
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LESS GRADIENT, MORE SPEED: RETHINKING
PIPELINE PARALLELISM FOR EFFICIENT FINE-TUNING
WITH FLUIDPIPE

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning large pretrained models often uses pipeline parallelism (PP) to split
layers across devices. PP is simple to deploy but requires per-iteration cross-stage
gradient exchanges, creating pipeline bubbles that reduce efficiency and making
performance highly sensitive to latency. We introduce FluidPipe, a two-stage
pipeline design that replaces these gradient exchanges with local updates guided
by an auxiliary head and cross-stage bi-directional distillation. This re-design
eliminates iteration-time synchronization while preserving model quality. We
develop a cost and communication model explaining when FluidPipe outperforms
PP, and validate on BERT-Large and ViT-Large fine-tuning, where FluidPipe
achieves up to 3.3× faster training while matching or improving accuracy.

1 INTRODUCTION

Fine-tuning modern foundation models entails support parallelized execution of computational graphs
for models that can span billions of parameters— examples include GPT-3 (175B parameters) (Brown
et al., 2020), PaLM (540B) (Chowdhery et al., 2023), LLaMA-2 (7B-70B) (Touvron et al., 2023), and
GLaM (1.2T, mixture-of-experts) (Du et al., 2022) on the language side, as well as vision backbones
such as Swin Transformer V2 (3B parameters) (Liu et al., 2022) and large ViT variants (Dosovitskiy
et al., 2021). Fine-tuning does not reduce the capacity requirements of the underlying model: the full
parameter set must still be stored and trained.1 As a result, a single accelerator is often insufficient,
and practitioners must rely on multiple GPUs or nodes to execute fine-tuning efficiently.

Practitioners address these requirements using combinations of data parallelism, tensor/model paral-
lelism, optimizer sharding, and pipeline parallelism (PP) (Shoeybi et al., 2019; Rajbhandari et al.,
2020). Among these, PP is especially attractive for fine-tuning because it is easy to deploy: the
model is partitioned into sequential stages mapped across devices, and mini-batches are split into
micro-batches to overlap forward and backward passes. However, each micro-batch still incurs two
synchronizations per stage boundary—activations in the forward pass and gradients in the backward
pass. These fine-grained communications create pipeline bubbles, idle gaps where stages wait for
transfers to complete. Even within a datacenter, bubbles reduce throughput, and in cross-node or
cross-region settings (which commonly arise due to poor availability of co-located resources) they
dominate runtime (Strati et al., 2024). Such inefficiency directly inflates wall-clock time and compute
cost.

Prior work has focused on scheduling around bubbles. GPipe (Huang et al., 2019) and Megatron
(Shoeybi et al., 2019) overlap work using micro-batches, PipeDream (Narayanan et al., 2019) and
PipeMare (Yang et al., 2021) employ asynchronous updates, and Zero-Bubble PP (Qi et al., 2023)
and BitPipe (Wu et al., 2024) refine micro-batch interleaving. These approaches reduce stalling but
cannot escape the fundamental requirement that every iteration must return gradients across stage
boundaries. As a result, they remain sensitive to latency and bandwidth. This observation raises a
natural question: can pipeline parallelism be redesigned to avoid per-iteration gradient dependencies
across stages without sacrificing accuracy?

1We focus on full-model fine-tuning; parameter-efficient fine-tuning (PEFT) methods such as adapters or
LoRA (Houlsby et al., 2019; Hu et al., 2022; Pfeiffer et al., 2020) can reduce memory and compute needs, but
are not always applicable or optimal. We include LoRA as a baseline in our experiments.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Stage 1 Stage 2

Pipeline Parallelism

Stage 1 Stage 2

FluidPipe

Task
Head

Model

Model

(a) Structural comparison. Both PP and FluidPipe use
a two-stage split; FluidPipe additionally places a small
auxiliary head on Stage 1, enabling local training at it.

Stage 2

Stage 1
Aux
Task
Head

X

Loss
Update Weights

h

Loss
Update weights

hSend Features
After every iteration

Logits
Store

Send Logits
after every Epoch

Logits
Store

(b) FluidPipe overview. At each iteration, Stage 1 com-
putes features h = S1(x), sends h and auxiliary logits
ŷ1 = g(h) to Stage 2, and updates locally. Stage 2
computes ŷ2 = S2(h), updates locally, and accumu-
lates logits ℓ2(x) that are sent back once per epoch for
Stage 1’s distillation in the next epoch. No per-iteration
gradients cross the stage boundary.

Figure 1: FluidPipe augments a standard two-stage pipeline with an auxiliary head at Stage 1 that
removes the need for per-iteration cross-stage gradients.

To this end, we introduce FluidPipe (FP), a pipeline-style training algorithm that removes per-
iteration gradient transfers. FP augments the first stage of a standard two-stage pipeline with an
auxiliary task head (cf. Figure 1a) so that both stages can update model parameters locally. Cross-
stage feedback is provided at low frequency via bi-directional distillation: Stage 1 sends auxiliary
logits each iteration, while Stage 2 bulk-sends its logits once per epoch. Figure 1b shows an overview
of the algorithm. Thus, iteration-time training is fully local within each stage, while feedback is
coarse and low-frequency. This design eliminates iteration-time gradient synchronization and reduces
sensitivity to round-trip-time (RTT) between stages. Furthermore, FluidPipe demonstrates that
rethinking the pipeline dependencies—rather than only optimizing schedules—opens a new path for
optimizing pipeline parallelism algorithms.

We restrict our study to the two-stage case in order to isolate the core dependency change—removing
per-iteration cross-stage gradients—and to reflect common inter-node fine-tuning deployments.
Extending FluidPipe to deeper pipelines is nontrivial: every intermediate stage would need to train
under its own auxiliary head, and it remains an open question how much representational capacity
such stages retain and how their local learning interacts with the global task. In addition, one must
design a distillation protocol (hierarchical vs. pairwise) and synchronization policy that preserves
both accuracy and efficiency. We leave these algorithmic questions for future work. Nonetheless,
Section 5.1 illustrates FP’s compatibility with pipelines beyond two stages by combining intra-node
PP with inter-node FP in a mixed topology.

In summary, our contributions are:

• We propose FluidPipe, a two-stage pipeline design that eliminates per-iteration gradient
transfers via bi-directional distillation (Section 3).

• We provide a cost model and communication analysis showing when FP outperforms PP
(Section 4).

