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Abstract
Time series modeling is critical for many real-
world applications, but most existing approaches
are task-specific. With the unique characteris-
tics such as missing values, irregular sampling,
multi-resolution and complex temporal dependen-
cies, it is challenging to develop general foun-
dation models for time series. In this paper, we
introduce the Time Series Diffusion Transformer
(TimeDiT) equipped with three distinct masking
schemes designed to facilitate a uniform train-
ing and inference pipeline across various time
series tasks. TimeDiT leverages the transformer
architecture for capturing temporal dependencies
and employs diffusion processes for generating
high-quality candidate samples without stringent
assumptions on the target distribution. Extensive
experiments conducted on different datasets en-
compassing tasks such as forecasting, imputation,
and anomaly detection demonstrate the model’s
effectiveness. Both in-domain and zero-shot test-
ing scenarios confirm the potential of our model
to serve as a robust foundation model for multiple
time series applications.

1. Introduction
Time series analysis is pivotal in a diverse set of AI appli-
cations, such as science (Cuomo et al., 2022), sustainabil-
ity (Krenn & Buffoni, 2023), health (Kaushik et al., 2020),
etc. These applications root in diverse domains (Li et al.,
2018; Bi et al., 2023; Cao et al., 2023b), leading to time
series with various distributions (Wang et al., 2023) and a
divers set of analysis tasks, such as forecasting (Nie et al.,
2022), imputation (Tashiro et al., 2021), anomaly detec-
tion (Zhao et al., 2020), etc. Even though considerable
progress has been made in developing specialized models
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optimized for specific scenarios and individual tasks, an
open question remains: Can a single time series founda-
tion model excel across domains? Recent initiatives have
explored the possibility of universal time series models on
zero-shot setting (Ansari et al., 2024; Liu et al., 2024; Gru-
ver et al., 2024; Cao et al., 2023a), drawing inspiration from
large pre-trained language models in natural language pro-
cessing(NLP) and computer vision(CV), such as GPT (Rad-
ford et al., 2018), CLIP (Radford et al., 2021), which are
known for their robust transfer learning capabilities. How-
ever, due to the fundamentally different semantics between
text/images and time series data, the unique challenges of
achieving a truly flexible and general-purpose time series
model remain an open problem.

Compared with texts and images, time series exhibit unique
characteristics such as missing values (Kollovieh et al.,
2023), irregular sampling (Kidger et al., 2020), multi-
resolution (Meng et al., 2022), complex temporal dependen-
cies, etc. To address these challenges, a foundation model
for time series must be capable of capturing long-term pat-
terns and demonstrating flexibility across different scales
to handle diverse inputs with varying distributions. More-
over, time series processes are often governed by underlying
physical principles (Li et al., 2021) and can be guided by
domain-specific textual information (Jin et al., 2023; Sun
et al., 2023). However, integrating these diverse sources of
information into a unified model poses further challenges, as
the model must effectively leverage the relevant physics and
textual context while adapting to the unique characteristics
and distributions of each domain. Addressing each of these
issues requires innovative approaches in data preprocessing,
model architecture, and training strategies to create models
that can seamlessly handle the diverse and complex nature
of time series data.

