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ABSTRACT

Direct Alignment Algorithms (DAAs) simplify language model alignment by re-
placing reinforcement learning (RL) and reward modeling (RM) in Reinforce-
ment Learning from Human Feedback (RLHF) with direct policy optimization.
DAAs can be classified by their ranking losses (pairwise vs. pointwise), by the
rewards used in those losses (e.g., likelihood ratios of policy and reference policy,
or odds ratios), or by whether a Supervised Fine-Tuning (SFT) phase is required
(two-stage vs. one-stage). We first show that one-stage methods underperform
two-stage methods. To address this, we incorporate an explicit SFT phase and in-
troduce the β parameter, controlling the strength of preference optimization, into
single-stage ORPO and ASFT. These modifications improve their performance in
Alpaca Eval 2 by +3.46 (ORPO) and +8.27 (ASFT), matching two-stage methods
like DPO. Further analysis reveals that the key factor is whether the approach uses
pairwise or pointwise objectives, rather than the specific implicit reward or loss
function. These results highlight the importance of careful evaluation to avoid
premature claims of performance gains or overall superiority in alignment algo-
rithms.

1 INTRODUCTION

Large Language Models (LLMs) demonstrate strong text generation capabilities, yet aligning them
with human values remains challenging due to underspecified objectives, limited training signals,
and the complexity of human intent (Ouyang et al., 2022; Stiennon et al., 2020). Traditional align-
ment pipelines typically involve Supervised Fine-Tuning (SFT), reward modeling, and reinforce-
ment learning to shape model outputs.

Recently, Direct Alignment Algorithms (DAAs) have emerged as an alternative, integrating human
preferences into policy optimization without explicit reward modeling or reinforcement learning
(Rafailov et al., 2023; Hong et al., 2024; Azar et al., 2023; Meng et al., 2024; Chen et al., 2024;
Xiao et al., 2024; D’Oosterlinck et al., 2024; Wang et al., 2024). These methods differ in theoretical
design (pairwise vs. pointwise), implementation details (e.g., reference policy vs. odds ratio), and
whether an SFT phase is required (one-stage vs. two-stage). This diversity raises key questions
about their relationships, comparative advantages, and the role of SFT.

In this paper, we show that one-stage methods (e.g., ORPO, ASFT) can incorporate an explicit SFT
phase, improving performance. We introduce a scaling parameter β that unifies their formulation
with other DAAs, revealing shared optimization dynamics between methods using either an odds
ratio or a reference-based reward. Through theoretical and empirical analysis, we systematically
compare DAAs, emphasizing pairwise vs. pointwise preference optimization. We also show that,
while SFT is beneficial, using the full dataset is not always necessary, which reduces computational
costs. To structure our analysis, we address the following research questions:

RQ1: Does an explicit SFT stage improve the alignment quality of ORPO and ASFT?

RQ2: Does the tempering factor enhance the alignment quality of ASFT and ORPO?

RQ3: What factors of DAAs affect alignment quality?

∗Correspondence to: Boris Shaposhnikov - b.shaposhnikov@tbank.ru
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RQ4: How does the final alignment quality depend on the amount of data used in the SFT stage?

By answering these questions, we clarify key trade-offs in alignment strategies and provide guidance
for optimizing LLM training pipelines.

2 PRELIMINARIES

2.1 MODELING SEQUENCES

Given a sequence y of length |y|, the log-probability can be written as log p(y) =
∑|y|
i=1 log p(yi |

y<i), which may also be conditioned on another sequence x. In practice, optimizing normalized

log-probability 1
|y| log p(y) = log

(
p(y)

1
|y|

)
often improves numerical stability and leads to better

training. However, once normalized, the resulting quantity is no longer a strict probability mea-

sure. Throughout this paper, whenever we write p(y), we refer to this normalized version p(y)
1
|y| .

Whenever a method does not apply this normalization, we indicate it explicitly.

Welleck et al. (2019) introduced a log-unlikelihood term that reduces the probability of certain un-
desirable tokens: log

(
1 − p(c | y<i)

)
for c ∈ C. It can be extended to an entire sequence as

log
(
1− p(y)

)
.

2.2 DIRECT ALIGNMENT ALGORITHMS

Direct alignment algorithms replace the reward modeling and RL stages (more details in Ap-
pendix A) (but keep the SFT phase) with a single alignment step. Various preference-optimization
loss functions have been proposed, employing these core components:

• rrefθ (y, x) = log
( πθ(y|x)
πref (y|x)

)
from DPO (Rafailov et al., 2023), which acts as an implicit reward

β rrefθ . No length normalization is used.

• roddsθ (y, x) = log
( πθ(y|x)
1−πθ(y|x)

)
proposed in ORPO (Hong et al., 2024), representing the odds of

generating y versus not generating it.

Several Direct Alignment Algorithms use these notations. Information on sequence probability
normalization for these methods is presented in Appendix B.1.

• Direct Preference Optimization (DPO) (Rafailov et al., 2023): LDPO =
− log σ

(
β rrefθ (yw, x) − β rrefθ (yl, x)

)
. This method does not normalize probabilities by

length.1

• Identity Preference Optimization (IPO) (Azar et al., 2023): LIPO =
(
rrefθ (yw, x) −

rrefθ (yl, x)− 1
2β

)2
.

• Simple Preference Optimization (SimPO) (Meng et al., 2024): LSimPO =
− log σ

(
β log πθ(yw, x)− β log πθ(yl, x)− γ

)
.

• Noise Contrastive Alignment (NCA) (Chen et al., 2024): LNCA = − log σ
(
β rrefθ (yw, x)

)
−

0.5 log σ
(
−β rrefθ (yw, x)

)
− 0.5 log σ

(
−β rrefθ (yl, x)

)
.

