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Abstract

Recent advances in view synthesis and real-time render-
ing have achieved photorealistic quality at impressive ren-
dering speeds. While radiance field-based methods achieve
state-of-the-art quality in challenging scenarios such as in-
the-wild captures and large-scale scenes, they often suf-
fer from excessively high compute requirements linked to
volumetric rendering. Gaussian Splatting-based methods,
on the other hand, rely on rasterization and naturally
achieve real-time rendering but suffer from brittle opti-
mization heuristics that underperform on more challenging
scenes. In this work, we present RadSplat, a lightweight
method for robust real-time rendering of complex scenes.
Our main contributions are threefold. First, we use radi-
ance fields as a prior and supervision signal for optimiz-
ing point-based scene representations, leading to improved
quality and more robust optimization. Next, we develop a
novel pruning technique reducing the overall point count
while maintaining high quality, leading to smaller and more
compact scene representations with faster inference speeds.
Finally, we propose a novel test-time filtering approach that
further accelerates rendering and allows to scale to larger,
house-sized scenes. We find that our method enables state-
of-the-art synthesis of complex captures at 900+ FPS.

1. Introduction

Neural fields [5, 36, 47, 78] have emerged as one of the
most popular representations for 3D vision due to their sim-
ple design, stable optimization, and state-of-the-art perfor-
mance. After their introduction in the context of 3D re-
construction [5, 36, 47, 78], neural fields have been widely
adopted and set new standards in tasks such as view synthe-
sis [1, 2, 37], 3D and 4D reconstruction [30, 44, 48–50, 84],
and generative modeling [32, 43, 52, 65, 70].

While neural field methods have achieved unprecedented

Figure 1. RadSplat. By combining benefits of neural fields and
point-based representations, we achieve state-of-the-art quality in
view synthesis on mip-NeRF 360 [1] while rendering at 900+
frames per second (FPS), indicating a speed up of 3.6× over 3D
Gaussian Splatting (3DGS) [26] and 3,000× over Zip-NeRF [2].

view synthesis quality even for challenging real-world cap-
tures [2, 33, 37], most approaches are limited by the high
compute costs of volumetric rendering. In order to achieve
real-time frame rates, recent works reduce network com-
plexity [16, 40], cache intermediate outputs [11, 60], or ex-
tract 3D meshes [46, 58, 83, 84]. Nevertheless, all methods
trade reduced quality and increased storage costs for faster
rendering, and are incapable of maintaining state-of-the-art
quality in real-time – the goal of this work (see Fig. 1).

Recently, rasterization-based 3D Gaussian Splatting
(3DGS) [26] has emerged as a natural alternative to neu-
ral fields. The representation admits real-time frame rates
with view synthesis quality rivaling the state-of-the-art in
neural fields. 3DGS, however, suffers from a challeng-
ing optimization landscape and an unbounded model size.
The number of Gaussian primitives is not known a priori,
and carefully-tuned merging, splitting, and pruning heuris-
tics are required to achieve satisfactory results. The brit-
tleness of these heuristics become particularly evident in
large scenes where phenomena such as exposure variation,
motion blur, and moving objects are unavoidable (see Fig.
2). An increasing number of primitives further leads to
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(a) 3DGS. (b) 3DGS with exposure module.

(c) RadSplat (Ours).

Figure 2. Robust View Synthesis. On complex scenes with light-
ing variations, 3D Gaussian Splatting (3DGS) [26] degrades (2a).
When equipped with exposure handling modules [11, 26], results
improve but they still contain artifacts and are overly smooth (2b).
In contrast, we achieve high quality even for challenging, large-
scale captures (2c) by integrating a robust radiance field as prior.

a potentially-unmanageable memory footprint and reduced
rendering speed, strongly limiting model quality for larger
scenes.

In this work, we present RadSplat, a lightweight method
for robust real-time rendering of complex real-world scenes.
Our method achieves smaller model sizes and faster ren-
dering than 3DGS while strongly exceeding reconstruction
quality. Our key idea is to combine the stable optimization
and quality of neural fields to act as a prior and supervision
signal for the optimization of point-based scene representa-
tions. We further introduce a novel pruning procedure and
test-time visibility rendering strategies to significantly re-
duce memory usage and increase rendering speed without
a corresponding loss in quality. In summary, our contribu-
tions are as follows:

1. The use of radiance fields as a prior and to handle the
complexity of real-world data when optimizing point-
based 3DGS representations.