Recently, the emergence of LLMs like GPT-4 (OpenAI,
2023) and LLaMA (Touvron et al., 2023) suggests the
potential for building time series foundation models en-
abling a general solution to handle multiple time series
distributions. Previous attempts typically build upon the
transformer backbone, which has achieved state-of-the-art
performance on various time series tasks, particularly in
modeling long-term dependencies. However, transformers
struggle with probabilistic tasks due to their need for spe-
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cific functional approximations to optimize a tractable lower
bound to the likelihood. In contrast, diffusion models like
DDPM (Ho et al., 2020) handle data generation through
sequential conditional transformations, turning the density
estimation task into a sequential reconstruction. A hybrid
approach combining transformers’ temporal modeling with
diffusion models’ probabilistic generation could pave the
way for a versatile time series foundation model. In addition,
the tokenization of time series data is especially sensitive
to variations in data sources and sampling rates. Previous
tokenization approaches with different schemes including
token patching (Das et al., 2023; Woo et al., 2024); dis-
cretization tokens (Talukder et al., 2024) and tokens based
on time series features (Yue et al., 2022; Ansari et al., 2024;
Rasul et al., 2023) have either fragmented the global infor-
mation or have been constructed in a manner that inherently
loses important information. Moreover, most, if not all,
of previous related works employ a channel independence
strategy (Nie et al., 2023) or focus solely on univariate time
series. Channel independence strategy, though beneficial in
certain contexts, often overlooks the complex inter-temporal
and cross-feature dependencies in practical applications and
thus presents an opportunity for optimization (Zeng et al.,
2023). In addition, there is also a lack of a unified pipeline
to handle indeterminate data shapes, as well as a tendency
to neglect practical challenges in favor of performing well
on neatly organized benchmarks.

To tackle the aforementioned challenges, we introduce
TimeDiT—a diffusion transformer-based foundation model
equipped with a standardized training pipeline for different
shapes of input time series and tailored for diverse distri-
butions and downstream tasks. We apply the new unified
paradigm of TimeDiT on multiple challenging time series
datasets, including applications from traffic, weather, and
financial domains, among others. The model is evaluated
on a comprehensive set of downstream tasks, such as syn-
thetic data generation, imputation, probabilistic forecasting,
and anomaly detection. We propose a comprehensive mask
mechanism for reconstruction pretraining and task-specific
finetuning. TimeDiT achieves state-of-the-art or competitive
results on both in-domain and zero-shot settings, demon-
strating its effectiveness and efficiency across various time
series applications. In addition, the results on zero-shot
experiments show that our model can be used as a founda-
tion model even without fine-tuning, although fine-tuning
may be necessary in some cases. Moreover, our model is
scalable, easily adaptable for downstream tasks, and can
incorporate external knowledge. For example, TimeDiT
can be continuously trained on multi-modal data with tex-
tual information, allowing it to leverage additional context
and improve its performance on tasks involving both time
series and textual descriptions. This flexibility and adapt-
ability make TimeDiT a powerful and versatile tool for a

wide range of time series applications. In summary, our
contributions can be summarized as three unfolds:

• Introducing TimeDiT: a general-purpose time series
foundation model that merges the strengths of diffu-
sion and transformer models and considers practical
applications of real-world time series.

• Towards Foundation Training Pipeline: We develop
three distinct mask types, optimizing the training
pipeline of our time series foundation model to en-
sure seamless adaptation to various downstream tasks
using corresponding masks during inference.

• Extensive Experiments: Our model is tested across four
different downstream tasks, demonstrating robust in-
domain/zero-shot performance and versatility, further
enhanced by integrating expert knowledge.

2. Preliminaries
Diffusion Models In recent years, diffusion models have
emerged as a promising approach in generative modeling.
A diffusion process is a Markov chain that incrementally
adds Gaussian noise to data over a sequence of steps, effec-
tively destroying the data structure in forward process and
destroying the data structure in backward structure.

The forward process adds noise to the data x0 over a series
of timesteps t according to a variance schedule βt, resulting
in a set of noisy intermediate variables x1,x2, . . . ,xT . Each
subsequent xt is derived from the previous step by applying
Gaussian noise:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

The reverse process aims to denoise the noisy variables
step by step, sampling each xt−1 from the learned distribu-
tion pθ(xt−1 | xt). This distribution, modeled by a neural
network parameterized by θ, approximates the Gaussian
distribution:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

By iterating this reverse process from t = T down to t = 0,
the model gradually reconstructs the original data from
noise. The reverse process learns to predict the mean and
covariance of each intermediate distribution, effectively ap-
proximating the original data distribution.