• We empirically validate FP on ViT-Large and BERT-Large fine-tuning across datacenter and
cross-region latencies, achieving 1.5–2.4× speedups while preserving accuracy (Section 5).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 FluidPipe: Stage 1 (Partial Model) Procedure

Initialize θo1, P2 ← {} ▷ P2 denotes Stage 2 logits keyed by sample index
for epoch← 1 to E do

for each mini-batch (x, y, i) from dataset D do ▷ i denotes sample indices
1. h← S1(x; θ

h
1) ▷ Intermediate features

2. ŷ1 ← g(h; θo1) ▷ Auxiliary head (Stage 1 logits)
3. Send (h, ŷ1, i) to Stage 2 ▷ Non-blocking
4. Ltotal ← Ltask(y, ŷ1)
if epoch > 1 then

5. ŷ2 ← P2[i] ▷ Stage 2 logits from prior epoch
6. Ltotal ← Ltotal + LKD(ŷ1, ŷ2)

7. Backward and update θ1 ← θ1 − η∇θ1Ltotal

8. Receive P2 from Stage 2 ▷ One blocking receive per epoch
Output: parameters θh1

2 RELATED WORK

Pipeline Parallelism. The dominant research line in pipeline parallelism has sought to optimize
scheduling. GPipe (Huang et al., 2019) introduced micro-batching to overlap forward/backward
passes. PipeDream (Narayanan et al., 2019) and PipeMare (Yang et al., 2021) relaxed synchronization
via asynchronous schedules. Zero-Bubble PP (Qi et al., 2023) and BitPipe (Wu et al., 2024) refine
micro-batch interleaving to shrink idle bubbles. All of these methods retain the fundamental gradient
dependency across stages.

In contrast, FluidPipe is orthogonal: it eliminates the need for per-iteration gradient exchanges
altogether. Scheduling optimizations could be applied within each FluidPipe stage, but FluidPipe’s
contribution lies in rethinking the dependency, not the schedule. This distinction explains why we
focus our experiments on comparing FluidPipe to standard PP, while positioning it as complementary
rather than competing with advanced scheduling.

Optimizations to Pipeline Parallelism. Subsequent work has sought to reduce the impact of
pipeline bubbles through more sophisticated scheduling. Zero-Bubble PP (Qi et al., 2023) rearranges
the order of forward and backward micro-batches to remove idle gaps, while BitPipe (Wu et al.,
2024) proposes bidirectional and interleaved schedules to increase overlap between stages. These
methods focus on carefully orchestrating computation to minimize bubbles, but they do not alter the
fundamental synchronization requirement that gradients must be exchanged across stages at every
iteration.

Other fine-tuning strategies. An alternative to multi-GPU training is using parameter-efficient
fine-tuning (PEFT). LoRA (Hu et al., 2022) and related methods (e.g., adapters (Houlsby et al., 2019;
Pfeiffer et al., 2020)) update only a small subset of parameters, allowing models to be fine-tuned on a
single GPU. We include LoRA as a baseline in our experiments to contrast communication-efficient
distributed training (FluidPipe) with compute-efficient local fine-tuning.

3 FLUIDPIPE DESIGN

3.1 OVERVIEW

Pipeline parallelism (PP) splits a model into stages and processes a mini-batch as m micro-batches.
In each iteration, every cross-stage boundary incurs an activation send in the forward pass and a
gradient return in the backward pass for each micro-batch. These exchanges couple the stages in
both directions: a stage cannot start the backward pass for micro-batch i until the downstream stage
finishes its forward on i and returns the gradient. Figure 2 illustrates an iteration with two stages and
two micro-batches.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 2 FluidPipe: Stage 2 (Full Model) Procedure

for epoch← 1 to E do
Initialize P2 ← {} ▷ Accumulate Stage 2 logits for epoch-level send
for each mini-batch (x, y, i) do ▷ Paired with Stage 1 stream

1. Receive (h, ŷ1, i) from Stage 1
2. ŷ2 ← S2(h; θ2) ▷ Full-model logits
3. Ltotal ← Ltask(y, ŷ2) + LKD(ŷ2, ŷ1) ▷ Distill from Stage 1 into Stage 2 each iteration
4. Backward and update θ2 ← θ2 − η∇θ2Ltotal
5. P2[i]← ŷ2 ▷ Store logits for epoch-level send

6. Send P2 to Stage 1 ▷ One blocking send per epoch
Output: parameters θ2

What makes these fine-grained synchronizations costly is that with P stages a micro-batch crosses
(P−1) boundaries twice (forward and backward), so the latency term on the critical path grows
roughly with 2(P−1)×RTT. Increasing m reduces the relative cost of warm-up, but it does
not eliminate the per-boundary round-trips that gate backward progress and the optimizer step.
Consequently, as the number of boundaries or the RTT increases, these per-iteration synchronizations
induce larger pipeline bubbles and lower throughput.

FluidPipe (FP) removes the per-iteration gradient dependency. We partition the model into two stages.
Stage 1 produces features h = S1(x) and, via an auxiliary head g(·), logits ŷ1 = g(h); it updates
from a local loss without cross-stage gradients. Stage 2 receives (h, ŷ1), computes ŷ2 = S2(h), and
updates from its own local loss. Thus, creating a single one-directional exchange per iteration (batch).

To compensate for the missing cross-stage gradients, FP uses bidirectional distillation: (i) Stage 2
sends its logits ℓ2(x) to Stage 1 once per epoch (teacher-for-Stage 1), and (ii) Stage 1 sends ŷ1 each
iteration alongside h (teacher-for-Stage 2). This keeps iteration-time training fully local on both
stages and shifts cross-stage feedback to a coarser, once-per-epoch synchronization. Figure 3 shows
how FP communicates and synchronizes between the two stages. Figure 12 shows a timeline of the
computations of FP vs PP.

3.2 TRAINING MECHANICS

At iteration granularity, Stage 1 minimizes

L1 = α1 Ltask(y, ŷ1) + (1− α1)LKD
(
ŷ1, ℓ2(x)

)
,

where ℓ2(x) are Stage 2 logits received at the end of the previous epoch. For epoch e=1, we disable
distillation by setting α1 = 1, since Stage 1 only receives logits after the end of the first epoch.

Stage 2 minimizes, for each received (h, ŷ1),

L2 = α2 Ltask(y, ŷ2) + (1− α2)LKD
(
ŷ2, ŷ1

)
,

and accumulates ŷ2 in a dictionary P2 keyed by sample index i. Once per epoch, Stage 2 bulk-sends
P2 to Stage 1, which then uses ℓ2(x) in the next epoch’s L1. Algorithms 1 and 2 provide the exact
procedures.

