
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LINK PREDICTION WITH RELATIONAL HYPERGRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Link prediction with knowledge graphs has been thoroughly studied in graph ma-
chine learning, leading to a rich landscape of graph neural network architectures
with successful applications. Nonetheless, it remains challenging to transfer the
success of these architectures to inductive link prediction with relational hyper-
graphs, where the task is over k-ary relations, substantially harder than link pre-
diction on knowledge graphs with binary relations only. In this paper, we propose
a framework for link prediction with relational hypergraphs, empowering appli-
cations of graph neural networks on fully relational structures. Theoretically, we
conduct a thorough analysis of the expressive power of the resulting model ar-
chitectures via corresponding relational Weisfeiler-Leman algorithms and also via
logical expressiveness. Empirically, we validate the power of the proposed model
architectures on various relational hypergraph benchmarks. The resulting model
architectures substantially outperform every baseline for inductive link prediction,
and also lead to state-of-the-art results for transductive link prediction.

1 INTRODUCTION

Hawking Oxford

BA Physics

Nobel

StudyDegree Awarded

Figure 1: A relational hypergraph over the re-
lations StudyDegree and Awarded. The facts
StudyDegree(Hawking,Oxford,Physics,BA) and
Awarded(Physics,Nobel,Oxford) are ordered hy-
peredges, where the order of entities in each fact is
denoted by dashed arrows.

Knowledge graphs consist of facts (or, edges)
representing different relations between pairs
of nodes. Knowledge graphs are inherently in-
complete (Ji et al., 2020; Wang et al., 2017)
which motivated a large literature on link pre-
diction with knowledge graphs (Wang et al.,
2014; Schlichtkrull et al., 2018; Sun et al.,
2019; Teru et al., 2020; Vashishth et al., 2020;
Liu et al., 2021a; Zhu et al., 2021). This
task amounts to predicting missing facts in
the knowledge graph and has led to a rich
landscape of graph neural network architec-
tures (Schlichtkrull et al., 2018; Teru et al.,
2020; Vashishth et al., 2020; Zhu et al., 2021).
Our understanding of these architectures is
supported by theoretical studies quantifying
their expressive power (Barceló et al., 2022;
Zhang et al., 2021; Huang et al., 2023; Qiu
et al., 2024).

In this work, we are interested in link prediction on fully relational data, where every relation
is between k nodes, for any relation-specific choice of k. Relational data can encode rich re-
lationships between entities; e.g., consider a relationship between four entities: “Hawking went
to Oxford to study Physics and received a BA degree”. This can be represented with a fact
StudyDegree(Hawking,Oxford,Physics,BA). Clearly, relational data can be represented via re-
lational hypergraphs, where each ordered, relational hyperedge in the hypergraph corresponds to a
relational fact (see Figure 1).

Motivation. Given the prevalence of relational data, link prediction with relational hyper-
graphs has been widely studied in the context of shallow embedding models (Wen et al.,
2016; Abboud et al., 2020; Fatemi et al., 2020; 2023), where the idea is to generalize knowl-
edge graph embedding methods to relational hypergraphs. The key limitation of these ap-
proaches is that they are all transductive: they cannot be directly used to make predictions

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

between nodes that are not seen during training. The same limitation has motivated the de-
velopment of graph neural network architectures for inductive link prediction on knowledge
graphs — enabling for predictions between nodes that are not seen during training (Teru et al.,
2020) — which eventually led to very strong architectures such as NBFNets (Zhu et al., 2021).

t

u

w

v

Figure 2: Unary encoders cannot
distinguish the query facts r(u, v, t)
and r(u,w, t), drawn in green.

In the same spirit, graph neural networks have been extended
for inductive link prediction on relational hypergraphs (Ya-
dati, 2020; Zhou et al., 2023), but these approaches do not
enjoy the same level of success. This can be attributed to
multiple, related factors. In essence, link prediction with rela-
tional hypergraphs is a k-ary task (for k varying depending on
the relation), which is much more challenging than a binary
prediction task and requires dedicated approaches. On the
other hand, existing proposals are simple extensions of rela-
tional graph neural networks (such as RGCNs (Schlichtkrull
et al., 2018)), which cannot adequately capture k-ary tasks.
In fact, these architectures are unary encoders that are used
for k-ary predictions, which is known to be a fundamental
limitation (Zhang et al., 2021; Huang et al., 2023). To make
these points concrete, let us consider the example shown in
Figure 2. In this example, regardless of the choice of the
unary encoder, it is not possible to distinguish between the
query facts r(u,w, t) and r(u, v, t), because the nodes w and
v are isomorphic in the hypergraph. However, an appropriate

ternary encoder can easily differentiate these facts using the information that the distance between
the nodes u and w differs from the distance between the nodes u and v. These limitations along with
a lack of an established theory motivates our study.

Approach. We first investigate the expressive power of existing graph neural networks proposed for
relational hypergraphs — such as G-MPNNs (Yadati, 2020) and RD-MPNNs (Zhou et al., 2023) —
to rigorously identify their limitations. This is achieved by studying the framework of hypergraph
relational message passing neural networks (HR-MPNNs) which subsumes these architectures. To
address the limitations of HR-MPNNs, we introduce hypergraph conditional message passing neu-
ral networks (HC-MPNNs) as a framework for inductive link prediction inspired by the conditional
message passing paradigm studied for knowledge graphs (Zhu et al., 2021; Huang et al., 2023). We
conduct a systematic expressiveness study showing that HC-MPNNs can compute richer properties
of nodes — dependent on k other nodes — when compared to HR-MPNNs. Specifically, our study
for expressive power answers the following questions:

1. Which nodes can be distinguished by an architecture? To answer this question, we generalize ex-
isting results given for graph neural networks on knowledge graphs (Barceló et al., 2022; Huang
et al., 2023) using Weisfeler-Leman algorithms designated for relational hypergraphs.

2. What properties of nodes can be uniformly expressed by an architecture? To answer this ques-
tion, we investigate logical expressiveness which situates the class of node properties that can be
expressed by an architecture within an appropriate logical fragment.

Contributions. Our main contributions can be summarized as follows:

• We rigorously identify the expressive power and limitations of HR-MPNNs that encompass most
of the existing architectures for link prediction with relational hypergraphs (Section 4).

• We introduce the novel framework of HC-MPNNs, which includes more expressive architectures,
such as HCNets, and addresses the core limitations of HR-MPNNs (Section 5).

• We present a detailed empirical analysis to validate our theoretical findings (Section 6). Ex-
periments for inductive and transductive link prediction with relational hypergraphs show that a
simple HC-MPNNs architecture surpasses all existing baselines leading to state-of-the-art results.
Our ablation studies on different model components justify the importance of our model design
choices. We supplement the real-world experiments with a synthetic experiment inspired by the
example from Figure 2 to validate the expressive power of HC-MPNNs (Appendix M).

All proofs and additional experiments (including link prediction results on standard knowledge
graphs) can be found in the appendix of this paper.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Knowledge graphs. Link prediction with knowledge graphs has been studied extensively in the
literature. Early literature is dominated by knowledge graph embedding models including TransE
(Bordes et al., 2013), RotatE (Sun et al., 2019), ComplEx (Trouillon et al., 2016), TuckER (Balaze-
vic et al., 2019), and BoxE (Abboud et al., 2020), which are all restricted to the transductive regime.
In the space of graph neural networks, RGCN (Schlichtkrull et al., 2018) and CompGCN (Vashishth
et al., 2020) emerged as architectures extending standard message passing neural networks (Gilmer
et al., 2017) to knowledge graphs using a relational message passing scheme. GraIL (Teru et al.,
2020) is the first architecture explicitly designed to operate in the inductive regime, but it suffers
from a high computational complexity. Zhu et al. (2021) proposed NBFNets as an architecture that
subsumes previous methods such as NeuralLP (Yang et al., 2017) and DRUM (Sadeghian et al.,
2019). NBFNets perform strongly and have better computational complexity thanks to their high
parallelizability Zhu et al. (2021). Recently, A*Net (Zhu et al., 2023) is proposed to scale NBFNets
further with the usage of a neural priority function. NBFNets are shown to fall under the frame-
work of conditional message passing neural networks (C-MPNNs) (Huang et al., 2023), as they
compute node representations “conditioned” pairwise on other node representations, making these
architectures suitable for binary link prediction tasks and explaining their superior performance. The
success of conditional message passing on knowledge graphs serves as a motivation for our work on
relational hypergraphs.

Relational hypergraphs. Link prediction with relational hypergraphs has been widely studied in
the context of shallow embedding models (Wen et al., 2016; Abboud et al., 2020; Fatemi et al.,
2020; 2023). To score facts of the form r(u1, · · · , uk), some methods extend the scoring function
(i.e., decoder) of existing knowledge graph embedding methods to consider multiple entities. For
example, m-TransH (Wen et al., 2016) is an extension of TransH (Wang et al., 2014) designed to
handle multiple entities jointly. Similarly, GETD (Liu et al., 2020) builds on the bilinear embed-
ding method TuckER (Balazevic et al., 2019) to handle higher-arity relations. Fatemi et al. (2020)
proposed HSimplE and HypE that disentangle the position and relation embedding. BoxE (Ab-
boud et al., 2020) is an embedding model that encodes each relation using box embeddings, and
naturally applies to k-ary relations (using k boxes) while achieving strong results on transductive
benchmarks. Fatemi et al. (2023) explores the connection between relational algebra and relational
hypergraph embeddings and proposes ReAlE. In the space of graph neural networks, Feng et al.
(2018) and Yadati et al. (2019) leverage message-passing methods on undirected hypergraphs. The
first approach that is tailored to relational hypergraphs is G-MPNN (Yadati, 2020), which operates
by relational message passing. RD-MPNNs (Zhou et al., 2023) builds on this approach and addition-
ally incorporates the positional information of entities in their respective relations during message
passing, which is critical for relational facts since the order of nodes in each edge clearly matters.
G-MPNN and RD-MPNNs represent closest related works to the present study and we show that
these architectures are instances of HR-MPNNs and hence are subject to the same limitations.

Hyper-relational knowledge graphs and beyond. We carefully distinguish between link prediction
with relational hypergraphs with hyper-relational knowledge graphs (Galkin et al., 2020), which are
knowledge graphs where each edge is additionally augmented with additional information: a mul-
tiset of “qualifier-value” pairs, and n-ary relational graphs (Guan et al., 2019) relying on unordered
hypergraphs. We focus on link prediction with relational hypergraphs in this work but note that
in practice, we can convert one form of hypergraphs to another with certain transformations. See
detailed discussion of in Appendix B.

3 LINK PREDICTION WITH RELATIONAL HYPERGRAPHS

Relational hypergraphs. A relational hypergraph G = (V,E,R, c) consists of a set V of nodes, a
set E of hyperedges (or simply edges or facts) of the form e = r(u1, . . . , uk) ∈ E where r ∈ R is
a relation type, u1, . . . , uk ∈ V are nodes, and k = ar(r) is the arity of the relation r. We consider
labeled hypergraphs, where the labels are given by a coloring function on nodes c : V → D. If the
range of this coloring satisfiesD = Rd, we say c is a d-dimensional feature map and use the notation
x. We write ρ(e) as the relation r ∈ R of the hyperedge e ∈ E, and e(i) to refer to the node in the i-
th arity position of the hyperedge e. We defineE(v) = {(e, i) | e(i) = v, e ∈ E, 1 ≤ i ≤ ar(ρ(e))}
as the set of edge-position pairs of a node v. Intuitively, this set captures all occurrences of node v in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

different hyperedges and arity positions. We also define the positional neighborhood of a hyperedge
e with respect to a position i as Ni(e) = {(e(j), j) | j ̸= i, 1 ≤ j ≤ ar(ρ(e))}. This set represents
all nodes that co-occur with the node at position i in a hyperedge e, along with their positions. A
knowledge graph is a relational hypergraph where for all r ∈ R, ar(r) = 2.

Link prediction on hyperedges. Given a relational hypergraph G = (V,E,R, c), and a query
q(u1, ..., ut−1, ?, ut+1..., uk), where q ∈ R is the query relation and “?” is the querying position,
link prediction is the problem of scoring all the hyperedges obtained by substituting nodes v ∈ V in
place of “?”. We denote a k-tuple (u1, . . . , uk) by u and the tuple (u1, . . . , ut−1, ut+1, . . . , uk) by
ũ. For convenience, we commonly write a query as a tuple q = (q, ũ, t).

Isomorphisms. An isomorphism from a relational hypergraph G = (V,E,R, c) to a relational hy-
pergraph G′ = (V ′, E′, R, c′) is a bijection f : V → V ′ such that c(v) = c′(f(v)) for all v ∈ V ,
and r(u1, · · · , uk) ∈ E if and only if r(f(u1), · · · , f(uk)) ∈ E′, for all r ∈ R and u1, · · · , uk ∈ V .

Invariants. For k ≥ 1, we define a k-ary relational hypergraph invariant as a function ξ associating
with each relational hypergraph G = (V,E,R, c) a function ξ(G) with domain V k such that for
all relational hypergraphs G,G′, all isomorphisms f from G to G′, and for all k-tuples of nodes
u ∈ V k, we have ξ(G)(u) = ξ(G′)(f(u)).

Refinements. Given two relational hypergraph invariants ξ and ξ′, we say a function ξ(G) : V k →
D refines a function ξ′(G) : V k → D, denoted as ξ(G) ⪯ ξ′(G), if for all u,u′ ∈ V k, ξ(G)(u) =
ξ(G)(u′) implies ξ′(G)(u) = ξ′(G)(u′). In addition, we call such functions equivalent, denoted
as ξ(G) ≡ ξ′(G), if ξ(G) ⪯ ξ′(G) and ξ′(G) ⪯ ξ(G). A k-ary relational hypergraph invariant ξ
refines a k-ary relational hypergraph invariant ξ′, if ξ(G) refines ξ′(G) for all relational hypergraphs
G. Similarly for equivalence.

4 HYPERGRAPH RELATIONAL MPNNS

We first introduce HR-MPNNs, which capture existing architectures tailored for relational hyper-
graphs, such as G-MPNN (Yadati, 2020) and RD-MPNN (Zhou et al., 2023) (Appendix C.1).

Let G = (V,E,R,x) be a relational hypergraph, where x is a feature map that yields the initial
features xv = x(v) for all nodes v ∈ V . For ℓ ≥ 0, an HR-MPNN iteratively computes a sequence
of feature maps h(ℓ) : V 7→ Rd(ℓ), where the representations h(ℓ)

v := h(ℓ)(v) are given by:

h(0)
v = xv,

h(ℓ+1)
v = UP

(
h(ℓ)
v ,AGG

(
h(ℓ)
v , {{MSGρ(e)

(
{(h(ℓ)

w , j) | (w, j) ∈ Ni(e)}
)
| (e, i) ∈ E(v)}}

))
,

where UP, AGG, and MSGρ(e) are differentiable, update, aggregation, and relation-specific message
functions, respectively. These functions are layer-specific, but we omit the superscript (ℓ) for brevity.
An HR-MPNN has a fixed number of layers L ≥ 0 and the final representations of nodes are given
by the function h(L) : V → Rd(L). We can then use a k-ary decoder DECq : Rd(L)×k → R, to
produce a score for the likelihood of q(u) for q ∈ R,u ∈ V k.

HR-MPNNs trivially contain architectures designed for single-relational, undirected hypergraphs,
such as HGNN (Feng et al., 2018) and HyperGCN (Yadati et al., 2019) (see Appendix C.2 for de-
tails). Furthermore, HR-MPNNs capture relational message passing neural networks on knowledge
graphs (Huang et al., 2023), as a special case (see Appendix C.3 for a proof).

MPNNs are well-understood both in terms of their ability to distinguish graph nodes (Morris et al.,
2019; Xu et al., 2019) and in terms of their capacity to capture logical node properties (Barceló et al.,
2020). This line of work has been extended to relational architectures (Barceló et al., 2022; Huang
et al., 2023). In the next subsections, we provide similar characterizations for HR-MPNNs.

4.1 A WEISFEILER-LEMAN TEST FOR HR-MPNNS

We formally characterize the ability of HR-MPNNs to distinguish nodes in relational hypergraphs
via a variant of the 1-dimensional Weisfeiler-Leman test, namely the hypergraph relational 1-WL
test, denoted by hrwl1. The test hrwl1 is a natural generalization of rwl1 (Barceló et al., 2022) to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

relational hypergraphs. Given a relational hypergraph G = (V,E,R, c), for ℓ ≥ 0, hrwl1 updates
the node colorings as:

hrwl
(0)
1 (v) = c(v),

hrwl
(ℓ+1)
1 (v) = τ

(
hrwl

(ℓ)
1 (v),{{

(
{(hrwl(ℓ)1 (w), j) | (w, j) ∈ Ni(e)}, ρ(e)

)
|(e, i)∈E(v)}}

)
.

The function τ is an injective mapping that maps the above pair to a unique color that has not been
used in previous iterations: hrwl

(ℓ)
1 defines a valid node invariant on relational hypergraphs for all

ℓ ≥ 0.

As it turns out, hrwl1 has the same expressive power as HR-MPNNs in terms of distinguishing nodes
over relational hypergraphs:
Theorem 4.1. Let G = (V,E,R, c) be a relational hypergraph, then the following statements hold:

1. For all initial feature maps x with c ≡ x, all HR-MPNNs with L layers, and for all 0 ≤ ℓ ≤ L,
it holds that hrwl(ℓ)1 ⪯ h(ℓ).

2. For all L ≥ 0, there is an initial feature map x with c ≡ x and an HR-MPNN with L layers,
such that for all 0 ≤ ℓ ≤ L, we have hrwl

(ℓ)
1 ≡ h(ℓ).

Intuitively, item (1) states that hrwl1 upper bounds the power of any HR-MPNN: if the test cannot
distinguish two nodes, then HR-MPNNs cannot either. On the other hand, item (2) states that HR-
MPNNs can be as expressive as hrwl1: for any L, there is an HR-MPNN that simulates L iterations
of the test. In our proof, we explicitly construct this HR-MPNN using a simple architecture: the
proof requires a very delicate construction to ensure the HR-MPNN synthetizes the information
around a node v (given by its neighborhood E(v)), in the same way hrwl1 does (see Appendix D).

4.2 LOGICAL EXPRESSIVENESS OF HR-MPNNS

The previous WL characterization of HR-MPNNs is non-uniform in the sense that it holds for a
given relational hypergraph G. We now turn our attention to a uniform analysis of the power of
HR-MPNNs and study the problem of which (node) properties can be expressed as HR-MPNNs,
which is well-suited for the inductive setup. Following Barceló et al. (2020), we investigate logical
classifiers, i.e., those that can be defined in the formalism of first-order logic (FO). Briefly, a first-
order formula ϕ(x) with one free variable x defines a logical classifier that assigns value true to
node u in relational hypergraph G whenever G |= ϕ(u). A logical classifier ϕ(x) is captured by a
HR-MPNN A if for every relational hypergraph G the nodes u that are classified as true by ϕ and
A are the same.