3. Related Work
General Purpose Time Series Model In the past decades,
researchers have developed sophisticated models for specific
time series tasks. Recently, the advent of large language
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Figure 1. TimeDiT Architecture. Left: TimeDiT framework with diverse multivariate time series from different domains with multi-
resolution, missing values; Middle: Structure of TimeDiT block; Right top: Illustration of masks generated by Time Series Mask Unit,
reconstruction mask is neglected as it’s an all-zero mask; Right bottom: Downstream tasks that TimeDiT handles during inference.

models has spurred the shift towards general-purpose and
foundation time series models(Zerveas et al., 2021). While
most of the approaches achieved generalization through
evaluation across datasets, they mainly focused on the fore-
casting task(Woo et al., 2024; Das et al., 2023). Specifically,
(Gruver et al., 2024) simply encoded time series as strings
while (Jin et al., 2023) converted time series into language
representations by alignment. (Cao et al., 2023a) further
incorporated decomposition technique and prompt design
and generalizes to unseen data and multimodal scenarios.
(Rasul et al., 2023; Ansari et al., 2024) worked towards
the foundation model from a probabilistic perspective but
only considered univariate time series. Additionally, many
studies started to follow a two-stage training paradigm of
pretraining and finetuning (Chang et al., 2023; Dong et al.,
2024; Nie et al., 2022). However, there remains substantial
room for innovation in comprehensive, general task time
series models rather than task-specific solutions. (Zhou
et al., 2023a) employed distinct pre-trained models under
GPT-2(Radford et al., 2019) structure tailored to specific
downstream applications.(Talukder et al., 2024) leveraged
the VQVAE tokenizer(Van Den Oord et al., 2017) to build
discrete tokens for a transformer to handle time series tasks.
However, this approach requires the separate construction
of a pre-trained tokenizer, which may constrain the model’s
generalization capabilities. For more detailed literature of
the general-purpose time series model, please refer to re-
cent surveys and position paper(Liang et al., 2024; Jin et al.,
2024; Jiang et al., 2024)

Diffusion models for Time Series Despite the growing
interest of diffusion models in various scenarios (Peebles &
Xie, 2022; Li et al., 2022a; Lu et al., 2024), the use of dif-
fusions in time series analysis is less explored compared to
pre-trained language models and transformers. Most exist-
ing studies also focused solely on forecasting and the choice
of backbone model also varies among VAE(Li et al., 2022b),
RNN(Rasul et al., 2021), and transformer. CSDI (Tashiro
et al., 2021) utilized diffusion model for time series impu-
tation. (Yuan & Qiao, 2024) incorporated decomposition
into diffusion model to improve interoperability. Although
(Kollovieh et al., 2023) build a diffusion pipeline for multi-
ple tasks with refinement, they still train different models
for each task. To the best of our knowledge, there has been
no exploration of leveraging unified diffusion models for a
comprehensive set of time series tasks yet. Please refer to
(Yang et al., 2024) for a comprehensive literature review on
diffusion models for time series analysis.

4. Methodology
4.1. Problem Definition

We denote a multivariate time series as X = {xi,j} ∈
RK×L, where K is the number of features and L is the
length of the time series. Each individual entry xi,j repre-
sents the j-th feature at time step l, for i ∈ {1, . . . ,K}
and j ∈ {1, . . . , L}. We define an observation mask
Mobs = {mi,j} ∈ {0, 1}K×L, where mi,j = 0 if xi,j is
missing, and mi,j = 1 if xi,j is observed. Let xobs

0 ∈ Xobs
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denote the observed subsequence; xtar
0 ∈ X tar denote the

target subsequence (forecast target or imputation target or
the whole sequence) which are subsets of the sample space
X. Let xcon

0 ∈ X denote the conditional observations. For-
mally, the goal of our task is to approximate the true con-
ditional data distribution given the conditional information
qX (xta

0 | xcon
0 ) with a model distribution pθ(x

tar
0 | xcon

0 ),
which can be calculated by a diffusion model.

