

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LESS GRADIENT, MORE SPEED: RETHINKING PIPELINE PARALLELISM FOR EFFICIENT FINE-TUNING WITH FLUIDPIPE

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Fine-tuning large pretrained models often uses pipeline parallelism (PP) to split
014 layers across devices. PP is simple to deploy but requires per-iteration cross-stage
015 gradient exchanges, creating pipeline bubbles that reduce efficiency and making
016 performance highly sensitive to latency. We introduce **FluidPipe**, a two-stage
017 pipeline design that replaces these gradient exchanges with local updates guided
018 by an auxiliary head and cross-stage bi-directional distillation. This re-design
019 eliminates iteration-time synchronization while preserving model quality. We
020 develop a cost and communication model explaining when FluidPipe outperforms
021 PP, and validate on BERT-Large and ViT-Large fine-tuning, where FluidPipe
022 achieves up to $3.3\times$ faster training while matching or improving accuracy.

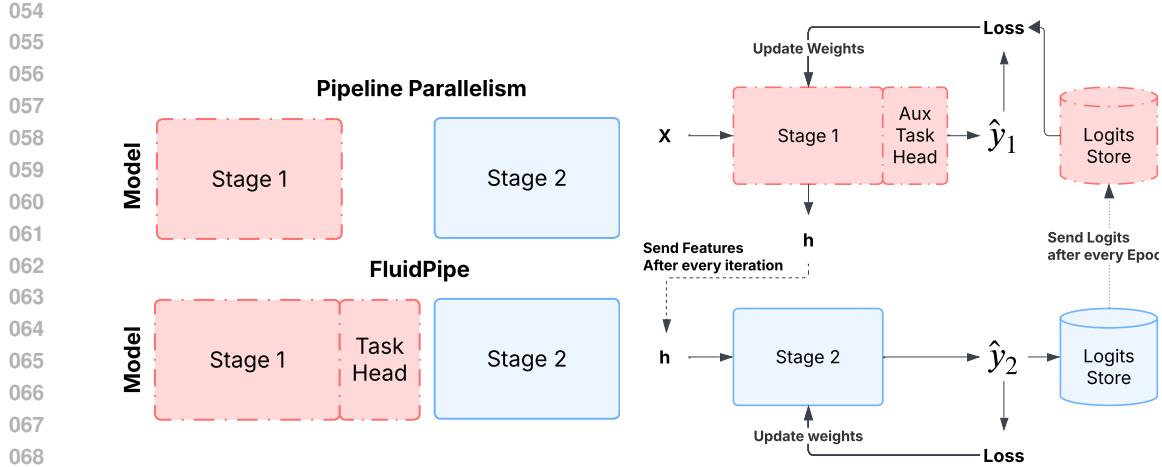
023 1 INTRODUCTION

026 Fine-tuning modern foundation models entails support parallelized execution of computational graphs
027 for models that can span billions of parameters—examples include GPT-3 (175B parameters) (Brown
028 et al., 2020), PaLM (540B) (Chowdhery et al., 2023), LLaMA-2 (7B-70B) (Touvron et al., 2023), and
029 GLaM (1.2T, mixture-of-experts) (Du et al., 2022) on the language side, as well as vision backbones
030 such as Swin Transformer V2 (3B parameters) (Liu et al., 2022) and large ViT variants (Dosovitskiy
031 et al., 2021). Fine-tuning does not reduce the capacity requirements of the underlying model: the full
032 parameter set must still be stored and trained.¹ As a result, a single accelerator is often insufficient,
033 and practitioners must rely on multiple GPUs or nodes to execute fine-tuning efficiently.

034 Practitioners address these requirements using combinations of data parallelism, tensor/model parallelism,
035 optimizer sharding, and pipeline parallelism (PP) (Shoeybi et al., 2019; Rajbhandari et al.,
036 2020). Among these, PP is especially attractive for fine-tuning because it is easy to deploy: the
037 model is partitioned into sequential stages mapped across devices, and mini-batches are split into
038 micro-batches to overlap forward and backward passes. However, each micro-batch still incurs two
039 synchronizations per stage boundary—activations in the forward pass and gradients in the backward
040 pass. These fine-grained communications create *pipeline bubbles*, idle gaps where stages wait for
041 transfers to complete. Even within a datacenter, bubbles reduce throughput, and in cross-node or
042 cross-region settings (which commonly arise due to poor availability of co-located resources) they
043 dominate runtime (Strati et al., 2024). Such inefficiency directly inflates wall-clock time and compute
044 cost.

045 Prior work has focused on *scheduling around bubbles*. GPipe (Huang et al., 2019) and Megatron
046 (Shoeybi et al., 2019) overlap work using micro-batches, PipeDream (Narayanan et al., 2019) and
047 PipeMare (Yang et al., 2021) employ asynchronous updates, and Zero-Bubble PP (Qi et al., 2023)
048 and BitPipe (Wu et al., 2024) refine micro-batch interleaving. These approaches reduce stalling but
049 cannot escape the *fundamental requirement* that every iteration must return gradients across stage
050 boundaries. As a result, they remain sensitive to latency and bandwidth. This observation raises a
051 natural question: can pipeline parallelism be redesigned to *avoid per-iteration gradient dependencies
052 across stages* without sacrificing accuracy?

¹We focus on full-model fine-tuning; parameter-efficient fine-tuning (PEFT) methods such as adapters or LoRA (Houlsby et al., 2019; Hu et al., 2022; Pfeiffer et al., 2020) can reduce memory and compute needs, but are not always applicable or optimal. We include LoRA as a baseline in our experiments.



(a) Structural comparison. Both PP and FluidPipe use a two-stage split; FluidPipe additionally places a small auxiliary head on Stage 1, enabling local training at it.

(b) FluidPipe overview. At each iteration, Stage 1 computes features $h = S_1(x)$, sends h and auxiliary logits $\hat{y}_1 = g(h)$ to Stage 2, and updates locally. Stage 2 computes $\hat{y}_2 = S_2(h)$, updates locally, and accumulates logits $\ell_2(x)$ that are sent back *once per epoch* for Stage 1’s distillation in the next epoch. No per-iteration gradients cross the stage boundary.

Figure 1: FluidPipe augments a standard two-stage pipeline with an auxiliary head at Stage 1 that removes the need for per-iteration cross-stage gradients.

To this end, we introduce **FluidPipe (FP)**, a pipeline-style training algorithm that removes per-iteration gradient transfers. FP augments the first stage of a standard two-stage pipeline with an auxiliary task head (cf. Figure 1a) so that both stages can update model parameters locally. Cross-stage feedback is provided at low frequency via *bi-directional distillation*: Stage 1 sends auxiliary logits each iteration, while Stage 2 bulk-sends its logits once per epoch. Figure 1b shows an overview of the algorithm. Thus, iteration-time training is fully local within each stage, while feedback is coarse and low-frequency. This design eliminates iteration-time gradient synchronization and reduces sensitivity to round-trip-time (RTT) between stages. Furthermore, FluidPipe demonstrates that rethinking the pipeline dependencies—rather than only optimizing schedules—opens a new path for optimizing pipeline parallelism algorithms.

We restrict our study to the two-stage case in order to isolate the core dependency change—removing per-iteration cross-stage gradients—and to reflect common inter-node fine-tuning deployments. Extending FluidPipe to deeper pipelines is nontrivial: every intermediate stage would need to train under its own auxiliary head, and it remains an open question how much representational capacity such stages retain and how their local learning interacts with the global task. In addition, one must design a distillation protocol (hierarchical vs. pairwise) and synchronization policy that preserves both accuracy and efficiency. We leave these algorithmic questions for future work. Nonetheless, Section 5.1 illustrates FP’s compatibility with pipelines beyond two stages by combining intra-node PP with inter-node FP in a mixed topology.