Graded modal logic on hypergraphs. Barceló et al. (2020) showed that a logical classifier is
captured by an MPNN over single-relational undirected graphs if and only if it can be expressed in
graded modal logic (de Rijke, 2000; Lutz et al., 2001). This result is extended to knowledge graphs
by Huang et al. (2023). We consider a variant of graded modal logic for hypergraphs. Fix a set
of relation types R and a set of node colors C. The hypergraph graded modal logic (HGML) is
the fragment of FO containing the following unary formulas. Firstly, a(x) for a ∈ C is a formula.
Secondly, if φ(x) and φ′(x) are HGML formulas, then ¬φ(x) and φ(x) ∧ φ′(x) also are. Thirdly,
for r ∈ R, 1 ≤ i ≤ ar(r) and N ≥ 1:

∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧Ψ(ỹ)

)
is a HGML formula, where ỹ = (y1, . . . , yi−1, yi+1, . . . , yar(r)) and Ψ(ỹ) is a Boolean combi-
nation of HGML formulas having free variables from ỹ. Intuitively, the formula expresses that x
participates in at least N edges e at position i, where the remaining nodes in e satisfy condition Ψ.
Example 4.2. Consider the set of relations from Figure 1 and the property: “x is a person who
obtained a degree y of a subject z at a university m that has been awarded less than two prices p of
some subject w.” This can be expressed as the following formula:

ϕ(x) = Person(x) ∧ ∃y, z,m
(

StudyDegree(x, y, z,m) ∧ ¬∃≥2p, w (Awarded(w, p,m))
)

It is easy to verify that ϕ(x) is indeed a HGML formula. ⋄

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

a b

c d

e
r1 r2

Hypergraph G

a b

c d

e
r1 r2

zq + p3 zq + p1

0

INIT of q(b, ?, a)

a b

c d

e
r1 r2

Message Passing

DEC() 7→ R

Figure 3: Given a relational hypergraph G with V = {a, b, c, d, e}, E = {r1(a, b, d, c), r2(d, e, b)},
R = {r1, r2} and a query q(b, ?, a), HCNet conditions on the nodes a and b and then applies
message passing to compute the score for q(b, e, a). Here, zq is the learnable relation vector for
query relation, and pi is the positional encoding of the i-th arity position.

For any property expressed in HGML, such as ϕ(x), does there exist an HR-MPNN that captures
this property on all relational hypergraphs with a shared relational vocabulary R and node colors C?
Indeed, we show that HR-MPNNs are as powerful as HGML:

Theorem 4.3. Each hypergraph graded modal logic classifier is captured by a HR-MPNN.

For the proof, we first show a simple normal form for HGML formulas, and then carefully translate
formulas of this form into HR-MPNNs. See Appendix E for further discussion regarding HGML.

5 HYPERGRAPH CONDITIONAL MPNNS

In this section, we propose hypergraph conditional message passing networks (HC-MPNNs), a gen-
eralization of C-MPNNs (Huang et al., 2023) to relational hypergraphs.

Let G = (V,E,R,x) be a relational hypergraph, where x is a feature map. Given a query q =

(q, ũ, t), for ℓ ≥ 0, an HC-MPNN computes a sequence of feature maps h(ℓ)
v|q as follows:

h
(0)
v|q = INIT(v, q),

h
(ℓ+1)
v|q = UP

(
h
(ℓ)
v|q,AGG

(
h
(ℓ)
v|q, {{MSGρ(e)

(
{(h(ℓ)

w|q, j) | (w, j) ∈ Ni(e)}, q
)
| (e, i) ∈ E(v)}}

))
,

where INIT, UP, AGG, and MSGρ(e) are differentiable initialization, update, aggregation, and
relation-specific message functions, respectively. An HC-MPNN has a fixed number of lay-
ers L ≥ 0, and the final conditional node representations are given by h

(L)
v|q . We denote by

h
(ℓ)
q : V → Rd(ℓ) the function h

(ℓ)
q (v) := h

(ℓ)
v|q .

To ensure that HC-MPNNs compute k-ary representations (see Appendix I), we impose a gener-
alized version of target node distinguishability proposed by Huang et al. (2023). An initialization
function satisfies generalized target node distinguishability if for all q = (q, ũ, t):

INIT(u, q) ̸= INIT(v, q),∀u ∈ ũ, v /∈ ũ and INIT(ui, q) ̸= INIT(uj , q),∀ui, uj ∈ ũ, ui ̸= uj

Differently from message passing on simple hypergraphs, we need to consider the relation type
of each edge (multi-relational) and the relative position of each node (directed) in the edges on
relational hypergraphs. Hence, the message function MSGρ(e) needs to be relation-specific while
also keeping track of the positions j of nodes w in their respective neighborhoods Ni(e). We can
then obtain the scores of query q applying a unary decoder DEC on h

(L)
v|q .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.1 HYPERGRAPH CONDITIONAL NETWORKS

We define a basic HC-MPNN, which we call hypergraph conditional networks (HCNets). For a
query q = (q, ũ, t), an HCNet computes the following representations for all ℓ ≥ 0:

h
(0)
v|q =

∑
i ̸=t

1v=ui
∗ (pi + zq),

h
(ℓ+1)
v|q = σ

(
W (ℓ)

[
h
(ℓ)
v|q

∥∥∥ ∑
(e,i)∈E(v)

g
(ℓ)
ρ(e),q

(
⊙j ̸=i (α

(ℓ)h
(ℓ)
e(j)|q+ (1− α(ℓ))pj)

)]
+ b(ℓ)

)
,

where g(ℓ)ρ(e),q is learnable message function, σ is an activation function, W (ℓ) is a learnable weight
matrix, b(ℓ) as learnable bias term per layer, zq is the learnable query vector for q ∈ R, and 1C is the
indicator function that returns 1 if conditionC is true, and 0 otherwise. As usual, ∗ is scalar multipli-
cation, and ⊙ is element-wise multiplication of vectors. We write α to refer to a learnable scalar and
pi to refer to the positional encoding at position i, which is sinusoidal positional encoding (Vaswani
et al., 2017).

In particular, we set g(ℓ)ρ(e),q to be a query-dependent diagonal linear map Diag(Wrzq) where Wr

is a learnable matrix for each relation r. Alternatively, we can adopt a query-independent map by
replacing Wrzq with learnable vector wr for each relation r.

Intuitively, the model initialization ensures that all source nodes (i.e., nodes that appear in ũ) are
initialized to their respective positions in the query edge, and all other nodes are initialized as the
zero vector 0 satisfying generalized target node distinguishability, shown in Figure 3.

5.2 A WEISFEILER-LEMAN TEST FOR HC-MPNNS

To analyze the expressive power of HC-MPNNs for distinguishing nodes, we can still use the hrwl1
test provided we restrict ourselves to initial colorings c that respect the given query q. Formally,
given a query q = (q, ũ, t) on a relational hypergraph G = (V,E,R, c), we say that the coloring c
satisfies generalized target node distinguishability with respect to q if:

c(u) ̸= c(v) ∀u ∈ ũ, v /∈ ũ and c(ui) ̸= c(uj) ∀ui, uj ∈ ũ, ui ̸= uj .

Note that initial colorings satisfying this property are equivalent to the initializations of HC-MPNNs.
As a direct consequence of Theorem 4.1 we obtain:

Theorem 5.1. Let G = (V,E,R, c) be a relational hypergraph and q = (q, ũ, t) be a query
such that c satisfies generalized target node distinguishability with respect to q. Then the following
statements hold:

1. For all HC-MPNNs with L layers and initialization INIT with INIT ≡ c, 0 ≤ ℓ ≤ L, we have
hrwl

(ℓ)
1 ⪯ h

(ℓ)
q .

2. For all L ≥ 0, there is an HC-MPNN with L layers s.t. 0 ≤ ℓ ≤ L, hrwl(ℓ)1 ≡ h
(ℓ)
q holds.

Theorem 5.1 tells us that HC-MPNNs are stronger than HR-MPNNs due to the initialization:
HC-MPNNs can initialize nodes differently based on the query q, whereas HR-MPNNs always
assign the same initialization for all queries. In fact, the ternary edges from Figure 2 cannot be
distinguished by HR-MPNNs but they can be distinguished by HC-MPNNs.

5.3 LOGICAL EXPRESSIVENESS OF HC-MPNNS

We remark that Theorem 4.3 can be translated to HC-MPNNs by slightly modifying the logic. We
consider symbolic queries q = (q, b̃, t), where now each b ∈ b̃ is a constant symbol. Our vocabulary
contains relation types r ∈ R and node colors C, as before, and additionally the constants b ∈ b̃. We
define hypergraph graded modal logic with constants (HGMLc) as HGML but, as atomic cases, we
additionally have formulas of the form φ(x) = (x = b) for some constant b (see Appendix G for
details). This allows us to identify variables with individual constants.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Example 5.2. Now that we have a richer vocabulary with constants, we can now represent more
formulas “conditioned” on the constants appearing in the query. For instance, given a symbolic
query with b̃ = (Physics,BA) , we can express a more complex formula ψ(x) that represents “x is
a person with a BA degree of Physics at some University m, where less than two prizes p in total
have been awarded in Physics.” as follows:

ψ(x) = Person(x)∧∃y, z,m
(

StudyDegree(x, y, z,m) ∧ (z = Physics) ∧ (y = BA)

∧ ¬
(
∃≥2p, w (Awarded(w, p,m) ∧ (w = Physics))

))
Note that this formula ψ(x) cannot be expressed as an HGML formula but it can be as an HGMLc

formula, due to the additional introduction of constants. ⋄

We prove the following result showing that HC-MPNNs can capture richer k-ary node properties:
Theorem 5.3. Each HGMLc classifier can be captured by a HC-MPNN over valid relational hy-
pergraphs.

6 EXPERIMENTAL EVALUATION

We evaluate HCNet on a broad range of experiments, some of which are reported in the appendix:

• Inductive experiments (Section 6.1): We evaluate HCNet for inductive link prediction with rela-
tional hypergraphs and report very substantial improvements reflecting on our theoretical findings.

• Transductive experiments (Section 6.2): We evaluate HCNet for transductive link prediction
with relational hypergraphs and report multiple state-of-the-art results.

• Ablation on initialization and positional encoding (Section 6.3): We conduct ablation studies
on the choice of initialization and positional encoding in HCNets.

• Knowledge graph experiments (Appendix K): HCNet can handle knowledge graphs as a special
case and our evaluation shows that it can match the performance of models such as NBFNets.

• Expressiveness evaluation (Appendix M): We conduct a synthetic experiment on HyperCycle
dataset, building on the counter-example in Figure 2 to showcase the expressivity differences
between HR-MPNNs and HC-MPNNs.

Experimental setups. In all experiments, we consider a 2-layer MLP as the decoder and adopt
layer normalization and dropout in all layers before applying ReLU activation and skip-connection.
During the training, we remove edges that are currently being treated as positive tuples to pre-
vent overfitting for each batch. We choose the best checkpoint based on its evaluation of the
validation set. In terms of evaluation, we adopt filtered ranking protocol. For each test edge
q(u1, . . . , uk) where k = ar(q), and for each position t ∈ {1, ..., k}, we replace the t-th enti-
ties by all other possible entities such that the query after replacement is not in the graph. We
consider the query-independent message function for all datasets except WikiPeople. We report
Mean Reciprocal Rank (MRR), Hits@1, and Hits@3 for inductive experiments and additionally
Hits@10 for transductive experiments as evaluation metrics and provide averaged results of five
runs on different seeds. We reported standard deviations and execution time & memory used
along with all other experiment details in Appendix Q. Furthermore, we provide a detailed dis-
cussion of computational complexity between HR-MPNNs and HC-MPNNs in Appendix J. We
ran all experiments on a single NVIDIA V100 GPU. The code for experiments is provided in
https://anonymous.4open.science/r/HCNet.

6.1 INDUCTIVE EXPERIMENTS

Datasets. Yadati (2020) constructed three inductive datasets, WP-IND, JF-IND, and MFB-IND
from existing transductive datasets on relational hypergraphs: WikiPeople (Guan et al., 2019),
JF17K (Wen et al., 2016), and M-FB15K (Fatemi et al., 2020), with their statistics in Table 11.

Baselines. We compare with the baseline models HGNN (Feng et al., 2018), HyperGCN (Yadati
et al., 2019), and three variants of G-MPNN (Yadati, 2020) with different aggregation functions.
Since HGNN and HyperGCN are designed for simple hypergraphs, Yadati (2020) tested them on
transformed relational hypergraphs where the relations are ignored. In addition, Yadati (2020) ini-
tialized nodes with given node features, whereas we ignore the node feature and initialize each node

8

https://anonymous.4open.science/r/HCNet

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Results of inductive link prediction experiments. We report MRR, Hits@1, and Hits@3
(higher is better) on test sets.

WP-IND JF-IND MFB-IND
MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

HGNN 0.072 0.045 0.112 0.102 0.086 0.128 0.121 0.076 0.114
HyperGCN 0.075 0.049 0.111 0.099 0.088 0.133 0.118 0.074 0.117
G-MPNN-sum 0.177 0.108 0.191 0.219 0.155 0.236 0.124 0.071 0.123
G-MPNN-mean 0.153 0.096 0.145 0.112 0.039 0.116 0.241 0.162 0.257
G-MPNN-max 0.200 0.125 0.214 0.216 0.147 0.240 0.268 0.191 0.283
RD-MPNN 0.304 0.238 0.328 0.402 0.308 0.453 0.122 0.082 0.125

HCNet 0.414 0.352 0.451 0.435 0.357 0.495 0.368 0.223 0.417

Table 2: Results of transductive link prediction experiments on FB-AUTO and WikiPeople.

FB-AUTO WikiPeople
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

RAE 0.703 0.614 0.764 0.854 0.253 0.118 0.343 0.463
NaLP 0.672 0.611 0.712 0.774 0.338 0.272 0.362 0.466
tNaLP+ 0.729 0.645 0.748 0.826 0.339 0.269 0.369 0.473
HINGE 0.678 0.630 0.706 0.765 0.333 0.259 0.361 0.477
NeuInfer 0.737 0.700 0.755 0.805 0.351 0.274 0.381 0.467
BERT 0.776 0.735 0.802 0.850 - - - -
HypE 0.804 0.774 0.823 0.856 0.263 0.127 0.355 0.486
RAM 0.830 0.803 0.851 0.876 0.363 0.271 0.405 0.500
S2S - - - - 0.364 0.273 0.402 0.503
BoxE 0.844 0.814 0.863 0.898 - - - -
HyperMLN 0.831 0.803 0.851 0.877 - - - -
HyConvE 0.847 0.820 0.872 0.901 0.362 0.275 0.388 0.501
ReAIE 0.861 0.836 0.877 0.908 - - - -
RD-MPNN 0.810 0.714 0.880 0.888 - - - -

HCNet 0.871 0.842 0.892 0.922 0.421 0.344 0.457 0.565

with the respective initialization defined in HCNets. We modify RD-MPNNs (Zhou et al., 2023) by
replacing learned entity embeddings to be all one vector 1d to enable inductive link prediction. We
adopt the batching trick (Zhu et al., 2021) on MFB-IND. Hyper-parameters are reported in Table 13.

Results. We report the inductive experiments results in Table 1, and observe that HCNet outperforms
all the existing baseline methods by a large margin, doubling the metric on WP-IND and JF-IND
and substantially increasing on MFB-IND. Notably, we emphasize that HCNet does not utilize the
provided node features whereas other baseline models do, further highlighting the effectiveness of
HCNet in generalizing to entirely new graphs in the absence of node features. This is because HCNet
is more expressive by computing query-dependent k-ary invariants instead of query-agnostic unary
invariants in HR-MPNNs such as RD-MPNNs and G-MPNNs with different aggregation functions.
Overall, these results perfectly align with the main theoretical findings presented in this paper.

6.2 TRANSDUCTIVE EXPERIMENTS

Datasets & Baselines. We evaluate HCNets on the link prediction task with relational hypergraphs,
namely the publicly available FB-AUTO (Fatemi et al., 2020) and WikiPeople (Guan et al., 2021).
These datasets include facts of different arities up to 9. We have taken the results of embedding
methods RAE from Zhang et al. (2018), NaLP from Guan et al. (2019), tNaLP+ from Guan et al.
(2021), HINGE from Rosso et al. (2020), NeuInfer from Guan et al. (2020), BERT from Devlin
et al. (2019), HypE from Fatemi et al. (2020), BoxE from Abboud et al. (2020), RAM from Liu
et al. (2021b), S2S from Di et al. (2021), HyperMLN from Chen et al. (2022), HyConvE from Wang
et al. (2023), ReAIE from Fatemi et al. (2023), and GNN method RD-MPNN from Zhou et al.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Ablation on Initialization

INIT WP-IND JF-IND
zq pi MRR Hits@3 MRR Hits@3

- - 0.388 0.421 0.390 0.451
✓ - 0.387 0.421 0.392 0.447
- ✓ 0.394 0.430 0.393 0.456
✓ ✓ 0.414 0.451 0.435 0.495

Table 4: Ablation on Positional Encoding

PE WP-IND JF-IND
MRR Hits@3 MRR Hits@3

Constant 0.393 0.426 0.356 0.428
One-hot 0.395 0.428 0.368 0.432

Learnable 0.396 0.425 0.416 0.480
Sinusoidal 0.414 0.451 0.435 0.495

(2023). The statistics of the datasets are reported in Table 12, and the hyper-parameter choices in
Table 14. The full table with additional baselines is in Table 18.

Results. We summarize the results for the transductive link prediction tasks and report them in Ta-
ble 9. HCNet obtains the best results in FB-AUTO and WikiPeople on all metrics. This demonstrates
the effectiveness of HCNets also on transductive datasets by outperforming all existing embedding
methods specifically designed for transductive link prediction tasks.

6.3 ABLATION STUDIES ON THE IMPACT OF INITIALIZATION AND POSITIONAL ENCODING

To assess the contribution of each model component, we conduct ablation studies mainly on different
choices of positional encodings and initialization functions on WP-IND and JF-IND datasets with
the same empirical setup described in Section 6.1. Complete results are reported in Appendix Q.

Initialization. We conduct experiments to validate the impact of different initialization by evalu-
ating all combinations of whether including positional encoding pi or learnable query vectors zq .
From Table 3, we observe that both positional encoding pi and the relation zq are essential in the
initialization, as removing either of them worsens the overall performance of HCNet. A closer look
reveals that the removal of the positional encoding is more detrimental compared to removing re-
lational embedding since the model could deduce the relation types based on implicit information
such as the arity of the query relation.

Positional encoding. We also examine the importance of the choice of positional encodings, which
serves as an indicator of which position the given entities lie in a hyperedge. We provide experi-
ments on multiple choices of positional encodings and report the results in Table 4. Empirically, we
notice that the sinusoidal positional encoding produces the best results due to its ability to measure
sequential dependency between neighboring entities, compared with one-hot positional encoding
which assumes orthogonality among each position. We also notice that learnable embeddings do
not produce better results since it is generally hard to learn a suitable embedding that respects the
order of the nodes in a relation based on random initialization. Finally, constant embedding evi-
dently performs the worst as it pays no respect to position information and treats all hyperedges
with the same set of nodes in the same way regardless of the order of the nodes in these edges.

7 SUMMARY, DISCUSSIONS, AND LIMITATIONS

We investigated two frameworks of relational message-passing neural networks on the task of link
prediction with relational hypergraphs, namely HR-MPNNs and HC-MPNNs. Furthermore, we
studied the expressive power of these two frameworks in terms of relational WL and logical expres-
siveness. We then proposed a simple yet powerful model instance of HC-MPNNs called HCNet and
presented its superior performance on inductive link prediction tasks, which is further supported by
additional transductive link prediction and synthetic experiments. One limitation lies in the poten-
tially high computational complexity of our approach when applied to large relational hypergraphs.
Our approach is also limited to link prediction and a potential future avenue is to investigate com-
plex query answering on fully relational data. Our study extends the success of link prediction with
knowledge graphs to relational hypergraphs where higher arity relations can be effectively modeled
with GNNs, advancing applications of graph neural networks to fully relational structures.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. Boxe: A box
embedding model for knowledge base completion. In NeurIPS, 2020.

Ivana Balazevic, Carl Allen, and Timothy Hospedales. Tucker: Tensor factorization for knowledge
graph completion. In EMNLP-IJCNLP, 2019.

Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo Silva.
The logical expressiveness of graph neural networks. In ICLR, 2020.

Pablo Barceló, Mikhail Galkin, Christopher Morris, and Miguel Romero. Weisfeiler and leman go
relational. In LoG, 2022.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, 2013.