4.2. Time Series Diffusion Transformer

Figure 1 shows the overall framework of TimeDiT. We first
establish the Mobs and xobs

0 based on the given input from
different distributions with multivariate sequences, miss-
ing value and multi-resolution by injecting placeholders to
standardize the input shape across different time series, fa-
cilitating more efficient and consistent processing. Then,
the unified time series mask unit adapts to diverse time se-
ries scenarios and builds the xcon

0 , M and xtar
0 , with shape

RB×L×K , to help TimeDiT learn robust representations in
a self-supervised manner by reconstruction the noised xtar

0 .
After that, the embedding layer directly treats xcon

0 and xtar
0

as input tokens without any reconstruction or patching, as
the diffusion process is designed to handle multivariate in-
put and operate in a continuous token space. By preserving
the integrity of the input time series, TimeDiT ensures that
the model can effectively capture and utilize the rich infor-
mation contained within the data. The TimeDiT block’s
attention mechanism is designed to autonomously learn
cross-channel and temporal correlations through end-to-end
training.

Time Series Mask Unit. We propose a unified time series
mask mechanism that includes task-agnostic masks and task-
specific masks, which seamlessly integrates with the model
during self-supervised pre-training and fine-tuning to cater
to diverse time series scenarios. During the pre-training
stage, we randomly select masks from random mask, stride
mask, reconstruction mask, and block mask and train the
model to recover the masked values. This step aims to im-
prove the overall time series representation by encouraging
the model to learn robust and generalizable features from
the input time series. Secondly, we employ task-specific
masks, including block mask, predefined imputation mask,
and reconstruction mask,to adapt TimeDiT to the most com-
mon downstream time series tasks, including forecasting,
imputation, anomaly detection, as well as synthetic time
series generation. This strategy enables the model to adapt
to the unique requirements of each task.

Conditional Injection. During the diffusion process, to
incorporate the current timestep t of the process stage, we
integrate a time component following adaptive layer nor-
malization in the TimeDiT block (Peebles & Xie, 2022).
This time integration can be expressed as AdaLN(h, t) =

Metric Methods Sine Stocks Air Quality Energy

DS

TimeDiT 0.0075±0.004 0.115±0.008 0.1778±0.004 0.1726±0.005
Diffusion-TS 0.0099±0.003 0.1869±0.0159 0.1227±0.006 0.2301±0.006
TimeGAN 0.1217±0.039 0.2038±0.057 0.3913±0.039 0.4969 ±0.000
TimeVAE 0.0489±0.0562 0.1987±0.037 0.2869±0.053 0.4993±0.001

PS

TimeDiT 0.1909±0.000 0.0459±0.000 0.0208±0.001 0.2502±0.000
Diffusion-TS 0.2262±0.000 0.042±0.000 0.022±0.002 0.2506±0.000
TimeGAN 0.2797±0.015 0.0481±0.002 0.035±0.002 0.3305±0.003
TimeVAE 0.2285±0.000 0.0485±0.000 0.0269±0.001 0.2878±0.001

Table 1. Synthetic Generation result on 24-length multivariate time
series. We calculate discriminative and predictive score according
to (Yoon et al., 2019) and results are averaged over five runs. Bold
indicates the best performance. DS: Discriminative Score; PS:
Predictive Score

tscaleLN(h) + tshift, where h is the hidden state and tscale
and tshift are the scale and shift parameters derived from the
time embedding. Note that integrating textual information
aligns well with the concept of adaptive layer normalization.
In addition, given that TimeDiT utilizes a pure transformer
architecture, a straightforward and intuitive approach is to
include conditional frames directly as part of the input se-
quence. We achieve this by concatenating the latent features
of the conditional time series xcon

0 with the noisy frames at
the token level.