2. A novel pruning strategy that reduces the number of
Gaussian primitives by up to 10x whilst improving qual-
ity and rendering speed.

3. A novel post-processing step enabling viewpoint-based
filtering, further accelerating rendering speed without
any reduction in quality.

Our method exhibits state-of-the-art reconstruction quality
on both medium and large scenes, with PSNR up to 1.87
dB higher than 3DGS and SSIM exceeding Zip-NeRF, the
current state-of-the-art in offline view synthesis (see Fig. 1).
At the same time, our method renders up to 907 frames per
second, over 3.6× faster than 3DGS [26] and more than
3,000× faster than Zip-NeRF [2].

2. Related Work

Neural Fields. Since their introduction in the context of
3D reconstruction [5, 36, 47, 78], neural fields have be-
come one of the most promising methods for many 3D
vision tasks including 3D/4D reconstruction [30, 44, 48–
50, 84], 3D generative modeling [4, 32, 43, 52, 65, 70], and
view synthesis [1, 2, 37]. Key to their success is among
others simplicity, state-of-the-art performance, and robust
optimization [33, 73, 78]. In contrast to previous repre-
sentations such as point- [51, 54, 55], voxel- [35, 53], or
mesh-based [22, 72] representations, neural fields do not
usually require complex regularization, hand-tuned initial-
ization or optimization control modules as they admit end-
to-end optimization and can be queried at arbitrary spatial
locations. In the context of view synthesis, Neural Ra-
diance Fields [37] (NeRF) in particular have revolution-
ized the field by leveraging volumetric rendering, which
has proven more robust than prior surface-based render-
ing approaches [45, 67, 82]. In this work, we employ the
robustness and simplicity of neural fields to enable real-
time rendering for complex scenes at high quality. More
specifically, we use the state-of-the-art radiance field Zip-
NeRF [2] to act as a robust prior and source of reliable su-
pervision to train a point-based representation better suited
for real-time rendering.

Neural Fields for Real-Time Rendering. NeRF-based
models lead to state-of-the-art view synthesis but are typ-
ically slow to render so that a variety of works are proposed
for speeding up training and inference. While neural fields
were initially built on large, compute-heavy multi-layer per-
ceptrons (MLPs) [5, 36, 37, 47], recent works propose the
use of voxel representations and interpolation to enable fast
training and rendering [16, 40, 59, 87]. Instant NGP [40],
for example, demonstrates that a multi-resolution hash grid
backbone enables higher quality whilst reducing training
time to seconds. However, these works rely on powerful
GPUs and often do not achieve real-time rendering for arbi-
trary scenes. Another line of work aims to represent neural
fields as meshes, either as a post-processing step [58, 68] or
by direct optimization [6, 23, 61, 71, 74, 75, 84]. These ap-
proaches can achieve high frame rates but their quality lacks
behind volumetric approaches. More recently, another line
of work [11, 17, 24, 60] aims to represent a neural field as
a set of easily-cacheable assets such as sparse voxel grids,
triplanes, and occupancy grids. These methods retain their
high quality but often exhibit large storage requirements,
are slower to render on smaller devices, and rely on complex
custom rendering implementations [11]. In contrast, we op-
timize lightweight point-based representations that achieve
state-of-the-art quality, are easily compressed, and naturally
integrate with graphics software following a rasterization
pipeline.



Point-Based Representations. First works propose to ren-
der point sets as independent geometry samples [20, 21],
which can be implemented efficiently in graphics soft-
ware [62] and highly parallelized on GPU hardware [27,
64]. To eliminate holes when rendering incomplete sur-
faces, a line of works explores the “splatting” of points
with extents larger than a pixel, e.g. with circular or ellip-
tic shapes [76, 86]. The recent work 3D Gaussian Splat-
ting (3DGS) [26] achieves unprecedented quality and fast
training and rendering speed by introducing adaptive den-
sity control in combination with efficient rasterization ker-
nels. As a consequence, 3DGS is used in a variety of ap-
plications, including 3D human [89] and avatar reconstruc-
tion [10, 38, 56], 3D generation [8, 31, 69, 85], SLAM sys-
tems [29, 34, 63, 80], 4D reconstruction [77, 79], and open-
set segmentation [57, 66]. Further, works are proposed to
address aliasing [81, 88] and point densification [7, 15] in
the 3DGS representation. Finally, a recent line of works in-
vestigate compression for 3DGS [12, 13, 28, 39, 41, 42] and
the concurrent work [14] analyzes initialization alternatives.
In this work, we combine a NeRF prior for stable optimiza-
tion with a point-based 3DGS representation for real-time
rendering of complex scenes. Compared to prior works, we
enable high-quality view synthesis even for complex real-
world captures that might contain lighting and exposure
variations. Further, we develop pruning and test-time vis-
ibility rendering strategies leading to 10× fewer Gaussian
primitives at higher quality compared to 3DGS and with in-
ference times of 900+ FPS.