Zirui Chen, Xin Wang, Chenxu Wang, and Jianxin Li. Explainable link prediction in knowledge
hypergraphs. In CIKM, 2022.

Maarten de Rijke. A note on Graded Modal Logic. In Stud Logica, 2000.

Tim Dettmers, Minervini Pasquale, Stenetorp Pontus, and Sebastian Riedel. Convolutional 2D
knowledge graph embeddings. In AAAI, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In ACL, 2019.

Shimin Di, Quanming Yao, and Lei Chen. Searching to sparsify tensor decomposition for n-ary
relational data. In WWW, 2021.

Bahare Fatemi, Perouz Taslakian, David Vazquez, and David Poole. Knowledge hypergraphs: Pre-
diction beyond binary relations. In IJCAI, 2020.

Bahare Fatemi, Perouz Taslakian, David Vazquez, and David Poole. Knowledge hypergraph embed-
ding meets relational algebra. JMLR, 2023.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In AAAI, 2018.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. In
ICLR-RLGM Workshop, 2019.

Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. AMIE: Association
rule mining under incomplete evidence in ontological knowledge bases. In WWW, 2013.

Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, and Jens Lehmann. Mes-
sage passing for hyper-relational knowledge graphs. In EMNLP, 2020.

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
models for knowledge graph reasoning. In ICLR, 2024.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In ICML, 2017.

Martin Grohe. The logic of graph neural networks. In LICS, 2021.

Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and Xueqi Cheng. Link prediction on n-ary relational
data. In WWW, 2019.

Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng. NeuInfer: Knowledge
inference on N-ary facts. In ACL, 2020.

Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng. Link prediction on
n-ary relational data based on relatedness evaluation. IEEE Transactions on Knowledge and Data
Engineering, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NIPS, 2017.

Xingyue Huang, Miguel Romero Orth, İsmail İlkan Ceylan, and Pablo Barceló. A theory of link
prediction via relational weisfeiler-leman on knowledge graphs. In NeurIPS, 2023.

Shaoxiong Ji, Shirui Pan, E. Cambria, Pekka Marttinen, and Philip S. Yu. A survey on knowledge
graphs: Representation, acquisition, and applications. IEEE Transactions on Neural Networks
and Learning Systems, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Shuwen Liu, Bernardo Grau, Ian Horrocks, and Egor Kostylev. Indigo: Gnn-based inductive knowl-
edge graph completion using pair-wise encoding. In NeurIPS, 2021a.

Yu Liu, Quanming Yao, and Yong Li. Generalizing tensor decomposition for n-ary relational knowl-
edge bases. In WWW, 2020.

Yu Liu, Quanming Yao, and Yong Li. Role-aware modeling for n-ary relational knowledge bases.
In WWW, 2021b.

Carsten Lutz, Ulrike Sattler, and Frank Wolter. Modal logic and the two-variable fragment. In CSL,
2001.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks.
In AAAI, 2019.

Haiquan Qiu, Yongqi Zhang, Yong Li, and quanming yao. Understanding expressivity of GNN in
rule learning. In ICLR, 2024.

Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. Beyond triplets: Hyper-relational knowl-
edge graph embedding for link prediction. In WWW, 2020.

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. Drum: End-to-
end differentiable rule mining on knowledge graphs. In NIPS, 2019.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In ESWC, 2018.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. In ICLR, 2019.

Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive relation prediction by sub-
graph reasoning. In ICML, 2020.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In ICML, 2016.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. Composition-based multi-
relational graph convolutional networks. In ICLR, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Chenxu Wang, Xin Wang, Zhao Li, Zirui Chen, and Jianxin Li. Hyconve: A novel embedding model
for knowledge hypergraph link prediction with convolutional neural networks. In WWW, 2023.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on Knowledge and Data Engineering, 2017.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI, 2014.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jianfeng Wen, Jianxin Li, Yongyi Mao, Shini Chen, and Richong Zhang. On the representation and
embedding of knowledge bases beyond binary relations. In IJCAI, 2016.

Bo Xiong, Mojtaba Nayyer, Shirui Pan, and Steffen Staab. Shrinking embeddings for hyper-
relational knowledge graphs. In ACL, 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Naganand Yadati. Neural message passing for multi-relational ordered and recursive hypergraphs.
In NeurIPS, 2020.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergcn: A new method for training graph convolutional networks on hypergraphs.
In NeurIPS, 2019.

Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for knowledge
base reasoning. In NeurIPS, 2017.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. In NeurIPS, 2021.

Richong Zhang, Junpeng Li, Jiajie Mei, and Yongyi Mao. Scalable instance reconstruction in knowl-
edge bases via relatedness affiliated embedding. In WWW, 2018.

Yongqi Zhang and Quanming Yao. Knowledge graph reasoning with relational digraph. In WebConf,
2022.

Xue Zhou, Bei Hui, Ilana Zeira, Hao Wu, and Ling Tian. Dynamic relation learning for link predic-
tion in knowledge hypergraphs. In Appl Intell, 2023.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-
works: A general graph neural network framework for link prediction. In NeurIPS, 2021.

Zhaocheng Zhu, Xinyu Yuan, Mikhail Galkin, Sophie Xhonneux, Ming Zhang, Maxime Gazeau,
and Jian Tang. A*net: A scalable path-based reasoning approach for knowledge graphs. In
NeurIPS, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A R-MPNNS AND C-MPNNS

In this section, we follow Huang et al. (2023) and define relational message passing neural networks
(R-MPNNs) and conditional message passing neural networks (C-MPNNs). For ease of presenta-
tion, we omit the discussion regarding history functions and readout functions from Huang et al.
(2023).

R-MPNNs. Let G = (V,E,R,x) be a knowledge graph, where x is a feature map. A relational
message passing neural network (R-MPNN) computes a sequence of feature maps h(ℓ) : V →
Rd(ℓ), for ℓ ≥ 0. For simplicity, we write h

(ℓ)
v instead of h(ℓ)(v). For each node v ∈ V , the

representations h(ℓ)
v are iteratively computed as:

h(0)
v = xv

h(ℓ+1)
v = UP

(
h(ℓ)
v ,AGG({{MSGr(h

(ℓ)
w)| w ∈ Nr(v), r ∈ R}})

)
,

where UP, AGG, and MSGr are differentiable update, aggregation, and relation-specific message
functions, respectively, Nr(v) := {u | r(u, v) ∈ E} is the neighborhood of a node v ∈ V relative
to a relation r ∈ R. An R-MPNN has a fixed number of layers L ≥ 0, and then, the final node
representations are given by the map h(L) : V → Rd(L). The final representations can be used for
node-level predictions. For link-level tasks, we use a binary decoder DECq : Rd(L) × Rd(L) → R,
which produces a score for the likelihood of the fact q(u, v), for q ∈ R.

C-MPNNs. Let G = (V,E,R,x) be a knowledge graph, where x is a feature map. A conditional
message passing neural network (C-MPNN) iteratively computes pairwise representations, relative
to a fixed query q ∈ R and a fixed node u ∈ V , as follows:

h
(0)
v|u,q = INIT(u, v, q)

h
(ℓ+1)
v|u,q = UP

(
h
(ℓ)
v|u,q,AGG({{MSGr(h

(ℓ)
w|u,q, zq)| w ∈ Nr(v), r ∈ R}})

)
,

where INIT, UP, AGG, and MSGr are differentiable initialization, update, aggregation, and relation-
specific message functions, respectively.

We denote by h
(ℓ)
q : V × V → Rd(ℓ) the function h

(ℓ)
q (u, v) := h

(ℓ)
v|u,q , and denote zq to be a

learnable vector representing the query q ∈ R. A C-MPNN has a fixed number of layers L ≥ 0,
and the final pair representations are given by h

(L)
q . To decode the likelihood of the fact q(u, v)

for some q ∈ R, we simply use a unary decoder DEC : Rd(L) → R, parameterized by a 2-layer
MLP. In addition, we require INIT(u, v, q) to satisfy target node distinguishability: for all q ∈ R
and v ̸= u ∈ V , it holds that INIT(u, u, q) ̸= INIT(u, v, q).

B ON REPRESENTATIONS OF HIGH-ARITY FACTS

We carefully distinguish between the task setting of relational hypergraphs (also known as knowl-
edge hypergraphs in Fatemi et al. (2020; 2023), or multi-relational ordered hypergraphs in Yadati
(2020)), hyper-relational knowledge graphs, and n-ary relational graphs.

• Relational hypergraphs. A relational hypergraph is G = (V,E,R), where each facts in E is
represented as k-ary tuple r(u1, · · · , uk) for u1, · · · , uk ∈ V and r ∈ R. As of this work,
many works (Fatemi et al., 2020; Yadati, 2020; Zhou et al., 2023) have considered this form of
representation.

• Hyper-relational knowledge graphs. A hyper-relational knowledge graph G = (V,E,R),
where R is a set of relation and each fact in E is represented as a tuple (u, r, v, {{(qri, qvi) | 1 ≤
i ≤ n}}) where u, v ∈ V with r ∈ R is the main triplet, and {{(qri, qvi) | 1 ≤ i ≤ n}} ∈ P(R×V)
is a set of qualifier-value pairs. Note that qualifiers are also chosen from the set of relation R and
are used to describe the entities as the additional information stored in the knowledge graph for
each triplet. Earlier research (Galkin et al., 2020; Xiong et al., 2023) mainly investigated this form
of representation.

• n-ary relational graphs. A n-ary relational graph G = (V,E,C), where each fact in E is
represented by a set of role-value tuple {{(ri, vi) | 1 ≤ i ≤ n}} ∈ P(C × V), and C is the set of

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

roles, which are unary relation defined over entity for each fact, acting as additional information.
Earlier study (Guan et al., 2019) adopt this form of representation.

To further clarify the difference, we show an example with the following visualization for each type
of graph in Figure 4. Given a high-arity fact “Hawking went to Oxford to study Physics and received
a BA degree” to be captured:

• In relational hypergraphs, each fact is represented by a tuple (thus the ordering is fixed):

StudyDegree(Hawking,Oxford,Physics,BA).

• In hyper-relational knowledge graphs, each fact is represented by a tuple of main triplet together
with a set of qualifier-value pairs:

(Hawking,Received,BA, {{University(Oxford),Subject(Physics)}}).

• In a n-ary relational graphs, each fact is represented as a set (thus unordered):

{{Person(Hawking),University(Oxford),Subject(Physics),Degree(BA)}}.

Thus, notice that link prediction with relational hypergraphs is a more general problem setup, where
no roles and qualifiers are provided as extra information. This differs from the problem setup of
link prediction with hyper-relational knowledge graphs or n-ary relational graphs, where the unary
relations (qualifiers/roles) are also within the relation vocabulary.

On transformation between relational hypergraphs and other forms. Note that relational hy-
pergraphs can transformed into hyper-relational knowledge graphs and n-ary relational graphs by
generating a brand new qualifier per relation per position. However, note that the hyper-relational
knowledge graphs (n-ary relational graphs) generated this way are restricted: they must satisfy
the property that qualifiers can only appear together with their corresponding relation in the main
triplet, i.e., transforming r(u1, u2, u3, u4) to (u1, r, u4, {r2 : u2, r3 : u3}) will enforce the newly
introduced qualifiers r2 and r3 to appear together with each other and with the main relation r. They
are a very general form of representation of high-arity facts.

On the other hand, hyper-relational knowledge graphs and n-ary relational graphs can be trans-
formed into relational hypergraphs injectively by hashing the relation and qualifiers as a new rela-
tion type. However, empirically it is difficult to view these datasets as relational hypergraphs due to
the explosion in the number of relations: any combination of existing relations and qualifiers would
result in a brand new relation type in a relational hypergraph, which is impractical. Another type of
transformation can be applied by directly dropping qualifiers and treating the relation on the main
triplet as high-arity relations. Such transformation will lose essential qualifier information and is not
injective, which is a significantly difficult and different task.

We also highlight the evaluation differences as experiments on hyper-relational knowledge graphs
only corrupt entities in the main triplets, whereas, in link prediction with relational hypergraphs
setting, all entities mentioned at all positions are corrupted. We thus opt out datasets of hyper-
relational knowledge graphs such as WD50K (Galkin et al., 2024) and focus only on the datasets
designed for relational hypergraphs to verify our theoretical expressiveness results.

C HR-MPNNS SUBSUME EXISTING MODELS

In this section, we provide further details on how the proposed framework HR-MPNNs subsumes
existing models as claimed.

C.1 HR-MPNNS SUBSUME G-MPNNS AND RD-MPNNS

To see why HR-MPNNs subsume RD-MPNNs (Zhou et al., 2023) and G-MPNNs (Yadati, 2020),
which are prominent examples of message passing model on relational hypergraphs in the literature,
it suffices to instantiate some components of HR-MPNNs with particular functions.

An RD-MPNN can be seen as an instance of an HR-MPNN that uses summation as AGG, and a
relation-specific message function MSGr which, for each relation r, applies summation followed

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hawking Oxford

BA Physics

StudyDegree

Relational Hypergraph

Hawking

Oxford

BA

Physics

University()

Subject()

Received

Hyper-relational Knowledge Graph

Hawking Oxford

BA Physics

Person()

Subject()

University()

Degree()

n-ary Relational Graph

Figure 4: Different ways to represent high-arity fact “Hawking went to Oxford to study Physics and
received a BA degree” as hyper-edges.

by a linear map with non-linearity. The update function UP is a one-layer Multi-layer Perceptron
(MLP).

Similarly, a G-MPNN instance can be seen as an HR-MPNN that uses either summation, mean, or
max as AGG, and a message function MSGr which, for each relation r, applies a Hadamard product
of the relational embedding.

C.2 HR-MPNNS SUBSUMING HGNNS AND HYPERGCNS

To see why HR-MPNNs generalize HGNNs (Feng et al., 2018) and HyperGCNs (Yadati et al., 2019)
on simple, undirected hypergraph, first note that (i) these models are single-relational - no relation
types - so they are a special case in this sense and (ii) the hyperedges in these undirected hypergraphs
are unordered.

To recover HGNN, we can set the message function MSGr to be mean, ignoring the relation types
r, and ignore the relative position in the formula (as there is no ordering in simple, undirected
hypergraph). Then, we can choose the AGG function to be symmetrically normalized mean, similar
to the aggregation in GCN (Kipf & Welling, 2017).

To recover HyperGCN, we set AGG to be the symmetrically normalized mean, and MSGr function
to be wi,j ∗ argmaxhj

|hi − hj |, with some weight wi,j (again ignoring the relation r and position
i), provided that the message function has access to the feature of considered node hi.

C.3 HR-MPNNS SUBSUME R-MPNNS

We formally show that the R-MPNNs framework is subsumed by the HR-MPNNs framework when
applied to the knowledge graph.

Theorem C.1. Let G = (V,E,R,x) be a knowledge graph, then given any R-MPNN instance A
with L layer parameterized by AGG

(ℓ)
A , UP

(ℓ)
A , and MSGAr for 0 < ℓ ≤ L, r ∈ R, there exists a

HR-MPNN instance B with L layer, parameterized by AGG
(ℓ)
B , UP

(ℓ)
B , and MSGBr, such that for all

v ∈ V , we have h
(ℓ)
A,G(v) = h

(ℓ)
B,G(v) for all 0 ≤ ℓ ≤ L.

Proof. Given an R-MPNN instance A with L layer, we can have that for 0 ≤ ℓ ≤ L, we have

h
(0)
A,G(v) = x(v)

h
(ℓ+1)
A,G (v) = UP

(ℓ)
A

(
h
(ℓ)
A,G(v),AGG

(ℓ)
A ({{MSGAr(h

(ℓ)
A,G(w))| w ∈ Nr(v), r ∈ R}})

)
,

Note that we can now rewrite the updating formula in the following form:

h
(ℓ+1)
A,G (v) = UP

(ℓ)
A

(
h
(ℓ)
A,G(v),

AGG
(ℓ)
A

(
{{MSGAρ(e)

(
{(h(ℓ)

A,G(w), j) |(w, j) ∈ Ni(e)}
)
|(e, i) ∈ E(v), i = 2}}

))

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We then parameterize a HR-MPNN instance B with L layer of the following form:

h
(0)
B,G(v) = x(v)

h
(ℓ+1)
B,G (v) = UP

(ℓ)
B

(
h
(ℓ)
B,G(v),AGG

(ℓ)
B

(
h
(ℓ)
B,G(v),

{{MSGBρ(e)

(
{(h(ℓ)

B,G(w), j) |(w, j) ∈ Ni(e)}
)
|(e, i) ∈ E(v)}}

))
where we have for all 0 < ℓ ≤ L, r ∈ R, UP

(ℓ)
B := UP

(ℓ)
A , AGG

(ℓ)
B (x, S) := AGG

(ℓ)
A (S), for some

vector x and some (multi-)set S, and

MSGBρ(e)({(h(ℓ)(w), j) |(w, j) ∈ Ni(e)}) := MSGAρ(e)({(h(ℓ)(w), j) |(w, j) ∈ Ni(e), j = 1})

We argue that MSGBρ(e) can be achieved by applying a filtering function on each element of the set
to check if the second argument of the tuple is 1 or not.

Now we are ready to prove the theorem by induction. First notice that the base case ℓ = 0 trivially
holds. For the inductive case, assume that for all v ∈ V , we have h(ℓ)

A,G(v) = h
(ℓ)
B,G(v). Then, notice

that for 0 < ℓ ≤ L:

h
(ℓ+1)
A,G (v) = UP

(ℓ)
A

(
h
(ℓ)
A,G(v),

AGG
(ℓ)
A

(
{{MSGAρ(e)

(
{(h(ℓ)

A,G(w), j) |(w, j) ∈ Ni(e)}
)
|(e, i) ∈ E(v), i = 2}}

))
= UP

(ℓ)
A

(
h
(ℓ)
A,G(v),

AGG
(ℓ)
A

(
{{MSGAρ(e)

(
{(h(ℓ)

A,G(w), j) |(w, j) ∈ Ni(e), j = 1}
)
|(e, i) ∈ E(v), i = 2}}

))
= UP

(ℓ)
B

(
h
(ℓ)
B,G(v),AGG

(ℓ)
B

(
h
(ℓ)
B,G(v),

{{MSGBρ(e)

(
{(h(ℓ)

B,G(w), j) |(w, j) ∈ Ni(e)}
)
|(e, i) ∈ E(v)}}

))
= h

(ℓ+1)
B,G (v)

Remark C.2. Note that analogously we can show that HC-MPNNs subsumes C-MPNNs by noticing
generalized target node distinguishability in HC-MPNNs degrades to target node distinguishability
in the context of knowledge graph. See further detailed discussion in Appendix H.

D PROOF OF THEOREM 4.1

Theorem 4.1. Let G = (V,E,R, c) be a relational hypergraph, then the following statements hold:

1. For all initial feature maps x with c ≡ x, all HR-MPNNs with L layers, and for all 0 ≤ ℓ ≤ L,
it holds that hrwl(ℓ)1 ⪯ h(ℓ).

2. For all L ≥ 0, there is an initial feature map x with c ≡ x and an HR-MPNN with L layers,
such that for all 0 ≤ ℓ ≤ L, we have hrwl

(ℓ)
1 ≡ h(ℓ).

Proof. First, for simplicity of notation, we define m
(ℓ)
e,i = MSGρ(e)

(
{(h(ℓ)

w , j) | (w, j) ∈ Ni(e)}
)

for edge e, position 1 ≤ i ≤ ar(ρ(e)), and ℓ ≥ 0.