Design Enhancement: Extra Block Stage 1 outputs features h that are both forwarded to Stage 2
and used by the auxiliary head. These two roles can pull the features in different directions. We add
an extra backbone block after the last Stage 1 block: h is forwarded to Stage 2 unchanged, while
h̃ = fextra(h) is fed to the auxiliary head. This decouples features for continuation from features for
local classification. See Figure 7 for its effect across split points.

3.3 EXTENSIONS

Communication policy: bulk vs. streaming. We use epoch-level (bulk) transfers of Stage 2 logits
to Stage 1 for simplicity and low control overhead. A straightforward extension is to stream or

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Forward

S1

S2

Forward Backward

BackwardForward

Forward Backward

Backward

Micro
Batch 1

Micro
Batch 2

Start Next
Batch

Time

Legend

Figure 2: Timeline diagram of Pipeline Parallelism showing cross-stage communication and synchro-
nization with two micro-batches and two stages.

Forward

S1

S2

Forward Backward

Backward Forward

Forward Backward

BackwardBatch 1 Batch 2

Time

...

...

Batch N

Forward

Forward Backward

Backward
End-of-Epoch

Wait

Sync
LogitsLegend

Figure 3: Timeline diagram of FluidPipe showing the cross-stage communication and synchronization
over an epoch.

periodically send logits during an epoch. Streaming the logits would eliminate the send time at the
end of the epoch as well as reduce the memory cost for storing the epochs at Stage 2. Also, it would
allow Stage 1 to start the next epoch earlier, since it received logits from Stage 2. Since progress
is gated by when Stage 2 finishes the epoch, earlier (streamed) logits to Stage 1 do not shorten the
critical path; any speedup over a bulk transfer is likely marginal. We leave the systematic exploration
of the different communication policies and their system performance to future work.

FP without distillation. When distillation is disabled on a stage, the corresponding messages can
be omitted: (i) if Stage 1 uses no distillation (i.e., α1=1), the end-of-epoch Stage 2→Stage 1 logits
transfer is unnecessary; (ii) if Stage 2 uses no distillation (α2=1), Stage 1 need only send features h
(no ŷ1) each iteration. Our current implementation always includes the logits for simplicity, so the
reported runtimes for “FP without distillation” are conservative (upper bounds); removing these data
would further reduce communication volume without affecting the model quality.

4 ANALYTICAL COST MODEL

We analyze the cost of FluidPipe against traditional two-stage pipeline parallelism. Pipeline par-
allelism divides computation into micro-batches (m) to overlap communication and computation.
Denote forward-backward compute times at stages 1 and 2 as t1 and t2, respectively. Let ta and tg
represent communication time for activation and gradient transmissions, respectively. For one epoch
of Nb mini-batches, pipeline parallelism takes:

TPP ≈ Nb(m+ 1) max(t1 + ta, t2 + tg).

FluidPipe eliminates per-micro-batch gradient synchronization by performing a one-way data transfer
and uses a single epoch-end bulk synchronization. Let τ1, τ2 denote the per-batch computation time
in FluidPipe’s stage 1 and 2, respectively. Note this includes the time for knowledge distillation. Let
τa be the forward transfer time per mini-batch, and τd the epoch-end logits transfer time.

Then, FluidPipe’s per-epoch time (accounting for concurrency) is:

TFP ≈ Nb max(τ1, τ2 + τa) + τd.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The advantage of FluidPipe over pipeline parallelism primarily comes from removing the frequent
per-micro batch gradient synchronization (tg), replacing it with a single bulk synchronization per
epoch. Typically, we have τd ≪ Nbmtg, leading FluidPipe to outperform pipeline parallelism
significantly.

Empirically, the model tracks epoch runtime closely when instantiated with trace-derived step times.
In FluidPipe, iteration-time progress is governed by the stage on the critical path (stage 2), so a simple
estimate for training time per epoch is

T̂ FP
epoch ≈ Nb (τ2 + τa) (optionally + τd if not negligible).

We obtained (τ2 + τa) by measuring the per-step delta on Stage 2 from the instrumented traces and
multiplying by the number of batches Nb. The resulting T̂ FP

epoch closely matched the mean epoch
runtime reported in our results (see Tables 1 and 4), corroborating that once τ1, τ2 (and the small τd)
are measured, the cost model accurately predicts training time.

4.1 COMMUNICATION OVERHEAD ANALYSIS

Now we compare the communication volume of FluidPipe and Pipeline Parallelism. Let λbatch

denote the per–mini-batch cost of sending the intermediate features h (incurred by both FluidPipe
and classical PP), λp the per–mini-batch cost of sending the auxiliary logits ŷ1 (FluidPipe only),
βbatch the per–mini-batch cost of returning backward gradients across a stage boundary (PP only),
γ the end-of-epoch bulk transfer of Stage 2 logits in FluidPipe, and Nb the number of mini-batches
per epoch; for simplicity, we ignore micro-batching.

Two-Stage Pipeline Parallelism:

Total communication per epoch = Nb × (λbatch + βbatch).

FluidPipe:
Total communication per epoch = Nb × (λbatch + λp) + γ.

For FluidPipe to incur lower communication, we need:

Nb (λbatch + λp) + γ < Nb (λbatch + βbatch)

⇐⇒ (Nb λp) + γ < Nb βbatch.

Note that volume of γ is the same as Nb λp, so we can simplify further and say FluidPipe will incur
lower communication if and only if:

2(Nb λp) < Nb βbatch

Since the gradient tensor size of a model (e.g., BERT has gradient tensor of size (b, 512, 1024), while
the logits tensor size would be (Nb × b× number of labels)) often far exceeds the size of the logits,
thus 2(Nb λp) < Nb βbatch almost always holds in practice.

However, in tasks with very large output spaces—e.g., autoregressive language modeling where the
label space equals the vocabulary (often 104–105 tokens)—the per-sample logit vector can dominate
the communication budget, potentially violating the inequality above. In such regimes, FluidPipe can
operate without cross-stage distillation by setting α1 = α2 = 1, which removes both the per-iteration
transfer of ŷ1 and the epoch-end transfer of ℓ2(x). Empirically, our FP-ND variant (no distillation)
matches or nearly matches the best FP configurations in accuracy across vision and language tasks(see
Tables 2 and 5). Thus, distillation is an optional enhancement rather than a requirement: when logits
would be expensive (e.g., large-vocab LM), practitioners can disable it and still obtain FluidPipe’s
core benefit—eliminating per-iteration gradient synchronization.