• Calibrated Direct Preference Optimization (Cal-DPO) (Xiao et al., 2024): LCal−DPO =

− log σ
(
rrefθ (yw, x)− rrefθ (yl, x)

)
+

(
rrefθ (yw, x)− 1

2β

)2
+
(
rrefθ (yl, x) +

1
2β

)2
.

• Anchored Preference Optimization Zero (APO-Zero) (D’Oosterlinck et al., 2024):
LAPO−Zero = −σ

(
β rrefθ (yw, x)

)
+ σ

(
β rrefθ (yl, x)

)
.

1Unless otherwise noted, the expectation over (x, yw, yl) ∼ D is taken.
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2.3 SINGLE-STAGE ALIGNMENT METHODS

Single-stage alignment (as a subset of DAA methods) merges SFT and direct alignment in one step
by adding their losses: LSingle(πθ) = −E(x,yw,yl)∼D

[
LSFT(πθ, x, yw) + λLAlign(πθ, x, yw, yl)

]
,

where λ is a hyperparameter, and no reference policy πref is required.

In this paper, we focus on:

• Odds Ratio Preference Optimization (ORPO) (Hong et al., 2024): LORPO =
− log πθ(yw|x)− λ log σ

(
roddsθ (yw, x)− roddsθ (yl, x)

)︸ ︷︷ ︸
−LORPOAlign

.

• Aligned Supervised Fine-Tuning (ASFT) (Wang et al., 2024): LASFT = − log πθ(yw|x) −
λ
(
log σ

(
roddsθ (yw, x)

)
− log σ

(
−roddsθ (yl, x)

)︸ ︷︷ ︸
−LASFTAlign

)
.

3 METHOD

Many DAAs have been proposed, raising questions about their differences and significance. They
can be categorized in various ways. For example, one classification separates single-stage methods,
which perform alignment directly after obtaining a base model (ASFT and ORPO), from two-stage
methods (which perform SFT before alignment), as in DPO, IPO, SimPO, etc. Under this scheme,
ASFT and ORPO are single-stage methods.

Another classification considers whether rref or rodds is used as an implicit reward. ASFT and
ORPO also differ from other losses by using an odds ratio, whereas other methods in Section 2 use
normalized policy probabilities.2

DAAs can also be distinguished by whether their loss function is optimized for pairwise or pointwise
preferences. DPO, for instance, increases the policy’s probability of choosing preferred sequences
relative to rejected ones. In contrast, ASFT simply increases or decreases probabilities for chosen
or rejected sequences without comparing them directly.

3.1 GENERALIZING ASFT AND ORPO

Despite these classifications, it can still be difficult to pinpoint the essential differences among
DAAs, especially when design choices limit generalization. ASFT and ORPO, for example, lack a
parameter β, probably because they were conceived as single-stage methods, making the distance
from a reference policy unnecessary. It might seem odd to introduce such a parameter in single-stage
methods, but we will show that for both ASFT and ORPO, the single-stage design and the absence
of β are not strictly required.

3.1.1 ORPO AND ASFT CAN OPERATE WITHOUT THE SFT LOSS TERM AND AS TWO-STAGE
METHODS.

We begin by inspecting the ASFT objective and demonstrate that it combines both likelihood and
unlikelihood terms:

Theorem 3.1. LASFT is equivalent to the Binary Cross-Entropy (BCE) loss, encapsulating both
likelihood and unlikelihood components:

LASFT = −(1 + λ) log πθ(yw|x)− λ log
(
1− πθ(yl|x)

)
.

The proof of Theorem 3.1 is provided in Appendix C. Consequently,

LASFTAlign
= −

(
log πθ(yw|x) + log

(
1− πθ(yl|x)

))
.

2SimPO does not explicitly use a reference policy, but can be treated similarly if a uniform reference policy
is assumed.
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Next, we derive a direct relationship between LORPO and LASFT, showing that the latter provides
an upper bound on the former:
Theorem 3.2. LORPO can be expressed as:

LORPO = LASFT + λ log
(
πθ(yw|x)(1− πθ(yl|x)) + πθ(yl|x)(1− πθ(yw|x))

)
,

where the additional term is symmetric in yw and yl.

The proof of Theorem 3.2 is provided in Appendix D. As for LASFTAlign
, the alignment term is then

LORPOAlign
= − log πθ(yw|x)− log(1− πθ(yl|x))

+ log
(
πθ(yw|x)(1− πθ(yl|x)) + πθ(yl|x)(1− πθ(yw|x))

)
.

Corollary 3.2.1. LORPO ≤ LASFT and LORPOAlign
≤ LASFTAlign

.

This follows from the fact that the additional term in LORPO is non-positive when πθ(yw|x) and
πθ(yl|x) lie in [0, 1], and πθ(yw|x) + πθ(yl|x) ≤ 1.

These findings yield two main observations:

• LASFT provides an upper bound on LORPO. Minimizing the former also minimizes the latter.

• LASFT can be viewed as a minimal form of a DAA loss, reflecting the structure of BCE.
An essential insight from these formulations is that the SFT term in the ASFT and ORPO losses
is already included in the full loss. We hypothesize that this feature may allow us to omit the SFT
term in the complete loss, first performing an SFT phase and then using only the alignment terms for
model alignment. From this perspective, one can experiment with these methods in both single-stage
and two-stage configurations to see which approach is more effective.

3.1.2 TEMPERING ASFT AND ORPO

We now consider the original single-stage methods from Section 2.3 and examine how the alignment
terms LORPOAlign

and LASFTAlign
compare. These terms optimize preferences and, depending on

the coefficient λ, can dominate or have a smaller impact on the final loss.

LASFTAlign
and LORPOAlign

strongly resemble the DAA losses discussed in Section 2.2. The single-
stage analogue of rrefθ is roddsθ . Inspired by this analogy, we introduce a coefficient β to scale roddsθ :

LβASFTAlign
= − log σ(βroddsθ (yw, x))− log σ(−βroddsθ (yl, x)),

LβORPOAlign
= − log σ(βroddsθ (yw, x)− βroddsθ (yl, x)).