To prove item (1), we first take an initial feature map x with c ≡ x and a HR-MPNN with L layers.
We apply induction on ℓ. The base case where ℓ = 0 follows directly as hrwl(0)1 ≡ c ≡ x ≡ h(0).
For the inductive case, assume hrwl

(ℓ+1)
1 (u) = hrwl

(ℓ+1)
1 (v) for some node pair u, v ∈ V and for

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

some ℓ ≥ 1. By injectivity of τ , it follows that hrwl(ℓ)1 (u) = hrwl
(ℓ)
1 (v) and

{{({(hrwl(ℓ)1 (w), j) | (w, j) ∈ Ni(e)}, ρ(e)) | (e, i) ∈ E(u)}} =

{{({(hrwl(ℓ)1 (w), j) | (w, j) ∈ Ni′(e
′)}, ρ(e′)) | (e′, i′) ∈ E(v)}}

By inductive hypothesis, we have h
(ℓ)
u = h

(ℓ)
v and

{{({(h(ℓ)
w , j) | (w, j) ∈ Ni(e)}, ρ(e)) | (e, i) ∈ E(u)}} =

{{({(h(ℓ)
w , j) | (w, j) ∈ Ni′(e

′)}, ρ(e′)) | (e′, i′) ∈ E(v)}}.

Thus we have

{{MSG
(ℓ)
ρ(e)

(
{(h(ℓ)

w , j) | (w, j) ∈ Ni(e)}
)
| (e, i) ∈ E(u)}} =

{{MSG
(ℓ)
ρ(e′)

(
{(h(ℓ)

w , j) | (w, j) ∈ Ni′(e
′)}

)
| (e′, i′) ∈ E(v)}}

and then:

{{m(ℓ)
e,i | (e, i) ∈ E(u)}} = {{m(ℓ)

e′,i′ | (e
′, i′) ∈ E(v)}}.

We thus conclude that

h(ℓ+1)
u = UP(ℓ)

(
h(ℓ)
u ,AGG

(
h(ℓ)
u , {{m(ℓ)

e,i | (e, i) ∈ E(u)}}
))

= UP(ℓ)
(
h(ℓ)
v ,AGG

(
h(ℓ)
v , {{m(ℓ)

e′,i′ | (e
′, i′) ∈ E(v)}}

))
= h(ℓ+1)

v .

Now we proceed to show item (2). We use a model of HR-MPNN in the following form and show
that any iteration of hrwl1 can be simulated by a specific layer of such instance of HR-MPNN:

h(0)
v = xv

h(ℓ+1)
v = f (ℓ)

([
h(ℓ)
v

∥∥∥ ∑
(e,i)∈E(v)

g
(ℓ)
ρ(e)

(
⊙j ̸=i (h

(ℓ)
e(j) + pj)

)])
.

Here, f (ℓ)(z) = sign(W (ℓ)z − b) where W (ℓ) is a parameter matrix, b is the bias term, in this
case the all-ones vector b = (1, . . . , 1)T , and as non-linearity we use the sign function sign. For a
relation type r ∈ R, the function g(ℓ)r has the form g

(ℓ)
r (z) = Y

(ℓ)
r sign(W

(ℓ)
r z − b), where W

(ℓ)
r

and Y
(ℓ)
r are parameter matrices and b is the all-ones bias vector. Recall that ⊙ denotes element-

wise multiplication and pj is the positional encoding at position j, which in this case is a parameter
vector.

We shall use the following lemma shown in Morris et al. (2019)[Lemma 9]. The matrix J denotes
the all-ones matrix (with appropriate dimensions).

Lemma D.1 ((Morris et al., 2019)). Let B ∈ Ns×t be a matrix whose columns are pairwise distinct.
Then there is a matrix X ∈ Rt×s such that the matrix sign(XB−J) ∈ {−1, 1}t×t is non-singular.

For a matrix B, we denote by Bi its i-th column. Let n = |V | and without loss of generality
assume V = {1, . . . , n}. Let m be the maximum arity over all edges of G. We will write feature
maps h : V → Rd for G = (V,E,R, c) also as matrices H ∈ Rd×n, where the column Hv

corresponds to the d-dimensional feature vector for node v.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Let Fts be the following nm× n matrix:

Fts =



−1 −1 · · · −1 −1
...

...
...

...
...

−1 −1 · · · −1 −1
1 −1 · · · −1 −1
...

...
...

...
...

1 −1 · · · −1 −1
...

.
...

1 1 · · · 1 −1
...

...
...

...
...

1 1 · · · 1 −1


That is, (Fts)ij = −1 if m × j ≥ i, and (Fts)ij = 1 otherwise. We shall use the columns of
Fts as node features in our simulation. The following lemma is a simple variation of Lemma A.5
from Huang et al. (2023), which in turn is a variation of Lemma D.1 above.

Lemma D.2. Let B ∈ Ns×t be a matrix such that t ≤ n, and all the columns are pairwise distinct
and different from the all-zeros column. Then there is a matrix X ∈ Rnm×s such that the matrix
sign(XB − J) ∈ {−1, 1}nm×t is precisely the sub-matrix of Fts given by its first t columns.

Proof. Let z = (1, k + 1, (k + 1)2, . . . , (k + 1)s−1) ∈ N1×s, where k is the largest entry in B,
and b = zB ∈ N1×t. By construction, the entries of b are positive and pairwise distinct. Without
loss of generality, we assume that b = (b1, b2, . . . , bt) for b1 > b2 > · · · > bt > 0. As the bi are
ordered, we can choose numbers x1, . . . , xt ∈ R such that bi · xj < 1 if i ≥ j, and bi · xj > 1
if i < j, for all i, j ∈ {1, . . . , t}. Let x = (x1, . . . , xt, 2/bt, . . . , 2/bt)

T ∈ Rn×1. Note that
(2/bt) · bi > 1, for all i ∈ {1, . . . , t}. Let x′ = (x1, . . . ,x1,x2, . . . ,x2, . . . ,xn, . . . ,xn)

T ∈
Rnm×1 be the vector obtained from x by replacing each entry xi with m consecutive copies of xi.
Then sign(x′b− J) is precisely the sub-matrix of Fts given by its first t columns. We can choose
X = x′z ∈ Rnm×s.

We conclude item (2) by showing the following lemma:

Lemma D.3. There exist a family of feature maps {h(ℓ) : V → Rnm | 0 ≤ ℓ ≤ L}, family of
matrices {W (ℓ) | 0 ≤ ℓ < L} and {{W (ℓ)

r ,Y
(ℓ)
r } | 0 ≤ ℓ < L, r ∈ R}, and positional encodings

{pj | 1 ≤ j ≤ m} such that:

• h(ℓ) ≡ hrwl
(ℓ)
1 for all 0 ≤ ℓ ≤ L.

• h
(ℓ)
v ∈ Rnm is a column of Fts for all 0 ≤ ℓ ≤ L and v ∈ V .

• h
(ℓ+1)
v = f (ℓ)

([
h
(ℓ)
v

∥∥∥∑(e,i)∈E(v) g
(ℓ)
ρ(e)

(
⊙j ̸=i (h

(ℓ)
e(j) +pj)

)])
for all 0 ≤ ℓ < L and v ∈ V ,

where f (ℓ) and g(ℓ)r are defined as above, i.e. f (ℓ)(z) = sign(W (ℓ)z − b) and g(ℓ)r (z) =

Y
(ℓ)
r sign(W

(ℓ)
r z − b) (vector b is the all-ones vector).

Proof. We proceed by induction on ℓ. Suppose that the node coloring hrwl
(0)
1 ≡ c with colors

1, . . . , p, for p ≤ n. Then we choose h(0) such that h(0)
v = Ftsc(v), i.e., h(0)

v is the c(v)-th column
of Fts. Thus, h(0) satisfies the required conditions.

For the inductive case, assume that h(ℓ) ≡ hrwl
(ℓ)
1 for 0 ≤ ℓ < L and that h(ℓ)

v is a column of Fts

for all v ∈ V . We shall define parameter matrices W (ℓ) and {{W (ℓ)
r ,Y

(ℓ)
r } | r ∈ R} and positional

encodings {pj | 1 ≤ j ≤ m} such that the conditions of the lemma are satisfied.

For 1 ≤ j ≤ m, the positional encoding pj is independent of ℓ. Let p̃j = 4b + 8ej ∈ Rm, where
b is the m-dimensional all-ones vector and ej is the m-dimensional one-hot encoding of j. In other

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

words, all entries of p̃j are 4 except for the j-th entry which is 12. We define pj = (p̃j , . . . , p̃j) ∈
Rnm to be the concatenation of n copies of p̃j .

Let r ∈ R and define Epos
r = {(e, i) | e ∈ E, ρ(e) = r, 1 ≤ i ≤ ar(r)}. For (e, i) ∈ Epos

r , define

o
(ℓ)
e,i = ⊙j ̸=i(h

(ℓ)
e(j) + pj) c̃ol

(ℓ)

e,i = {(hrwl(ℓ)1 (w), j) | (w, j) ∈ Ni(e)}.

We claim that for (e, i), (e′, i′) ∈ Epos
r , we have

o
(ℓ)
e,i = o

(ℓ)
e′,i′ if and only if c̃ol

(ℓ)

e,i = c̃ol
(ℓ)

e′,i′ .

Suppose first that c̃ol
(ℓ)

e,i = c̃ol
(ℓ)

e′,i′ . By inductive hypothesis, we have

{(h(ℓ)
w , j) | (w, j) ∈ Ni(e)} = {(h(ℓ)

w , j) | (w, j) ∈ Ni′(e
′)}.

It follows that o(ℓ)
e,i = o

(ℓ)
e′,i′ . Suppose now that c̃ol

(ℓ)

e,i ̸= c̃ol
(ℓ)

e′,i′ . We consider two cases. Assume first

i ̸= i′. Then o
(ℓ)
e,i and o

(ℓ)
e′,i′ differ on the i-th coordinate, that is, (o(ℓ)

e,i)i ̸= (o
(ℓ)
e′,i′)i. Indeed, note that

the entries of vectors of the form h
(ℓ)
w + pj are always prime numbers in {3, 5, 11, 13} (the entries

of h(ℓ)
w are always in {−1, 1} by inductive hypothesis). The i-th coordinate of all the vector factors

in the product o(ℓ)
e,i = ⊙j ̸=i(h

(ℓ)
e(j) + pj) has value 3, and hence (o

(ℓ)
e,i)i = 3ar(r)−1. On the other

hand, there exists a vector factor in the product o(ℓ)
e′,i′ = ⊙j ̸=i′(h

(ℓ)
e′(j) + pj) (the factor h(ℓ)

e′(i) + pi),

whose i-th coordinate is 11. Hence (o
(ℓ)
e,i)i and (o

(ℓ)
e′,i′)i have different prime factorizations and then

they are distinct. Now assume i = i′. Since c̃ol
(ℓ)

e,i ̸= c̃ol
(ℓ)

e′,i′ , there must be a position j∗ such that

hrwl
(ℓ)
1 (e(j∗)) ̸= hrwl

(ℓ)
1 (e′(j∗)). By inductive hypothesis, h(ℓ)

e(j∗) ̸= h
(ℓ)
e′(j∗). Again by inductive

hypothesis, we know that h(ℓ)
e(j∗) and h

(ℓ)
e′(j∗) are columns of Fts, say w.l.o.g. the k-th and k′-th

columns, respectively, for 1 ≤ k < k′ ≤ n. By construction of Fts, all them entries of h(ℓ)
e(j∗) from

coordinates {km + 1, . . . , km +m} are 1, while these are −1 for h(ℓ)
e′(j∗). We claim that o(ℓ)

e,i and

o
(ℓ)
e′,i′ differ on the (km + j∗)-th coordinate. Consider the product o(ℓ)

e,i = ⊙j ̸=i(h
(ℓ)
e(j) + pj). The

(km+j∗)-th coordinate of the factor h(ℓ)
e(j∗)+pj∗ is 13, while it is in {3, 5} for the remaining factors.

For the product o(ℓ)
e′,i′ = ⊙j ̸=i′(h

(ℓ)
e′(j)+pj), the (km+ j∗)-th coordinate of the factor h(ℓ)

e′(j∗)+pj∗

is 11, while it is in {3, 5} for the remaining factors. Hence (o
(ℓ)
e,i)km+j∗ and (o

(ℓ)
e′,i′)km+j∗ have

different prime factorizations and then they are distinct.

Let r ∈ R. It follows from the previous claim that if we interpret o(ℓ) and c̃ol
(ℓ)

as colorings for
Epos

r , then these two colorings are equivalent (i.e., the produce the same partition). Let sr be the
number of colors involved in these colorings, and let o1, . . . ,osr ∈ Rnm be an enumeration of
the distinct vectors appearing in {o(ℓ)

e,i | (e, i) ∈ Epos
r }. Let Sr be the (nm × sr)-matrix whose

columns are o1, . . . ,osr . Fix an enumeration r1, . . . , r|R| of R and define s =
∑

r∈R sr. Now
we are ready to define our sought matrices W

(ℓ)
r and Y

(ℓ)
r , for r ∈ R. We define W

(ℓ)
r to be

the (sr × nm)-matrix obtained from applying Lemma D.1 to the matrix Sr. Let Ỹ (ℓ)
r ∈ Rsr×sr

be the inverse matrix of sign(W
(ℓ)
r Sr − J). Suppose r = rk for 1 ≤ k ≤ |R|. Then,

the matrix Y
(ℓ)
r is the (s × sr)-matrix defined as the vertical concatenation of the following

|R| matrices: Nr1 , . . . ,Nrk−1
, Ỹ (ℓ)

r , Nrk+1
, . . . ,Nr|R| , where Nr′ is the all-zeros (sr′ × sr)-

matrix. By construction, Y (ℓ)
r sign(W

(ℓ)
r Sr − J) is the vertical concatenation of Nr1 , . . . ,Nrk−1

,
Ir, Nrk+1

, . . . ,Nr|R| , where Ir is the sr × sr identity matrix. In particular, if we consider

g
(ℓ)
r (z) = Y

(ℓ)
r sign(W

(ℓ)
r z − b) as in the statement of the lemma, then for each (e, i) ∈ Epos

r , the
vector m(ℓ)

e,i = g
(ℓ)
r (o

(ℓ)
e,i) has the form m

(ℓ)
e,i = (0r1 , . . . ,0rk−1

, c
(ℓ)
e,i ,0rk+1

, . . . ,0r|R|)
T ∈ {0, 1}s,

where 0r′ is the all-zeros vector of dimension sr′ and c
(ℓ)
e,i ∈ {0, 1}sr is a one-hot encoding of edge

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

color o(ℓ)
e,i , or equivalently, of edge color c̃ol

(ℓ)

e,i . It follows that the vector

f (ℓ)
v =

∑
(e,i)∈E(v)

g
(ℓ)
ρ(e)(o

(ℓ)
e,i) =

∑
r∈R

∑
(e,i)∈E(v)∩Epos

r

g(ℓ)r (o
(ℓ)
e,i)

has the form f
(ℓ)
v = (ar1 , . . . ,ar|R|)

T ∈ Ns, where ar is the sr-dimensional vector whose entry
(ar)j , for 1 ≤ j ≤ sr, is the number of elements (e, i) in E(v) ∩ Epos

r with color j, that is, such

that o(ℓ)
e,i = oj . In particular, ar is an encoding of the multiset {{c̃ol

(ℓ)

e,i | (e, i) ∈ E(v) ∩ Epos
r }} and

hence f
(ℓ)
v is an encoding of the multiset {{(c̃ol

(ℓ)

e,i , ρ(e)) | (e, i) ∈ E(v)}}. Note that this multiset
is precisely the multiset {{col(ℓ)(e, i) | (e, i) ∈ E(v)}} from the definition of the update rule of the
hypergraph relational 1-WL test. Hence, the feature map given by the concatenation [h

(ℓ)
v || f (ℓ)

v],
for all v ∈ V , is equivalent to hrwl

(ℓ+1)
1 .

It remains to define the function f (ℓ), given by the parameter matrix W (ℓ), so that the feature map
h(ℓ+1) satisfies the conditions of the lemma. Since the columns of Fts are independent, there exists
a matrix M ∈ Rn×nm such that MFts is the n×n identity matrix. Since each h

(ℓ)
v , with v ∈ V , is

a column of Fts, then Mh
(ℓ)
v ∈ {0, 1}n corresponds to a one-hot encoding of the column or color

h
(ℓ)
v . Let M ′ be the (n+s)× (nm+s) matrix with all entries 0 except for the upper-left (n×nm)-

submatrix which is M , and the lower-right (s×s)-submatrix which is the (s×s) identity matrix. By
construction, we have M ′[h

(ℓ)
v || f (ℓ)

v] = [Mh
(ℓ)
v || f (ℓ)

v] ∈ Nn+s. Let z1, . . . ,zq , with q ≤ n, be
the distinct vectors of the form [Mh

(ℓ)
v || f (ℓ)

v] and let B be the ((n+s)×q)-matrix whose columns
are precisely z1, . . . ,zq . We can apply Lemma D.2 to B to obtain a matrix X ∈ Rnm×(n+s) such
that sign(XB − J) is the matrix given by the first q columns of Fts. We define our sought matrix
W (ℓ) to be W (ℓ) = XM ′.

E HGML AND PROOF OF THEOREM 4.3

E.1 HGML FORMULAS

Fix a set of relation typesR and a set of node colors C. The hypergraph graded modal logic (HGML)
is the fragment of FO containing the following unary formulas. Firstly, a(x) for a ∈ C is a formula.
Secondly, if φ(x) and φ′(x) are HGML formulas, then ¬φ(x) and φ(x) ∧ φ′(x) also are. Thirdly,
for r ∈ R, 1 ≤ i ≤ ar(r) and N ≥ 1:

∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧Ψ(ỹ)

)
is a HGML formula, where ỹ = (y1, . . . , yi−1, yi+1, . . . , yar(r)) and Ψ(ỹ) is a boolean combina-
tion of HGML formulas having free variables from ỹ. Intuitively, the formula expresses that x
participates in at least N edges e at position i, such that the remaining nodes in e satisfies Ψ.

Let G = (V,E,R, c) be a relational hypergraph where the range of the node coloring c is C. Next,
we define the semantics of HGML. We define when a node v of G satisfies a HGML formula φ(x),
denoted by G |= φ(v), recursively as follows:

• if φ(x) = a(x) for a ∈ C, then G |= φ(v) iff a is the color of v in G, i.e., c(v) = a.
• if φ(x) = ¬φ′(x), then G |= φ(v) iff G ̸|= φ′(v).
• if φ(x) = φ′(x) ∧ φ′′(x), then G |= φ(v) iff G |= φ′(v) and G |= φ′′(v).
• if φ(x) = ∃≥N ỹ (r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ Ψ(ỹ)) then G |= φ(v)

iff there exists at least N tuples (w1, . . . wi−1, wi+1, . . . , war(r)) of nodes of G
such that r(w1, . . . , wi−1, v, wi+1, . . . , war(r)) holds in G and the boolean combination
Ψ(w1, . . . wi−1, wi+1, . . . , war(r)) evaluates to true.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

As an example, consider the set of relations from Figure 1, that is, relations
{Person(x),StudyDegree(x, y, z,m),Awarded(w, p,m)}. Consider the property: “x is a per-
son who obtained a degree y of a subject z at a university m that has been awarded less than two
prices p of some subject w.” This can be expressed as the following HGML formula:

ϕ(x) = Person(x) ∧ ∃y, z,m
(

StudyDegree(x, y, z,m) ∧ ¬∃≥2p, w (Awarded(w, p,m))
)

Observe that HGML formulas have a restricted form and hence they are not able to represent all
logical queries, which hints at the fundamental limitations of our studied models. For instance,
formulas in HGML can only express local properties of nodes. That is, properties of the form “a node
is connected (via hyper-edges) to other nodes satisfying other (local) properties”. This is illustrated
in the example above as the variables y, z,m are forced to appear together with x in the hyper-edge
StudyDegree(x, y, z,m). Another limitation of HGML is that once we quantify over the neighboring
variables for x (in the example y, z,m), we can only check (local) HGML properties separately for
the neighboring variables and combine them via Boolean combinations. In the example above, we
check the property “m has been awarded less than two prices p of some subject w” for university
m via the HGML formula α(m) = ¬∃≥2p, w (Awarded(w, p,m)). In particular, we cannot check
properties that involve simultaneously two or more neighboring variables, as these properties would
not be HGML properties (they would not even be unary). As an example, consider the property “x
is a person who obtained a degree y of a subject z at a university m that has been awarded less than
two prices p in subject z.” Now we do not impose that m has less than two prices in any subject,
but less than two prices in the particular subject z (the same related with person x). This can be
expressed as:

ϕ(x) = Person(x) ∧ ∃y, z,m
(

StudyDegree(x, y, z,m) ∧ ¬∃≥2p (Awarded(z, p,m))
)

Note that this is not an HGML formula as β(m, z) = ¬∃≥2p (Awarded(z, p,m)) checks a condition
that involves two neighboring variables (m and z). This violates exactly the requirement discussed
above.