3. Method

Our goal is to develop a lightweight, real-time view synthe-
sis method that is robust even for complex real-world cap-
tures. In the following, we discuss the key components for
achieving this. First, we optimize radiance fields as a robust
prior for complex data (Sec. 3.1). Next, we use the radiance
field to first initialize and then to supervise the optimiza-
tion of point-based 3DGS representations (Sec. 3.2.) We
develop a novel pruning technique leading to a significant
point count reduction while maintaining high quality (Sec.
3.3). Finally, we cluster input cameras and perform visi-
bility filtering, further accelerating rendering speed to up to
900+ FPS (Sec. 3.4). We show an overview of our method
in Fig. 3.

3.1. Neural Radiance Fields as a Robust Prior

Neural Radiance Fields. A radiance field f is a continuous
function that maps a 3D point x ∈ R3 and a viewing direc-
tion d ∈ S2 to a volume density σ ∈ R+ and an RGB color
value c ∈ R3. Inspired by classical volume rendering [25],
a pixel’s final color prediction is obtained by approximating

the integral via quadrature using sample points:

cNeRF =

Ns∑
j=1

τjαjcj with

τj =

j−1∏
k=1

(1− αk), αj = 1− e−σjδj

(1)

where τj is the transmittance, αj the alpha value for xj , and
δj = ||xj+1 − xj ||2 the distance between neighboring sam-
ple points. In Neural Radiance Fields [37], f is parameter-
ized as an MLP with ReLU activation fθ and the network
parameters θ are optimized using gradient descent on the
reconstruction loss:

L(θ) =
∑

r∈Rbatch

∥cθNeRF(r)− cGT(r)∥22 (2)

where r ∈ Rbatch are batches of rays sampled from the set
of all pixels / rays R. To further boost training time and
quality, Zip-NeRF [2] uses multisampling and an efficient
multi-resolution grid backbone [40]. Due to the state-of-
the-art performance, we adopt Zip-NeRF as our radiance
field prior (see supp. mat. for a comparison to an INGP [40]
backbone).

Robust Optimization on Real-World Data. Real-world
captures often contain effects such as lighting and exposure
variation or motion blur. Crucial for the success of neu-
ral fields on such in-the-wild data [33] is the use of Gen-
erative Latent Optimization [3] (GLO) embedding vectors
or related techniques. More specifically, a per-image latent
vector is optimized along with the neural field that enables
explaining away these image- and view-dependent effects

L(θ, {li}Ni=1) =
∑

ri∈Rbatch

∥cθ,liNeRF(ri)− cGT(ri)∥22 (3)

where {li}Ni=1 indicates the set of GLO vectors and N
the number of input images. This allows the model to
express appearance changes captured in the input images
without introducing wrong geometry such as floating arti-
facts. At test time, images can be rendered with a constant
latent vector (usually the zero vector) to obtain stable and
high-quality view synthesis. For all experiments, we fol-
low [2] and optimize a per-image latent vector representing
an affine transformation for the bottleneck vector in the Zip-
NeRF representation.

3.2. Radiance Field-Informed Gaussian Splatting

Gaussian Splatting. In contrast to neural fields, in 3D
Gaussian Splatting [26] an explicit point-based scene repre-
sentation is optimized. More specifically, the scene is repre-
sented as points that are associated with a position p ∈ R3,



Figure 3. Overview. 1. Given posed input images of a scene, we train a robust neural radiance field with GLO embeddings li. 2. We use
the radiance field prior to initialize and supervise our point-based 3DGS representation that we optimize with a novel pruning technique
for more compact, high-quality scenes. 3. We perform viewpoint-based visibility filtering to further accelerate test-time rendering speed.