Both LβASFT and LβORPO generalize their vanilla counterparts (recovering them when β = 1). As
in DPO, β can be viewed as a temperature or scaling parameter that regulates the intensity of the
preference for “good” odds. This becomes clearer when looking at the gradients:

∇θLβASFTAlign
= −β

[
σ(βroddsθ (yl, x))∇θr

odds
θ (yl, x) +

(
1− σ(βroddsθ (yw, x))

)
∇θr

odds
θ (yw, x)

]
,

∇θLβORPOAlign
= −β

[(
∇θr

odds
θ (yw, x)−∇θr

odds
θ (yl, x)

)
×

(
1− σ(βroddsθ (yw, x)− βroddsθ (yl, x))

)]
,

where ∇θr
odds
θ (y, x) = ∇θ log πθ(y|x)

1−πθ(y|x) . When β → 0, σ(β · · · ) ≈ 1
2 , both methods aggressively

improve the odds ratio (increasing for yw and decreasing for yl). As β increases, the updates become
bounded by the factor σ(β · · · ) (similar to a reward threshold in DPO). Hence, once the model
improves, further updates are limited, either individually for LβASFTAlign

or by pairwise ranking in

LβORPOAlign
. This alignment with other DAAs allows for a direct comparison of all methods in

different setups, clarifying which aspects are most critical for successful performance.

3.2 ON THE DIFFERENCE BETWEEN DIRECT ALIGNMENT ALGORITHMS

Different methods can be grouped by the type of ”reward” function used in their loss. In general
terms, LβASFTAlign

and LβORPOAlign
employ an odds ratio, while DPO, IPO, SimPO, NCA, Cal-DPO,

and APO-Zero use a ratio between the probability of the policy and that of a reference policy.

The following theorems make this classification clearer:
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Theorem 3.3. The gradient of LβASFTAlign
becomes collinear with the gradient of LORPOAlign

as
β → 0. Formally,

lim
β→0

∇θ LβASFTAlign

∥∇θ LβASFTAlign
∥
=

∇θ LORPOAlign

∥∇θ LORPOAlign
∥
,

indicating that both gradients point in the same direction.

The proof of Theorem 3.3 is provided in Appendix E.1.

A related property applies to LβORPOAlign
:

Theorem 3.4. The gradient of LβORPOAlign
is collinear with the gradient of LORPOAlign

for any
β > 0. Formally,

∇θ LβORPOAlign

∥∇θ LβORPOAlign
∥
=

∇θ LORPOAlign

∥∇θ LORPOAlign
∥
, β > 0.

The proof of Theorem 3.4 is provided in Appendix F.1.

Finally:
Theorem 3.5. For each method X ∈

{
IPO, SimPO, NCA, Cal-DPO, APO-Zero

}
, as β → 0,

the gradient of LX is collinear with the gradient of LDPO. Formally,

lim
β→0

∇θ LX
∥∇θ LX∥

=
∇θ LDPO

∥∇θ LDPO∥
.

The proof of Theorem 3.5 is provided in Appendix G.1.

These theorems suggest that for sufficiently small β, these loss functions are split into two cate-
gories with indistinguishable gradient directions. Although the magnitudes may differ and they may
not be collinear for β ̸→ 0, one could infer that their performance should be similar when β is
small. From this perspective, two main distinctions arise among these methods: the use of an odds
ratio (roddsθ ) and the use of the ratio to a reference policy (rrefθ ). Both choices might influence the
final performance of these methods. Furthermore, it remains an open question whether odds-ratio-
based approaches outperform reference-policy-based ones (e.g., DPO), and how these distinctions
compare to the contrast between pointwise and pairwise preference formulations. From traditional
learning-to-rank Liu et al. (2009) research, pairwise methods often produce more direct and less
noisy ranking signals than pointwise techniques, which could lead to superior performance in prac-
tice (Burges et al., 2005; Li, 2011; Melnikov et al., 2016). In the following sections, we present
experimental results that provide further insight into which aspects most strongly influence DAA
training.

4 EXPERIMENTAL SETUP

We systematically compare and evaluate DAA methods using a standard training and instruction-
following evaluation framework Tunstall et al. (2023); Meng et al. (2024); Gorbatovski et al. (2024).
Our main experiments use the Llama 3.1 8B model AI@Meta (2024), trained on the UltraChat Ding
et al. (2023) and UltraFeedback (UF) Cui et al. (2023) datasets, and evaluated on the AlpacaEval 2
Dubois et al. (2024); Li et al. (2023) and ArenaHard Li et al. (2024) benchmarks. For the Reddit
TL;DR Stiennon et al. (2020) task, we employ the Llama 3.2 3B model, comparing it side by side
with the “golden” validation split Rafailov et al. (2023; 2024) using the prompt in Appendix K.

4.1 BASE VS SFT-INITIALIZED MODELS.

To investigate the impact of SFT and the applicability of one-stage loss LAlign component, we use
the UF dataset for SFT (avoiding additional knowledge from UltraChat), and for pairwise preference
optimization. We carefully tuned the hyperparameters to optimize each method’s performance.

For the Base-initialized setup, we perform a grid search over learning rates {6×10−6, 8×10−6, 1×
10−5}, inspired by values suggested in ORPO and ASFT, and explore λ ∈ {0.1, 0.2, 0.5, 1.0} for
1 and 2 training epochs keeping a similar budget to compare with the SFT-initialized setup.
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In the SFT-initialized setup, we experiment with both LORPOAlign
and LASFTAlign

alone, as well as
in combination with LSFT, following the original methods. We tune the learning rates {5×10−7, 7×
10−7, 1× 10−6} for one epoch, starting from an SFT model trained for 1 epoch at 6× 10−6.

4.2 β SENSITIVITY.

