s) ds. (12)

Therefore, the smoothness of J(θ) is closely associated with the differentiability of V (s, θ) regardless of the distribution
ρ0. On the other hand, if the value function V (s; θ) is not differentiable in θ-space for all s ∈ S where S ⊂ Rn is a set of
positive measure, dJ

dθ no longer exists as the integral on the right-hand side of (12) diverges.

C. Proof of Theorem 5.2
Proof. Without loss of generality, we assume m = 1. Since heat equations are linear, it suffice to prove the case of gT ≡ 0
where T = σ2.
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Note that for any terminal condition ϕ ∈ L2(R), the solution of (10) is given by

u′(x, t) =
1√

2π(T − t)

∫
R
ϕ(z)e

|x−z|2
2(T−t) dz.

Now let g′T (x) =
ϵ
2e

− |x|
2 so that ∥g′T ∥ = ϵ√

2
< ϵ, and for any t < T and x ∈ R, we have

1√
2π(T − t)

∫
R
g′T (z)e

|x−z|2
2(T−t) dz =

ϵ

2

1√
2π(T − t)

∫
R
e

|x−z|2
2(T−t)

− |z|
2 dz

≥ ϵ

2

1√
2π(T − t)

∫ ∞

0

e
(z−x)2

2(T−t)
− z

2 dz

≥ ϵ

2

1√
2π(T − t)

∫ ∞

0

e
x2−(x+T−t

2
)2

2(T−t) dz

= ∞,

which implies that the solution u′(x, t) does not exist and we complete the proof.

D. Lipschitz Continuous Objectives
In Section 5, we have seen that the existence of limt→0 u(x, t) depends on the smoothness of initial condition g. However,
for many problems such as finite state-space MDPs in RL, the objective function is locally Lipschitz continuous. In this
section, we will first introduce the notion of weak derivatives from the distribution theory (Rudin, 1991), then prove the
gradient estimated by policy gradient methods converges to the weak derivative of objective function. Consider the mollified
objective function

F (µ, σ) = f ∗ pσ(µ). (13)

where pσ(µ) is the Gaussian distribution with mean µ and covariance σ2I. The definition of weak derivatives that extends
the notion of conventional derivatives:

Definition D.1. (Weak derivative) Assume U ⊂ RN is open. Suppose that u, v ∈ L1
loc(U) and β ∈ Λ(N). We say that v is

the βth-weak partial derivative of u, written as Dβu = v, if

∫
U

uDβϕ dx = (−1)|β|
∫
U

vϕ dx

for all ϕ ∈ C∞
c (U), where Dβϕ gives the corresponding βth-conventional partial derivative of ϕ and Λ(N) = ZN is the

set of multi-indices of dimension N , that is, every β = (a1, ..., aN ) ∈ Λ(N), |β| = a1 + ...+ aN .

The following example gives an idea of how weak derivatives are related to strong derivatives:

Example D.2. Consider the function u(x) = |x| where x ∈ U = (−1, 1), and define

v(x) =

{
1, x ≥ 0

−1, x < 0.

Now let us show Du = v using the preceding definition, that is, for any ϕ ∈ C∞
c (U), we need to prove

∫ 1

−1

uϕ′ dx = −
∫ 1

−1

vϕ dx =

∫ 0

−1

ϕ dx−
∫ 1

0

ϕ dx.
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Applying the integration by parts, it yields∫ 1

−1

uϕ′ dx = −
∫ 0

−1

xϕ′ dx+

∫ 1

0

xϕ′ dx

= ϕ(1)−
∫ 1

0

ϕ dx− ϕ(−1) +

∫ 0

−1

ϕ dx

=

∫ 0

−1

ϕ dx−
∫ 1

0

ϕ dx

= −
∫ 1

−1

vϕ dx

where we use the fact that ϕ ∈ C∞
c (U) (thus ϕ(−1) = ϕ(1) = 0) at the third equality.

Then we will see that the gradient estimated by policy gradient methods converges to the weak gradient of the true objective
function as σ → 0 when f(θ) is globally Lipschitz continuous:

Theorem D.3. Suppose that f is globally Lipschitz in U ⊂ RN and uniformly bounded over RN where U ⊂ RN is a
bounded open set. Let Dαiu denote the first-order derivative with respect to xi, then

• f ∗ pσ → f , a.e.;

• ∂(f∗pσ)
∂xi

→ Dαif , a.e.;

as σ → 0.

Indeed, it explains why policy gradient methods work sufficiently well in finite-space problems (Agarwal et al., 2021). On
the other hand, if the objective function is locally Lipschitz continuous but not uniformly bounded, the convergence is not
guaranteed as the function diverges fast as ∥θ∥ → ∞ as shown in the following example:

Example D.4. Consider the function f(x) = ex
3

and pσ(x) =
1

σ
√
2π

e−
x2

2σ2 is a Gaussian kernel. where x ∈ R and σ > 0.
Apparently, f is locally Lipschitz continuous. However, the integral∫ ∞

−∞
f(x) pσ(y − x) dx =

1

σ
√
2π

∫ ∞

−∞
3x2e(x

3− (y−x))2

2σ2 ) dx = ∞.