In summary, our contributions are:

- We propose FluidPipe, a two-stage pipeline design that eliminates per-iteration gradient transfers via bi-directional distillation (Section 3).
- We provide a cost model and communication analysis showing when FP outperforms PP (Section 4).
- We empirically validate FP on ViT-Large and BERT-Large fine-tuning across datacenter and cross-region latencies, achieving $1.5\text{--}2.4\times$ speedups while preserving accuracy (Section 5).

2 RELATED WORK

Pipeline Parallelism. The dominant research line in pipeline parallelism has sought to optimize *scheduling*. GPipe (Huang et al., 2019) introduced micro-batching to overlap forward/backward passes. PipeDream (Narayanan et al., 2019) and PipeMare (Yang et al., 2021) relaxed synchronization via asynchronous schedules. Zero-Bubble PP (Qi et al., 2023) and BitPipe (Wu et al., 2024) refine micro-batch interleaving to shrink idle bubbles. All of these methods retain the fundamental gradient dependency across stages.

In contrast, FluidPipe is *orthogonal*: it eliminates the need for per-iteration gradient exchanges altogether. Scheduling optimizations could be applied within each FluidPipe stage, but FluidPipe's contribution lies in *rethinking the dependency*, not the schedule. This distinction explains why we focus our experiments on comparing FluidPipe to standard PP, while positioning it as complementary rather than competing with advanced scheduling.

Optimizations to Pipeline Parallelism. Subsequent work has sought to reduce the impact of pipeline bubbles through more sophisticated scheduling. Zero-Bubble PP (Qi et al., 2023) rearranges the order of forward and backward micro-batches to remove idle gaps, while BitPipe (Wu et al., 2024) proposes bidirectional and interleaved schedules to increase overlap between stages. These methods focus on carefully orchestrating computation to minimize bubbles, but they do not alter the fundamental synchronization requirement that gradients must be exchanged across stages at every iteration.

Other fine-tuning strategies. An alternative to multi-GPU training is using parameter-efficient fine-tuning (PEFT). LoRA (Hu et al., 2022) and related methods (e.g., adapters (Houlsby et al., 2019; Pfeiffer et al., 2020)) update only a small subset of parameters, allowing models to be fine-tuned on a single GPU. We include LoRA as a baseline in our experiments to contrast communication-efficient distributed training (FluidPipe) with compute-efficient local fine-tuning.

3 FLUIDPIPE DESIGN

3.1 OVERVIEW

Pipeline parallelism (PP) splits a model into stages and processes a mini-batch as m micro-batches. In each iteration, every cross-stage boundary incurs an *activation send* in the forward pass and a *gradient return* in the backward pass for each micro-batch. These exchanges couple the stages in both directions: a stage cannot start the backward pass for micro-batch i until the downstream stage finishes its forward on i and returns the gradient. Figure 2 illustrates an iteration with two stages and two micro-batches.

162

Algorithm 2 FluidPipe: Stage 2 (Full Model) Procedure

163

164

```

for epoch  $\leftarrow 1$  to  $E$  do
    Initialize  $\mathcal{P}_2 \leftarrow \{\}$  ▷ Accumulate Stage 2 logits for epoch-level send
    for each mini-batch  $(x, y, i)$  do ▷ Paired with Stage 1 stream
        1. Receive  $(h, \hat{y}_1, i)$  from Stage 1
        2.  $\hat{y}_2 \leftarrow S_2(h; \theta_2)$  ▷ Full-model logits
        3.  $\mathcal{L}_{\text{total}} \leftarrow \mathcal{L}_{\text{task}}(y, \hat{y}_2) + \mathcal{L}_{\text{KD}}(\hat{y}_2, \hat{y}_1)$  ▷ Distill from Stage 1 into Stage 2 each iteration
        4. Backward and update  $\theta_2 \leftarrow \theta_2 - \eta \nabla_{\theta_2} \mathcal{L}_{\text{total}}$ 
        5.  $\mathcal{P}_2[i] \leftarrow \hat{y}_2$  ▷ Store logits for epoch-level send
    6. Send  $\mathcal{P}_2$  to Stage 1 ▷ One blocking send per epoch
Output: parameters  $\theta_2$ 

```

171

172

173

174

175

What makes these fine-grained synchronizations costly is that with P stages a micro-batch crosses $(P-1)$ boundaries twice (forward and backward), so the latency term on the critical path grows roughly with $2(P-1) \times \text{RTT}$. Increasing m reduces the relative cost of warm-up, but it does not eliminate the per-boundary round-trips that gate backward progress and the optimizer step. Consequently, as the number of boundaries or the RTT increases, these per-iteration synchronizations induce larger pipeline bubbles and lower throughput.

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

3.2 TRAINING MECHANICS

194

195

At iteration granularity, Stage 1 minimizes

196

197

$$\mathcal{L}_1 = \alpha_1 \mathcal{L}_{\text{task}}(y, \hat{y}_1) + (1 - \alpha_1) \mathcal{L}_{\text{KD}}(\hat{y}_1, \ell_2(x)),$$

198

199

where $\ell_2(x)$ are Stage 2 logits received at the end of the previous epoch. For epoch $e=1$, we disable distillation by setting $\alpha_1 = 1$, since Stage 1 only receives logits after the end of the first epoch.

200

201

Stage 2 minimizes, for each received (h, \hat{y}_1) ,

202

203

$$\mathcal{L}_2 = \alpha_2 \mathcal{L}_{\text{task}}(y, \hat{y}_2) + (1 - \alpha_2) \mathcal{L}_{\text{KD}}(\hat{y}_2, \hat{y}_1),$$

204

205

206

and accumulates \hat{y}_2 in a dictionary \mathcal{P}_2 keyed by sample index i . Once per epoch, Stage 2 *bulk-sends* \mathcal{P}_2 to Stage 1, which then uses $\ell_2(x)$ in the next epoch's \mathcal{L}_1 . Algorithms 1 and 2 provide the exact procedures.

207

208

209

210

211

212

213

214

215

Design Enhancement: Extra Block Stage 1 outputs features h that are both forwarded to Stage 2 and used by the auxiliary head. These two roles can pull the features in different directions. We add an *extra backbone block* after the last Stage 1 block: h is forwarded to Stage 2 unchanged, while $\tilde{h} = f_{\text{extra}}(h)$ is fed to the auxiliary head. This decouples features for continuation from features for local classification. See Figure 7 for its effect across split points.

3.3 EXTENSIONS

Communication policy: bulk vs. streaming. We use epoch-level (bulk) transfers of Stage 2 logits to Stage 1 for simplicity and low control overhead. A straightforward extension is to *stream* or

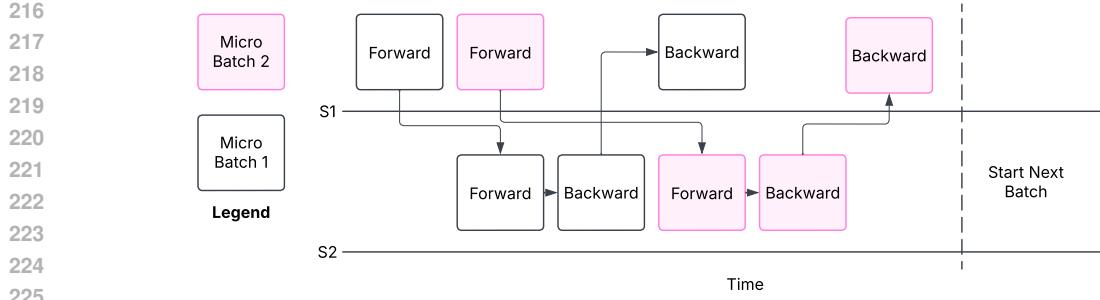


Figure 2: Timeline diagram of Pipeline Parallelism showing cross-stage communication and synchronization with two micro-batches and two stages.