Building on the theoretical insights from Section 3.2, where DAA losses share indistinguishable
gradient directions as β → 0, we evaluate each method across various β values to examine quality-
KL trade-offs. In classical DPO, β regulates the KL penalty from the reference policy, but setting
β too small can induce training instability. Therefore, we conduct a thorough sweep of at least six
β values per DAA, exploring the performance limit of each method. To broaden our analysis, we
consider three scenarios:

Llama 3.2 3B TL;DR. A relatively simpler Reddit TL;DR summarization task, evaluated via GPT
side-by-side comparison on 500 samples from the “golden” validation split Rafailov et al. (2023;
2024).

Llama 3.2 3B UF. The UltraChat and UF datasets serve as more challenging alignment settings due
to their coverage of diverse and complex tasks, including common sense reasoning, mathematical
problem-solving, code generation, logical reasoning, creative writing, and general knowledge.

Llama 3.1 8B UF. A larger, more capable model on the same UltraChat and UF datasets, allowing
us to assess how increased model capacity influences β-sensitivity in these diverse tasks.

For the UF-based experiments, we measure model quality primarily using the AlpacaEval 2 Length-
Controlled (LC) Win-Rate and ArenaHard (AH) WR, and then track KL divergence from a reference
model to construct Pareto fronts. For the TL;DR scenario, we rely on GPT-based preference judg-
ments using ‘gpt-4o-2024-08-06‘ model. Concretely, in each scenario we train models for different
values β, combining them with four possible learning rates {1×10−6, 7×10−7, 5×10−7, 3×10−7}.
Further implementation details, including training procedures and generation hyperparameters, are
provided in Appendix B.

4.3 SFT QUALITY.

Although in principle single-stage methods do not require a separate SFT phase, in practice an
SFT-trained reference model often improves the final performance of two-stage pipelines (see Sec-
tion 5.1). Prior work, such as (Zhou et al., 2024), has shown that a small but high-quality dataset
can be sufficient for instruction tuning. However, beyond response quality, it remains unclear how
the amount of SFT data influences alignment effectiveness. This raises a fundamental question:
how much supervised data is actually needed to produce a reference model that yields high-quality
results after the subsequent alignment step?

To investigate this, we prepared seven SFT checkpoints by training Llama 3.1 8B Base on 1%, 3%,
5%, 10%, 25%, 50%, and 100% of the UltraChat dataset (2,079, 6,236, 10,393, 20,786, 51,966,
103,932, and 207,865 records, respectively) using our SFT-initialized procedure. We then applied
each alignment method – using optimal hyperparameters from our β-sensitivity experiments (Ap-
pendix Table 8) – to these seven SFT checkpoints and the original base model. Finally, we evaluated
all resulting aligned models on AlpacaEval 2 LC, analyzing their performance relative to the fraction
of SFT data used.

5 RESULTS

5.1 RQ1: DOES AN EXPLICIT SFT STAGE IMPROVE THE ALIGNMENT QUALITY OF ORPO
AND ASFT?

As shown in Table 1, the performance of ORPO and ASFT methods improves significantly when the
alignment loss LAlign is applied after a preceding SFT stage. In particular, ORPO achieves results
comparable to classical DPO in both LC Win Rate and AH WR metrics. In contrast, ASFT shows
notable gains in AH WR after the SFT stage, although it still underperforms compared to ORPO or
DPO.
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Figure 1: Impact of the β Parameter on ASFT and ORPO Alignment Quality. The plot shows
how tuning β (Section 3.1.2) affects both ASFT and ORPO performance. Results are reported for
GPT-4 Win Rate in the Llama 3.2 3B TL;DR setup and for AlpacaEval 2 LC Win Rate in the Llama
3.1 8B UF scenario. All other hyperparameters (e.g., learning rates) are selected via grid search,
using each method’s best configuration at β = 1 as the baseline. See Section 5.2 for more details.

For single-stage methods, the use of λ = 1 provides the best results within the explored grid of
λ ∈ {0.1, 0.2, 0.5, 1.0}, especially after two epochs of training. However, combining LSFT and
LAlign in a single-stage setup leads to suboptimal results compared to explicitly separating these
phases, even when starting from an SFT-trained model. Incorporating an explicit SFT stage improves
overall performance for ORPO and ASFT methods. Therefore, all further experiments focus on
applying the LAlign components of ORPO and ASFT on top of an SFT-trained model.

5.2 RQ2: DOES THE TEMPERING FACTOR ENHANCE THE ALIGNMENT QUALITY OF ASFT
AND ORPO?

Init Method LC% (std) WR% (std) AH% (CI)

Base SFT 6.7 (0.43) 4.5 (0.63) 3.5 (-0.7, 0.8)
SFT ORPO 24.1 (0.84) 17.8 (1.17) 15.3 (-1.6, 1.8)
SFT ASFT 16.4 (0.72) 11.9 (0.99) 10.6 (-1.2, 1.3)
Base ORPO† 14.8 (0.71) 10.3 (0.95) 8.4 (-1.3, 1.3)
Base ASFT† 14.5 (0.73) 10.2 (0.94) 7.5 (-1.1, 1.2)
SFT ORPO† 13.4 (0.69) 9.3 (0.91) 7.7 (-0.9, 1.1)
SFT ASFT† 11.4 (0.63) 7.5 (0.83) 7.5 (-1.1, 1.1)
SFT DPO 23.4 (0.85) 20.0 (1.18) 17.5 (-1.8, 1.8)

Table 1: Base and SFT-initialized alignment methods
on the Llama 3.1 8B model with the UF dataset. SFT-
initialized methods demonstrate better performance com-
pared to their traditional formulations without LSFT. Re-
sults marked with † correspond to training with LSFT, using
the best hyperparameters: lr = 1 × 10−6 for ORPO and
lr = 7× 10−7 for ASFT. For other setups, the best hyperpa-
rameters are: lr = 5× 10−7 for standard SFT ORPO/ASFT,
and lr = 1× 10−5/6× 10−6 for Base ORPO/ASFT.