Thus, f ∗ pσ does not exist for all σ > 0.

It indicates a fundamental drawback of Gaussian kernel: even though the objective function f is smooth in a neighborhood
of every policy parameter θ, the mollification f ∗ pσ may blow up if f diverges exponentially fast at infinity. Therefore, a
local gradient estimator may be a better choice in this case:

Definition D.5. (Bump function) For any σ > 0, let ησ ∈ C∞(RN ) be defined by

ησ(x) =

{
C exp( 1

|x|2−σ2 ), |x| ≤ σ

0, |x| > σ.
(14)

where the constant C > 0 is selected so that
∫
RN ησdx = 1.

Unlike Gaussian kernel which uses information from the entire space, bump function samples data from a small neighborhood
of θ0. However, as we mentioned in previous sections, Gaussian kernels suffer from two problems: first, the computational
budget may not allow one to sample trajectories as many as they want, which leads to a significant sample bias when the
variance is large; second, as a non-local estimator, Gaussian kernel samples data from the entire space so that the region of
high loss/frequency may affect the estimate of local behavior. Therefore, using bump functions to estimate search directions
may be a better option in such cases. The convergence result for locally Lipschitz continuous functions is established as
follows:

14
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Theorem D.6. (Evans, 2010) Suppose that f is locally Lipschitz in some open set U ⊂ RN . Let Dαiu denote the first-order
derivative with respect to xi, then

• f ∗ ησ → f almost everywhere;

• ∥Dαif − ∂(f∗ησ)
∂xi

∥L2(U) → 0;

as σ → 0.

E. Proofs Omitted in Section D
The following lemma will be helpful:
Lemma E.1. (Lebesgue Differentiation Theorem, (Stein & Shakarchi, 2003)) Let f : RN → R is locally integrable, then
for a.e. x0 ∈ RN , it has

• 1
V ol(B(x0,r))

∫
B(x0,r)

f dx → f(x0) as r → 0;

• 1
V ol(B(x0,r))

∫
B(x0,r)

|f(x)− f(x0)| dx → 0 as r → 0;

where B(x0, r) is the open ball of radius r centered at x0 and V ol(B(x0, r)) is the volume of the ball.

Specifically, a point x0 at which 1
V ol(B(x0,r))

∫
B(x0,r)

|f(x)− f(x0)| dx → 0 as r → 0 is called a Lebesgue point of f .

Proof of Theorem D.3: (a) Suppose that θ0 ∈ RN is a Lebesgue point of f . Let |f(θ)| ≤ M for all θ ∈ RN , then for any
ϵ > 0, there exists K > 0 such that∫

|θ−θ0|≥r

|f(θ)− f(θ0)| pσ(θ0 − θ) dθ ≤ 2M

∫
|θ−θ0|≥r

pσ(θ0 − θ) dθ <
ϵ

2
(15)

for all r ≥ Kσ and σ > 0, which is possible because pσ is a Gaussian density function. According to Lemma E.1, there
exists r0 > 0 such that for any r < r0,

1

V ol(B(θ0, r))

∫
|θ−θ0|<r

|f(θ)− f(θ0)| dθ <
ϵ

2

(2π)
N
2

C(K + 1)N

where C = V ol(B(x0,r))
rN

depends only on the dimension N .

On the other hand, the integral over B(x0, r) is bounded by∫
|θ−θ0|<r

|f(θ)− f(θ0)| pσ(θ0 − θ) dθ =
1

(2π)
N
2 σN

∫
|θ−θ0|<r

|f(θ)− f(θ0)| e−
|θ−θ0|2

2σ2N dθ

≤ 1

(2π)
N
2 σN

∫
|θ−θ0|<r

|f(θ)− f(θ0)| dθ

≤ 1

(2π)
N
2 σN

ϵ

2

(2π)
N
2

(K + 1)N
rN

≤ ϵ

2
(

r

(K + 1)σ
)N

In particular, plugging r = (K + 1)σ into the last inequality yields∫
|θ−θ0|<r

|f(θ)− f(θ0)| pσ(θ0 − θ) dθ <
ϵ

2
(16)

when σ < r0
K+1 . Combining (15) and (16) yields∫

RN

|f(θ)− f(θ0)| pσ(θ0 − θ) dθ < ϵ.

15
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Since |f ∗ pσ(θ0)− f(θ0)| ≤
∫
RN |f(θ)− f(θ0)| pσ(θ0 − θ) dθ, using the fact that Lebesgue points are almost everywhere

in RN completes the proof.

(b) According to the Rademacher’s Theorem, f is differentiable almost everywhere in U where U ⊂ RN is an open set. For
each xi, applying the definition of weak derivative yields

Dαi(f ∗ pσ)(θ) = (Dαif) ∗ pσ(θ) (17)

for a.e. θ ∈ U since weak derivatives coincide with strong derivatives when the function is smooth. Specifically, the
right-hand side of (17) exists because f is globally Lipschitz continuous so that Dαif is bounded almost everywhere (and
hence Dαif ∈ L∞(RN )), which implies that the integral

∫
RN (Dαif)(y − x) pσ(x) dy exists.