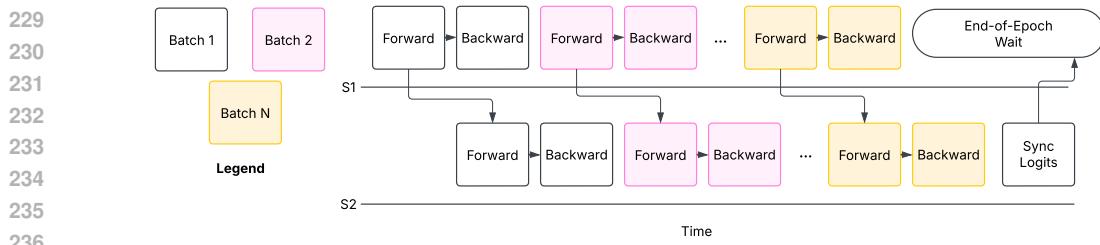


Figure 3: Timeline diagram of FluidPipe showing the cross-stage communication and synchronization over an epoch.

periodically send logits during an epoch. Streaming the logits would eliminate the send time at the end of the epoch as well as reduce the memory cost for storing the epochs at Stage 2. Also, it would allow Stage 1 to start the next epoch earlier, since it received logits from Stage 2. Since progress is gated by when Stage 2 finishes the epoch, earlier (streamed) logits to Stage 1 do not shorten the critical path; any speedup over a bulk transfer is likely marginal. We leave the systematic exploration of the different communication policies and their system performance to future work.

FP without distillation. When distillation is disabled on a stage, the corresponding messages can be omitted: (i) if Stage 1 uses no distillation (i.e., $\alpha_1=1$), the end-of-epoch Stage 2→Stage 1 logits transfer is unnecessary; (ii) if Stage 2 uses no distillation ($\alpha_2=1$), Stage 1 need only send features h (no \hat{y}_1) each iteration. Our current implementation always includes the logits for simplicity, so the reported runtimes for “FP without distillation” are *conservative (upper bounds)*; removing these data would further reduce communication volume without affecting the model quality.

4 ANALYTICAL COST MODEL

We analyze the cost of FluidPipe against traditional two-stage pipeline parallelism. Pipeline parallelism divides computation into micro-batches (m) to overlap communication and computation. Denote forward-backward compute times at stages 1 and 2 as t_1 and t_2 , respectively. Let t_a and t_g represent communication time for activation and gradient transmissions, respectively. For one epoch of N_b mini-batches, pipeline parallelism takes:

$$T_{PP} \approx N_b(m + 1) \max(t_1 + t_a, t_2 + t_g).$$

FluidPipe eliminates per-micro-batch gradient synchronization by performing a one-way data transfer and uses a single epoch-end bulk synchronization. Let τ_1, τ_2 denote the per-batch computation time in FluidPipe’s stage 1 and 2, respectively. Note this includes the time for knowledge distillation. Let τ_a be the forward transfer time per mini-batch, and τ_d the epoch-end logits transfer time.

Then, FluidPipe’s per-epoch time (accounting for concurrency) is:

$$T_{FP} \approx N_b \max(\tau_1, \tau_2 + \tau_a) + \tau_d.$$

270 The advantage of FluidPipe over pipeline parallelism primarily comes from removing the frequent
 271 per-micro batch gradient synchronization (t_g), replacing it with a single bulk synchronization per
 272 epoch. Typically, we have $\tau_d \ll N_b m t_g$, leading FluidPipe to outperform pipeline parallelism
 273 significantly.

274 Empirically, the model tracks epoch runtime closely when instantiated with trace-derived step times.
 275 In FluidPipe, iteration-time progress is governed by the stage on the critical path (stage 2), so a simple
 276 estimate for training time per epoch is

$$278 \quad \hat{T}_{\text{epoch}}^{\text{FP}} \approx N_b (\tau_2 + \tau_a) \quad (\text{optionally } + \tau_d \text{ if not negligible}).$$

279 We obtained $(\tau_2 + \tau_a)$ by measuring the per-step delta on Stage 2 from the instrumented traces and
 280 multiplying by the number of batches N_b . The resulting $\hat{T}_{\text{epoch}}^{\text{FP}}$ closely matched the mean epoch
 281 runtime reported in our results (see Tables 1 and 4), corroborating that once τ_1, τ_2 (and the small τ_d)
 282 are measured, the cost model accurately predicts training time.

284 4.1 COMMUNICATION OVERHEAD ANALYSIS

286 Now we compare the communication volume of FluidPipe and Pipeline Parallelism. Let λ_{batch}
 287 denote the per-mini-batch cost of sending the intermediate features h (incurred by both FluidPipe
 288 and classical PP), λ_p the per-mini-batch cost of sending the auxiliary logits \hat{y}_1 (FluidPipe only),
 289 β_{batch} the per-mini-batch cost of returning backward gradients across a stage boundary (PP only),
 290 γ the end-of-epoch bulk transfer of Stage 2 logits in FluidPipe, and N_b the number of mini-batches
 291 per epoch; for simplicity, we ignore micro-batching.

292 Two-Stage Pipeline Parallelism:

$$294 \quad \text{Total communication per epoch} = N_b \times (\lambda_{\text{batch}} + \beta_{\text{batch}}).$$

296 FluidPipe:

$$297 \quad \text{Total communication per epoch} = N_b \times (\lambda_{\text{batch}} + \lambda_p) + \gamma.$$

298 For FluidPipe to incur lower communication, we need:

$$300 \quad N_b (\lambda_{\text{batch}} + \lambda_p) + \gamma < N_b (\lambda_{\text{batch}} + \beta_{\text{batch}}) \\ 301 \quad \iff (N_b \lambda_p) + \gamma < N_b \beta_{\text{batch}}.$$

302 Note that volume of γ is the same as $N_b \lambda_p$, so we can simplify further and say FluidPipe will incur
 303 lower communication if and only if:

$$304 \quad 2(N_b \lambda_p) < N_b \beta_{\text{batch}}$$

306 Since the gradient tensor size of a model (e.g., BERT has gradient tensor of size $(b, 512, 1024)$, while
 307 the logits tensor size would be $(N_b \times b \times \text{number of labels})$) often far exceeds the size of the logits,
 308 thus $2(N_b \lambda_p) < N_b \beta_{\text{batch}}$ almost always holds in practice.

309 However, in tasks with very large output spaces—e.g., autoregressive language modeling where the
 310 label space equals the vocabulary (often 10^4 – 10^5 tokens)—the per-sample logit vector can dominate
 311 the communication budget, potentially violating the inequality above. In such regimes, *FluidPipe can*
 312 *operate without cross-stage distillation* by setting $\alpha_1 = \alpha_2 = 1$, which removes both the per-iteration
 313 transfer of \hat{y}_1 and the epoch-end transfer of $\ell_2(x)$. Empirically, our **FP-ND** variant (no distillation)
 314 *matches or nearly matches* the best FP configurations in accuracy across vision and language tasks (see
 315 Tables 2 and 5). Thus, distillation is an *optional enhancement* rather than a requirement: when logits
 316 would be expensive (e.g., large-vocab LM), practitioners can disable it and still obtain FluidPipe’s
 317 core benefit—eliminating per-iteration gradient synchronization.