Figure 1 illustrates that introducing
the β parameter (as described in Sec-
tion 3.1.2) improves the performance
of both ASFT and ORPO LAlign in
our tested scenarios. For a fair com-
parison, we used the best-performing
learning rate for each baseline —
LASFTAlign

and LORPOAlign
— while

fixing β = 1. In the Llama 3.2
3B TL;DR experiment, these adjust-
ments led to an improvement of +7.0
for ORPO and +43.4 for ASFT in
GPT-4 WR. In the Llama 3.1 8B UF
setup, tuning β provided additional
gains of +3.46 for ORPO and +8.27
for ASFT on the AlpacaEval 2 LC
WR.

5.3 RQ3: WHAT FACTORS OF
DAAS AFFECT ALIGNMENT QUALITY?

Based on Section 3, we perform a comprehensive evaluation of alignment losses, including DPO,
IPO, SimPO, NCA, Cal-DPO, and APO-Zero, as well as enhanced LβASFTAlign

and LβORPOAlign
with

the introduced parameter β. Unlike classical methods where β typically regulates KL divergence
against a reference policy πref, β in LβASFTAlign

and LβORPOAlign
directly modulates the strength of

preference optimization. To explore the upper limits of each method’s performance, we performed
an extensive hyperparameter search, analyzing both alignment quality and KL divergence. Full im-
plementation details, including training setups and evaluation criteria, are provided in Appendix B.

Llama 3.2 3B TL;DR: The comparison of all methods on the Reddit TL;DR validation subset, using
their best hyperparameters, shows that most methods achieve a GPT-4 Win Rate exceeding 90%,
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indicating robust summarization performance on this relatively straightforward task (see Figure 3
in the Appendix). ASFT is slightly lower at 87.2% Win Rate, but still demonstrates strong overall
results.
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Table 2: Pareto front for alignment quality
and KL divergence. Results for Llama 3.1 8B
UF on AlpacaEval 2 LC. Methods are grouped
into pairwise and pointwise categories, with pair-
wise achieving higher LC values while remaining
within overlapping confidence intervals. See Sec-
tion 5.3 for more details.

Llama 3.2 3B UF and Llama 3.1 8B UF: Ta-
ble 3 summarizes the results for both Llama
3.2 3B UF and Llama 3.1 8B UF setups. For
the smaller 3B model, the methods perform
similarly on LC WR, with slight differences
emerging on AH. Although these differences
align with the pairwise vs. pointwise distinc-
tion (e.g., DPO, IPO, ORPO, SimPO vs. APO-
Zero, NCA, Cal-DPO, ASFT), no single ap-
proach consistently dominates across metrics.
The overlap in confidence intervals further in-
dicates that the results for these methods are
statistically similar in this setup, with no clear
separation.

In contrast, the 8B model reveals a clearer
performance differentiation. Pairwise meth-
ods consistently outperformed pointwise ones
on AlpacaEval 2 and ArenaHard metrics, with
ORPO achieving the highest overall alignment
quality. As illustrated in Figure 2, pairwise ap-
proaches dominated the KL Pareto front for the larger model, demonstrating their ability to more
effectively balance alignment quality and divergence. Pareto fronts for the remaining setups are
included in Appendix I for completeness.

Method
Llama 3.2 3B UF Llama 3.1 8B UF

AlpacaEval 2 ArenaHard AlpacaEval 2 ArenaHard

LC% (std) WR% (std) WR% (CI) LC% (std) WR% (std) WR% (CI)

SFT 5.02 (0.34) 3.21 (0.55) 1.4 (-0.4, 0.4) 10.27 (0.54) 5.44 (0.70) 2.6 (-0.5, 0.6)

DPO 11.43 (0.58) 11.79 (0.99) 6.8 (-1.0, 0.9) 26.82 (0.77) 23.69 (1.25) 19.0 (-1.9, 1.8)
IPO 11.24 (0.60) 11.67 (1.01) 6.8 (-1.0, 1.1) 28.18 (0.83) 24.43 (1.26) 19.1 (-1.6, 1.5)

SimPO 10.56 (0.44) 11.94 (0.95) 6.4 (-1.0, 1.1) 27.65 (0.77) 25.62 (1.29) 21.5 (-1.9, 1.9)
ORPO 10.67 (0.50) 12.23 (0.97) 6.6 (-1.0, 1.1) 28.25 (0.71) 28.59 (1.33) 20.9 (-2.0, 2.0)

APO Zero 10.36 (0.53) 11.22 (0.98) 6.0 (-1.0, 0.9) 23.15 (0.76) 19.03 (1.18) 17.3 (-1.8, 1.8)
NCA 10.33 (0.53) 11.02 (0.97) 5.1 (-0.7, 0.8) 23.21 (0.80) 18.67 (1.17) 15.1 (-1.5, 1.6)

Cal-DPO 10.62 (0.57) 10.15 (0.94) 4.8 (-0.9, 0.9) 23.19 (0.82) 18.85 (1.18) 15.2 (-1.5, 1.6)
ASFT 10.63 (0.55) 9.21 (0.88) 5.1 (-0.9, 0.9) 20.82 (0.79) 16.34 (1.13) 13.5 (-1.6, 1.5)

Table 3: AlpacaEval 2 and ArenaHard Results for Llama 3.2 3B and Llama 3.1 8B UF. The
SFT model was trained on the UltraChat dataset. The best hyperparameters for each method were
selected according to Section 4.2. Bold values indicate the best performance for each benchmark,
while underlined values represent the second-best performance. See Section 5.3 for more details.