Applying the result of part (a) completes the proof.

16
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Quadrotor Double pendulum Hopper

Batch 16 16 32
Epoch 50 50 100
Horizon 1000 1000 1000
Discount factor 0.99 0.99 0.99

Table 1. Hyperparameters for experiments.

Coordinate Observation

s2 Angle of the torso
s3 Angle of the thigh joint
s4 Angle of the leg joint
s5 Angle of the foot joint
s6 Horizontal velocity the torso
s7 Vertical velocity the torso
s8 Angular velocity of the angle of the torso
s9 Angular velocity of the angle of the thigh hinge
s10 Angular velocity of the angle of the leg hinge
s11 Angular velocity of the angle of the foot hinge

Table 2. What the coordinates correspond to.

F. Details of experiments
The hyperparameters used in Section 6 is summarized in Table 1. Note that all gradients are normalized.

F.1. Hopper stand

Regarding the controller, we use a 2-layer neural network u = W2 tanhW1s where the width of the hidden layer is 16. the
activation function is tanh. The reward function R(s, a) = −(s22+s23+s24+s25+0.1 (s26+s27+s28+s29+s210+s211))−0.001 |a|2
where the coordinates are specified as in Table 2. The stepsize for policy update in each epoch is δ = 1.

F.2. Double pendulum

The dynamics of double pendulum (Figure 9 (b)) is solved from the manipulation equation

M(q) q̈ + C(q, q̇) q̇ = τ(q) +Bu

where

M(q) =

[
I1 + I2 +m2l

2
1 + 2m2l1lc2 cos(θ2) I2 +m2l1lc2 cos(θ2)

I2 +m2l1lc2 cos(θ2) I2

]
, q =

[
θ1
θ2

]
, B =

[
1 0
0 1

]
,

C(q, q̇) =

[
−2m2l1lc2 sin(θ2)θ̇2 −m2l1lc2 sin(θ2)θ̇2
m2l1lc2 sin(θ2)θ̇1 0

]
,

τ(q) =

[
−m1glc1 sin(θ1)−m2g(l1 sin(θ1) + lc2 sin(θ1 + θ2))

−m2glc2 sin(θ1 + θ2)

]
, u =

[
u1

u2

]
with I1 = I2 = 0.1,m = 0.15, g = 9.81, l1 = l2 = 0.5, lc1 = lc2 = 0.25. The controller u = −Ks is linear and the initial
feedback gain matrix is

K0 =

[
−20 −20.0854 −21.4826 −10.0516

−18.22 −19.143 −9.2905 −6.6695

]
.

The reward function is R(s, a) = 5(θ21+θ22)+0.5(θ̇21+θ̇22)+0.00005|a|2. The stepsizes for simulation and policy updates are
∆t = 0.01 and δ = 1. The control inputs are saturated, i.e., u = [max{−10,min{u1, 10}},max{−10,min{u2, 10}}]T .

17



Mollification Effects of Policy Gradient Methods

(a) (b)

Figure 9. (a) Planar quadrotor; (b) double pendulum.

F.3. Planar quadrotor

The dynamics of the planar quadrotor (Figure 9 (a)) is

ẋ1 = x2

ẋ2 = − 1

m
(u1 + u2) sin θ

ẏ1 = x2

ẏ2 =
1

m
(u1 + u2) cos θ −mg

θ̇ = w

ẇ =
r

I
(u1 − u2)

where m = 1.0, I = 0.1, r = 0.5, g = 9.81 and u1, u2 ∈ R are the control inputs. The reward function is R(s, a) =
−(x2

1 + y21 + θ2 + 0.1 (x2
2 + y22 + w2) + 0.0001 |a|2) and ∆t = 0.1 is the stepsize of discretization. The controller

u = −Ks+ b is linear and the initial policy is u0 = −K0s+ b0 with

K0 =

[
−2.2361 −3.3404 2.2361 2.69 13.5092 2.7752
2.2361 3.3404 2.2361 2.69 −13.5092 −2.7752

]
, b0 =

[
4.905
4.905

]
.

u0 is the optimal policy solved by LQR methods. The standard deviation of Gaussian policy is fixed to σ = 0.1
and the stepsize for policy updates in each epoch is δ = 0.001. The control inputs are saturated, i.e., u =
[max{0,min{u1, 10}},max{0,min{u2, 10}}]T

18
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G. Behaviors of Hopper
The behaviors of the hopper with different variances are presented below.

(a) (b) (c) (d)

Figure 10. σ = 0.005.

(a) (b) (c) (d)

Figure 11. σ = 0.05.

(a) (b) (c) (d)

Figure 12. σ = 0.5.

(a) (b) (c) (d)

Figure 13. σ = 5.
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