5 EXPERIMENTS & RESULTS

Goals and Setup. We ask two questions: (Q1) Does FluidPipe reduce epoch time versus pipeline
parallelism (PP) across latencies? and (Q2) Does FluidPipe preserve model quality? We evaluate two
settings: Setup A fine-tunes ViT-Large/16 (Dosovitskiy et al., 2021) on two machines, each with two
A100s (intra-node 2-way PP; inter-node FP, 4 stages in total); Setup B fine-tunes BERT-Large (Devlin

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Mean per-epoch runtime: shown across datasets and latencies (less is better). Speedup over
PP is shown in parentheses.

Task CIFAR-100 (minutes) Oxford Flowers-102 (seconds) Oxford-IIIT Pets (seconds)

Latency 0.01ms 25ms 50ms 0.01ms 25ms 50ms 0.01ms 25ms 50ms

PP 6.04 21.88 29.99 0.13 0.46 0.69 1.86 6.67 10.05
FP-DB 3.77 (×1.6) 9.96 (×2.2) 14.58 (×2.06) 0.1 (×1.35) 0.23 (×1.96) 0.37 (×1.86) 1.21 (×1.54) 2.73 (×2.45) 4.45 (×2.26)

FP-DT 3.76 (×1.61) 9.94 (×2.2) 14.55 (×2.06) 0.1 (×1.33) 0.24 (×1.93) 0.38 (×1.83) 1.21 (×1.54) 2.74 (×2.43) 4.47 (×2.25)

FP-DT-EL 3.77 (×1.6) 9.96 (×2.2) 14.58 (×2.06) 0.1 (×1.31) 0.24 (×1.9) 0.38 (×1.8) 1.23 (×1.52) 2.77 (×2.41) 4.52 (×2.22)

FP-ND 3.77 (×1.6) 9.94 (×2.2) 14.56 (×2.06) 0.1 (×1.35) 0.23 (×1.96) 0.37 (×1.85) 1.22 (×1.53) 2.75 (×2.43) 4.48 (×2.24)

FP-ND-EL 3.77 (×1.6) 9.96 (×2.2) 14.58 (×2.06) 0.1 (×1.32) 0.24 (×1.91) 0.38 (×1.81) 1.22 (×1.52) 2.76 (×2.41) 4.51 (×2.23)

Table 2: Best accuracy (@epoch) across datasets. Mean with standard deviation is reported.

CIFAR-100 Oxford Flowers-102 Oxford-IIIT Pets

FP-DB 93.25 ± 0.18% 99.29 ± 0.10% 93.55 ± 0.06%
FP-DT 93.30 ± 0.08% 99.26 ± 0.02% 93.87 ± 0.21%
FP-DT-EL 93.54 ± 0.08% 99.29 ± 0.03% 93.61 ± 0.22%
FP-ND 93.21 ± 0.11% 99.21 ± 0.05% 93.44 ± 0.37%
FP-ND-EL 93.41 ± 0.14% 99.25 ± 0.13% 93.48 ± 0.22%

PP 93.37 ± 0.24% 99.11 ± 0.07% 93.47 ± 0.16%

et al., 2019) on two machines, one A100 each (inter-node FP). We emulate 0.01ms (same-rack),
25ms (cross-zone), and for Setup A also 50ms (inter-region) RTT using Linux tc. All runs use
three seeds.

Our design space toggles: (i) distillation on/off and weight (α1, α2), and (ii) the extra block (Sec-
tion 3.2). We evaluate five FP variants that separate the effects of distillation from the extra block:
FP-DB (α1 = α2 = 0.5), FP-DT (α1 = α2 = 0.9 from Figure 6), FP-DT-EL (DT+extra block),
FP-ND (no distillation), FP-ND-EL (ND+extra block). This set yields simple recipes (e.g., ND for
zero tuning; DT for light tuning; DT-EL when adding the extra block).

5.1 SETUP A: VIT-LARGE FINE-TUNING ON FOUR GPUS

We fine-tune ViT-Large/16 on CIFAR-100, Oxford-IIIT Pets, and Flowers-102 following the original
ViT hyperparameters (Dosovitskiy et al., 2021) and for the same number of epochs reported by
the ViT paper or until early stopping is triggered. We evaluate test accuracy every 2 epochs on
CIFAR-100, every 28 epochs on Oxford-IIIT Pets, and every 100 epochs on Flowers-102. More
frequent evaluation would be prohibitively expensive for Oxford-IIIT Pets and Flowers-102, where
epochs are very short under large batch sizes. We compare pipeline parallelism and the FluidPipe
variants. Within each FluidPipe stage, we use the intra-node PP schedule used by the PP baseline,
while employing FP for the inter-node parallelism.

Epoch-Time Results. Table 1 reports mean per-epoch time. FluidPipe consistently shortens epochs
versus PP at all RTTs. At 0.01ms, FP variants deliver ∼ 1.49× average speedup (range 1.31–1.61×
across tasks). At 25ms, speedups rise to ∼ 2.19× on average (range 1.90–2.45×), and at 50ms
they remain ∼ 2.04× on average (range 1.80–2.26×). FluidPipe is also less latency-sensitive: as
RTT grows from 0.01ms to 50ms, PP epochs slow by roughly 5.0–5.4× , whereas representative FP
variants slow by only ∼ 3.7–3.9×. In short, FP roughly halves the latency penalty while retaining its
advantage at low RTT.

Final accuracy. Across CIFAR-100, Flowers-102, and Pets, all FP variants match or slightly exceed
PP; notably, FP-ND (no cross-stage distillation) attains parity, which isolates the auxiliary head
on Stage 1 as the main mechanism needed to preserve quality and remove the cross-stage gradients
(Table 2). Distillation and the extra block are helpful but non-essential refinements: they stabilize
and can yield small, task-dependent gains. Moreover, these two components are further discussed in
Appendix A.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: CIFAR-100: best accuracy and runtime at best step vs PEFT (LoRA).

FP-DT-EL FP-ND-EL PP FP-DT FP-DB FP-ND LoRA

Acc (%) 93.54±0.08 93.41±0.14 93.37±0.24 93.30±0.08 93.25±0.18 93.21±0.11 92.64±0.16
Runtime (h) 2.94±0.77 1.35±0.39 2.69±0.83 1.59±0.52 2.09±0.29 1.84±0.52 7.52±3.13

Table 4: Mean per-epoch runtime (minutes): shown over multiple tasks and latencies. Speedup over
PP is shown in parentheses.