These observations suggest that model capacity plays a significant role in amplifying the advantages
of pairwise ranking, where LLMs act as rankers (similar to Liu et al. (2024)). For smaller models,
such as the 3B setup, limited capacity may hinder the ability to fully exploit pairwise gradient
signals. This hypothesis is supported by additional evidence from the toy example experiment (see
Figure 5 in Appendix), where pairwise methods demonstrated performance similar to pointwise
methods with weaker MLPs but achieved better ranking accuracy as the model capacity increased.
Full details of the toy example setup are provided in Appendix J.
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Figure 2: Impact of SFT Dataset Size on Alignment Quality. Performance of the pairwise (a) and
pointwise (b) alignment methods on AlpacaEval 2 (LC WR metric) when the SFT policy is trained
on different fractions of the UltraChat dataset. Even a small fraction of SFT data (e.g., 5–10%)
yields substantial gains over starting from the raw base model. See Section 5.4 for more details.

5.4 RQ4: HOW DOES THE FINAL ALIGNMENT QUALITY DEPEND ON THE AMOUNT OF DATA
USED IN THE SFT STAGE?

In Section 5.1, we show that DAAs designed to bypass the SFT phase still underperform compared to
models that undergo SFT and are then aligned using a similar preference-optimization loss function
without the SFT term. As discussed in Section 4.3, this raises the question of how much supervised
data is needed to compensate for the additional computation and achieve comparable alignment
performance.

To investigate this, we trained seven SFT models on progressively larger UltraChat subsets (1% to
100%) and applied each alignment algorithm to these models and the non-fine-tuned base model,
yielding eight initializations per method. Figures 2(a) and 2(b) summarize the results for pairwise
and pointwise alignment methods, respectively. As the plots show, no method starting from the raw
base model can match the final quality of a method trained with the entire SFT dataset. However,
even a modest size expansion of the SFT dataset yields substantial improvements in alignment qual-
ity: for example, moving from 3% to 5% of the data more than doubles the AlpacaEval 2 LC score
for the final model. Crucially, using only 10% of UltraChat for SFT yields nearly the same quality
as using the entire dataset.

Adding an SFT phase requires more overall training, but it pays off significantly in the final result.
Moreover, one does not need the entire supervised corpus to realize most of these gains; even 5–10%
of the data is often enough for DAAs to reach most of their potential.

6 CONCLUSION

This paper presents a comprehensive theoretical and empirical analysis of DAAs. Theoretically,
we demonstrated that within each category - odds-based (rodds) and reference-policy-based (rref )
– gradient directions of popular methods align as β → 0, revealing shared optimization dynamics
within these groups. We also showed that single-stage losses (e.g., ASFT, ORPO) can be extended
to two-stage pipelines with an explicit SFT step and optional β-scaling, enabling greater flexibility.
Experimentally, we addressed four core research questions (RQ1–4), exploring single- vs. two-stage
training, implicit rewards, objective types, and the impact of the SFT phase. Our key findings are:

• Include an SFT phase. An SFT stage consistently improves alignment performance (RQ1), with
ORPO achieving +9.3 LC / +6.9 AH and ASFT +1.9 LC / +3.1 AH in the setup from Section 4.1.
Even 5–10% of the supervised dataset often suffices to achieve near-optimal results (RQ4).

• Pairwise methods outperform pointwise objectives. Alignment quality depends more on the
choice between pairwise and pointwise objectives than on the formulation of implicit reward (e.g.,
rodds or rref ). Pairwise methods generally perform better (e.g., ORPO outperforming ASFT by
+7.43 LC / +7.4 AH in the Llama 3.1 8B UF setup), particularly in larger models (RQ3). Among
these, ORPO and SimPO also stand out as practical options for memory-constrained scenarios,
as they do not rely on a reference policy.
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• Choose hyperparameters carefully. Alignment performance is highly sensitive to learning rates
and the coefficient β. We provide optimal configurations for different methods based on compre-
hensive grid searches in our experimental setups, highlighting the added gains from tuning β in
odds-based methods, where it controls the strength of preference optimization (RQ2).

Limitations and Future Work. Although our study systematically compares DAAs, it has several
limitations. We tested a limited set of datasets (UltraChat, UltraFeedback, Reddit TL;DR) and
benchmarks (AlpacaEval 2, ArenaHard), which may affect generalizability to other domains. The
reliance on GPT-based evaluators can introduce biases. Moreover, we evaluated on 3B–8B models,
so the observed advantages of pairwise over pointwise objectives could shift at larger scales.
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A REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Stiennon et al., 2020)
is a prominent approach to aligning language models. It generally has three stages:

Supervised Fine-Tuning (SFT). During the SFT stage, the model πθ is trained to follow instructions
by maximizing the probability of correct output y given input x. For a single training pair (x, y), we
define the per-sample SFT loss as LSFT(πθ, x, y) = − log πθ(y | x). During fine-tuning, we mini-
mize the expectation of this per-sample loss over the training dataset D: E(x,y)∼D

[
LSFT(πθ, x, y)

]
.

Reward Modeling (RM). A reward model rψ(x, y) produces a satisfaction score. It is trained
on preference pairs using the Bradley-Terry model (Bradley & Terry, 1952): LRM(rψ) =
−E(x,yw,yl)∼D

[
log σ

(
rψ(x, yw) − rψ(x, yl)

)]
, where yw is the preferred response and yl is the

less preferred one.

Reward Maximization. The objective is to generate responses that maximize the learned re-
ward, with a KL penalty to prevent reward hacking: maxπθ

Ex∼D, y∼πθ(y|x)
[
rϕ(x, y)

]
−

β DKL
[
πθ(x, y) ∥πref(x, y)

]
. Reinforcement learning (RL) algorithms are commonly used to op-

timize this objective (Schulman et al., 2017; Ouyang et al., 2022).

B IMPLEMENTATION DETAILS

B.1 PROBABILITY NORMALIZATION

As discussed in Section 2.1, not all DAAs incorporate length-based probability normalization by
default. In this paper, however, we apply such normalization only in cases where it was used in the
original methods involving probabilities. This choice avoids introducing extra notation and reduces
the cognitive load on the reader. Table 4 summarizes the methods that originally include length-
based normalization.