opacity o ∈ [0, 1], third-degree spherical harmonics (SH)
coefficients k ∈ R16, 3D scale s ∈ R3, and the 3D rotation
R ∈ SO(3) represented by 4D quaternions q ∈ R4. Simi-
lar to (1), such a representation can be rendered to the image
plane for a camera and a list of correctly-sorted points as

cGS =

Np∑
j=1

cjαjτi where τi =

j−1∏
i=1

(1− αi) (4)

where cj is the color predicted using the SH coefficients
k and αj is obtained by evaluating the projected 2D Gaus-
sian with covariance Σ′ = JMΣMTJT , multiplied by the
per-point opacity o [26], with M being the viewing trans-
formation, J denoting the Jacobian of the affine approxi-
mation of the projective transformation [90], and Σ denot-
ing the 3D covariance matrix. To ensure that Σ is a posi-
tive semi-definite matrix, it is expressed using the per-point
scale matrix S = diag(s1, s2, s3) and rotation R accord-
ing to Σ = RSSTRT [26]. The scene is optimized with a
reconstruction loss on the input images and regular densi-
fication steps consisting of splitting, merging, and pruning
points based on gradient and opacity values.

Radiance Field-based Initialization. A key strength of ra-
diance fields lies in the volume rendering paradigm [37], as
opposed to prior surface rendering techniques [45, 67, 82],
enabling the ability to initialize, remove, and change den-
sity freely in 3D space. In contrast, explicit point-based
representations can only provide a gradient signal to already
existing geometry prediction due to the rasterization-based
approach. The initialization of this representation is hence
a crucial property in its optimization process.

We propose to use the radiance field prior for obtaining

a suitable initialization. More specifically, for each pixel /
ray r we first define the median depth zmedian of our NeRF
model as the distance to the first sample along the ray with
accumulated transmittance τi > 0.5. We unproject all pix-
els / rays into 3D space to obtain our initial point set

Pinit = {pi}i∈Krnd , pi = r0(i) + dr(i) · zmedian(r(i)) (5)

where Krnd are uniform randomly-sampled indices for the
list of all rays / pixels, r0(·) indicates the ray origin and
dr(·) the normalized ray direction. We found the me-
dian depth estimation to perform better than other common
choices such as expected depth by being exact sampling
point estimates, and we found setting |Krnd| to 1 million
for all scenes to work well in practice (see Sec. 3.2 of supp.
mat. for more details). Further, we initialize

ki = (k1:3
i ,k4:16

i ) , k1:3
i = cNeRF(r(i)), k

4:16
i = 01

si = (si, si, si) , si = min
p∈{p ̸=pi|p∈Pinit}

∥pi − p∥2 (6)

and set oi = 0.1 and qi to the identity rotation. Thus, for
each scene we optimize

ϕ = {(pi,ki, si, oi,qi)}Ninit
i=1 (7)

Radiance Field-based Supervision. Radiance fields have
been shown to excel even on real-world captures where
images contain challenging exposure and lighting varia-
tions [2, 33]. We leverage this strength of radiance fields
to factor out this complexity and noise of the data to pro-
vide a more cleaned up supervision signal than the possibly

1We found progressively optimizing k4:16 leads to better results [26].



corrupted input images. More specifically, we render all in-
put images with our NeRF model fθ and with a constant
zero GLO vector

If = {Ijf}
N
j=1 where Ijf = {cθ,lzero

NeRF (rj(i))}
H×W
i=1 (8)

where lzero indicates the zero GLO vector, H the height and
W the width of the images, and rj(·) the rays belonging to
the j-th image. We can then use these renderings If to train
our point-based representations

L(ϕ) = (1− λ)∥Iif − Iiϕ∥22 + λSSIM(Iif , I
i
ϕ) (9)

where i ∼ U is drawn from the uniform distribution and
we use the default value λ = 0.2. Another practical benefit
of this approach is that we can train from arbitrary camera
lens types due to NeRF’s flexible ray casting, while the 3D
Gaussian Splatting gradient formulation assumes a pinhole
camera model and it is unclear how this can be efficiently
extended to e.g. fisheye or more complex lens types.

3.3. Ray Contribution-Based Pruning

While 3DGS representations can be efficiently rendered
thanks to rasterization, real-time performance still requires
a powerful GPU and is not yet achieved on all platforms.
The most important property for the rendering performance
is the number of points in the scene that need to be rendered.