318 5 EXPERIMENTS & RESULTS

319 **Goals and Setup.** We ask two questions: *(Q1) Does FluidPipe reduce epoch time versus pipeline*
 320 *parallelism (PP) across latencies?* and *(Q2) Does FluidPipe preserve model quality?* We evaluate two
 321 settings: *Setup A* fine-tunes ViT-Large/16 (Dosovitskiy et al., 2021) on two machines, each with two
 322 A100s (intra-node 2-way PP; inter-node FP, 4 stages in total); *Setup B* fine-tunes BERT-Large (Devlin

324 Table 1: Mean per-epoch runtime: shown across datasets and latencies (less is better). Speedup over
 325 PP is shown in parentheses.
 326

327 Task	328 CIFAR-100 (minutes)			329 Oxford Flowers-102 (seconds)			330 Oxford-IIIT Pets (seconds)		
	331 Latency	0.01 ms	332 25 ms	333 50 ms	0.01 ms	25 ms	334 50 ms	0.01 ms	25 ms
PP	6.04	21.88	29.99	0.13	0.46	0.69	1.86	6.67	10.05
FP-DB	3.77 (x1.6)	9.96 (x2.2)	14.58 (x2.06)	0.1 (x1.35)	0.23 (x1.96)	0.37 (x1.86)	1.21 (x1.54)	2.73 (x2.45)	4.45 (x2.26)
FP-DT	3.76 (x1.61)	9.94 (x2.2)	14.55 (x2.06)	0.1 (x1.33)	0.24 (x1.93)	0.38 (x1.83)	1.21 (x1.54)	2.74 (x2.43)	4.47 (x2.25)
FP-DT-EL	3.77 (x1.6)	9.96 (x2.2)	14.58 (x2.06)	0.1 (x1.31)	0.24 (x1.9)	0.38 (x1.8)	1.23 (x1.52)	2.77 (x2.41)	4.52 (x2.22)
FP-ND	3.77 (x1.6)	9.94 (x2.2)	14.56 (x2.06)	0.1 (x1.35)	0.23 (x1.96)	0.37 (x1.85)	1.22 (x1.53)	2.75 (x2.43)	4.48 (x2.24)
FP-ND-EL	3.77 (x1.6)	9.96 (x2.2)	14.58 (x2.06)	0.1 (x1.32)	0.24 (x1.91)	0.38 (x1.81)	1.22 (x1.52)	2.76 (x2.41)	4.51 (x2.23)

335 Table 2: Best accuracy (@epoch) across datasets. Mean with standard deviation is reported.
 336

	CIFAR-100	Oxford Flowers-102	Oxford-IIIT Pets
FP-DB	93.25 \pm 0.18%	99.29 \pm 0.10%	93.55 \pm 0.06%
FP-DT	93.30 \pm 0.08%	99.26 \pm 0.02%	93.87 \pm 0.21%
FP-DT-EL	93.54 \pm 0.08%	99.29 \pm 0.03%	93.61 \pm 0.22%
FP-ND	93.21 \pm 0.11%	99.21 \pm 0.05%	93.44 \pm 0.37%
FP-ND-EL	93.41 \pm 0.14%	99.25 \pm 0.13%	93.48 \pm 0.22%
PP	93.37 \pm 0.24%	99.11 \pm 0.07%	93.47 \pm 0.16%

346 et al., 2019) on two machines, one A100 each (inter-node FP). We emulate 0.01 ms (same-rack),
 347 25 ms (cross-zone), and for Setup A also 50 ms (inter-region) RTT using Linux `tc`. All runs use
 348 three seeds.

349 Our design space toggles: (i) distillation on/off and weight (α_1, α_2), and (ii) the *extra block* (Sec-
 350 tion 3.2). We evaluate five FP variants that separate the effects of distillation from the extra block:
 351 **FP-DB** ($\alpha_1 = \alpha_2 = 0.5$), **FP-DT** ($\alpha_1 = \alpha_2 = 0.9$ from Figure 6), **FP-DT-EL** (DT+extra block),
 352 **FP-ND** (no distillation), **FP-ND-EL** (ND+extra block). This set yields simple recipes (e.g., ND for
 353 zero tuning; DT for light tuning; DT-EL when adding the extra block).

355 5.1 SETUP A: ViT-LARGE FINE-TUNING ON FOURGPUS

357 We fine-tune ViT-Large/16 on CIFAR-100, Oxford-IIIT Pets, and Flowers-102 following the original
 358 ViT hyperparameters (Dosovitskiy et al., 2021) and for the same number of epochs reported by
 359 the ViT paper or until early stopping is triggered. We evaluate test accuracy every 2 epochs on
 360 CIFAR-100, every 28 epochs on Oxford-IIIT Pets, and every 100 epochs on Flowers-102. More
 361 frequent evaluation would be prohibitively expensive for Oxford-IIIT Pets and Flowers-102, where
 362 epochs are very short under large batch sizes. We compare pipeline parallelism and the FluidPipe
 363 variants. Within each FluidPipe stage, we use the intra-node PP schedule used by the PP baseline,
 364 while employing FP for the inter-node parallelism.

365 **Epoch-Time Results.** Table 1 reports mean per-epoch time. FluidPipe consistently shortens epochs
 366 versus PP at all RTTs. At 0.01 ms, FP variants deliver $\sim 1.49 \times$ average speedup (range 1.31–1.61 \times
 367 across tasks). At 25 ms, speedups rise to $\sim 2.19 \times$ on average (range 1.90–2.45 \times), and at 50 ms
 368 they remain $\sim 2.04 \times$ on average (range 1.80–2.26 \times). FluidPipe is also less latency-sensitive: as
 369 RTT grows from 0.01 ms to 50 ms, PP epochs slow by roughly 5.0–5.4 \times , whereas representative FP
 370 variants slow by only ~ 3.7 –3.9 \times . In short, FP roughly halves the latency penalty while retaining its
 371 advantage at low RTT.

373 **Final accuracy.** Across CIFAR-100, Flowers-102, and Pets, all FP variants match or slightly exceed
 374 PP; notably, **FP-ND** (no cross-stage distillation) attains parity, which isolates the auxiliary head
 375 on Stage 1 as the main mechanism needed to preserve quality and remove the cross-stage gradients
 376 (Table 2). Distillation and the extra block are helpful but non-essential refinements: they stabilize
 377 and can yield small, task-dependent gains. Moreover, these two components are further discussed in
 Appendix A.

378 Table 3: CIFAR-100: best accuracy and runtime at best step vs PEFT (LoRA).
379

	FP-DT-EL	FP-ND-EL	PP	FP-DT	FP-DB	FP-ND	LoRA
Acc (%)	93.54 \pm 0.08	93.41 \pm 0.14	93.37 \pm 0.24	93.30 \pm 0.08	93.25 \pm 0.18	93.21 \pm 0.11	92.64 \pm 0.16
Runtime (h)	2.94 \pm 0.77	1.35 \pm 0.39	2.69 \pm 0.83	1.59 \pm 0.52	2.09 \pm 0.29	1.84 \pm 0.52	7.52 \pm 3.13

384 Table 4: Mean per-epoch runtime (minutes): shown over multiple tasks and latencies. Speedup over
385 PP is shown in parentheses.
386