Method Use normalization
DPO (Rafailov et al., 2023) ×
IPO (Azar et al., 2023) ×
SimPO (Meng et al., 2024) ✓
NCA (Chen et al., 2024) ×
Cal-DPO (Xiao et al., 2024) ×
APO-Zero (D’Oosterlinck et al., 2024) ×
ORPO (Hong et al., 2024) ✓
ASFT (Wang et al., 2024) ✓

Table 4: Methods that include (✓) or omit (×) length-based probability normalization in their origi-
nal formulation.

B.2 TRAINING DETAILS

Our experiments were conducted using the Llama 3.2 3B and Llama 3.1 8B Base models AI@Meta
(2024). The training setup, datasets, and hyperparameters were designed to ensure reproducibil-
ity and consistency. Unless otherwise noted, the hyperparameters in Table 5 were used across all
experiments.

Training was performed on 8 NVIDIA A100 GPUs with 80GB memory each. Depending on the
number of epochs, training for each configuration took between 3 to 6 hours.

B.2.1 DATASETS.

We used two primary datasets:
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Hyperparameter Value
Max Tokens Length 1024 (TL;DR setup), 4096 (UF setup)
Epochs 1 (or 2 when specified)
Learning Rate (SFT) 6.0× 10−6

Learning Rate (Base Init.) {6.0× 10−6, 8.0× 10−6, 1.0× 10−5}
Learning Rate (Alignment) {3.0× 10−7, 5.0× 10−7, 7.0× 10−7, 1.0× 10−6}
Optimizer Adam (Kingma & Ba, 2014)
Adam β1 0.9
Adam β2 0.95
Batch Size 128
Learning Schedule Linear Decay
Warm-up Ratio 0.03
Max Gradient Norm 2
Memory Optimization DeepSpeed (Rasley et al., 2020)
Attention Mechanism Flash Attention 2 (Dao, 2023)

Table 5: Representative training hyperparameters for Llama 3.2 3B and Llama 3.1 8B models.

• Reddit TL;DR (Bai et al., 2022): used to train the initial SFT model in β-sensitivity ex-
periments with Llama 3.2 3B model.

• UltraChat (Ding et al., 2023): used to train the initial SFT model in β-sensitivity experi-
ments with Llama 3.2 3B and Llama 3.1 8B models.

• UltraFeedback (Cui et al., 2023): used for both SFT (in the Base vs. SFT-initialized com-
parison, where we selected chosen subset from preference pairs) and for pairwise prefer-
ence optimization in all DAA methods.

The dataset sizes are summarized in Table 6. For Base vs. SFT-initialized setups, only UltraFeedback
was used. For β-sensitivity experiments, the models were first trained on UltraChat for SFT and
subsequently fine-tuned on UltraFeedback. The Reddit TL;DR dataset was processed to remove
duplicates, retaining only uniquely preferred summaries for SFT.

Dataset Training Examples Validation Examples
UltraChat 207,865 23,110
UltraFeedback 61,135 2,000
Reddit TL;DR (SFT) 41,947 11,941
Reddit TL;DR (Preference) 73,396 21,198

Table 6: Summary of dataset sizes used for training and validation.

B.2.2 β-SENSITIVITY EXPERIMENTS.

We conducted a comprehensive analysis to evaluate the sensitivity of DAA methods to β, examining
its impact on the trade-off between model quality and KL divergence. Each method was trained
using six or more distinct β values to identify a configuration that achieves stable and effective
performance. The specific β values tested for each method are as follows:

For each β, we tested four learning rates (3.0×10−7, 5.0×10−7, 7.0×10−7, 1.0×10−6), training
on the UltraFeedback dataset. All runs began from an SFT-initialized model trained on UltraChat
(lr = 6.0× 10−6, 1 epoch). The best-performing learning rate for each β was selected to construct
Pareto fronts, balancing quality (measured via AlpacaEval 2 LC Win-Rate) and KL divergence.

For SimPO in the Llama 3.1 8B UF setup, the ratio γ
β = 0.5 was kept fixed as recommended by

Meng et al. (2024). Additionally, a single learning rate (lr = 6.0 × 10−7) was tested across all
β values for this method, as the same datasets and model scale were used. For Llama 3.2 TL;DR
and UF setups, we tested four learning rates similar to other DAAs. Beyond the standard β values
described in Table 7, additional values were explored for specific configurations to reach the extreme
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Method β Values Tested
DPO {0.001, 0.003, 0.005, 0.01, 0.05, 0.1}
IPO {0.0007, 0.001, 0.005, 0.01, 0.05, 0.1}
SimPO {0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0}
ORPO {0.05, 0.1, 0.2, 0.5, 1.0, 2.0}
ASFT {0.05, 0.1, 0.2, 0.5, 1.0, 2.0}
APO-Zero {0.001, 0.003, 0.005, 0.01, 0.05, 0.1, 0.2}
Cal-DPO {0.00005, 0.0001, 0.0003, 0.0005, 0.001, 0.003}
NCA {0.0001, 0.0003, 0.0005, 0.001, 0.005, 0.007, 0.01, 0.03, 0.05}

Table 7: Range of β values tested for each DAA method on all scenarios.

points of the Pareto front. For example: - {0.00001, 0.00003} for Cal-DPO in Llama 3.2 3B TL;DR
and UF setups, - {0.00001, 0.00003, 0.00005} for NCA in Llama 3.2 3B TL;DR, - {0.0003, 0.0005}
for APO-Zero in Llama 3.2 3B TL;DR, - {0.0003, 0.0005, 0.001, 0.003, 0.005} for ASFT in Llama
3.2 3B TL;DR.

The hyperparameters resulting in the best performance are presented in Table 8.