Importance Score. To obtain a more lightweight repre-
sentation that can be rendered faster across platforms, we
develop a novel pruning technique to reduce the number
of Gaussians in the scene whilst maintaining high quality.
More specifically, we introduce a pruning step during opti-
mization that removes points that do not contribute signifi-
cantly to any training view. To this end, we define an impor-
tance score by aggregating the ray contribution of Gaussian
pi along all rays of all input images

h(pi) = max
If∈If ,r∈If

αr
i τ

r
i (10)

where αr
i τ

r
i indicates the ray contribution for the pixel’s

final color prediction in (4) of Gaussian pi along ray
r. We find that this formulation leads to improved re-
sults compared to concurrent works that investigate simi-
lar ideas [12, 28] as we use the exact ray contribution (as
opposed to e.g. the opacity) as well as the max operator
(instead of e.g. the mean) which is independent of the num-
ber of input images, hence more robust to different types of
scene coverage [19].

Pruning. We use our importance score during optimization
to reduce the overall point count in the scene while main-
taining high quality. More specifically, we add a pruning
step where we calculate mask values as

mi = m(pi) = 1 (h(pi) < tprune) , tprune ∈ [0, 1] (11)

and we remove all Gaussians from our scene that have a
mask value of one. We apply the pruning step twice over
the the course of optimization similar to [12]. The thresh-
old tprune provides a control mechanism over the number
of points that are used to represent the scene. In our ex-
periments, we define two values, one value for our default
model, and a higher value for a lightweight variant.

3.4. Viewpoint-Based Visibility Filtering

Our pruning technique ensures a compact scene represen-
tation with a small overall point count. To scale to larger,
more complex scenes such as entire houses or apartments,
inspired by classical occlusion culling [9], we introduce a
novel viewpoint-based filtering as post-processing step that
further speeds up test-time rendering without a quality drop.

Input Camera Clustering. First, we group input cameras
together to obtain a meaningful tessellation of the scene
space. More specifically, let (xi

cam)
N
i=1 denote the input

camera locations for the set of input images I. We run k-
means clustering on the input camera locations to obtain k
cluster centers (xi

cluster)
k
i=1 and assign the input cameras to

the respective cluster centers.

Visibility Filtering. Next, for each cluster center xj
cluster, we

select all assigned input cameras, render the images from
these viewpoints, and, similar to (10), calculate an impor-
tance score and the respective visibility indicator list

hcluster
j (pi) = max

I∈Ii
c,r∈I

αr
i τ

r
i ,

mcluster
j (pi) = 1

(
hcluster
j (pi) > tcluster

) (12)

where Ii
c is the set of images whose camera positions are as-

signed to the the cluster center xi
cluster and tcluster is a thresh-

old that controls the contribution value of points that should
be filtered out (we found setting tcluster = 0.001 to work
well in practice). Note that we are not restricted to the input
views for calculating these masks. In practice, we hence
add random camera samples to Ii

c to ensure robustness to
test views. We calculate the indicator list mcluster

j for each
cluster center as a post-processing step after scene optimiza-
tion.

Visibility List-Based Rendering. To render an arbitrary
viewpoint, we first assign its camera center xtest

cam to the near-
est cluster center xi

cluster. Next, we select the respective indi-
cator list mcluster

i . Finally, we perform default rasterization
while only considering the points that are marked as active
for the respective cluster. This results in a significant FPS
increase up to 45% without any drop in quality.

3.5. Implementation Details

We set the number of initial points Ninit to 1 million in all
experiments. For threshold value tprune, we use 0.01 and



0.25 for our default and lightweight models, respectively,
and for the large Zip-NeRF scenes, we use 0.005 and 0.03.
We perform pruning after 16 and 24 thousand steps. We
follow [26] and use the same densification parameters ex-
cept for the densification gradient threshold value which we
lower to 8.6e−5 for the Zip-NeRF dataset. We train our ra-
diance fields on 8 V100 GPUs (∼1h) and our 3DGS models
on a A100 GPU (∼1h). For the visibility filtering, we use
k = 64 clusters and we found a small threshold tcluster > 0
to work well in practice and set it to 0.001 for all scenes.
For the radiance field training, we follow [2] and use de-
fault parameters for all scenes.