Task	Ag News		IMDB		Yelp Review Full	
	Latency	0.01 ms	25 ms	0.01 ms	25 ms	0.01 ms
PP	96.15	303.96	19.33	59.48	516.91	1707.26
FP-DB	86.2 (x1.12)	91.13 (x3.34)	15.01 (x1.29)	19.57 (x3.04)	470.74 (x1.1)	553.81 (x3.08)
FP-DB-EL	91.08 (x1.06)	96.29 (x3.16)	16.1 (x1.2)	20.99 (x2.83)	498.14 (x1.04)	586.06 (x2.91)
FP-DT	85.95 (x1.12)	90.87 (x3.34)	15.04 (x1.29)	19.61 (x3.03)	468.61 (x1.1)	551.31 (x3.1)
FP-DT-EL	90.9 (x1.06)	96.11 (x3.16)	16.07 (x1.2)	20.95 (x2.84)	494.86 (x1.04)	582.2 (x2.93)
FP-ND	86.03 (x1.12)	90.96 (x3.34)	15.05 (x1.28)	19.62 (x3.03)	440.77 (x1.17)	518.56 (x3.29)
FP-ND-EL	90.48 (x1.06)	95.66 (x3.18)	16.04 (x1.21)	20.91 (x2.84)	464.53 (x1.11)	546.51 (x3.12)

397
398 **Distributed Training vs. Parameter-Efficient Fine-Tuning (PEFT).** Table 3 contrasts distributed
399 methods (FP and PP) with LoRA. We find that LoRA achieves comparable accuracy (92.64%) but
400 lags behind distributed methods by nearly a percentage point, while requiring substantially longer
401 runtime (7.52 ± 3.13 h). In contrast, FluidPipe and PP consistently exceed 93% accuracy, with
402 FluidPipe variants such as FP-ND-EL reaching 93.41% in only 1.35 ± 0.39 h. This highlights a key
403 trade-off: PEFT reduces the number of trainable parameters but can still incur long wall-clock times
404 due to sequential execution, whereas distributed training methods like FluidPipe shorten runtime
405 dramatically without sacrificing accuracy. For practitioners with multi-GPU resources, FluidPipe
406 therefore offers a more efficient path to high accuracy, while LoRA remains attractive in strictly
407 single-GPU or memory-constrained settings.

408
409

5.2 SETUP B: BERT-LARGE FINE-TUNING ON TWO GPUs

410 We fine-tune BERT-LARGE (Devlin et al., 2019) on three text classification tasks (AG News, Yelp
411 Review Full (Zhang et al., 2015), and IMDB Reviews (Maas et al., 2011)). We follow a standard
412 HuggingFace fine-tuning recipe and evaluate *at the end of each epoch*. We use two machines (one
413 with a GPU each): Stage 1 runs on node A and Stage 2 on node B. Since we have only 2 GPUs in
414 total, we only change the *inter-node* algorithm (PP vs. FluidPipe variants).
415

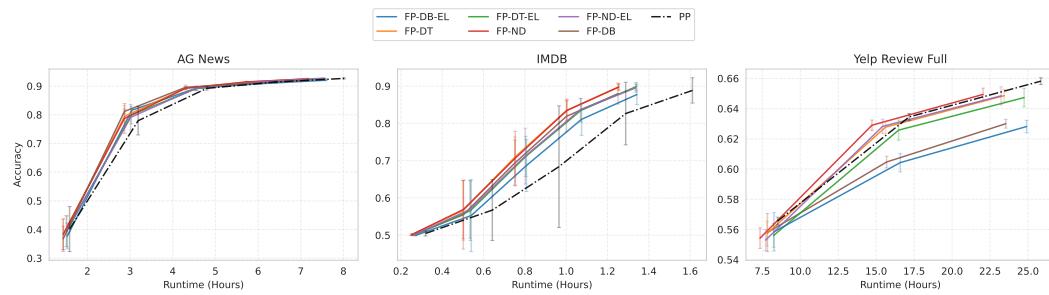
416 **Epoch-Time Results.** Table 4 shows that FP again lowers epoch time and dampens latency effects.
417 At 25 ms, AG News drops from 303.96 min (PP) to 90.87–96.29 min (FP)— $3.16\text{--}3.34\times$ faster; IMDB
418 from 59.48 min to 19.57–20.99 min— $2.83\text{--}3.04\times$; and Yelp from 1707.26 min to 518.56–586.06
419 min— $2.91\text{--}3.29\times$. At 0.01 ms, FP still helps, with $1.06\text{--}1.29\times$ speedups across tasks (e.g., IMDB:
420 $19.33 \rightarrow 15.01$ min). Latency sensitivity starkly differs: PP slows by $3.08\text{--}3.30\times$ moving from
421 0.01 ms to 25 ms, while representative FP runs grow by only $\sim 1.06\text{--}1.30\times$. Thus, FP delivers
422 $\approx 3\times$ speedups at realistic cross-zone RTTs and remains beneficial even at datacenter latency.
423

424 **Final Accuracy.** Table 5 shows that FluidPipe matches PP on AG News (92.75%), surpasses PP
425 on IMDB (89.88% vs. 88.86%), and trails by less than 1 pt on Yelp (64.94% vs. 65.82%). Unlike
426 Setup A, here we fix a small epoch budget; because FP completes each epoch much faster, a wall-
427 clock-matched comparison would allow more FP epochs and could close the small Yelp gap. Figure 4
428 shows the accuracy over runtime at 0.01 ms RTT and Figure 5 shows it at 25 ms.

429 Overall, our results indicate that FluidPipe’s central contribution is *eliminating per-iteration cross-*
430 *stage gradient exchange* by equipping Stage 1 with an auxiliary head. This change reduces syn-
431 chronization and communication while keeping iteration-time updates local—thereby improving
efficiency—yet it preserves (and sometimes improves) end-to-end accuracy across setups. Look-

432
433
434 Table 5: Best accuracy (mean \pm std) across datasets
435
436
437
438
439
440
441

	Yelp Review Full	AG News	IMDB
FP-DB	$63.00 \pm 0.29\%$	$92.10 \pm 0.20\%$	$87.98 \pm 2.80\%$
FP-DB-EL	$62.82 \pm 0.41\%$	$92.04 \pm 0.21\%$	$87.74 \pm 2.66\%$
FP-DT	$64.86 \pm 0.41\%$	$92.54 \pm 0.29\%$	$89.79 \pm 0.97\%$
FP-DT-EL	$64.73 \pm 0.61\%$	$92.56 \pm 0.13\%$	$89.88 \pm 1.13\%$
FP-ND	$64.94 \pm 0.42\%$	$92.51 \pm 0.11\%$	$89.74 \pm 0.73\%$
FP-ND-EL	$64.85 \pm 0.60\%$	$92.75 \pm 0.07\%$	$89.51 \pm 1.16\%$
PP	$65.82 \pm 0.23\%$	$92.67 \pm 0.24\%$	$88.86 \pm 3.40\%$

443
444
445 Figure 4: Accuracy vs runtime at 0.01 ms for AG News & IMDB & Yelp Review Full.
446
447
448
449
450
451

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1530
1531
1532
1533
1534
1535
1536
1

486 IIIT Pets, Flowers-102, AG News, Yelp, IMDB) that are widely used in the machine learning
 487 community. Our methods are intended to improve the efficiency of fine-tuning large models across
 488 multi-GPU and multi-node systems; they do not generate new content or decision policies that could
 489 directly impact individuals. We acknowledge that improved efficiency in training large models may
 490 indirectly lower barriers to training, which could accelerate both beneficial and potentially harmful
 491 applications of foundation models. We believe that these broader ethical considerations warrant
 492 ongoing discussion in the community, but our contribution is purely methodological and system-level,
 493 with no direct risks of misuse beyond those already inherent in large-scale ML.

494

495 REFERENCES

496

497 T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
 498 P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. *arXiv preprint
 arXiv:2005.14165*, 2020. URL <https://arxiv.org/abs/2005.14165>.

500 A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. S. Chung,
 501 M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta,
 502 M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. N.
 503 Fiedel. Palm: Scaling language modeling with pathways. *J. Mach. Learn. Res.*, 24:240:1–240:113,
 504 2023. URL <https://jmlr.org/papers/v24/22-1144.html>.