E.2 PROOF OF THEOREM 4.3

Before showing Theorem 4.3, we need to prove an auxiliary result. We define a restriction of HGML,
denoted by HGMLr, as follows. HGMLr is defined as HGML, except for the inductive case

∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧Ψ(ỹ)

)
where now we impose Ψ(ỹ) to be a conjunction of HGML formulas with different free variables,
that is,

Ψ(ỹ) = φ1(y1) ∧ · · · ∧ φi−1(yi−1) ∧ φi+1(yi+1) ∧ · · · ∧ φar(r)(yar(r)).

We have that HGML is actually equivalent to HGMLr.

Proposition E.1. Every HGML formula can be translated into an equivalent HGMLr formula.

Proof. We apply induction to the formulas in HGML. The only interesting case is when the formula
has the form

∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧Ψ(ỹ)

)
for r ∈ R, 1 ≤ i ≤ ar(r), N ≥ 1 and a boolean combination Ψ(ỹ) of HGML formulas. We can
write Ψ(ỹ) in disjunctive normal form and since negation and conjunction are part of HGML, we
can assume that Ψ(ỹ) has the form:

Ψ(ỹ) =
∨

1≤k≤q

φk
1(y1) ∧ · · · ∧ φk

i−1(yi−1) ∧ φk
i+1(yi+1) ∧ · · · ∧ φk

ar(r)(yar(r)).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

For 1 ≤ k ≤ d and a subset T ⊆ {1, . . . , i− 1, i+ 1, . . . ,ar(r)}, we denote by ϕkT the formula

ϕkT (y1, . . . , yi−1, yi+1, . . . , yar(r)) =
∧
a∈T

¬φk
a(ya) ∧

∧
a/∈T

φk
a(ya).

Note that ϕkT expresses that for the k-th disjunct of Ψ, the conjuncts φk
a(ya) that are false are pre-

cisely those for which a ∈ T . In particular the k-th disjunct of Ψ corresponds to ϕk∅ .

For S ⊆ {1, . . . , d}, and a vector T = (Tk ⊆ {1, . . . , i− 1, i+ 1, . . . ,ar(r)} : Tk ̸= ∅, k /∈ S), we
denote by ΨS,T the formula:

ΨS,T (y1, . . . , yi−1, yi+1, . . . , yar(r)) =
∧
k∈S

ϕk∅ ∧
∧
k/∈S

ϕkTk
.

ΨS,T expresses that exactly the k-th disjuncts for k ∈ S are true, and each of the remaining false
disjuncts for k /∈ S are being falsified by making false precisely the conjuncts φk

a(ya), with a ∈ Tk.
Since HGML contains negation and conjunction, we can write ΨS,T as a conjunction of HGML
formulas with different free variables, that is:

ΨS,T (y1, . . . , yi−1, yi+1, . . . , yar(r)) = α1(y1)∧· · ·∧αi−1(yi−1)∧αi+1(yi+1)∧· · ·∧αar(r)(yar(r)).

Define

F := {ΨS,T | S ⊆ {1, . . . , d}, S ̸= ∅, T = (Tk ⊆ {1, . . . , i−1, i+1, . . . ,ar(r)} | Tk ̸= ∅, k /∈ S)}.

Then by construction, we have that Φ is true iff exactly one of the formulas in F is true. It follows
that

∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧Ψ(ỹ)

)
is equivalent to the HGMLr formula∨

(NS,T ∈N|ΨS,T ∈F)∑
S,T NS,T =N

∧
ΨS,T ∈F

∃≥NS,T ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ Ψ̃S,T (ỹ)

)

where

Ψ̃S,T (y1, . . . , yi−1, yi+1, . . . , yar(r)) = α̃1(y1)∧· · ·∧α̃i−1(yi−1)∧α̃i+1(yi+1)∧· · ·∧α̃ar(r)(yar(r)).

where α̃a(ya) is the translation to HGMLr of the formula αa(ya), which we already have by induc-
tion.

Now we are ready to prove Theorem 4.3.

Theorem 4.3. Each hypergraph graded modal logic classifier is captured by a HR-MPNN.

Proof. We follow a similar strategy than the logic characterizations from Barceló et al. (2020);
Huang et al. (2023). Let φ(x) be a formula in HGML, where the vocabulary contains relation
types R and node colors C. By Proposition E.1, we can assume that φ(x) belongs to HGMLr.
Let φ1, . . . , φL be an enumeration of the subformulas of φ such that if φi is a subformula of φj ,
then i ≤ j. In particular, φL = φ. We shall define an HR-MPNN Bφ with L layers computing
L-dimensional features in each layer. The idea is that at layer ℓ ∈ {1, . . . , L}, the ℓ-th component
of the feature h

(ℓ)
v is computed correctly and corresponds to 1 if φℓ is satisfied in node v, and 0

otherwise. We add an additional final layer that simply outputs the last component of the feature
vector.

We use models of HR-MPNNs of the following form:

h(ℓ+1)
v = f (ℓ)

([
h(ℓ)
v

∥∥∥ ∑
(e,i)∈E(v)

g
(ℓ)
ρ(e)

(
⊙j ̸=i (pj − h

(ℓ)
e(j))

)])
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Here, f (ℓ)(z) = σ(W (ℓ)z + b) where W (ℓ) is a parameter matrix, b is the bias term and σ is a
non-linearity. For a relation type r ∈ R, the function g(ℓ)r has the form g

(ℓ)
r (z) = ar − σ(W

(ℓ)
r z),

where W
(ℓ)
r is a parameter matrix and ar is a parameter vector. Recall that ⊙ denotes element-

wise multiplication and pj is the positional encoding at position j, which in this case is a parameter
vector. The parameter matrix W (ℓ) will be a (L× 2L)-matrix of the form W (ℓ) = [W

(ℓ)
0 I], where

W
(ℓ)
0 is a (L × L) parameter matrix and I is the (L × L) identity matrix. The parameter matrices

W
(ℓ)
0 and W

(ℓ)
r are actually layer independent and hence we omit the superscripts. Therefore, our

models are of the following form:

h(ℓ+1)
v = σ

(
W0h

(ℓ)
v +

∑
r∈R

∑
(e,i)∈E(v)
ρ(e)=r

(
ar − σ(Wr ⊙j ̸=i (pj − h

(ℓ)
e(j)))

)
+ b

)
.

For the non-linearity σ we use the truncated ReLU function σ(x) = min(max(0, x), 1). Let m be
the maximum arity of the relations in R. For 1 ≤ j ≤ m, the positional encoding pj is defined
as follows. The dimension of pj must be L (the same as for feature vectors). We define a set of
positions Ij ⊆ {1, . . . , L} as follows: k ∈ Ij iff there exists a subformula of φ of the form

∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ α1(y1)

∧ · · · ∧ αi−1(yi−1) ∧ αi+1(yi+1) ∧ · · · ∧ αar(r)(yar(r))
)
.

such that j ∈ {1, . . . , i − 1, i + 1, . . . ,ar(r)} and αj is the k-th subformula in the enumeration
φ1, . . . , φL. Then we define pj such that (pj)k = 1 if k ∈ Ij and (pj)k = 3 otherwise.

Now we define the parameter matrices W0 ∈ RL×L and Wr ∈ RL×L, for r ∈ R, together with the
bias vector b. For 0 ≤ ℓ < L, the ℓ-row of W0 and Wr, and the ℓ-th entry of ar and b are defined
as follows (omitted entries are 0):

1. If φℓ(x) = a(x) for a color a ∈ C, then (W0)ℓℓ = 1.

2. If φℓ(x) = ¬φk(x) then (W0)ℓk = −1, and bℓ = 1.

3. If φℓ(x) = φj(x) ∧ φk(x) then (W0)ℓj = 1, (W0)ℓk = 1 and bℓ = −1.

4. If

φℓ(x) = ∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ φk1(y1)

∧ · · · ∧ φki−1(yi−1) ∧ φki+1(yi+1) ∧ · · · ∧ φkar(r)(yar(r))
)

then (Wr)ℓkj
= 1 for j ∈ {1, . . . , i− 1, i+ 1, . . . ,ar(r)} and (ar)ℓ = 1 and bℓ = −N + 1.

Let G = (V,E,R, c) be a relational hypergraph with node colors from C. In order to apply Bφ to G,
we choose initial L-dimensional features h(0)

v such that (h(0)
v)ℓ = 1 if φℓ = a(x) and a is the color

of v, and (h
(0)
v)ℓ = 0 otherwise. In other words, the L-dimensional initial feature h

(0)
v is a one-hot

encoding of the color of v. To conclude the theorem we show by induction the following statement:

(†) For all 1 ≤ ℓ ≤ L, all 1 ≤ p ≤ ℓ, all v ∈ V , we have (h
(ℓ)
v)p = 1 if and only if G |= φp(v).

We start by showing the following:

(⋆) For all 1 ≤ ℓ ≤ L, all v ∈ V , and all 1 ≤ p ≤ L such that φp(x) = a(x) for some a ∈ C, we
have (h

(ℓ)
v)p = 1 if and only if G |= φp(v).

We apply induction on ℓ. For the base case assume ℓ = 1. Take v ∈ V and 1 ≤ p ≤ L such that
φp(x) = a(x) for some a ∈ C. By construction, we have that:

(h(1)
v)p = σ

(
(h(0)

v)p

)
= (h(0)

v)p.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

By definition of h(0), we obtain that (h(1)
v)p = 1 if and only if G |= φp(v). For the inductive case,

suppose ℓ > 1 and take v ∈ V and 1 ≤ p ≤ L such that φp(x) = a(x) for some a ∈ C. We have
that:

(h(ℓ)
v)p = σ

(
(h(ℓ−1)

v)p

)
= (h(ℓ−1)

v)p.

By inductive hypothesis we know that (h(ℓ−1)
v)p = 1 if and only if G |= φp(v). It follows that

(h
(ℓ)
v)p = 1 if and only if G |= φp(v).

We now prove statement (†). We start with the base case ℓ = 1. Take v ∈ V . It must be the case that
p = 1 and hence φp(x) = a(x) for some a ∈ C. The result follows from (⋆).

For the inductive case, take ℓ > 1. Take v ∈ V and 1 ≤ p ≤ ℓ. We consider several cases:

• Suppose φp(x) = a(x) for some color a ∈ C. Then the result follows from (⋆).

• Suppose that φp(x) = ¬φk(x). We have that:

(h(ℓ)
v)p = σ

(
− (h(ℓ−1)

v)k + 1
)
= −(h(ℓ−1)

v)k + 1.

We obtain that (h(ℓ)
v)p = 1 iff (h(ℓ−1)

v)k = 0. Since k ≤ ℓ−1, we have by inductive hypothesis
that (h(ℓ−1)

v)k = 1 iff G |= φk(v). It follows that (h(ℓ)
v)p = 1 iff G |= φp(v).

• Suppose that φp(x) = φj(x) ∧ φk(x). Then:

(h(ℓ)
v)p = σ

(
(h(ℓ−1)

v)j + (h(ℓ−1)
v)k − 1

)
.

We obtain that (h(ℓ)
v)p = 1 iff (h(ℓ−1)

v)j = 1 and (h
(ℓ−1)
v)k = 1. Since j, k ≤ ℓ− 1, we have

by inductive hypothesis that (h(ℓ−1)
v)j = 1 iff G |= φj(v) and (h

(ℓ−1)
v)k = 1 iff G |= φk(v).

It follows that (h(ℓ)
v)p = 1 iff G |= φp(v).

• Suppose that

φp(x) =∃≥N ỹ
(
r(y1, . . . , yi−1, x, yi+1, . . . , yar(r)) ∧ φk1

(y1)

∧ · · · ∧ φki−1
(yi−1) ∧ φki+1

(yi+1) ∧ · · · ∧ φkar(r)(yar(r))
)
.

Then:

(h(ℓ)
v)p = σ

(∑
(e,q)∈E(v)

ρ(e)=r

(
1− σ

(∑
j ̸=i

⊙t ̸=q(pt − h
(ℓ−1)
e(t))kj

))
−N + 1

)
.

We say that a pair (e, q) ∈ E(v), with ρ(e) = r, is good if q = i and G |= φkj (e(j)) for all
j ∈ {1, . . . , i− 1, i+ 1, . . . ,ar(r)}. We claim that

∑
j ̸=i ⊙t̸=q(pt − h

(ℓ−1)
e(t))kj = 0 if (e, q) is

good and
∑

j ̸=i ⊙t̸=q(pt−h
(ℓ−1)
e(t))kj

> 1 otherwise. Suppose (e, q) is good. Then q = i. Take

j ̸= i. We have that ⊙t ̸=i(pt−h
(ℓ−1)
e(t))kj

= 0 since the factor (pt−h
(ℓ−1)
e(t))kj

= 0 when t = j.
Indeed, by construction, (pj)kj = 1. Also, since kj ≤ ℓ− 1, we have by inductive hypothesis
that (h(ℓ−1)

e(j))kj = 1 iff G |= φkj (e(j)). Since (e, q) is good, it follows that (h(ℓ−1)
e(j))kj = 1.

Hence (pj − h
(ℓ−1)
e(j))kj = 0. Suppose now that (e, q) is not good. Assume first that q = i.

Then there exists j ̸= i such that G ̸|= φkj (e(j)). We have that ⊙t̸=i(pt − h
(ℓ−1)
e(t))kj > 1.

If t = j, then we have (pt)kj
= 1. Since kj ≤ ℓ − 1, by inductive hypothesis we have that

(h
(ℓ−1)
e(j))kj

= 1 iff G |= φkj
(e(j)). It follows that (pt − h

(ℓ−1)
e(t))kj

= 1 when t = j. If

t /∈ {i, j}, then (pt)kj
= 3 and then (pt − h

(ℓ−1)
e(t))kj

> 1. Hence ⊙t ̸=i(pt − h
(ℓ−1)
e(t))kj

> 1.

Suppose now that q ̸= i. Then we can choose j = q and obtain that ⊙t̸=q(pt −h
(ℓ−1)
e(t))kj

> 1.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Indeed, we have (pt)kq
= 3 for all t ̸= q. Hence all the factors of ⊙t̸=q(pt − h

(ℓ−1)
e(t))kq

are
> 1 and then the product is > 1.

As a consequence of the previous claim, we have that:

(h(ℓ)
v)p = σ

(
|{(e, i) ∈ E(v) | ρ(e) = r, (e, i) is good}| −N + 1

)
.

By definition G |= φp(v) iff |{(e, i) ∈ E(v) | ρ(e) = r, (e, i) is good}| ≥ N . Hence G |=
φp(v) iff (h(ℓ)

v)p = 1.

F PROOF OF THEOREM 5.1

Theorem 5.1. Let G = (V,E,R, c) be a relational hypergraph and q = (q, ũ, t) be a query such
that c satisfies target node distinguishability with respect to q. Then the following statements hold:

1. For all HC-MPNNs with L layers and initialization INIT with INIT ≡ c, 0 ≤ ℓ ≤ L, we have
hrwl

(ℓ)
1 ⪯ h

(ℓ)
q .

2. For all L ≥ 0, there is an HC-MPNN with L layers s.t. 0 ≤ ℓ ≤ L, hrwl(ℓ)1 ≡ h
(ℓ)
q holds.

Proof. Note that given G and q, each HC-MPNN A with L layers can be translated into a
HR-MPNN B with L layers that produce the same node features in each layer: for B we choose
as initial features, the features obtained from the initialization function of A, and use the same ar-
chitecture of A (functions UP,AGG,MSG). On the other hand, each HR-MPNN B with L layers
whose initial features define a coloring that satisfies generalized target node distinguishability with
respect to q can be translated into a HC-MPNN A with L layers that compute the same node features
in each layer: we can define the initialization function of A so that we obtain the initial features of
B and then use the same architecture of B.

Item (1) is obtained by translating the given HC-MPNN into its correspondent HR-MPNN and
then invoking Theorem 4.1. Similarly, item (2) is obtained by applying Theorem 4.1 to obtain an
equivalent HR-MPNN and then translate it to a HC-MPNN.

G PROOF OF THEOREM 5.3

We consider symbolic queries q = (q, b̃, t), where each b ∈ b̃ is a constant symbol. We consider
vocabularies containing relation types r ∈ R, node colors C, and the constants b ∈ b̃. In this case,
we work with relational hypergraphs G = (V,E,R, c, (vb)b∈b̃), where the range of the coloring c is
C and vb is the interpretation of constant b. We only focus on valid relational hypergraphs, that is,
G = (V,E,R, c, (vb)b∈b̃) such that for all b, b′ ∈ b̃, b ̸= b′ implies vb ̸= vb′ .

We define hypergraph graded modal logic with constants (HGMLc) as HGML but, as atomic cases,
we additionally have formulas of the form φ(x) = (x = b) for some constant b. As expected, we
have that HC-MPNNs can capture HGMLc classifiers.

Theorem 5.3. Each HGMLc classifier can be captured by a HC-MPNNs over valid relational hy-
pergraphs.

Proof. The theorem follows by applying the same construction as in the proof of Theorem 4.3. Now
we have extra base cases of the form φ(x) = (x = b) but the same arguments apply. Note that now
we need to define the initial features h(0) via the initialization function of the HC-MPNN. Since we
are focusing on valid relational hypergraphs, this can be easily done while satisfying generalized
target node distinguishability.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

H LINK PREDICTION WITH KNOWLEDGE GRAPHS

An interesting observation is that when we restrict relational hypergraphs to have hyperedges of arity
exactly 2, we recover the class of knowledge graphs. C-MPNNs (Huang et al., 2023) are tailored
for knowledge graphs and their expressive power has been recently studied extensively, with a focus
on their capability for distinguishing pairs of nodes (for a formal definition see Appendix A). In
this section, we compare HC-MPNNs and C-MPNNs, and hence we are interested in the expressive
power of HC-MPNNs in terms of distinguishing pairs of nodes. Note however that, in principle,
HC-MPNNs do not compute binary invariants. Indeed, for q ∈ R and a pair of nodes u, v we
can obtain two final features depending on whether we pose the query q(u, ?) or q(?, v). As a
convention, we shall define the final feature of the pair u, v as the result of the query q(u, ?). When
a HC-MPNN computes binary invariants under this convention, we say the HC-MPNN is restricted
to tail predictions.

We proceed to show that HC-MPNNs restricted to tail predictions have the same expressive power
in terms of distinguishing pairs of nodes as the rawl+2 test proposed in Huang et al. (2023). This
test is an extension of rawl2, which in turn, matches the expressive power of C-MPNNs. It follows
then that HC-MPNNs are strictly more powerful than C-MPNNs over knowledge graphs. We show
this by first defining a variant of the relational WL test which upper bound the expressive power of
HC-MPNNs restricting to tail predictions.