4. Experiments

Datasets. We report results on the MipNeRF360
dataset [1], the most common view synthesis benchmark
consisting of 9 unbounded indoor and outdoor scenes. We
further report results on the Zip-NeRF dataset [2] consisting
of 4 large-scale scenes (apartments and houses) with chal-
lenging captures that partly contain lighting and exposure
variations.

Baselines. On all datasets, we compare against 3DGS [26]
as well as MERF [60] and SMERF [11] as the state-of-the-
art volumetric approaches that construct efficient voxel and
triplane representations together with accelerating struc-
tures for empty space skipping. On MipNeRF360, we fur-
ther compare against mesh-based BakedSDF [84], hash-
grid based INGP [40], and point-based approaches Light-
Gaussian [12], CompactGaussian [28], and EAGLES [18].
For reference, we always report Zip-NeRF [2], the state-of-
the-art offline view synthesis method.

Metrics and Evaluation. We follow common practice and
report the view synthesis metrics PSNR, SSIM, and LPIPS.
While using techniques such as GLO vectors is essential for
high quality on real-world captures (see Sec. 3.1), the eval-
uation of such models is an open problem such that recent
methods [1, 2, 11] train two separate models, one for vi-
sualizations, and one (without GLO vectors) purely for the
quantitative comparison. In this work, we always train a
single model that is robust thanks to the radiance field prior.
For evaluation, we simply finetune the trained models on
the original training set image data to match potential color
shifts and to ensure a fair comparison. Next to measuring
quality, we report the rendering speed in frames per second
(FPS) on a RTX 3090 GPU and the number of Gaussians in
the scenes (only applicable for point-based methods).

4.1. Real-Time View Synthesis

Unbounded Scenes. We observe in Tab. 1a that our
method leads to the best quantitative results while achiev-
ing faster rendering times than prior state-of-the-art real-

SSIM↑ PSNR↑ LPIPS↓ FPS↑ #G(M)↓
INGP [40] 0.705 25.68 0.302 9.26 -
BakedSDF [84] 0.697 24.51 0.309 539 -
MERF [60] 0.722 25.24 0.311 171 -
SMERF [11] 0.818 27.99 0.211 228 -
CompactG [28] 0.798 27.08 0.247 128 1.388
LightG [12] 0.799 26.99 0.25 209 1.046
EAGLES [18] 0.809 27.16 0.238 137 1.712
3DGS [26] 0.815 27.20 0.214 251 3.161
Ours Light 0.826 27.56 0.213 907 0.370
Ours 0.843 28.14 0.171 410 1.924
Zip-NeRF [2] 0.836 28.54 0.177 0.25 -

(a) Mip-NeRF360 dataset [1]
SSIM↑ PSNR↑ LPIPS↓ FPS↑

MERF [60] 0.747 23.49 0.445 318
SMERF [11] (K = 1) 0.776 25.44 0.412 356
SMERF [11] (K = 5) 0.829 27.28 0.340 221
3DGS [26] 0.809 25.50 0.369 470
Ours Light 0.838 26.11 0.368 748
Ours 0.839 26.17 0.364 630
Zip-NeRF [2] 0.836 27.37 0.305 0.25

(b) Zip-NeRF dataset [2]

Table 1. Quantitative Comparison. We compare top-performing
real-time rendering approaches and report offline method Zip-
NeRF as reference. Our models outperform both NeRF- and
GS-based approaches, achieving state-of-the-art view synthesis at
higher FPS. Ours Light achieves a 10× reduction of Gaussians
(#G) compared to 3DGS while improving quality (1a). Our de-
fault model improves even over Zip-NeRF in SSIM and LPIPS
while rendering 3,600× faster. On the large-scale scenes in 1b,
our models produce the highest SSIM while rendering up to 3.3×
faster than top-performing real-time methods such as SMERF.

time methods such as SMERF [11]. Notably, our model
even outperforms the state-of-the-art non-real-time method
Zip-NeRF [2] in both SSIM and LPIPS while rendering
1,600× faster. Our lightweight variant (“Ours Light”) also
exceeds prior works with a mean rendering speed of 907
FPS outpacing even state-of-the-art mesh-based methods
such as BakedSDF [84]. Also qualitatively in Fig. 4, we ob-
serve that our model achieves the best results. Compared to
Zip-NeRF, our method better captures high-frequency tex-
tures (e.g., see tablecloth in “Kitchen” scene in Fig. 4) and
fine geometric details (e.g., see bicycle spokes in “Bicycle”
scene in Fig. 4). Compared to 3DGS, we find that our re-
constructions are sharper and more stable while achieving a
2× and 10× overall point count reduction with our default
and lightweight variant, respectively.