5. Experiments
In this section, we experimentally demonstrate the effec-
tiveness of our proposed framework, TimeDiT. We conduct
a comparative analysis with several leading models in the
field. Our baseline models include probabilistic generation-
based models such as Diffusion-TS (Yuan & Qiao, 2024),
TimeGAN (Yoon et al., 2019) and TimeVAE (Desai et al.,
2021); deterministic models such as GPT-2 (Zhou et al.,
2023b), TimesNet (Wu et al., 2023), PatchTST (Nie et al.,
2022). Our comparisons include in-domain settings and
zero-shot settings on multiple downstream tasks.

6. Synthetic Generation
We conduct experiments to synthesize multivariate time se-
ries and evaluate performance using the discriminative score
and predictive score metrics under a ‘train on synthetic test
on real’ experimental setting (Yuan & Qiao, 2024). Table
5 shows the result on synthetic generation where TimeDiT,
in general, consistently generates higher quality synthetic
samples compared to baselines, even on high-dimensional
datasets such as the energy dataset. This demonstrates
TimeDiT’s strength in complex time series synthesis.

6.1. Imputation

We conduct experiments on six real-world datasets: ETTh1,
ETTh2, ETTm1, ETTm2, Electricity, and Weather. We use
random mask ratios {12.5%, 25%, 37.5%, 50%} following
previous settings (Zhou et al., 2023b). Table 2 shows the im-
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Datasets ETTh1 ETTh2 ETTm1 ETTm2 Weather Electricity 1st Pl
MSE / MAE MSE / MAE MSE / MAE MSE / MAE MSE / MAE MSE / MAE Count

DLinear 0.201/ 0.306 0.142 / 0.259 0.093 / 0.206 0.096 / 0.208 0.052 / 0.110 0.132 / 0.260 0
LightTS 0.284 / 0.373 0.119 / 0.250 0.104 / 0.218 0.046 / 0.151 0.055 / 0.117 0.131 / 0.262 0
ETSformer 0.202 / 0.329 0.367 / 0.436 0.120 / 0.253 0.208 / 0.327 0.076 / 0.171 0.214 / 0.339 0
FEDformer 0.117 / 0.246 0.163 / 0.279 0.062 / 0.177 0.101 / 0.215 0.099 / 0.203 0.130 / 0.259 0
Autoformer 0.103 / 0.214 0.055 / 0.156 0.051 / 0.150 0.029 / 0.105 0.031 / 0.057 0.101 / 0.225 0
PatchTST 0.115 / 0.224 0.065 / 0.163 0.047 / 0.140 0.029 / 0.102 0.034 / 0.055 0.072 / 0.183 0
TimesNet 0.078 / 0.187 0.049 / 0.146 0.027 / 0.107 0.022 /0.088 0.030 / 0.054 0.092 / 0.210 1
GPT2(3) 0.069 / 0.173 0.048 / 0.141 0.028 / 0.105 0.021 / 0.084 0.031 / 0.056 0.090 / 0.207 2

TimeDiT 0.051 / 0.148 0.045 / 0.144 0.026 /0.100 0.031 / 0.104 0.044 / 0.045 0.082 / 0.182 9Zero-Shot 0.063 / 0.169 0.040 / 0.130 0.047 /0.149 0.112 / 0.197 0.051 / 0.081 0.070 / 0.183

Table 2. Imputation result on 96-length multivariate time series
averaged over the four mask ratios. We calculate MSE and MAE
for each dataset. Bold indicates best result, Underline indicates
the second best result.

Methods TimeDiT GPT2(6) TimesNet PatchTS. ETS. FED. LightTS

MSL 92.67 82.45 81.84 78.70 85.03 78.57 78.95
SMAP 95.49 72.88 69.39 68.82 69.50 70.76 69.21
SWaT 95.78 94.23 93.02 85.72 84.91 93.19 93.33
SMD 81.06 86.89 84.61 84.62 83.13 85.08 82.53
PSM 97.73 97.13 97.34 96.08 91.76 97.23 97.15