505 J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional Trans-
 506 formers for Language Understanding. In *NAACL-HLT*, 2019. URL <https://aclanthology.org/N19-1423>.

507

508 A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
 509 M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image
 510 recognition at scale. In *International Conference on Learning Representations*, 2021.

511

512 N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun, Y. Zhou, A. W. Yu, O. Firat,
 513 B. Zoph, L. Fedus, M. P. Bosma, Z. Zhou, T. Wang, E. Wang, K. Webster, M. Pellat, K. Robinson,
 514 K. Meier-Hellstern, T. Duke, L. Dixon, K. Zhang, Q. Le, Y. Wu, Z. Chen, and C. Cui. Glam:
 515 Efficient scaling of language models with mixture-of-experts. pages 5547–5569, 2022. URL
 516 <https://proceedings.mlr.press/v162/du22c.html>.

517 N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. Attariyan,
 518 and S. Gelly. Parameter-efficient transfer learning for nlp. In *International conference on machine
 519 learning*, pages 2790–2799. PMLR, 2019.

520

521 E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. Lora: Low-rank
 522 adaptation of large language models. *ICLR*, 1(2):3, 2022.

523 Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, et al.
 524 Gpipe: Efficient training of giant neural networks using pipeline parallelism. *Advances in neural
 525 information processing systems*, 32, 2019.

526

527 Z. Liu, H. Hu, B. Knyazev, A. Gitman, A. Garg, P. Goyal, P. Dollár, C. L. Zitnick, H. Hayashi,
 528 R. Girshick, et al. Swin transformer v2: Scaling up capacity and resolution. In *Proceedings of the
 529 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 10052–10062,
 530 2022. URL <https://arxiv.org/abs/2111.09883>.

531 A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors for sen-
 532 timent analysis. In *Proceedings of the 49th Annual Meeting of the Association for Computational
 533 Linguistics: Human Language Technologies*, pages 142–150, Portland, Oregon, USA, 2011. Asso-
 534 ciation for Computational Linguistics. URL <https://aclanthology.org/P11-1015/>.

535

536 D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R. Ganger, P. B. Gibbons,
 537 and M. Zaharia. Pipedream: Generalized pipeline parallelism for dnn training. In *Proceedings of
 538 the 27th ACM symposium on operating systems principles*, pages 1–15, 2019.

539 J. Pfeiffer, A. Kamath, A. Rücklé, K. Cho, and I. Gurevych. Adapterfusion: Non-destructive task
 composition for transfer learning. *arXiv preprint arXiv:2005.00247*, 2020.

540 P. Qi, X. Wan, G. Huang, and M. Lin. Zero bubble pipeline parallelism. *arXiv preprint*
 541 *arXiv:2401.10241*, 2023.

542 S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: Memory optimizations toward training
 543 trillion parameter models. In *SC20: International Conference for High Performance Computing,
 544 Networking, Storage and Analysis*, pages 1–16. IEEE, 2020.

545 M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro. Megatron-lm:
 546 Training multi-billion parameter language models using model parallelism. *arXiv preprint*
 547 *arXiv:1909.08053*, 2019.

548 F. Strati, P. Elvinger, T. Kerimoglu, and A. Klimovic. ML training with cloud gpu shortages: Is
 549 cross-region the answer? In *Proceedings of the 4th Workshop on Machine Learning and Systems*,
 550 pages 107–116, 2024.

551 H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
 552 P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv*
 553 *preprint arXiv:2307.09288*, 2023. URL <https://arxiv.org/abs/2307.09288>.

554 H. Wu, L. Chen, and W. Yu. Bitpipe: Bidirectional interleaved pipeline parallelism for accelerating
 555 large models training. *arXiv preprint arXiv:2410.19367*, 2024.

556 B. Yang, J. Zhang, J. Li, C. Ré, C. Aberger, and C. De Sa. Pipemare: Asynchronous pipeline parallel
 557 dnn training. *Proceedings of Machine Learning and Systems*, 3:269–296, 2021.

558 X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification. In
 559 *Advances in Neural Information Processing Systems 28 (NeurIPS 2015)*, 2015. URL <https://arxiv.org/abs/1509.01626>. Introduces the AG News and Yelp Review (Full/Polarity)
 560 benchmarks.

561

562 A EXPERIMENTS & RESULTS

563 **Reproducibility Statement.** We have taken multiple steps to ensure reproducibility of our results.
 564 Our paper provides a full description of the FluidPipe algorithm (Section 3), a cost and communication
 565 model with all assumptions stated (Section 4), and detailed experimental setups including model
 566 architectures, datasets, hardware environments, and latency emulation methods (Section 5). We report
 567 results across three random seeds for each configuration and include standard deviations in accuracy
 568 tables. We will release anonymized source code and configuration files as supplementary material to
 569 enable independent verification of our results and reproducibility.

570 A.1 ADDITIONAL EXPERIMENTS: ViT-BASE

571 To further validate the design choices in FluidPipe, we conduct a set of experiments using ViT-Base on
 572 CIFAR-100, which allows faster iteration while preserving the key behaviors of interest. Specifically,
 573 we investigate:

- 574 • the role of distillation and how to weight it effectively,
- 575 • the impact of different split points on model accuracy, and
- 576 • the utility of the extra block as a design enhancement.

577 **Exploring Distillation.** We vary α , the weight between the task loss and the distillation loss:

$$578 \mathcal{L}_{total} = \alpha \mathcal{L}_{task} + (1 - \alpha) \mathcal{L}_{distillation}. \quad (1)$$

579 A higher α places more weight on the task loss; $\alpha = 1$ corresponds to no distillation. Since \mathcal{L}_{total}
 580 is computed at both stages, we evaluate a grid of α values for the partial (stage 1) and full (stage 2)
 581 models.

582 Figure 6 reports the best accuracy of the full model and the corresponding epoch. The highest
 583 accuracies (around 92.3%) are achieved across a range of settings where the full model is distilled

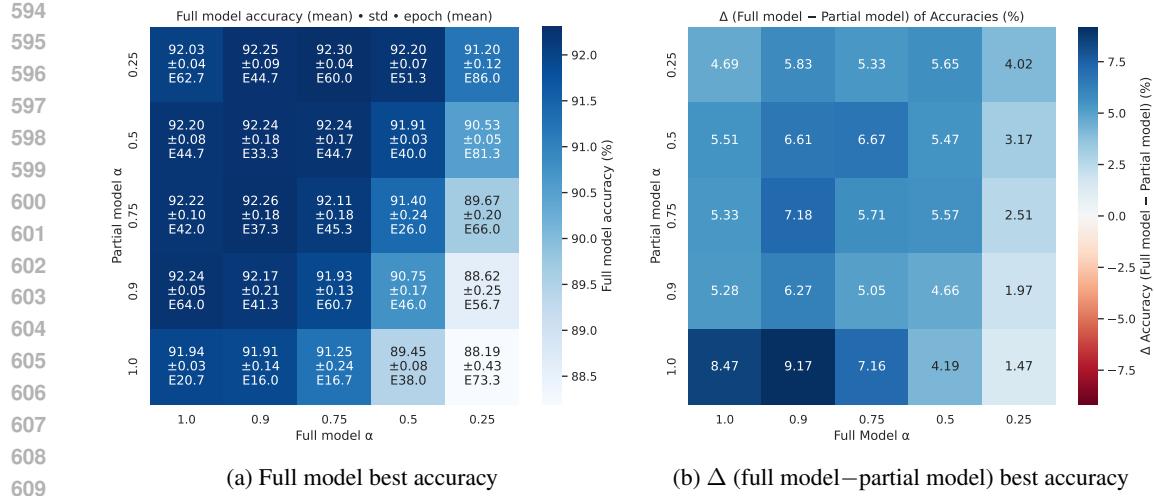


Figure 6: Alpha grid: full model accuracy and Δ between FP full model vs partial model across α values.