Large-Scale Scenes. For the Zip-NeRF dataset [2], we ob-
serve a similar trend in Tab. 1b. Our default and lightweight
variant outperform top-performing real-time SMERF and
non-real-time Zip-NeRF in SSIM while rendering signif-
icantly faster. Notably, our lightweight variant achieves
high quality with a mean SSIM of 0.838 while render-
ing on average at 748 FPS. In contrast, the state-of-the-
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Figure 4. Qualitative Comparison. We show results on Bicycle and Kitchen from [1] and on Berlin, NYC, London from [2]. Compared
to Zip-NeRF, our method better captures high-frequency textures (e.g., tablecloth in Kitchen) and geometric details (e.g., bicycle spokes
in Berlin). Compared to 3DGS, we obtain sharper (e.g., shiny surfaces in London) and more stable results (e.g., color shift in Kitchen).

art real time method for large scenes, i.e. the large vari-
ant of SMERF [11] with 53 = 125 submodels, achieves
a slightly lower SSIM of 0.829 with a rendering speed of
221 FPS. Also qualitatively in Fig. 4, we observe that our
model achieves high visual appeal with sharper and more
stable reconstructions. In contrast to 3DGS [26], we find
that our method is more robust on challenging captures as
shown in Fig. 2 where 3DGS leads to heavily degraded re-
sults on the Alameda scene. Note that for 3DGS, results still
contain floating artifacts, even when equipped with a per-
image module that can handle exposure and lighting varia-

tions [11, 26]. In contrast, our method enables high-quality
synthesis even for in-the-wild data.

4.2. Ablation Study and Limitations

NeRF-based Initialization. The NeRF-based initialization
leads to better quantitative and qualitative results (see Fig.
5). In particular, smaller geometric and texture details might
get lost, such as the back of the chair, the books behind the
monitor, or the sticky notes on the wall in Fig. 5a.

NeRF-based Supervision. The NeRF-based supervision
leads to improved results compared to optimizing the scene



GT Ours w/o NeRF Initialization

(a) Qualitative Ablation Study of the NeRF-based Initialization.

GT Ours w/o NeRF Supervision

(b) Qualitative Ablation Study of the NeRF-based Supervision.

SSIM↑ PSNR↑ LPIPS↓ #G (M)↓
Ours 0.839 26.17 0.364 2.022
w/o NeRF Inititialization 0.830 25.71 0.382 1.583
w/o NeRF Supervision 0.835 25.79 0.372 1.849
w/o Pruning 0.839 26.14 0.364 3.049

(c) Quantitative Ablation Study on the Zip-NeRF Dataset.

Figure 5. Ablation Study. Without (w/o) the NeRF initializa-
tion, geometric and texture details might get lost (5a). Without
the NeRF supervision, floating artifacts appear if the views exhibit
lighting or exposure changes (5b). W/o pruning, the number of
Gaussians is 1.5× larger without any quality improvements (5c).
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Figure 6. Pruning. Pruning thresholds below 0.1 maintain quality
while reducing the point count by 4× (shown here on the mip-
NeRF 360 Bicycle scene.). We find we can match the 3DGS qual-
ity (0.77) with a 10× reduction in Gaussians (5.66m vs. 0.59m).

representation on the input views directly. In particular, for
scenes where the input views exhibit exposure or lighting
variations, floating artifacts are introduced to model these
effects as shown in Fig. 5b. In contrast, our strategy to op-
timize wrt. the NeRF-based supervision is more stable and
leads to better reconstructions for real-world captures.

Pruning. In Tab. 5c, we find that not pruning leads to
a small performance drop while exhibiting a significantly
larger point count. We hypothesize that a small pruning
threshold removes redundancy leading to better generaliza-
tion. In summary, our pruning technique enables more com-
pact scene representations while maintaining high quality.
In Fig. 6 we show that we can match the quality of 3DGS,
despite having roughly 10× less Gaussians in the scene.
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Figure 7. Quality Progression. We compare the optimization pro-
gression of 3DGS and our default model on the mip-NeRF 360 Bi-
cycle scene. We observe a steeper incline in SSIM and can match
the final quality of 3DGS after less than 8k steps.