Task Ag News IMDB Yelp Review Full
Latency 0.01ms 25ms 0.01ms 25ms 0.01ms 25ms
Method

PP 96.15 303.96 19.33 59.48 516.91 1707.26
FP-DB 86.2 (×1.12) 91.13 (×3.34) 15.01 (×1.29) 19.57 (×3.04) 470.74 (×1.1) 553.81 (×3.08)

FP-DB-EL 91.08 (×1.06) 96.29 (×3.16) 16.1 (×1.2) 20.99 (×2.83) 498.14 (×1.04) 586.06 (×2.91)

FP-DT 85.95 (×1.12) 90.87 (×3.34) 15.04 (×1.29) 19.61 (×3.03) 468.61 (×1.1) 551.31 (×3.1)

FP-DT-EL 90.9 (×1.06) 96.11 (×3.16) 16.07 (×1.2) 20.95 (×2.84) 494.86 (×1.04) 582.2 (×2.93)

FP-ND 86.03 (×1.12) 90.96 (×3.34) 15.05 (×1.28) 19.62 (×3.03) 440.77 (×1.17) 518.56 (×3.29)

FP-ND-EL 90.48 (×1.06) 95.66 (×3.18) 16.04 (×1.21) 20.91 (×2.84) 464.53 (×1.11) 546.51 (×3.12)

Distributed Training vs. Parameter-Efficient Fine-Tuning (PEFT). Table 3 contrasts distributed
methods (FP and PP) with LoRA. We find that LoRA achieves comparable accuracy (92.64%) but
lags behind distributed methods by nearly a percentage point, while requiring substantially longer
runtime (7.52 ± 3.13 h). In contrast, FluidPipe and PP consistently exceed 93% accuracy, with
FluidPipe variants such as FP-ND-EL reaching 93.41% in only 1.35± 0.39 h. This highlights a key
trade-off: PEFT reduces the number of trainable parameters but can still incur long wall-clock times
due to sequential execution, whereas distributed training methods like FluidPipe shorten runtime
dramatically without sacrificing accuracy. For practitioners with multi-GPU resources, FluidPipe
therefore offers a more efficient path to high accuracy, while LoRA remains attractive in strictly
single-GPU or memory-constrained settings.

5.2 SETUP B: BERT-LARGE FINE-TUNING ON TWO GPUS

We fine-tune BERT-LARGE (Devlin et al., 2019) on three text classification tasks (AG News, Yelp
Review Full (Zhang et al., 2015), and IMDB Reviews (Maas et al., 2011)). We follow a standard
HuggingFace fine-tuning recipe and evaluate at the end of each epoch. We use two machines (one
with a GPU each): Stage 1 runs on node A and Stage 2 on node B. Since we have only 2 GPUs in
total, we only change the inter-node algorithm (PP vs. FluidPipe variants).

Epoch-Time Results. Table 4 shows that FP again lowers epoch time and dampens latency effects.
At 25ms, AG News drops from 303.96 min (PP) to 90.87–96.29 min (FP)—3.16–3.34× faster; IMDB
from 59.48 min to 19.57–20.99 min—2.83–3.04×; and Yelp from 1707.26 min to 518.56–586.06
min—2.91–3.29×. At 0.01ms, FP still helps, with 1.06–1.29× speedups across tasks (e.g., IMDB:
19.33→15.01 min). Latency sensitivity starkly differs: PP slows by 3.08–3.30× moving from
0.01ms to 25ms , while representative FP runs grow by only ∼ 1.06–1.30× . Thus, FP delivers
≈!3× speedups at realistic cross-zone RTTs and remains beneficial even at datacenter latency.

Final Accuracy. Table 5 shows that FluidPipe matches PP on AG News (92.75%), surpasses PP
on IMDB (89.88% vs. 88.86%), and trails by less than 1 pt on Yelp (64.94% vs. 65.82%). Unlike
Setup A, here we fix a small epoch budget; because FP completes each epoch much faster, a wall-
clock–matched comparison would allow more FP epochs and could close the small Yelp gap. Figure 4
shows the accuracy over runtime at 0.01ms RTT and Figure 5 shows it at 25ms.

Overall, our results indicate that FluidPipe’s central contribution is eliminating per-iteration cross-
stage gradient exchange by equipping Stage 1 with an auxiliary head. This change reduces syn-
chronization and communication while keeping iteration-time updates local—thereby improving
efficiency—yet it preserves (and sometimes improves) end-to-end accuracy across setups. Look-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Best accuracy (mean ± std) across datasets

Yelp Review Full AG News IMDB

FP-DB 63.00 ± 0.29% 92.10 ± 0.20% 87.98 ± 2.80%
FP-DB-EL 62.82 ± 0.41% 92.04 ± 0.21% 87.74 ± 2.66%
FP-DT 64.86 ± 0.41% 92.54 ± 0.29% 89.79 ± 0.97%
FP-DT-EL 64.73 ± 0.61% 92.56 ± 0.13% 89.88 ± 1.13%
FP-ND 64.94 ± 0.42% 92.51 ± 0.11% 89.74 ± 0.73%
FP-ND-EL 64.85 ± 0.60% 92.75 ± 0.07% 89.51 ± 1.16%
PP 65.82 ± 0.23% 92.67 ± 0.24% 88.86 ± 3.40%

2 3 4 5 6 7 8
Runtime (Hours)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

AG News

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Runtime (Hours)

0.5

0.6

0.7

0.8

0.9

IMDB

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Runtime (Hours)

0.54

0.56

0.58

0.60

0.62

0.64

0.66
Yelp Review Full

FP-DB-EL
FP-DT

FP-DT-EL
FP-ND

FP-ND-EL
FP-DB

PP

Figure 4: Accuracy vs runtime at 0.01ms for AG News & IMDB & Yelp Review Full.

ing ahead, a key open question is whether auxiliary heads can simultaneously sustain quality and
efficiency when placed on multiple intermediate stages in deeper pipelines.

6 CONCLUSION

We presented FluidPipe, a pipeline training algorithm that removes per-iteration cross-stage gradient
synchronization by equipping the first stage with an auxiliary head and replacing gradients with coarse,
low-frequency feedback. This shift keeps updates local, reduces latency sensitivity, and consistently
accelerates training while preserving accuracy. Our analysis explains why the dependency change
yields speedups, and our experiments on ViT-Large and BERT-Large confirm gains across both
datacenter and cross-region latencies. Distillation is optional, highlighting that the auxiliary head
itself is the key enabler. While we focused on the two-stage case to isolate the mechanism, extending
FluidPipe to deeper pipelines raises a central open question: can intermediate stages trained under
auxiliary heads retain sufficient capacity and align with the global task? Addressing this challenge is
essential for realizing the full potential of gradient-free pipelining.