Table 6: Effect of number of blocks per FluidPipe stage and the addition of Extra Block at M1

Split	w/o extra block		Runtime	w extra block	
	Accuracy (mean ± std)	Epoch @ best (mean)		Accuracy	Epoch
(10, 4)	91.96 ± 0.03%	16.0	0.87 h	92.18 ± 0.12%	35.3
(12, 2)	92.14 ± 0.06%	20.7	1.35 h	92.20 ± 0.08%	16.7
(2, 12)	86.63 ± 0.10%	79.3	5.64 h	91.55 ± 0.10%	42.7
(4, 10)	90.94 ± 0.23%	14.0	0.82 h	91.72 ± 0.16%	77.3
(7, 7)	91.46 ± 0.15%	12.7	0.58 h	91.95 ± 0.07%	24.0

lightly (higher α) while the partial model receives moderate distillation (lower α). This supports our intuition: **distillation helps the partial model learn in place of receiving gradients**. We also note that full-model accuracy is relatively stable across many α combinations once distillation is tuned, with differences of less than 1% between most settings.

Furthermore, Figure 6 shows that convergence speed varies sharply with α . The fastest convergence (16–21 epochs) occurs when the partial model is trained without distillation ($\alpha = 1$) and the full model receives minimal to no distillation ($\alpha \approx 0.75$ –1.0). In contrast, when both stages are distilled heavily ($\alpha \leq 0.5$), convergence is substantially slower, with the best accuracy only appearing after 40–80 epochs.

We also plot Δ accuracy, defined as the difference between the full and partial model accuracies. This serves as a sanity check (the full model should outperform the partial) and shows how distillation changes the gap. For example, Δ shrinks from about 9% when the full model is not distilled at all ($\alpha = 1$) to around 2% when it is distilled heavily ($\alpha = 0.25$). This shrinkage, however, reflects degraded full-model accuracy rather than genuine improvement of the partial model.

Practitioner Takeaway

A practical rule of thumb is to distill more to the partial model while keeping the full model mostly task-oriented.

Split Point and Extra Block. Figure 7 reports accuracy for both the partial model (stage 1) and the full model (stage 2) across split points, with and without the extra block; Table 6 reports full-model accuracy (mean ± std), as well as epochs and runtime to best.

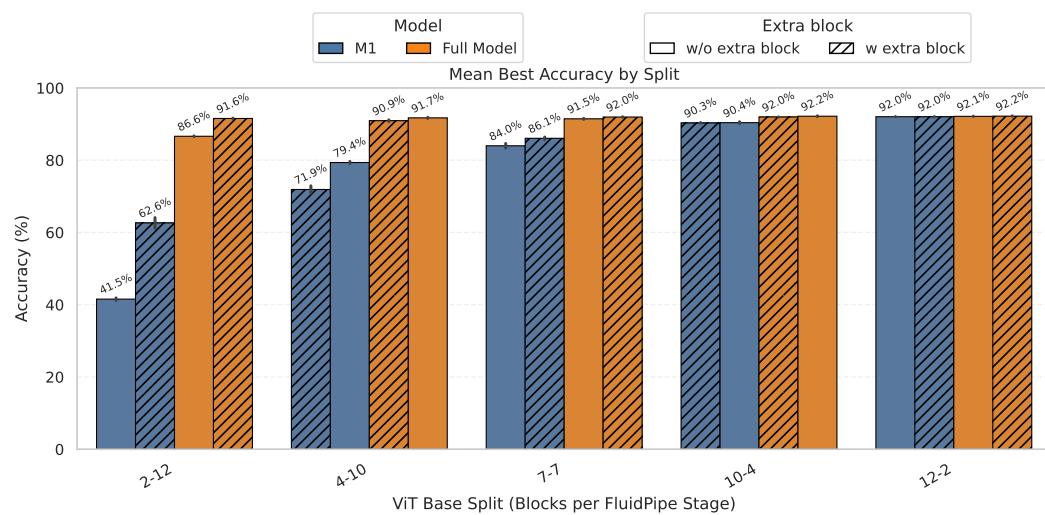


Figure 7: Split and Extra Block utility.

Split point (no extra block). For the full model, accuracy is robust under balanced and moderately skewed splits: (7,7) 91.46%, (10,4) 91.96%, and (12,2) 92.14% (Table 6). Only the extreme (2,12) split collapses accuracy to 86.63%. In contrast, the figure shows that the partial model depends strongly on stage 1 depth: it is high when stage 1 is deep (e.g., (12,2) \approx 92.0%) and very low when stage 1 is shallow (e.g., (2,12) \approx 41.6%).

Balanced split with extra block (7,7). Adding the extra block increases full-model accuracy from 91.46% \rightarrow 91.95% (+0.49 pp; Table 6), and improves the partial model from \approx 84.0% \rightarrow 86.1% (Figure 7). This comes with slower convergence for the full model (12.7 \rightarrow 24.0 epochs; 0.58 \rightarrow 1.16 h).

Interaction. Across splits, the extra block consistently raises accuracy for both models. For the full model, gains are modest under balanced/moderate splits—(10,4): 91.96% \rightarrow 92.18%, (12,2): 92.14% \rightarrow 92.20%, (7,7): 91.46% \rightarrow 91.95%—but are substantial when stage 1 is under-provisioned: (2,12): 86.63% \rightarrow 91.55% (+4.92 pp) and (4,10): 90.94% \rightarrow 91.72% (+0.78 pp) (Table 6). The figure shows an even larger effect on the partial model when stage 1 is shallow: (2,12): \approx 41.6% \rightarrow 62.6% (+21.0 pp), (4,10): \approx 71.9% \rightarrow 79.4% (+7.5 pp). Effects on convergence vary by split: the extra block can slow training (e.g., (4,10): 14.0 \rightarrow 77.3 epochs) or speed it up (e.g., (12,2): 20.7 \rightarrow 16.7 epochs).

Takeaways. (i) Full-model accuracy is robust to the split point except in the extreme (2,12) case; (ii) the extra block is *useful in general*, providing small but consistent gains (e.g., +0.49 pp at (7,7)); and (iii) the extra block is *especially* beneficial when stage 1 is shallow, where it substantially lifts both the partial and full model accuracy.

A.2 ADDITIONAL EXPERIMENTS: BERT-LARGE

Following Setup B, we probe the effect of distillation on IMDB in Figure 8. In contrast to Figure 6 (ViT), we observe little sensitivity to the choice of Stage 1 (partial model) α over a broad range, and accuracy *degrades* when distillation into the full model (Stage 2) is strong (i.e., 0.5–0.25 α_2). A plausible explanation is the short training budget in this setup: we run only 5 epochs. As seen in Figure 6, the configurations that benefited from distillation typically reached their best accuracy later in training; with a small fixed epoch budget, that advantage does not have time to materialize.

Practical takeaway. Under small epoch budgets, prefer little-to-no distillation into Stage 2 (e.g., $\alpha_2 \approx 0.75$ –1.0); heavier Stage 2 distillation is counterproductive, while tuning α_1 has comparatively minor effect in this regime.