Given a knowledge graph G = (V,E,R, c, η), where η : V × V 7→ D is a pairwise coloring
satisfying target node distinguishability, i.e. ∀u ̸= v, η(u, u) ̸= η(u, v), we define a relational
hypergraph conditioned local 2-WL test, denoted as hcwl2. hcwl2 iteratively updates binary coloring
η as follow for all ℓ ≥ 0:

hcwl
(0)
2 = η(u, v)

hcwl
(ℓ+1)
2 (u, v) = τ

(
hcwl

(ℓ)
2 (u, v), {{

(
{(hcwl(ℓ)2 (u,w), j) |(w, j)∈Ni(e)}, ρ(e)

)
| (e, i) ∈ E(v)}}

)
Note that indeed, hcwl(ℓ)2 computes a binary invariants for all ℓ ≥ 0. First, we show that HC-MPNN
restricted on only tails prediction is indeed characterized by hcwl2. The proof idea is very similar to
Theorem 5.1 in Huang et al. (2023).

Theorem H.1. Let G = (V,E,R,x, η) be a knowledge graph where x is a feature map and η is a
pairwise node coloring satisfying target node distinguishability. Given a query with q = (q, ũ, 2),
then we have:

1. For all HC-MPNNs restricted on tails prediction with L layers and initializations INIT with
INIT ≡ η, and 0 ≤ ℓ ≤ L , we have hcwl

(ℓ)
2 ⪯ h

(ℓ)
q

2. For all L ≥ 0 , there is an HC-MPNN restricted on tails prediction with L layers such that for
all 0 ≤ ℓ ≤ L , we have hcwl

(ℓ)
2 ≡ h

(ℓ)
q .

Proof. We first rewrite the HC-MPNN restricted on tails predictions in the following form. Given a
query q = (q, ũ, t), we know that since G is a knowledge graph, ũ only consists of a single node,
which we denote as u. In addition, since we only consider the case of tail prediction, then we always
have t = 2. With this restriction, we restate the HC-MPNN restricted on tails prediction on the
knowledge graph as follows:

h
(0)
v|q = INIT(v, q),

h
(ℓ+1)
v|q = UP

(
h
(ℓ)
v|q,AGG

(
h
(ℓ)
v|q, {{MSGρ(e)({(h

(ℓ)
w|q, j) | (w, j) ∈ Ni(e)}), | (e, i) ∈ E(v)}}

))
Now, we follow a similar idea in the proof of C-MPNN for binary invariants (Huang et al., 2023). Let
G = (V,E,R, c, η) be a knowledge graph where η is a pairwise coloring. Construct the auxiliary
knowledge graph G2 = (V × V,E′, R, cη) where E′ = {r((u,w), (u, v)) | r(w, v) ∈ E, r ∈ R}
and cη is the node coloring cη((u, v)) = η(u, v). Similar to Theorem 5.1, If A is a HC-MPNN
and B is an HR-MPNN, we write h

(ℓ)
A,G(u, v) := h

(ℓ)
(q,(u),2)(v) and h

(ℓ)
B,G2((u, v)) := h(ℓ)((u, v))

for the features computed by A and B over G and G2, respectively. We sometimes write NG
r (e)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

and EG(v) to emphasize that the positional neighborhood within a hyperedge and set of hyperedges
including node v is taken over the knowledge graph G, respectively. Finally, we say that an initial
feature map y for G2 satisfies generalized target node distinguishability if y((u, u)) ̸= y((u, v))
for all u ̸= v. Note here that the generalized target node distinguishability naturally reduced to
target node distinguishability proposed in Huang et al. (2023) since ũ is a singleton. Thus, we have
the following equivalence between HR-MPNN and HC-MPNN restricted on tail prediction on the
knowledge graph.

Proposition H.2. Let G = (V,E,R,x, η) be a knowledge graph where x is a feature map, and η
is a pairwise coloring. Let q ∈ R, then:

1. For every HC-MPNN A with L layers, there is an initial feature map y forG2 an HR-MPNN B
with L layers such that for all 0 ≤ ℓ ≤ L and u, v ∈ V , we have h

(ℓ)
A,G(u, v) = h

(ℓ)
B,G2((u, v)).

2. For every initial feature map y for G2 satisfying generalized target node distinguishability and
every HR-MPNN B with L layers, there is a HC-MPNN A with L layers such that for all
0 ≤ ℓ ≤ L and u, v ∈ V , we have h

(ℓ)
A,G(u, v) = h

(ℓ)
B,G2((u, v)).

Proof. We proceed to show item (1) first. Consider the HR-MPNN B with the same relational-
specific message MSGr, aggregation AGG, and update functions UP as A for all the L layers. The
initial feature map y is defined as y((u, v)) = INIT(v, (q, (u), 2)), where INIT is the initialization
function of A. Then, by induction on number of layer ℓ, we have that for the base case ℓ = 0,
h
(0)
A (u, v) = INIT(v, (q, (u), 2)) = y((u, v)) = h

(0)
B ((u, v)). For the inductive case, assume

h
(ℓ)
A (u, v) = h

(ℓ)
B ((u, v)), then

h
(ℓ+1)
A (u, v) = UP

(
h
(ℓ)
A (u, v),AGG

(
h
(ℓ)
A (u, v),

{{MSGρ(e)

(
{(h(ℓ)

A (u,w), j) | (w, j) ∈ NG
i (e)}

)
| (e, i) ∈ EG(v)}}

))
= UP

(
h
(ℓ)
B ((u, v)),AGG

(
h
(ℓ)
B ((u, v)),

{{MSGρ(e)

(
{(h(ℓ)

B ((u,w)), j) |(w, j) ∈ NG2

i (e)}
)
|(e, i) ∈ EG2

(v)}}
))

= h
(ℓ+1)
B ((u, v)).

To show item (2), we consider A with the same relational-specific message MSGr, aggregation AGG,
and update functions UP as B for all the L layers. We also take initialization function INIT such that
INIT(v, (q, (u), 2)) = y((u, v)). Then, we can follow the same argument for the equivalence as
item (1).

We then show the equivalence in terms of the relational WL algorithms:

Proposition H.3. LetG = (V,E,R, c, η) be a knowledge graph where η is a pairwise coloring. For
all ℓ ≥ 0 and u, v ∈ V , we have that hcwl(ℓ)2 (u, v) computed over G coincides with hrwl

(ℓ)
1 ((u, v))

computed over G2 = (V × V,E′, R, cη).

Proof. For ℓ = 0, we have hcwl
(0)
2 (G, u, v) = η(u, v) = cη((u, v)) = hrwl

(0)
1 (G2, (u, v)). For the

inductive case, we have that

hcwl
(ℓ+1)
2 (G, u, v) = τ

(
hcwl

(ℓ)
2 (G, u, v),

{{
(
{(hcwl(ℓ)2 (G, u,w), j) | (w, j) ∈ NG

i (e)}, ρ(e)
)
| (e, i) ∈ EG(v)}}

)
= τ

(
hrwl

(ℓ)
1 (G2, (u, v)),

{{
(
{(hrwl(ℓ)1 (G2, (u,w)), j) | (w, j) ∈ NG2

i (e)}, ρ(e)
)
| (e, i) ∈ EG2

(v)}}
)

= hrwl
(ℓ+1)
1 (G2, (u, v)).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Now we are ready to show the proof for Theorem H.1. For G = (V,E,R,x, η), we consider
G2 = (V × V,E′, R, cη). We start with item (1). Let A be a HC-MPNN with L layers and
initialization INIT satisfying INIT ≡ η and let 0 ≤ ℓ ≤ L. Let y be an initial feature map for G2

and B be an HR-MPNN with L layers in Proposition H.2, item (1). For the initialization we have
y ≡ cη since y((u, v)) = INIT(v, (q, (u), 2)). Thus, we can proceed and apply Theorem 4.1, item
(1) to G2, y, and B and show that hrwl(ℓ)1 ⪯ h

(ℓ)
B,G2 , which in turns shows that hcwl(ℓ)2 ⪯ h

(ℓ)
A,G.

We then proceed to show item (2). Let L ≥ 0 be an integer representing a total number of layers.
We apply Theorem 4.1, item (2) to G2 and obtain an initial feature map y with y ≡ cη and an
HR-MPNN B with L layer such that hrwl(ℓ)1 ≡ h

(ℓ)
B,G2 for all 0 ≤ ℓ ≤ L. We stress again that y

and η both satisfied generalized target node distinguishability. Now, let A be the HC-MPNN from
Proposition H.2, item (2). We finally have that hcwl(ℓ)2 ≡ h

(ℓ)
A,G as required. Note that the item (2)

again holds for HCNet.

We are ready to prove the claim that HC-MPNN is more powerful than C-MPNN by showing the
strict containment of their corresponding relational WL test, that is, hcwl2 and rawl2. In particular,
we show that the defined hcwl2 is equivalent to rawl+2 defined in Huang et al. (2023), via Theo-
rem H.4. Then, by Proposition A.17 in Huang et al. (2023), we have that rawl+2 ≺ rawl2.

The intuition of Theorem H.4 is that for each updating step, hcwl2 aggregates over all the neighbor-
ing edges, which contain both incoming edges and outgoing edges. In addition, hcwl2 can differ-
entiate between them via the position of the entities in the edge. This is equivalent to aggregating
incoming relation and outgoing inversed-relation in rawl+2 .

Theorem H.4. For all knowledge graph G = (V,E,R, c), let hcwl(0)2 (G) ≡ rawl+2
(0)

(G), then

hcwl
(ℓ)
2 (G) ≡ rawl+2

(ℓ)
(G) for all ℓ ≥ 0.

Proof. First we restate the definition of hcwl2(G) and rawl+2 (G) for convenience. Given that the
query is always a tail query, i.e., k = 2, and given a knowledge graph G = (V,E,R, c), we have
that the updating formula for hcwl2(G) is

hcwl
(ℓ+1)
2 (G, (u, v)) = τ(hcwl

(ℓ)
2 (G, (u, v)),

{{({(hcwl(ℓ)2 (G, (u,w)), j) | (w, j) ∈ Ni(e)}, ρ(e)) | (e, i) ∈ E(v)}})

= τ(hcwl
(ℓ)
2 (G, (u, v)),

{{(hcwl(ℓ)2 (G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v)}})

Note here that the second equation comes from the fact that the maximum arity is always 2. Then,
recall the definition of rawl2. Given a knowledge graph G = (V,E,R, c, η), where η is a pairwise
coloring only, we have

rawl
(ℓ+1)
2 (G, (u, v)) = τ

(
rawl

(ℓ)
2 (G, (u, v)), {{(rawl(ℓ)2 (G, (u,w)), r) | w ∈ Nr(v), r ∈ R)}}

)
where Nr(v) is the relational neighborhood with respect to relation r ∈ R, i.e., w ∈ Nr(v) if and
only if r(v, w) ∈ E. Equivalently, we can rewrite rawl2 in the following form:

rawl
(ℓ+1)
2 (G, (u, v)) = τ

(
rawl

(ℓ)
2 (G, (u, v)),

{{(rawl(ℓ)2 (G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}}
)

since we only want to obtain the nodew as the tails entities in an edge, and thus the second argument
of the (only) element in Ni(e) will always be 2.

For a test T, we sometimes write T(G,u), or T(G, u, v) in case of binary tests, to emphasize
that the test is applied over G, and T(G) for the pairwise/k-ary coloring given by the test. Let

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

G = (V,E,R, c, η) be a knowledge graph. The, note that G+ = (V,E+, R+) is the augmented
knowledge graph where R+ is the disjoint union of R and {r− | r ∈ R}, and

E− = {r−(v, u) | r(u, v) ∈ E, u ̸= v}

E+ = E ∪ E−

We can then define

E(v) = {(e, i) | e(i) = v, e ∈ E}
E+(v) =

{
(e, i) | e(i) = v, e ∈ E+

}
E−(v) =

{
(e, i) | e(i) = v, e ∈ E−} .

Finally, recall the definition of rawl+2 (G, u, v) = rawl2(G
+, u, v). We can write this in the equivalent

form:

rawl+2
(ℓ+1)

(G, (u, v)) = τ
(
rawl+2

(ℓ)
(G, (u, v)),

{{(rawl+2
(ℓ)

(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E+(v), i = 1}}
)

= τ
(
rawl+2

(ℓ)
(G, (u, v)),

{{(rawl+2
(ℓ)

(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}}

∪ {{(rawl+2
(ℓ)

(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E−(v), i = 1}}
)

Now we are ready to show the proof. First we show that hcwl(ℓ)2 (G) ≡ rawl+2
(ℓ)

(G). We prove by
induction the number of layers ℓ by showing that for some u, v ∈ V and for some ℓ,

hcwl
(ℓ+1)
2 (G, (u, v)) = hcwl

(ℓ+1)
2 (G, (u′, v′)) ≡ rawl+2

(ℓ)
(G, (u, v)) = rawl+2

(ℓ)
(G, (u′, v′))

By assumption, we know the base case holds. Assume that hcwl(ℓ)2 (G) ≡ rawl+2
(ℓ)

(G) for some
ℓ ≥ 0, for a pair of node-pair (u, v), (u′, v′) ∈ V 2, Given that

hcwl
(ℓ+1)
2 (G, (u, v)) = hcwl

(ℓ+1)
2 (G, (u′, v′))

By definition, we have that

τ(hcwl
(ℓ)
2 (G, (u, v)), {{(hcwl(ℓ)2 (G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v)}}) =

τ(hcwl
(ℓ)
2 (G, (u′, v′)), {{(hcwl(ℓ)2 (G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e

′), (e′, i) ∈ E(v′)}})

Conditioning on i ∈ {1, 2}, we can further decompose the set.

τ(hcwl
(ℓ)
2 (G, (u, v)),{{(hcwl(ℓ)2 (G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}},

∪ {{(hcwl(ℓ)2 (G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 2}}) =

τ(hcwl
(ℓ)
2 (G, (u′, v′)),{{(hcwl(ℓ)2 (G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e

′), (e′, i) ∈ E(v′), i = 1}},

∪ {{(hcwl(ℓ)2 (G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e
′), (e′, i) ∈ E(v′), i = 2}})

Assume τ is injective, the three arguments in τ must match, i.e., hcwl
(ℓ)
2 (G, (u, v)) =

hcwl
(ℓ)
2 (G, (u′, v′)), and

{{(hcwl(ℓ)2 (G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}} =

{{(hcwl(ℓ)2 (G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e
′), (e′, i) ∈ E(v′), i = 1}}

We also have

{{(hcwl(ℓ)2 (G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 2}} =

{{(hcwl(ℓ)2 (G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e
′), (e′, i) ∈ E(v′), i = 2}}

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

By inductive hypothesis, we have that rawl+2
(ℓ)

(G, (u, v)) = rawl+2
(ℓ)

(G, (u′, v′)). Thus, we have
that

{{(rawl+2
(ℓ)

(G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}} =

{{(rawl+2
(ℓ)

(G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e
′), (e′, i) ∈ E(v′), i = 1}}

and also

{{(rawl+2
(ℓ)

(G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 2}} =

{{(rawl+2
(ℓ)

(G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e
′), (e′, i) ∈ E(v′), i = 2}}

First, for the first equation, we notice that

{{(rawl+2
(ℓ)

(G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}} =

{{(rawl+2
(ℓ)

(G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e
′), (e′, i) ∈ E(v′), i = 1}}

if and only if

{{(rawl+2
(ℓ)

(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}} =

{{(rawl+2
(ℓ)

(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e
′), (e′, i) ∈ E(v′), i = 1}}

since the filtered set of pair (w, j) are the same, and the (rawl+2
(ℓ)

(G, (u,w)), ρ(e))

and (rawl+2
(ℓ)

(G, (u′, w)), ρ(e′)) matches if and only if (rawl+2
(ℓ)

(G, (u,w)), 2, ρ(e)) and

(rawl+2
(ℓ)

(G, (u′, w)), 2, ρ(e′)) matches. This is because we simply augment an additional position
indicator 2 in the tuple as we fixed i = 1, which does not break the equivalence of the statements.

Then, for the second equation, we note that

{{(rawl+2
(ℓ)

(G, (u,w)), j, ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 2}} =

{{(rawl+2
(ℓ)

(G, (u′, w)), j, ρ(e′)) | (w, j) ∈ Ni(e
′), (e′, i) ∈ E(v′), i = 2}}

if and only if

{{(rawl+2
(ℓ)

(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E−(v), i = 1}} =

{{(rawl+2
(ℓ)

(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e
′), (e′, i) ∈ E−(v′), i = 1}}

since this time the filtered set of pair (w, j) also matches, but for the inverse relation. For any
edge e ∈ E(v) where (w, 1) ∈ Ne(v), the edge will be in form ρ(e)(w, v) as w is placed in the
first position. Thus, there will be a corresponding reversed edge ρ(e)−1(v, w) ∈ E− by definition.
Then, by the same argument as in the second equation above, adding such an additional position
indicator 1 on every tuple will not break the equivalence of the statement.

An important observation is that since the inverse relations are freshly created, we will never mix up
these inverse edges in both tests. For rawl+2 , we can distinguish these edges by checking the freshly
created relation symbols r−1 ∈ R+\R, whereas in hcwl2, the neighboring nodes from these edges
are identified with the position indicator 1 in the tuple.

Thus, we have that

{{(rawl+2
(ℓ)

(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}} =

{{(rawl+2
(ℓ)

(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e
′), (e′, i) ∈ E(v′), i = 1}}

and also

{{(rawl+2
(ℓ)

(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E−(v), i = 1}}
)
=

{{(rawl+2
(ℓ)

(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e
′), (e′, i) ∈ E−(v′), i = 1}}

)
31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Since τ is injective, this is equivalent to

τ
(
rawl+2

(ℓ)
(G, (u, v)),{{(rawl+2

(ℓ)
(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E(v), i = 1}}

∪ {{(rawl+2
(ℓ)

(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E−(v), i = 1}}
)
=

τ
(
rawl+2

(ℓ)
(G, (u′, v′)),{{(rawl+2

(ℓ)
(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e

′), (e′, i) ∈ E(v′), i = 1}}

∪ {{(rawl+2
(ℓ)

(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e
′), (e′, i) ∈ E−(v′), i = 1}}

)
and thus, we have

τ
(
rawl+2

(ℓ)
(G, (u, v)),{{(rawl+2

(ℓ)
(G, (u,w)), ρ(e)) | (w, j) ∈ Ni(e), (e, i) ∈ E+(v), i = 1}}

)
=

τ
(
rawl+2

(ℓ)
(G, (u′, v′)),{{(rawl+2

(ℓ)
(G, (u′, w)), ρ(e′)) | (w, j) ∈ Ni(e

′), (e′, i) ∈ E+(v′), i = 1}}
)

and finally

rawl+2
(ℓ+1)

(G, (u, v)) = rawl+2
(ℓ+1)

(G, (u′, v′))

Note that since all arguments apply for both directions, the converse holds.

Remark H.5. We remark that the idea of HC-MPNNs restricted to tail predictions can be extended
to arbitrary relational hypergraphs in order to compute k-ary invariants for any k. See Appendix I
for a discussion.

I COMPUTING k-ARY INVARIANTS

In this section, we present a canonical way to construct a valid k-ary invariants. We start by intro-
ducing a construction of a valid k-ary invariants termed as atomic types, following the convention
by Grohe (2021).

I.1 ATOMIC TYPES

Given a relational hypergraph G = (V,E,R, c) with l labels and a tuple u = (u1, ..., uk) ∈ V k,
where k > 1, we define the atomic type of u in G as a vector:

atpk(G)(u) ∈ {0, 1}lk+(
k
2)+m2+|R|km

,

where l is the number of colors and m is the arity of the relation with maximum arity. We use the
first lk bits to represent the color of the k nodes in u, another

(
k
2

)
bits to indicate whether node ui

is identical to uj . We then represent the order of these nodes using m2 bits and finally represent the
relation with additional |R|km bits.