Ethics Statement. This work focuses on distributed training algorithms for large language and
vision models. Our study does not involve human subjects, personally identifiable information, or
sensitive data. We rely exclusively on publicly available benchmark datasets (CIFAR-100, Oxford-

5 10 15 20 25
Runtime (Hours)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

AG News

1 2 3 4 5
Runtime (Hours)

0.5

0.6

0.7

0.8

0.9

IMDB

10 20 30 40 50 60 70 80
Runtime (Hours)

0.54

0.56

0.58

0.60

0.62

0.64

0.66
Yelp Review Full

FP-DB-EL
FP-DT

FP-DT-EL
FP-ND

FP-ND-EL
FP-DB

PP

Figure 5: Accuracy vs runtime at 25ms for AG News & IMDB & Yelp Review Full.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

IIIT Pets, Flowers-102, AG News, Yelp, IMDB) that are widely used in the machine learning
community. Our methods are intended to improve the efficiency of fine-tuning large models across
multi-GPU and multi-node systems; they do not generate new content or decision policies that could
directly impact individuals. We acknowledge that improved efficiency in training large models may
indirectly lower barriers to training, which could accelerate both beneficial and potentially harmful
applications of foundation models. We believe that these broader ethical considerations warrant
ongoing discussion in the community, but our contribution is purely methodological and system-level,
with no direct risks of misuse beyond those already inherent in large-scale ML.

REFERENCES

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. S. Chung,
M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta,
M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. N.
Fiedel. Palm: Scaling language modeling with pathways. J. Mach. Learn. Res., 24:240:1–240:113,
2023. URL https://jmlr.org/papers/v24/22-1144.html.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. In NAACL-HLT, 2019. URL https://aclanthology.
org/N19-1423.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun, Y. Zhou, A. W. Yu, O. Firat,
B. Zoph, L. Fedus, M. P. Bosma, Z. Zhou, T. Wang, E. Wang, K. Webster, M. Pellat, K. Robinson,
K. Meier-Hellstern, T. Duke, L. Dixon, K. Zhang, Q. Le, Y. Wu, Z. Chen, and C. Cui. Glam:
Efficient scaling of language models with mixture-of-experts. pages 5547–5569, 2022. URL
https://proceedings.mlr.press/v162/du22c.html.

N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. Attariyan,
and S. Gelly. Parameter-efficient transfer learning for nlp. In International conference on machine
learning, pages 2790–2799. PMLR, 2019.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3, 2022.

Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, et al.
Gpipe: Efficient training of giant neural networks using pipeline parallelism. Advances in neural
information processing systems, 32, 2019.

Z. Liu, H. Hu, B. Knyazev, A. Gitman, A. Garg, P. Goyal, P. Dollár, C. L. Zitnick, H. Hayashi,
R. Girshick, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 10052–10062,
2022. URL https://arxiv.org/abs/2111.09883.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors for sen-
timent analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 142–150, Portland, Oregon, USA, 2011. Asso-
ciation for Computational Linguistics. URL https://aclanthology.org/P11-1015/.

D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R. Ganger, P. B. Gibbons,
and M. Zaharia. Pipedream: Generalized pipeline parallelism for dnn training. In Proceedings of
the 27th ACM symposium on operating systems principles, pages 1–15, 2019.

J. Pfeiffer, A. Kamath, A. Rücklé, K. Cho, and I. Gurevych. Adapterfusion: Non-destructive task
composition for transfer learning. arXiv preprint arXiv:2005.00247, 2020.

10

https://arxiv.org/abs/2005.14165
https://jmlr.org/papers/v24/22-1144.html
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://proceedings.mlr.press/v162/du22c.html
https://arxiv.org/abs/2111.09883
https://aclanthology.org/P11-1015/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

P. Qi, X. Wan, G. Huang, and M. Lin. Zero bubble pipeline parallelism. arXiv preprint
arXiv:2401.10241, 2023.

S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: Memory optimizations toward training
trillion parameter models. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro. Megatron-lm:
Training multi-billion parameter language models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

F. Strati, P. Elvinger, T. Kerimoglu, and A. Klimovic. Ml training with cloud gpu shortages: Is
cross-region the answer? In Proceedings of the 4th Workshop on Machine Learning and Systems,
pages 107–116, 2024.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023. URL https://arxiv.org/abs/2307.09288.

H. Wu, L. Chen, and W. Yu. Bitpipe: Bidirectional interleaved pipeline parallelism for accelerating
large models training. arXiv preprint arXiv:2410.19367, 2024.

B. Yang, J. Zhang, J. Li, C. Ré, C. Aberger, and C. De Sa. Pipemare: Asynchronous pipeline parallel
dnn training. Proceedings of Machine Learning and Systems, 3:269–296, 2021.

X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification. In
Advances in Neural Information Processing Systems 28 (NeurIPS 2015), 2015. URL https:
//arxiv.org/abs/1509.01626. Introduces the AG News and Yelp Review (Full/Polarity)
benchmarks.

A EXPERIMENTS & RESULTS

Reproducibility Statement. We have taken multiple steps to ensure reproducibility of our results.
Our paper provides a full description of the FluidPipe algorithm (Section 3), a cost and communication
model with all assumptions stated (Section 4), and detailed experimental setups including model
architectures, datasets, hardware environments, and latency emulation methods (Section 5). We report
results across three random seeds for each configuration and include standard deviations in accuracy
tables. We will release anonymized source code and configuration files as supplementary material to
enable independent verification of our results and reproducibility.

A.1 ADDITIONAL EXPERIMENTS: VIT-BASE

To further validate the design choices in FluidPipe, we conduct a set of experiments using ViT-Base on
CIFAR-100, which allows faster iteration while preserving the key behaviors of interest. Specifically,
we investigate:

• the role of distillation and how to weight it effectively,

• the impact of different split points on model accuracy, and

• the utility of the extra block as a design enhancement.

Exploring Distillation. We vary α, the weight between the task loss and the distillation loss:

Ltotal = αLtask + (1− α)Ldistillation. (1)

A higher α places more weight on the task loss; α = 1 corresponds to no distillation. Since Ltotal

is computed at both stages, we evaluate a grid of α values for the partial (stage 1) and full (stage 2)
models.