In Fig. 7, we observe a faster increase in SSIM over the
first iterations such that we can match the final 3DGS qual-
ity after only 8k iterations.

mip-NeRF 360 dataset ZipNeRF dataset
SSIM↑ PSNR↑ LPIPS↓ FPS↑ SSIM↑ PSNR↑ LPIPS↓ FPS↑

Ours 0.843 28.14 0.171 410 0.839 26.17 0.364 630
w/o Vis. Fil. 0.843 28.14 0.171 373 0.839 26.17 0.364 435
Ours Light 0.826 27.56 0.213 907 0.838 26.11 0.368 748
w/o Vis. Fil. 0.826 27.56 0.213 887 0.838 26.11 0.368 607

Table 2. Visibility Filtering. With this postprocessing, we achieve
up to 10% FPS increase on the mip-NeRF 360 scenes and up to
45% improvement in rendering speed when scaling to the larger-
scale ZipNeRF scenes while keeping the quality fixed.

Visibility List-Based Rendering. Our visibility list-based
rendering enables up to 10% mean FPS speed up on the cen-
tral object-focused MipNeRF360 scenes and a up to 45%
FPS increase on the larger house and apartment-level Zip-
NeRF scenes (see Tab. 2). We conclude that this post-
processing step is in particular important when scaling to
more complex larger-scale scenes.

Limitations. Despite outperforming prior real-time meth-
ods, we observe a small gap to ZipNeRF on large-scale
scenes which we aim to investigate in the future.

5. Conclusion

We presented RadSplat, a method combining the strengths
of neural fields and point-based representations for robust
real-time rendering of complex scenes. Using radiance
fields as a prior and supervision signal leads to improved
results and more stable optimization of point-based 3DGS
representations. Our novel pruning leads to more compact
scenes with a significantly smaller scene size, whilst im-
proving quality. Finally, our novel test-time filtering fur-
ther improves rendering speed without a quality drop. Our
method achieves state-of-the-art on common benchmarks
while rendering up to 3,000× faster than prior works.
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Headgas: Real-time animatable head avatars via 3d gaussian
splatting. arXiv, 2023. 3

[11] Daniel Duckworth, Peter Hedman, Christian Reiser, Pe-
ter Zhizhin, Jean-François Thibert, Mario Lucic, Richard
Szeliski, and Jonathan T. Barron. SMERF: streamable mem-
ory efficient radiance fields for real-time large-scene explo-
ration. arXiv, 2023. 1, 2, 6, 7

[12] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, De-
jia Xu, and Zhangyang Wang. Lightgaussian: Unbounded
3d gaussian compression with 15x reduction and 200+ FPS.
arXiv, 2023. 3, 5, 6

[13] Guangchi Fang and Bing Wang. Mini-splatting: Represent-
ing scenes with a constrained number of gaussians. In ECCV,
2024. 3

[14] Yalda Foroutan, Daniel Rebain, Kwang Moo Yi, and Andrea
Tagliasacchi. Evaluating alternatives to sfm point cloud ini-
tialization for gaussian splatting. In arXiv, 2024. 3

[15] Linus Franke, Darius Rückert, Laura Fink, Matthias Inn-
mann, and Marc Stamminger. VET: visual error tomography
for point cloud completion and high-quality neural render-
ing. In SIGGRAPH, 2023. 3

[16] Fridovich-Keil and Yu, Matthew Tancik, Qinhong Chen,
Benjamin Recht, and Angjoo Kanazawa. Plenoxels: Radi-
ance fields without neural networks. In CVPR, 2022. 1, 2

[17] Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie
Shotton, and Julien Valentin. Fastnerf: High-fidelity neural
rendering at 200fps. In ICCV, 2021. 2

[18] Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Ea-
gles: Efficient accelerated 3d gaussians with lightweight en-
codings. arXiv, 2023. 6

[19] Lily Goli, Daniel Rebain, Sara Sabour, Animesh Garg, and
Andrea Tagliasacchi. nerf2nerf: Pairwise registration of neu-
ral radiance fields. 2023. 5

[20] Markus Gross and Hanspeter Pfister. Point-based graphics.
Elsevier, 2011. 3

[21] Jeffrey P Grossman and William J Dally. Point sample ren-
dering. In Rendering Techniques, 1998. 3

[22] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
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