Atomic types are k-ary relational hypergraph invariants as they satisfy the property that
atpk(G)(u) = atpk(G

′)(u′) if and only if the mapping u1 7→ u′1, . . ., uk 7→ u′k is an isomor-
phism from the induced subgraph G[{u1, · · · , uk}] to G′[{u′1, · · · , u′k}].

I.2 RELATIONAL HYPERGRAPH CONDITIONED LOCAL k-WL TEST

Now we are ready to show the k-ary invariants. Similarly to hcwl2, we can restrict HC-MPNN to
only carry out a tail prediction with relational hypergraphs to make sure it directly computes k-ary
invariants. Here, we introduce Relational hypergraph conditioned local k-WL test, dubbed hcwlk,
which naturally generalized hcwl2 to relational hypergraph. Given ũ ∈ V k−1 and a relational
hypergraph G = (V,E,R, c, ζ) where ζ : V k 7→ D is a k-ary coloring that satisfied generalized
target node distinguishability, i.e.,

ζ(ũ, u) ̸= ζ(ũ, v) ∀u ∈ ũ, v /∈ ũ,

ζ(ũ, ui) ̸= ζ(ũ, uj) ∀ui, uj ∈ ũ, ui ̸= uj .

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

hcwlk updates k-ary coloring ζ for ℓ ≥ 0:

hcwl
(0)
k = ζ(ũ, v)

hcwl
(ℓ+1)
k (ũ, v) = τ

(
hcwl

(ℓ)
k (ũ, v), {{

(
{(hcwl(ℓ)k (ũ, w), j) |(w, j) ∈ Ni(e)}, ρ(e)

)
|(e, i)∈E(v)}}

)
Again, we notice that hcwl(ℓ)k computes a valid k-ary invariants. We can also show that HC-MPNN
restricted on tails prediction, i.e., for each query q = (q, ũ, j) where j = k, is characterized by
hcwlk.

Theorem I.1. Let G = (V,E,R,x, ζ) be a relational hypergraphs where x is a feature map and ζ
is a k-ary node coloring satisfying generalized target nodes distinguishability. Given a query with
q = (q, ũ, k), then we have that:

1. For all HC-MPNNs restricted on tails prediction with L layers and initializations INIT with
INIT ≡ η, and 0 ≤ ℓ ≤ L , we have hcwl

(ℓ)
k ⪯ h

(ℓ)
q

2. For all L ≥ 0 , there is an HC-MPNN restricted on tails prediction with L layers such that for
all 0 ≤ ℓ ≤ L , we have hcwl

(ℓ)
k ≡ h

(ℓ)
q .

Proof. The proof is very similar to that in Theorem H.1. Note that we sometimes write a
k-ary tuple v = (u1, · · · , uk) ∈ V k by (u, uk) where u = (u1, · · · , uk−1) with a slight
abuse of notation. We build an auxiliary relational hypergraph Gk = (V k, E′, R, cζ) where
E′ = {r((ũ, v1), · · · , (ũ, vm)) | r(v1, · · · , vm) ∈ E, r ∈ R}, and cζ is a node coloring
cζ((ũ, v)) = ζ(ũ, v). If A is a HC-MPNN and B is an HR-MPNN, we write h(ℓ)

A,G(ũ, v) := h
(ℓ)
q (v)

and h
(ℓ)

B,Gk((ũ, v)) := h(ℓ)((ũ, v)) for the features computed by A and B over G and Gk, respec-
tively. Again, we write NG

r (e) and E(v)G to emphasize that the positional neighborhood, as well as
the hyperedges containing node v, is taken over the relational hypergraph G, respectively. Finally,
we say that an initial feature map y for Gk satisfies generalized target node distinguishability if

y((ũ, u)) ̸= y((ũ, v)) ∀u ∈ ũ, v /∈ ũ,

y((ũ, ui)) ̸= y((ũ, uj)) ∀ui, uj ∈ ũ, ui ̸= uj .

As a result, we have the following equivalence between HR-MPNN and HC-MPNN restricted on
tail prediction with the relational hypergraph.

Proposition I.2. Let G = (V,E,R,x, ζ) be a knowledge graph where x is a feature map, and ζ is
a k-ary nodes coloring. Let q ∈ R, then:

1. For every HC-MPNN A with L layers, there is an initial feature map y forGk an HR-MPNN B
with L layers such that for all 0 ≤ ℓ ≤ L and u, v ∈ V , we have h(ℓ)

A,G(ũ, v) = h
(ℓ)
B,G2((ũ, v)).

2. For every initial feature map y for Gk satisfying generalized target node distinguishability and
every HR-MPNN B with L layers, there is a HC-MPNN A with L layers such that for all
0 ≤ ℓ ≤ L and (ṽu, v) ∈ V k, we have h

(ℓ)
A,G(ũ, v) = h

(ℓ)

B,Gk((ũ, v)).

Proof. We first show item (1). Consider the HR-MPNN B with the same relational-specific message
MSGr, aggregation AGG, and update functions UP as A for all the L layers. The initial feature map
y is defined as y((ũ, v)) = INIT(v, q), where INIT is the initialization function of A. Then, by
induction on number of layer ℓ, we have that for the base case ℓ = 0, h(0)

A (ũ, v) = INIT(v, q) =

y((ũ, v)) = h
(0)
B ((ũ, v)).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

For the inductive case, assume h
(ℓ)
A (ũ, v) = h

(ℓ)
B ((ũ, v)), then

h
(ℓ+1)
A (ũ, v) = UP

(
h
(ℓ)
A (ũ, v),AGG

(
h
(ℓ)
A (ũ, v),

{{MSGρ(e)

(
{(h(ℓ)

A (ũ, w), j) | (w, j) ∈ NG
i (e)}

)
| (e, i) ∈ EG(v)}}

))
= UP

(
h
(ℓ)
B ((ũ, v)),AGG

(
h
(ℓ)
B ((ũ, v)),

{{MSGρ(e)

(
{(h(ℓ)

B ((ũ, w)), j) |(w, j) ∈ NGk

i (e)}
)
|(e, i) ∈ EGk

(v)}}
))

= h
(ℓ+1)
B ((ũ, v)).

To show item (2), we consider A with the same relational-specific message MSGr, aggregation
AGG, and update functions UP as B for all the L layers. We also take initialization function INIT
such that INIT(v, q) = y((ũ, v)). Then, we can follow the same argument for the equivalence as
item (1).

Similarly, we can show the equivalence in terms of the relational WL algorithms with hcwlk:

Proposition I.3. Let G = (V,E,R, c, ζ) be a relational hypergraph where ζ is a k-ary node col-
oring. For all ℓ ≥ 0 and (ũ, v) ∈ V k, we have that hcwl(ℓ)k (ũ, v) computed over G coincides with
hrwl

(ℓ)
1 ((ũ, v)) computed over Gk = (V k, E′, R, cζ).

Proof. For ℓ = 0, we have hcwl
(0)
k (G, ũ, v) = ζ(ũ, v) = cζ((ũ, v)) = hrwl

(0)
1 (Gk, (ũ, v)).

For the inductive case, we have that

hcwl
(ℓ+1)
k (G, ũ, v) = τ

(
hcwl

(ℓ)
k (G, ũ, v),

{{
(
{(hcwl(ℓ)2 (G, ũ, w), j) | (w, j) ∈ NG

i (e)}, ρ(e)
)
| (e, i) ∈ EG(v)}}

)
= τ

(
hrwl

(ℓ)
1 (Gk, (ũ, v)),

{{
(
{(hrwl(ℓ)1 (Gk, (ũ, w)), j) |(w, j) ∈ NGk

i (e)}, ρ(e)
)
|(e, i) ∈ EGk

(v)}}
)

= hrwl
(ℓ+1)
1 (Gk, (ũ, v)).

Now we are ready to show the proof for Theorem I.1. For a relational hypergraph G =
(V,E,R,x, ζ), we consider Gk = (V k, E′, R, cζ) as defined earlier. We start with item (1). Let A
be a HC-MPNN with L layers and initialization INIT satisfying INIT ≡ ζ and let 0 ≤ ℓ ≤ L. Let
y be an initial feature map for Gk and B be an HR-MPNN with L layers in Proposition I.2, item
(1). For the initialization we have y ≡ cζ since y((ũ, v)) = INIT(v, q). Thus, we can proceed and
apply Theorem 4.1, item (1) to Gk, y, and B and show that hrwl(ℓ)1 ⪯ h

(ℓ)

B,Gk , which in turns shows

that hcwl(ℓ)k ⪯ h
(ℓ)
A,G.

We then proceed to show item (2). Let L ≥ 0 be an integer representing a total number of layers.
We apply Theorem 4.1, item (2) to Gk and obtain an initial feature map y with y ≡ cζ and an
HR-MPNN B with L layer such that hrwl(ℓ)1 ≡ h

(ℓ)

B,Gk for all 0 ≤ ℓ ≤ L. We stress again that y
and ζ both satisfy generalized target node distinguishability. Now, let A be the HC-MPNN from
Proposition I.2, item (2). Thus, hcwl(ℓ)k ≡ h

(ℓ)
A,G as required. Again, we note that the item (2)

holds for HCNet.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 5: Model asymptotic runtime complexities.

Model Complexity of a forward pass Amortized complexity of a query

HR-MPNNs O(L(m|E|d+ |V |d2)) O(L(m|E|d
|R||V |2 + d2

|R||V | + d))

HC-MPNNs O(L(m|E|d+ |V |d2)) O(L(m|E|d
|V | + d2))

J COMPLEXITY ANALYSIS

In this section, we discuss the asymptotic time complexity of HR-MPNN and HC-MPNN. For
HC-MPNN, we consider the model instance of HCNet with g(ℓ)r being a query-independent diagonal
linear map. For HR-MPNN, we consider the model instance with the same updating function UP
and relation-specific message function MSGr as the considered HCNet model instance, referred to
as HRNet:

h(0)
v = 1d

h(ℓ+1)
v = σ

(
W (ℓ)

[
h(ℓ)
v

∥∥∥ ∑
(e,i)∈E(v)

(
⊙j ̸=i (α

(ℓ)h
(ℓ)
e(j)+ (1− α(ℓ))pj)⊙w(ℓ)

r

)]
+ b(ℓ)

)
.

Notation. Given a relational hypergraph G = (V,E,R, c), we denote |V |, |E|, |R| to be the size of
vertices, edges, and relation types. d is the hidden dimension and m is the maximum arity of the
edges. Additionally, we denote L to be the total number of layers, and k to be the arity of the query
relation q ∈ R in the query q = (q, ũ, t).

Analysis. Given a query q = (q, ũ, t), the runtime complexity of a single forward pass of HCNet is
O(L(m|E|d + |V |d2)) since for each message, we need O(d) for the relation-specific transforma-
tion, and we havem|E| total amount of message in each layer. During the updating function, we ad-
ditionally need a linear transformation for each aggregated message as well as a self-transformation,
which costs O(d2) for each node. Adding them up, we have O(m|E|d+ |V |d2) cost for each layer,
and thus O(L(m|E|d+ |V |d2)) in total.

Note that this is the same as the complexity of HRNet since the only differences lie in initialization
methods, which is O(|V |d) cost for HCNet. In terms of computing a single query, the amortized
complexity of HCNet is O(L(m|E|d

|V | + d2)) since in each forward pass, |V | number of queries are
computed at the same time. In contrast, HRNet computes |V |k query as once it has representations
for all nodes in the relational hypergraph, it can compute all possible hyperedges by permuting the
nodes and feeding them into the k-ary decoder. We summarize the complexity analysis in Table 5.

K EXPERIMENTS ON INDUCTIVE LINK PREDICTION WITH KNOWLEDGE
GRAPHS

We carry out additional inductive experiments on knowledge graphs where each edge has its arity
fixed to 2 and compare the results against the current state-of-the-art models.

Setup. We evaluate HCNet on 4 standard inductive splits of WN18RR (Bordes et al., 2013) and
FB15k-237 (Dettmers et al., 2018), which was proposed in Teru et al. (2020). We provide the details
of the datasets in Table 7. Contrary to the standard experiment setting (Zhu et al., 2021; 2023) on
knowledge graph G = (V,E,R,x) where for each relation r(u, v) ∈ E, an inverse-relation r−1 is
introduced as a fresh relation symbol and r−1(v, u) is added in the knowledge graph, in our setup
we do not augment inverse edges for HCNet. This makes the task more challenging. We compare
HCNet with models designed only for inductive binary link prediction task with knowledge graphs,
namely GraIL (Teru et al., 2020), NeuralLP (Yang et al., 2017), DRUM (Sadeghian et al., 2019),
NBFNet (Zhu et al., 2021), RED-GNN (Zhang & Yao, 2022), and A*Net (Zhu et al., 2023), and we
take the results provided in Zhu et al. (2023) for comparison.

Implementation. We report the hyperparamter used in Table 8. For all models, we consider a
2-layer MLP as decoder and adopt layer-normalization with dropout in all layers before applying

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 6: Binary inductive experiment on knowledge graph for Hits@10 result. The best result is in
bold, and second/third best in underline.

Method FB15k-237 WN18RR
v1 v2 v3 v4 v1 v2 v3 v4

GraIL 0.429 0.424 0.424 0.389 0.760 0.776 0.409 0.687
NeuralLP 0.468 0.586 0.571 0.593 0.772 0.749 0.476 0.706
DRUM 0.474 0.595 0.571 0.593 0.777 0.747 0.477 0.702
NBFNet 0.574 0.685 0.637 0.627 0.826 0.798 0.568 0.694
RED-GNN 0.483 0.629 0.603 0.621 0.799 0.780 0.524 0.721
A*Net 0.589 0.672 0.629 0.645 0.810 0.803 0.544 0.743
HCNet 0.566 0.646 0.614 0.610 0.822 0.790 0.536 0.724

Table 7: Dataset statistics for the inductive relation prediction experiments. #Query* is the number
of queries used in the validation set. In the training set, all triplets are used as queries.

Dataset #Relation Train & Validation Test
#Nodes #Triplet #Query* #Nodes #Triplet #Query

WN18RR

v1 9 2,746 5,410 630 922 1,618 188
v2 10 6,954 15,262 1,838 2,757 4,011 441
v3 11 12,078 25,901 3,097 5,084 6,327 605
v4 9 3,861 7,940 934 7,084 12,334 1,429

FB15k-237

v1 180 1,594 4,245 489 1,093 1,993 205
v2 200 2,608 9,739 1,166 1,660 4,145 478
v3 215 3,668 17,986 2,194 2,501 7,406 865
v4 219 4,707 27,203 3,352 3,051 11,714 1,424

ReLU activation and skip-connection. We also adopt the sinusoidal positional encoding as described
in the body of the paper. We discard all the edges in the training graph that are currently being treated
as positive triplets in each batch to prevent overfitting. We additionally pass in the considered query
representation zq to the decoder via concatenation to h

(L)
v|q . The best checkpoint for each model

is selected based on its performance on the validation sets, and all experiments are performed on
one NVIDIA A10 24GB GPU. For evaluation, we consider filtered ranking protocol (Bordes et al.,
2013) with 32 negative samples per positive triplet, and report Hits@10 for each model.

Results. We report the results in Table 6. We observe that HCNets are highly competitive even com-
pared with state-of-the-art models specifically designed for link prediction with knowledge graphs.
HCNets reach the top 3 for 7 out of 8 datasets, and obtain a very close result for the final dataset.
Note here that the top 2 models are NBFNet (Zhu et al., 2021) and A*Net (Zhu et al., 2023), which
share a similar idea of HCNet and are all based on conditional message passing. The difference in
results lies in the different message functions, which are further supported in Table 1 of Huang et al.
(2023).

However, we highlight that HCNet does not augment with inverse relation edges, as described in
the set-up of the experiment. HCNet can recognize the directionality of relational edges and pay
respect to both incoming and outgoing edges during message passing. No current link prediction
model based on message passing can explicitly take care of this without edge augmentation. In
fact, Theorem H.4 implies that all current models based on conditional message passing, including
NBFNets, need inverse relation augmentation to match the expressive power of HCNet. Theoreti-
cally speaking, this allows us to claim that HCNet is strictly more powerful than all other models
in the baseline that are based on conditional message passing, assuming all considered models are
expressive enough to match their corresponding relational Weisfeiler-Leman test.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 8: Hyperparameters for binary inductive experiments with HCNet.

Hyperparameter WN18RR FB15k-237

GNN Layer Depth(L) 6 6
Hidden Dimension 32 32

Decoder Layer Depth 2 2
Hidden Dimension 64 64

Optimization Optimizer Adam Adam
Learning Rate 5e-3 5e-3

Learning

Batch size 32 32
#Negative Samples 32 32
Epoch 30 30
#Batch Per Epoch − −
Adversarial Temperature 0.5 0.5
Dropout 0.2 0.2
Accumulation Iteration 1 1

r0

r0

Figure 5: An example relational hypergraph of dataset HyperCycle, where n = 8 and k = 3. We
colored r1 as blue and r2 as red. The goal is to predict the black edge as true but the gray edge as
false. We claim that no HR-MPNNs can correctly solve this task, but HCNets can.

L EXPERIMENTS ON HYPER-RELATIONAL KNOWLEDGE GRAPHS

Dataset & Baselines. We conduct experiments on hyper-relational knowledge graphs, namely pub-
licly available JF17K (Wen et al., 2016), while we note that there are some critical issues of this
dataset such as redundant entries1 and severe test leakages (Galkin et al., 2020), we still include this
as it is one of the most common hyper-relational knowledge graphs datasets in the literature. To
adapt HCNets and other methods only applicable on relational hypergraphs, we transformed JF17K
by the conversion described in Appendix B. For baselines, we have taken the experiment results from
r-SimplE, m-DistMult, m-CP, m-TransH from Fatemi et al. (2020), RAE from Zhang et al. (2018),
NaLP from Guan et al. (2019), tNaLP+ from Guan et al. (2021), HINGE from Rosso et al. (2020),
NeuInfer from Guan et al. (2020), RAM from Liu et al. (2021b), S2S from Di et al. (2021), and GNN
method RD-MPNN from Zhou et al. (2023), and StarE (Galkin et al., 2020). We report the statis-
tics of the datasets transformed into relational hypergraphs in Table 12, and the hyper-parameter in
Table 14.

1https://www.site.uottawa.ca/ yymao/JF17K/

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 9: Results of transductive link prediction experiments on JF17K.

JF17K
MRR Hits@1 Hits@10

r-SimplE 0.102 0.069 0.168
m-DistMult 0.463 0.372 0.634
m-CP 0.391 0.298 0.563
m-TransH 0.444 0.370 0.581
RAE 0.392 0.312 0.561
NaLP 0.310 0.239 0.450
tNaLP+ 0.449 0.370 0.598
HINGE 0.517 0.436 0.675
NeuInfer 0.451 0.373 0.604
SAS 0.528 0.457 0.690
RAM 0.539 0.463 0.690
G-MPNN 0.501 0.425 0.660
RD-MPNN 0.512 0.445 0.685
StarE 0.542 0.454 0.685

HCNet 0.540 0.440 0.730

Evaluation. We report the MRR, Hits@1 and Hits@10 for all considered model. However, we
highlight the differences in evaluation: in the evaluation of hyper-relational knowledge graphs, only
the head and tail entities in the main triplet are corrupted. In our setup, we follow the evaluation
convention of relational hypergraphs and corrupt all positions.

Results. The results of HCNet are better than existing baselines, including models designed for re-
lational hypergraphs and models designed for hyper-relational knowledge graphs. In particular, HC-
Net marginally outperforms StarE according to Hits@10. StarE is one of the state-of-the-art models
on link prediction with hyper-relational knowledge graphs, but StarE is a transductive method and
is inherently limited to transductive datasets, whereas HCNets do not have such limitations. In this
sense, HCNets also lift the capabilities of methods designed for hyper-relational knowledge graphs
to the inductive setup, which is substantially more challenging.