Figure 6 reports the best accuracy of the full model and the corresponding epoch. The highest
accuracies (around 92.3%) are achieved across a range of settings where the full model is distilled

11

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1509.01626
https://arxiv.org/abs/1509.01626

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

1.0 0.9 0.75 0.5 0.25
Full model

0.
25

0.
5

0.
75

0.
9

1.
0

Pa
rti

al
 m

od
el

92.03
±0.04
E62.7

92.25
±0.09
E44.7

92.30
±0.04
E60.0

92.20
±0.07
E51.3

91.20
±0.12
E86.0

92.20
±0.08
E44.7

92.24
±0.18
E33.3

92.24
±0.17
E44.7

91.91
±0.03
E40.0

90.53
±0.05
E81.3

92.22
±0.10
E42.0

92.26
±0.18
E37.3

92.11
±0.18
E45.3

91.40
±0.24
E26.0

89.67
±0.20
E66.0

92.24
±0.05
E64.0

92.17
±0.21
E41.3

91.93
±0.13
E60.7

90.75
±0.17
E46.0

88.62
±0.25
E56.7

91.94
±0.03
E20.7

91.91
±0.14
E16.0

91.25
±0.24
E16.7

89.45
±0.08
E38.0

88.19
±0.43
E73.3

Full model accuracy (mean) std epoch (mean)

88.5

89.0

89.5

90.0

90.5

91.0

91.5

92.0

Fu
ll

m
od

el
 a

cc
ur

ac
y

(%
)

(a) Full model best accuracy

1.0 0.9 0.75 0.5 0.25
Full Model

0.
25

0.
5

0.
75

0.
9

1.
0

Pa
rti

al
 m

od
el

4.69 5.83 5.33 5.65 4.02

5.51 6.61 6.67 5.47 3.17

5.33 7.18 5.71 5.57 2.51

5.28 6.27 5.05 4.66 1.97

8.47 9.17 7.16 4.19 1.47

 (Full model Partial model) of Accuracies (%)

7.5

5.0

2.5

0.0

2.5

5.0

7.5

 A
cc

ur
ac

y
(F

ul
l m

od
el

 P

ar
tia

l m
od

el
) (

%
)

(b) ∆ (full model−partial model) best accuracy

Figure 6: Alpha grid: full model accuracy and ∆ between FP full model vs partial model across α
values.

Table 6: Effect of number of blocks per FluidPipe stage and the addition of Extra Block at M1

w/o extra block w extra block
Accuracy Epoch Runtime Accuracy Epoch Runtime

Split (mean ± std) @ best (mean)

(10, 4) 91.96 ± 0.03% 16.0 0.87 h 92.18 ± 0.12% 35.3 2.23 h
(12, 2) 92.14 ± 0.06% 20.7 1.35 h 92.20 ± 0.08% 16.7 1.23 h
(2, 12) 86.63 ± 0.10% 79.3 5.64 h 91.55 ± 0.10% 42.7 2.91 h
(4, 10) 90.94 ± 0.23% 14.0 0.82 h 91.72 ± 0.16% 77.3 4.57 h
(7, 7) 91.46 ± 0.15% 12.7 0.58 h 91.95 ± 0.07% 24.0 1.16 h

lightly (higher α) while the partial model receives moderate distillation (lower α). This supports our
intuition: distillation helps the partial model learn in place of receiving gradients. We also note
that full-model accuracy is relatively stable across many α combinations once distillation is tuned,
with differences of less than 1% between most settings.

Furthermore, Figure 6 shows that convergence speed varies sharply with α. The fastest convergence
(16–21 epochs) occurs when the partial model is trained without distillation (α = 1) and the full
model receives minimal to no distillation (α ≈ 0.75–1.0). In contrast, when both stages are distilled
heavily (α ≤ 0.5), convergence is substantially slower, with the best accuracy only appearing after
40–80 epochs.

We also plot ∆ accuracy, defined as the difference between the full and partial model accuracies. This
serves as a sanity check (the full model should outperform the partial) and shows how distillation
changes the gap. For example, ∆ shrinks from about 9% when the full model is not distilled at all
(α = 1) to around 2% when it is distilled heavily (α = 0.25). This shrinkage, however, reflects
degraded full-model accuracy rather than genuine improvement of the partial model.

Practitioner Takeaway

A practical rule of thumb is to distill more to the partial model while keeping the full model
mostly task-oriented.

Split Point and Extra Block. Figure 7 reports accuracy for both the partial model (stage 1) and the
full model (stage 2) across split points, with and without the extra block; Table 6 reports full-model
accuracy (mean ± std), as well as epochs and runtime to best.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

2-12 4-10 7-7 10-4 12-2

ViT Base Split (Blocks per FluidPipe Stage)

0

20

40

60

80

100
Ac

cu
ra

cy
 (%

)

41.5%

71.9%

84.0%
90.3% 92.0%

62.6%

79.4%
86.1% 90.4% 92.0%

86.6% 90.9% 91.5% 92.0%
92.1%

91.6%
91.7%

92.0%
92.2%

92.2%
Mean Best Accuracy by Split

Model
M1 Full Model

Extra block
w/o extra block w extra block

Figure 7: Split and Extra Block utility.

Split point (no extra block). For the full model, accuracy is robust under balanced and moderately
skewed splits: (7,7) 91.46%, (10,4) 91.96%, and (12,2) 92.14% (Table 6). Only the extreme (2,12)
split collapses accuracy to 86.63%. In contrast, the figure shows that the partial model depends
strongly on stage 1 depth: it is high when stage 1 is deep (e.g., (12,2) ≈ 92.0%) and very low when
stage 1 is shallow (e.g., (2,12) ≈ 41.6%).

Balanced split with extra block (7,7). Adding the extra block increases full-model accuracy from
91.46% → 91.95% (+0.49 pp; Table 6), and improves the partial model from ≈ 84.0% → 86.1%
(Figure 7). This comes with slower convergence for the full model (12.7→24.0 epochs; 0.58→1.16 h).

Interaction. Across splits, the extra block consistently raises accuracy for both models. For
the full model, gains are modest under balanced/moderate splits—(10,4): 91.96% → 92.18%,
(12,2): 92.14% → 92.20%, (7,7): 91.46% → 91.95%—but are substantial when stage 1 is under-
provisioned: (2,12): 86.63% → 91.55% (+4.92 pp) and (4,10): 90.94% → 91.72% (+0.78 pp)
(Table 6). The figure shows an even larger effect on the partial model when stage 1 is shallow: (2,12):
≈ 41.6%→ 62.6% (+21.0 pp), (4,10): ≈ 71.9%→ 79.4% (+7.5 pp). Effects on convergence vary
by split: the extra block can slow training (e.g., (4,10): 14.0→77.3 epochs) or speed it up (e.g., (12,2):
20.7→16.7 epochs).