1st Pl Count 4 1 0 0 0 0 0

Table 3. Anomaly Detection result on 100-length multivariate time
series. We calculate F1 score as % for each dataset. ’.’ notation
in model name stands for transformer. Bold indicates best result,
Underline indicates the second best result.

putation result averaged over the four mask ratios. TimeDiT
achieves the best performance on most datasets. Addition-
ally, the zero-shot setting’s performance has also achieved
the best/second-best performance on ETTh1, ETTh2, and
electricity datasets. Overall, TimeDiT obtained 9 first place
count while the remaining baselines obtained 3 first place
count overall.
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Figure 2. Forecasting results with missing value. Compared be-
tween our zero-shot TimeDiT and other diffusion-based methods.

6.2. Anomaly Detection

We conduct experiments on five real-world datasets from
industrial applications: MSL, SMAP, SWaT, SMD, and
PSM. Since the diffusion model excels at learning distri-
bution. Following previous settings (Zhou et al., 2023b),
we use the 99-th percentile reconstruction error to deter-
mine anomalies for MSL, SMAP, SWaT, and PSM; and use
the 99.5-th percentile for SMD. We perform the standard
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Figure 3. Forecasting results with multi resolution. Compared be-
tween our zero-shot TimeDiT and other diffusion-based methods.

anomaly adjustment (Xu et al., 2018) during evaluation. As
shown in Table 3, TimeDiT achieves the best performance
on four out of five datasets, significantly outperforming the
baselines. Moreover, the zero-shot also achieved reasonably
good performance on MSL, SMAP, SWaT and PSM dataset.

6.3. Forecasting

For forecasting tasks, we build realistic missing value and
multi resolution scenarios across sampling frequencies and
compare our zero-shot TimeDiT with CSDI (Tashiro et al.,
2021) and Diffusion-TS (Yuan & Qiao, 2024) (DiffTS in
short). As shown in Figure 2 and Figure 3, TimeDiT con-
tinues to outperform the current state-of-the-art model for
probabilistic time series prediction on the practical scenarios.
The strong performance highlights our model’s capabilities
for handling prediction under real-world conditions like
missing data and inherent multi resolution within the data.
Even on challenging zero-shot generalizations and datasets
with pervasive missing values, our approach surpasses the
previous state-of-the-art for probabilistic forecasting. Note
that the zero-shot TimeDiT used in Sections 6.1, 6.3 and
6.2 is trained on the uniformed datasets with varying number
channels and distributions under the same model architec-
ture.

7. Conclusion
We introduced TimeDiT, a pioneering approach to creating
a versatile and robust foundation model for various time
series tasks. By integrating transformer architecture with
the diffusion model, TimeDiT effectively captures temporal
dependencies and addresses real-world challenges unique to
time series. Our innovative masking strategies: task-specific
mask and task-agnostic mask allow for a consistent training
framework adaptable to diverse tasks such as forecasting,
imputation, and anomaly detection and synthetic data gen-
eration. Extensive experiments demonstrated the strong
performance of TimeDiT on all time series tasks.
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A. Preliminaries
Diffusion Models In recent years, diffusion models have
emerged as a promising approach in generative modeling.
A diffusion process is a Markov chain that incrementally
adds Gaussian noise to data over a sequence of steps, effec-
tively destroying the data structure in forward process and
destroying the data structure in backward structure.

The forward process adds noise to the data x0 over a series
of timesteps t according to a variance schedule βt, resulting
in a set of noisy intermediate variables x1,x2, . . . ,xT . Each
subsequent xt is derived from the previous step by applying
Gaussian noise:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI) (3)

The reverse process aims to denoise the noisy variables
step by step, sampling each xt−1 from the learned distribu-
tion pθ(xt−1 | xt). This distribution, modeled by a neural
network parameterized by θ, approximates the Gaussian
distribution:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)

By iterating this reverse process from t = T down to t = 0,
the model gradually reconstructs the original data from
noise. The reverse process learns to predict the mean and
covariance of each intermediate distribution, effectively ap-
proximating the original data distribution.
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