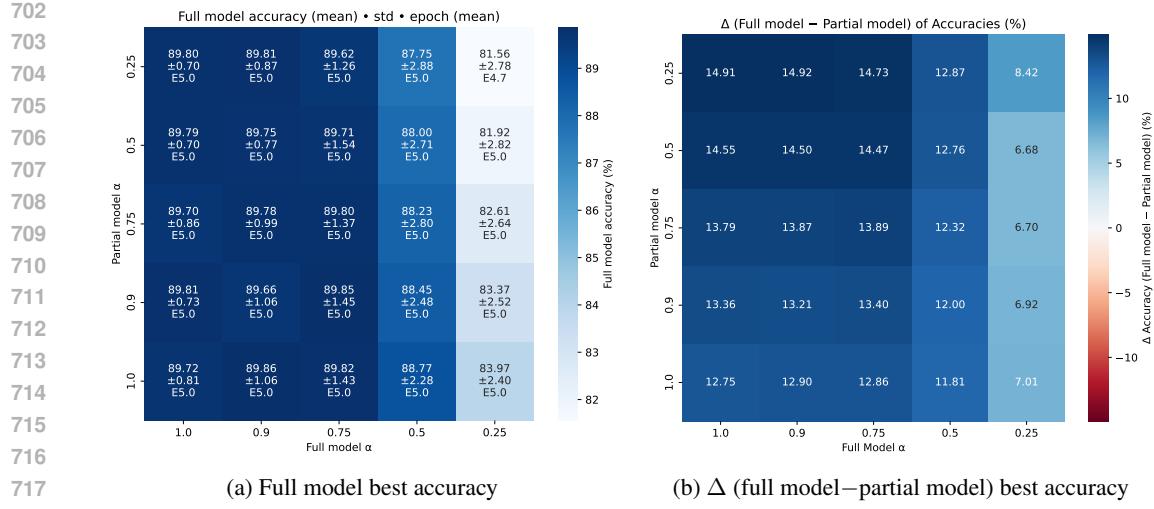


Figure 8: Alpha grid: full model accuracy and Δ between FP full model vs partial model across α values.

A.3 ADDITIONAL EXPERIMENTS: FP VS SOTA PIPELINE SCHEDULERS

We execute a small experiment to compare the training time Figure 9, idle time of stage 1 Figure 10, and idle time of stage 2 Figure 11 of FluidPipe and different Pipeline schedulers [GPipe/1F1B/zero-bubble Huang et al. (2019); Narayanan et al. (2019); Qi et al. (2023)]. We used ViT-Base on two nodes with 1 A100 each, full precision training on a dummy images (224x224x3) dataset. We used a fixed batch size of 256 and varied the number of micro-batches.

FP surpasses GPipe, 1F1B and Zero-Bubble train time even at 0 ms RTT (100 Gbps), where scheduling methods are most effective. Moreover, FP removes the idle times caused by pipeline bubbles. Scheduling and FP operate at different layers of abstraction: scheduling controls micro-batch interleaving within a stage, whereas FP removes the backward-path dependency between stages.

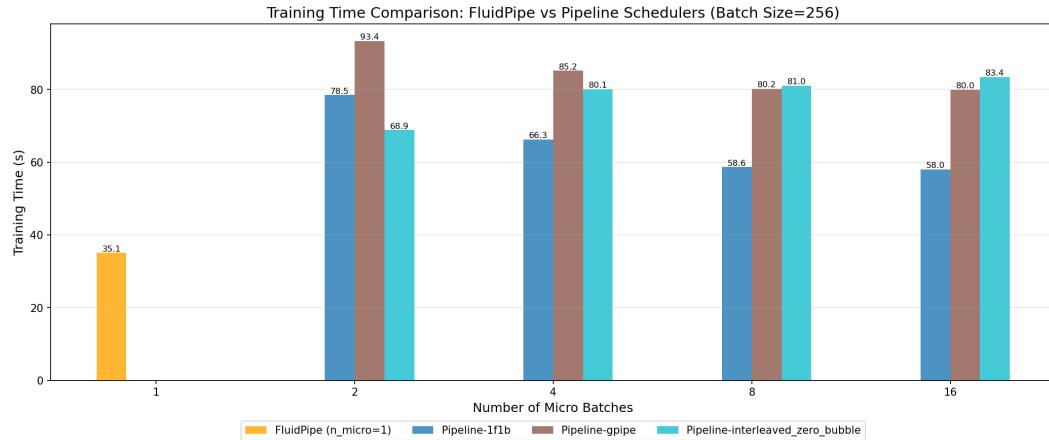


Figure 9: The training time of FP vs PP with different schedulers.

A.4 COMPUTATIONAL TIMELINE

Figure 12 shows a computational timeline of the two stages during the execution of an epoch using FP and PP. This result confirms that FP removes the dependency of stage 1 on stage 2, that is, stage 1 finishes the computations faster. Moreover, we can see that there are fewer bubbles between computations. An interesting future direction is to utilize the idle time at stage 2.



Figure 10: The bubble (idle) time of Stage 1 of both PP and FPs.

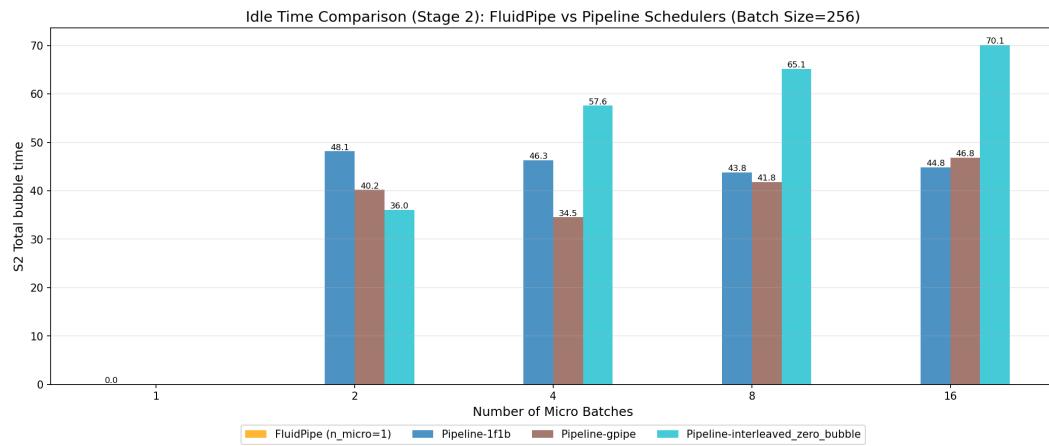


Figure 11: The bubble (idle) time of Stage 2 of both PP and FPs.

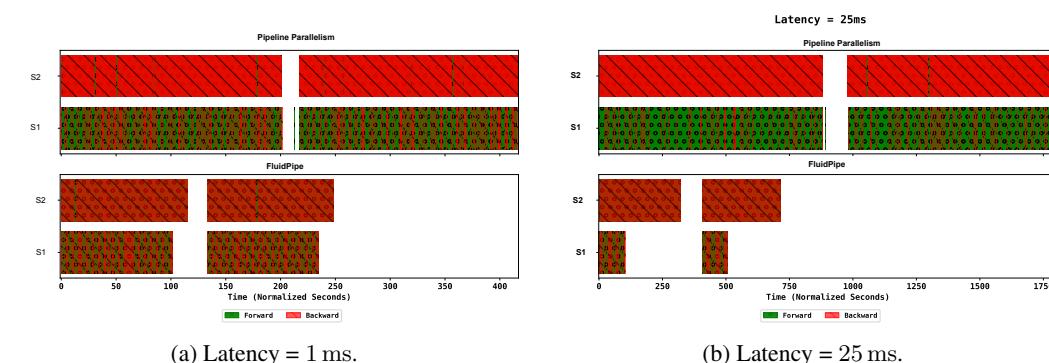


Figure 12: Iteration timeline comparing Pipeline Parallelism and FluidPipe. This plot shows the computation performed on two stages during two epochs.