Takeaways. (i) Full-model accuracy is robust to the split point except in the extreme (2,12) case; (ii)
the extra block is useful in general, providing small but consistent gains (e.g., +0.49 pp at (7,7)); and
(iii) the extra block is especially beneficial when stage 1 is shallow, where it substantially lifts both
the partial and full model accuracy.

A.2 ADDITIONAL EXPERIMENTS: BERT-LARGE

Following Setup B, we probe the effect of distillation on IMDB in Figure 8. In contrast to Figure 6
(ViT), we observe little sensitivity to the choice of Stage 1 (partial model) α over a broad range, and
accuracy degrades when distillation into the full model (Stage 2) is strong (i.e., 0.5–0.25 α2). A
plausible explanation is the short training budget in this setup: we run only 5 epochs. As seen in
Figure 6, the configurations that benefited from distillation typically reached their best accuracy later
in training; with a small fixed epoch budget, that advantage does not have time to materialize.

Practical takeaway. Under small epoch budgets, prefer little-to-no distillation into Stage 2 (e.g.,
α2 ≈ 0.75–1.0); heavier Stage 2 distillation is counterproductive, while tuning α1 has comparatively
minor effect in this regime.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

1.0 0.9 0.75 0.5 0.25
Full model

0.
25

0.
5

0.
75

0.
9

1.
0

Pa
rti

al
 m

od
el

89.80
±0.70
E5.0

89.81
±0.87
E5.0

89.62
±1.26
E5.0

87.75
±2.88
E5.0

81.56
±2.78
E4.7

89.79
±0.70
E5.0

89.75
±0.77
E5.0

89.71
±1.54
E5.0

88.00
±2.71
E5.0

81.92
±2.82
E5.0

89.70
±0.86
E5.0

89.78
±0.99
E5.0

89.80
±1.37
E5.0

88.23
±2.80
E5.0

82.61
±2.64
E5.0

89.81
±0.73
E5.0

89.66
±1.06
E5.0

89.85
±1.45
E5.0

88.45
±2.48
E5.0

83.37
±2.52
E5.0

89.72
±0.81
E5.0

89.86
±1.06
E5.0

89.82
±1.43
E5.0

88.77
±2.28
E5.0

83.97
±2.40
E5.0

Full model accuracy (mean) std epoch (mean)

82

83

84

85

86

87

88

89

Fu
ll

m
od

el
 a

cc
ur

ac
y

(%
)

(a) Full model best accuracy

1.0 0.9 0.75 0.5 0.25
Full Model

0.
25

0.
5

0.
75

0.
9

1.
0

Pa
rti

al
 m

od
el

14.91 14.92 14.73 12.87 8.42

14.55 14.50 14.47 12.76 6.68

13.79 13.87 13.89 12.32 6.70

13.36 13.21 13.40 12.00 6.92

12.75 12.90 12.86 11.81 7.01

 (Full model Partial model) of Accuracies (%)

10

5

0

5

10

 A
cc

ur
ac

y
(F

ul
l m

od
el

 P

ar
tia

l m
od

el
) (

%
)

(b) ∆ (full model−partial model) best accuracy

Figure 8: Alpha grid: full model accuracy and ∆ between FP full model vs partial model across α
values.

A.3 ADDITIONAL EXPERIMENTS: FP VS SOTA PIPELINE SCHEDULERS

We execute a small experiment to compare the training time Figure 9, idle time of stage 1 Figure 10,
and idle time of stage 2 Figure 11 of FluidPipe and different Pipeline schedulers [GPipe/1F1B/zero-
bubble Huang et al. (2019); Narayanan et al. (2019); Qi et al. (2023)]. We used ViT-Base on two
nodes with 1 A100 each, full precision training on a dummy images (224x224x3) dataset. We used a
fixed batch size of 256 and varied the number of micro-batches.

FP surpasses GPipe, 1F1B and Zero-Bubble train time even at 0 ms RTT (100 Gbps), where
scheduling methods are most effective. Moreover, FP removes the idle times caused by pipeline
bubbles. Scheduling and FP operate at different layers of abstraction: scheduling controls micro-batch
interleaving within a stage, whereas FP removes the backward-path dependency between stages.

Figure 9: The training time of FP vs PP with different schedulers.

A.4 COMPUTATIONAL TIMELINE

Figure 12 shows a computational timeline of the two stages during the execution of an epoch using
FP and PP. This result confirms that FP removes the dependency of stage 1 on stage 2, that is,
stage 1 finishes the computations faster. Moreover, we can see that there are fewer bubbles between
computations. An interesting future direction is to utilize the idle time at stage 2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 10: The bubble (idle) time of Stage 1 of both PP and FPs.

Figure 11: The bubble (idle) time of Stage 2 of both PP and FPs.

Time (Normalized Seconds)

Machine 1

Machine 2

Pipeline Parallelism

0 50 100 150 200 250 300 350 400
Time (Normalized Seconds)

Machine 1

Machine 2

FluidPipe w/o Opp. Training

Latency = 1ms

Forward Backward

FluidPipe

S2

S1

S1

S2

Pipeline Parallelism

(a) Latency = 1ms.

Time (Normalized Seconds)

Machine 1

Machine 2

Pipeline Parallelism

0 250 500 750 1000 1250 1500 1750
Time (Normalized Seconds)

Machine 1

Machine 2

FluidPipe w/o Opp. Training

Latency = 25ms

Forward Backward

FluidPipe

Pipeline Parallelism

S2

S1

S1

S2

(b) Latency = 25ms.

Figure 12: Iteration timeline comparing Pipeline Parallelism and FluidPipe. This plot shows the
computation performed on two stages during two epochs.

15

	Introduction
	Related Work
	FluidPipe Design
	Overview
	Training Mechanics
	Extensions

	Analytical Cost Model
	Communication Overhead Analysis

	Experiments & Results
	Setup A: ViT-Large fine-tuning on four GPUs
	Setup B: BERT-Large fine-tuning on two GPUs

	Conclusion
	Experiments & Results
	Additional Experiments: ViT-Base
	Additional Experiments: BERT-Large
	Additional Experiments: FP vs SotA Pipeline schedulers
	Computational Timeline