M SYNTHETIC EXPERIMENTS

We carry out a synthetic experiment with a custom-built dataset HyperCycle to showcase that
HC-MPNNs are more expressive than HR-MPNNs in the task of link prediction with relational
hypergraphs.

Dataset. We construct HyperCycle, a synthetic dataset that consists of multiple relational hyper-
graphs with relation R = {r0, r1, r2}. Each relational hypergraph G is parameterized by 2 hyperpa-
rameters: the number of nodes n which is always a multiple of 4, and the arity of each edge k. Given
such (n, k) pair, we generate the relational hypergraph G(n, k) = (V (n, k), E(n, k), R(n, k))
where

V (n, k) = {x1, · · · , xn}
E(n, k) = {r(i mod 2)+1(x(i+j) mod n | 0 ≤ j < k) | 1 ≤ i ≤ n}
R(n, k) = {r0, r1, r2}

In short, there is a directed hyper-edge of arity k with alternating relations between r1 and r2 for
all k consecutive nodes in this cycle. We present one example of such relational hypergraph in
Figure 5, where n = 8 and k = 3. We generate the dataset by choosing n = {8, 12, 16, 20} and
k = {3, 4, 5, 6, 7}. We then randomly pick 70% of the generated graphs as the training set and the
remaining 30% as the testing set.

Objective. The objective of this task is for each node to identify the node that is located at the
“opposite point” in the cycle of the given node as true. Formally speaking, for a relational hyper-
graph G(n, k), we want to predict a 2-ary (hyper-)edge of relation r0 between any node xi and its
“opposite point” x(i+n/2 mod n) for all 1 ≤ i ≤ n, i.e., classify r0(xi, x(i+n/2) mod n) as true. The

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

negative sample is generated by considering the r0 relation (hyper-)edges that connect the “2-hop”
neighboring node, i.e., classify r0(xi, x(i+2) mod n) as false. Note that since n ̸= 4, we will never
have (i+ n/2) mod n = (i+ 2) mod n.

Model architectures. We considered two model architectures, namely an HC-MPNN instance
HCNet:

h
(0)
v|q =

∑
i ̸=t

1v=ui
∗ (pi + zq)

h
(ℓ+1)
v|q = σ

(
W (ℓ)

[
h
(ℓ)
v|q

∥∥∥ ∑
(e,i)∈E(v)

(
⊙j ̸=i (α

(ℓ)h
(ℓ)
e(j)|q+ (1− α(ℓ))pj)⊙w(ℓ)

r

)]
+ b(ℓ)

)
.

and a corresponding HR-MPNNs instance called HRNet that shares the same update, aggregate,
and relation-specific message functions as in HCNet, defined as follow:

h(0)
v = 1d

h(ℓ+1)
v = σ

(
W (ℓ)

[
h(ℓ)
v

∥∥∥ ∑
(e,i)∈E(v)

(
⊙j ̸=i (α

(ℓ)h
(ℓ)
e(j)+ (1− α(ℓ))pj)⊙w(ℓ)

r

)]
+ b(ℓ)

)
.

Note that σ stands for the ReLU activation function in both models. We additionally use a binary
MLP decoder for HRNet, which takes the concatenation of the final representation for each entity in
the query, together with the learnable query vector zq to obtain the final probability.

Design. We claim that HCNet can correctly predict all the testing triplets, whereas HRNet fails to
learn this pattern and will only achieve 50% accuracy, which is no better than random guessing.
This is exactly due to the lack of expressiveness of HR-MPNNs by relying on a k-ary decoder for
link prediction. Theoretically, all nodes of the relational hypergraphs in HyperCycle, due to their
rotational symmetry introduced by alternating relation types r1, r2, can be partitioned into two sets.
Since the nodes within each set are isomorphic to each other, it is impossible for any HR-MPNNs
to distinguish between these nodes by only computing its unary invariant. Thus HR-MPNNs cannot
possibly solve this task, as whenever they classify the target “opposite point” node to be true, they
also have to classify the “2-hop” node to be true, and vice versa.

However, HCNet can bridge this gap by introducing the relevant notion of “distance”. As HCNet
carries out message-passing after identifying the source node, the relative distance between the
source node and the target “opposite point” node will be different than the one with the “2-hop”
node. Thus, by keeping track of the distance from the source node, HCNet will compute a different
embedding for the positive triplet and the negative triplet, effectively solving this task.

Experimental details. For both models, we use 7 layers, each with 32 hidden dimensions. We
configure the learning rate to be 1e-3 for both models and train them for 100 epochs. Empirically,
we observe that HCNet easily reaches 100% accuracy, solving this task completely, whereas HRNet
always fails to learn anything meaningful, reaching an accuracy of 50%. The experiment results are
consistent with our theory.

N SCALABILITY AND CUSTOM TRITON KERNEL

Scalability is generally a concern for inductive link prediction since link prediction between a given
pair of nodes relies heavily on the structural properties of these nodes (due to the lack of node fea-
tures) which necessitates strong encoders that go beyond the power of 1-WL. This is more dramatic
for relational hypergraphs since the prediction now relies on the structural properties of k nodes and
any model will suffer from scalability issues if k becomes large. With that being said, our approach
remains feasible for the benchmark datasets, but we think it is important for future work to scale
up these models for larger datasets, much like it has been done for classical GNNs (Hamilton et al.,
2017; Zhu et al., 2023).

To resolve this empirically, we have included custom implementation via Triton kernel 2 in our code-
base to account for the message passing process on relational hypergraphs, which on average halved
the training times and dramatically reduced the space usage of the algorithm (5 times reduction on

2https://github.com/triton-lang/triton

39

https://anonymous.4open.science/r/HCNet
https://anonymous.4open.science/r/HCNet

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Table 10: Average degree of relational hypergraphs in the experiments.

WP-IND JF-IND MFB-IND FB-AUTO WikiPeople
Average degree 1.03 1.36 104.5 2.16 6.06

average). The idea is to not materialize all the messages explicitly as in PyTorch geometric (Fey
& Lenssen, 2019), but directly write the neighboring features into the corresponding memory ad-
dresses. Compared with materializing all hyperedge messages which takes O(k|E|) where k is the
maximum arity, computing with Triton kernel only is O(|V |) in memory. This will enable fast and
scalable message passing on relational hypergraphs, both on HR-MPNNs and HC-MPNNs.

O ON ADDING NODE FEATURES

On the surface, it seems that HC-MPNNs does not directly take node features into account. This
is because in the task of link prediction on relational hypergraphs, no node features are explicitly
provided to begin with, and thus we did not assume the presence of node features in this partic-
ular task setting. However, it is relatively straightforward to account for node features by simply
concatenating the node feature xv on top of the current representation hv to obtain h∗

v = [hv∥xv].
Indeed, the only requirement for HC-MPNNs in the initialization is to satisfy generalized target node
distinguishability, and thus concatenating node features will preserve this property. As a result, all
theoretical results can be directly applied to HC-MPNNs with node features. It is worth noting that
this concatenating technique has already been applied in Zhang et al. (2021) on knowledge graphs
with node features and has proven to be successful. Additionally, this technique is also mentioned in
Galkin et al. (2024) for link prediction with knowledge graphs using conditional message passing.

P IMPACT ON THE DENSITY OF THE RELATIONAL HYPERGRAPHS

To further analyze the impact on the structure and density, we present the average degree of (train-
ing) datasets in Table 10. Observe that even though MFB-IND is a very dense hypergraph, HCNets
can still manage to double the metrics compared to existing models. Furthermore, we highlight the
performance of HCNets in sparse hypergraph settings, which are more representative of many real-
world scenarios. Remarkably, HCNets maintain competitive performance even under these chal-
lenging conditions, underscoring their adaptability and effectiveness across a wide range of graph
density regimes. These findings highlight the versatility of HCNets in handling diverse hypergraph
structures.

Q FURTHER EXPERIMENT DETAILS

We report the details of the experiment carried out in the body of the paper in this section. In
particular, we report the dataset statistics of the inductive link prediction task in Table 11 and of the
transductive link prediction task in Table 12. We also report the hyperparameter used for HCNet
in the inductive link prediction task at Table 13 and transductive link prediction task at Table 14,
respectively.

In addition, we report additionally the standard deviation for the main experiments in Table 15 and
Table 18 along with extra baseline results on FB-AUTO, namely, r-SimplE, m-DistMult, m-CP, m-
TransH, HSimplE from Fatemi et al. (2020) and GETD from Liu et al. (2020). We also show the
complete tables for the ablation study mentioned in Table 16 and Table 17, the detailed definitions
of initialization and positional encoding considered in Table 19 and Table 20, respectively.

Finally, we report the execution time and GPU usages for 1 epochs of HCNets on all datasets con-
sidered in the paper with corresponding hyperparameters in Table 21. See further discussion of
scalability in Appendix N. For the RD-MPNNs training, we consider a learning rate of 0.1, a dimen-
sion of 200, and 10 negative samples for training on all inductive datasets. In the experiments, all

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 11: Dataset statistics of inductive link prediction task with relational hypergraph.

Dataset # seen
vertices

train hy-
peredges

unseen
vertices

relations # features # max
arity

WP-IND 4,363 4,139 100 32 37 4
JF-IND 4,685 6,167 100 31 46 4
MFB-IND 3,283 336,733 500 12 25 3

relational hypergraphs do not contain node features. We present a detailed discussion and strategy
in Appendix O for HC-MPNNs to be applied on relational hypergraphs with node features.

We adopt the partial completeness assumption (Galárraga et al., 2013) on relational hypergraphs,
where we randomly corrupt the t-th position of a k-ary fact q(u1, · · · , uk) each time for 1 ≤ t ≤ k.
HCNets minimize the negative log-likelihood of the positive fact presented in the training graph,
and the negative facts due to corruption. We represent query q = (q, ũ, t) as the fact q(u1, · · · , uk)
given corrupting t-th position, and represent its conditional probability as p(v|q) = σ(f(h

(L)
v|q)),

where v ∈ V is the considered entity in the t-th position, L is the total number of layer, σ is the
sigmoid function, and f is a 2-layer MLP. We then adopt self-adversarial negative sampling (Sun
et al., 2019) by sampling negative triples from the following distribution:

L(v | q) = − log p(v | q)−
n∑

i=1

wi,α log(1− p(v′i | q))

where α is the adversarial temperature as part of the hyperparameter, n is the number of negative
samples for the positive sample and v′i is the i-th corrupted vertex of the negative sample. Finally,
wi is the weight for the i-th negative sample, given by

wi,α := Softmax

(
log(1− p(v′i | q))

α

)
.

Table 12: Dataset statistics of transductive link prediction task with relational hypergraph on FB-
AUTO and WikiPeople with respective arity.

Dataset FB-AUTO WikiPeople JF17K

|V | 3,410 47,765 29,177
|R| 8 707 327
#train 6,778 305,725 61,104
#valid 2,255 38,223 15,275
#test 2,180 38,281 24,915

arity= 2 3,786 337,914 56,322
arity= 3 0 25,820 34,550
arity= 4 215 15,188 9,509
arity≥ 5 7,212 3,307 2,267

R SOCIAL IMPACT

This work mainly focused on link prediction with relational hypergraphs, which has a wide range
of applications and thus many potential societal impacts. One potential negative impact is the en-
hancement of malicious network activities like phishing or pharming through the use of powerful
link prediction models. We encourage further studies to mitigate these issues.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Table 13: Hyperparameters for inductive experiments of HCNet.

Hyperparameter WP-IND JF-IND MFB-IND

GNN Layer Depth(L) 5 5 4
Hidden Dimension 128 256 32

Decoder Layer Depth 2 2 2
Hidden Dimension 128 256 32

Optimization Optimizer Adam Adam Adam
Learning Rate 5e-3 1e-2 5e-3

Learning

Batch size 32 32 1
#Negative Sample 10 10 10
Epoch 20 20 10
#Batch Per Epoch - - 10000
Adversarial Temperature 0.5 0.5 0.5
Dropout 0.2 0.2 0
Accumulation Iteration 1 1 32

Table 14: Hyperparameters for transductive experiments of HCNet.

Hyperparameter FB-AUTO WikiPeople JF17K

GNN Layer Depth(L) 4 5 6
Hidden Dimension 128 64 64

Decoder Layer Depth 2 2 2
Hidden Dimension 128 64 64

Optimization Optimizer Adam Adam Adam
Learning Rate 1e-3 1e-3 5e-3

Learning

Batch size 32 16 1
#Negative Sample 32 32 50
Epoch 20 6 6
#Batch Per Epoch − 5000 −
Adversarial Temperature 0.5 0.5 0.5
Dropout 0.2 0.2 0.2
Accumulation Iteration 1 1 32

Table 15: Results of inductive link prediction experiments. We report averaged MRR, Hits@1, and
Hits@3 (higher is better) on test sets together with its standard deviation.

WP-IND JF-IND MFB-IND
MRR Hits@1 Hits@3 MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

HGNN 0.072 0.045 0.112 0.102 0.086 0.128 0.121 0.076 0.114
HyperGCN 0.075 0.049 0.111 0.099 0.088 0.133 0.118 0.074 0.117
G-MPNN-sum 0.177 0.108 0.191 0.219 0.155 0.236 0.124 0.071 0.123
G-MPNN-mean 0.153 0.096 0.145 0.112 0.039 0.116 0.241 0.162 0.257
G-MPNN-max 0.200 0.125 0.214 0.216 0.147 0.240 0.268 0.191 0.283
RD-MPNN 0.304 0.238 0.328 0.402 0.308 0.453 0.122 0.082 0.125

HCNet 0.414
±

0.005

0.352
±

0.004

0.451
±

0.005

0.435
±

0.017

0.357
±

0.023

0.495
±

0.014

0.368
±

0.015

0.223
±

0.014

0.417
±

0.022

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Table 16: Results of ablation study experiments on initialization. We report MRR, Hits@1, and
Hits@3 (higher is better) on test sets.

INIT WP-IND JF-IND
zq pi MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

- - 0.388 0.324 0.421 0.390 0.295 0.451
✓ - 0.387 0.321 0.421 0.392 0.302 0.447
- ✓ 0.394 0.329 0.430 0.393 0.300 0.456
✓ ✓ 0.414 0.352 0.451 0.435 0.357 0.495

Table 17: Results of ablation study experiments on positional encoding. We report MRR, Hits@1,
and Hits@3 (higher is better) on test sets.

PE WP-IND JF-IND
MRR Hits@1 Hits@3 MRR Hits@1 Hits@3

Constant 0.393 0.328 0.426 0.356 0.247 0.428
One-hot 0.395 0.334 0.428 0.368 0.275 0.432

Learnable 0.396 0.335 0.425 0.416 0.335 0.480
Sinusoidal 0.414 0.352 0.451 0.435 0.357 0.495

Table 18: Full results of transductive link prediction experiments on FB-AUTO and WikiPeople.

FB-AUTO WikiPeople
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

r-SimplE 0.106 0.082 0.115 0.147 - - - -
m-DistMult 0.784 0.745 0.815 0.845 - - - -
m-CP 0.752 0.704 0.785 0.837 - - - -
m-TransH 0.728 0.727 0.728 0.728 - - - -
RAE 0.703 0.614 0.764 0.854 0.253 0.118 0.343 0.463
NaLP 0.672 0.611 0.712 0.774 0.338 0.272 0.362 0.466
tNaLP+ 0.729 0.645 0.748 0.826 0.339 0.269 0.369 0.473
HINGE 0.678 0.630 0.706 0.765 0.333 0.259 0.361 0.477
NeuInfer 0.737 0.700 0.755 0.805 0.351 0.274 0.381 0.467
HSimplE 0.798 0.766 0.821 0.855 - - - -
BERT 0.776 0.735 0.802 0.850 - - - -
HypE 0.804 0.774 0.823 0.856 0.263 0.127 0.355 0.486
GETD 0.367 0.254 0.422 0.601 - - - -
RAM 0.830 0.803 0.851 0.876 0.363 0.271 0.405 0.500
S2S - - - - 0.364 0.273 0.402 0.503
BoxE 0.844 0.814 0.863 0.898 - - - -
HyperMLN 0.831 0.803 0.851 0.877 - - - -
HyConvE 0.847 0.820 0.872 0.901 0.362 0.275 0.388 0.501
ReAIE 0.861 0.836 0.877 0.908 - - - -
RD-MPNN 0.810 0.714 0.880 0.888 - - - -

HCNet 0.871
±

0.005

0.842
±

0.007

0.892
±

0.003

0.922
±

0.004

0.421
±

0.004

0.344
±

0.004

0.457
±

0.005

0.565
±

0.007

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Table 19: Definition of INIT in the ablation study of initialization. Here, q = (q, ũ, t), and d is the
hidden dimension before passing to the first layer.

INIT
h
(0)
v|qzq pi

- -
∑

i ̸=t 1v=ui
∗ 1d

✓ -
∑

i ̸=t 1v=ui
∗ pi

- ✓
∑

i ̸=t 1v=ui
∗ zq

✓ ✓
∑

i ̸=t 1v=ui
∗ (pi + zq)

Table 20: Definition of pi in the ablation study of positional encoding. Here, Idi is the one-hot vector
of d dimension where only the index i has entry 1 and the rest 0. Note that d is the hidden dimension
before passing to the first layer. p̂ is a d-dimensional learnable vectors. pi,j is the j-th index of
position encoding pi, and d is the dimension of the vector pi.

PE

Constant pi = 1d

One-hot pi = Idi
Learnable pi = p̂i

Sinusoidal pi,2j = sin
(

i
100002j/d

)
; pi,(2j+1) = cos

(
i

100002j/d

)

Table 21: Comparison of the execution time of 1 epoch for inductive and transductive link prediction
task with relational hypergraph using a single A10 GPU. Note that we use batch size = 1 during the
testing for all models, and 10k steps for MFB-IND during the training of HCNets.

WP-IND JF-IND MFB-IND FB-AUTO WikiPeople
Train Test Train Test Train Test Train Test Train Test

RD-MPNN 2sec 3.5min 2sec 3min 14min 38min 3sec 35min - -
HCNet 3.5min 18sec 8min 10sec 80min 3.5min 4.5min 4min 3hr 2hr

44

	Introduction
	Related work
	Link prediction with relational hypergraphs
	Hypergraph relational MPNNs
	A Weisfeiler-Leman test for HR-MPNNs
	Logical expressiveness of HR-MPNNs

	Hypergraph conditional MPNNs
	Hypergraph conditional networks
	A Weisfeiler-Leman test for HC-MPNNs
	Logical expressiveness of HC-MPNNs

	Experimental evaluation
	Inductive experiments
	Transductive experiments
	Ablation studies on the impact of initialization and positional encoding

	Summary, discussions, and limitations
	R-MPNNs and C-MPNNs
	On representations of high-arity facts
	HR-MPNNs subsume existing models
	HR-MPNNs subsume G-MPNNs and RD-MPNNs
	HR-MPNNs subsuming HGNNs and HyperGCNs
	HR-MPNNs subsume R-MPNNs

	Proof of thm: HRMPNN
	HGML and proof of thm:hrmpnn-logic
	HGML formulas
	Proof of thm:hrmpnn-logic

	Proof of thm: HCMPNN
	Proof of thm:HGMLc
	Link prediction with knowledge graphs
	Computing k-ary invariants
	Atomic types
	Relational hypergraph conditioned local k-WL test

	Complexity analysis
	Experiments on inductive link prediction with knowledge graphs
	Experiments on hyper-relational knowledge graphs
	Synthetic experiments
	Scalability and custom Triton kernel
	On adding node features
	Impact on the density of the relational hypergraphs
	Further experiment details
	Social impact