Method
Llama 3.2 3B TL;DR Llama 3.2 3B UF Llama 3.1 8B UF

Learning Rate β Learning Rate β Learning Rate β

DPO 7.0× 10−7 0.05 1.0× 10−6 0.01 1.0× 10−6 0.003

IPO 1.0× 10−6 0.005 7.0× 10−7 0.001 1.0× 10−6 0.001

SimPO 3.0× 10−7 0.5 7.0× 10−7 1.0 6.0× 10−7 1.0

ORPO 3.0× 10−7 0.5 5.0× 10−7 0.2 5.0× 10−7 0.5

ASFT 3.0× 10−7 0.001 1.0× 10−6 0.2 7.0× 10−7 0.1

APO Zero 3.0× 10−7 0.001 3.0× 10−7 0.005 3.0× 10−7 0.003

NCA 3.0× 10−7 0.0001 3.0× 10−7 0.0005 3.0× 10−7 0.0003

Cal-DPO 3.0× 10−7 0.00003 5.0× 10−7 0.0003 3.0× 10−7 0.0003

Table 8: Best hyperparameters for each DAA method across setups.

B.3 GENERATION DETAILS

We evaluated model performance on AlpacaEval 2 and ArenaHard for UltraFeedback setups, while
for the Reddit TL;DR setup, we used side-by-side comparisons with GPT-4o on a curated golden
validation subset of 500 samples. Additionally, KL divergence was measured on the validation
subset for all setups using the generation hyperparameters listed in Table 9. For ArenaHard, the
temperature was set to 0 to adhere to the original benchmark configuration.

Hyperparameter Value
Temperature 0.9
Top-k 40
Top-p 1.0
Max New Tokens 256 (TL;DR setup), 4096 (UF setup)

Table 9: Generation hyperparameters for Llama 3.1 8B and Llama 3.2 3B models.
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C EQUIVALENCE OF ASFT LOSS AND BINARY CROSS-ENTROPY LOSS

Lemma C.1.
log σ(roddsθ (y, x)) = log πθ(y|x)

Proof.

log σ(roddsθ (y, x)) = log σ(log
πθ(y|x)

1− πθ(y|x)
) = log

1

1 + elog(1−πθ(y|x))−log(πθ(y|x))

= log
1

1 + 1−πθ(y|x)
πθ(y|x)

= − log
(
1 +

1− πθ(y|x)
πθ(y|x)

)
= − log

πθ(y|x) + 1− πθ(y|x)
πθ(y|x)

= log πθ(y|x).

Lemma C.2.
log σ(−roddsθ (y, x)) = log

(
1− πθ(y|x)

)
Proof.

log σ(−roddsθ (y, x)) = log σ(− log
πθ(y|x)

1− πθ(y|x)
) =

log
1

1 + elog(πθ(y|x))−log(1−πθ(y|x))
= log

1

1 + πθ(y|x)
1−πθ(y|x)

=

− log
(
1 +

πθ(y|x)
1− πθ(y|x)

)
= − log

1− πθ(y|x) + πθ(y|x)
1− πθ(y|x)

= log(1− πθ(y|x)).

Theorem C.3. LASFT is equivalent to the binary cross-entropy loss, encompassing both likelihood
and unlikelihood components:

LASFT = −(1 + λ) log πθ(yw|x)− λ log
(
1− πθ(yl|x)

)
.

Proof. To show that LASFT is equivalent to the BCE loss, we start with the definition:

LASFT = − log πθ(yw|x)− λ log σ(roddsθ (yw, x))− λ log σ(−roddsθ (yl, x)),

where roddsθ (y, x) = πθ(y|x)
1−πθ(y,x)

. Applying Lemma C.1 and Lemma C.2 to the expression, we obtain:

LASFT = − log πθ(yw|x)− λ log πθ(yw|x)− λ log
(
1− πθ(yl|x)

)
= −(1 + λ) log πθ(yw|x)− λ log(1− πθ(yl|x)).

D RELATIONSHIP BETWEEN ORPO AND ASFT LOSS FUNCTIONS

Theorem D.1. LORPO can be expressed as:

LORPO = LASFT + λ log
(
πθ(yw|x)(1− πθ(yl|x)) + πθ(yl|x)(1− πθ(yw|x))

)
.

Proof. We start by defining the ORPO loss:

LORPO = − log πθ(yw|x)− λ log σ

(
log

π(yw|x)
1− π(yw|x)

− log
π(yl|x)

1− π(yl|x)

)
.
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Expanding the second term using the identity log σ(x) = x− log(ex + 1), we get:

− log σ

(
log

πθ(yw|x)
1− πθ(yw|x)

− log
πθ(yl|x)

1− πθ(yl|x)

)
= log

1− πθ(yw|x)
πθ(yw|x)

+ log
πθ(yl|x)

1− πθ(yl|x)
+ log

(
πθ(yw|x)(1− πθ(yl|x))
πθ(yl|x)(1− πθ(yw|x))

+ 1

)
= log

1− πθ(yw|x)
πθ(yw|x)

+ log
πθ(yl|x)

1− πθ(yl|x)
+ log

(
πθ(yw|x)− 2πθ(yw|x)πθ(yl|x) + πθ(yl|x)

πθ(yl|x)(1− πθ(yw|x))

)
= − log πθ(yw|x)− log(1− πθ(yl|x)) + log

(
πθ(yw|x)− 2πθ(yw|x)πθ(yl|x) + πθ(yl|x)

)︸ ︷︷ ︸
ORPOAlign

.

Combining all terms, we obtain:

LORPO = −(1 + λ) log πθ(yw|x)− λ log(1− πθ(yl|x))
+ λ log

(
πθ(yw|x)(1− πθ(yl|x)) + πθ(yl|x)(1− πθ(yw|x))

)
= LASFT + λ log

(
πθ(yw|x)(1− πθ(yl|x)) + πθ(yl|x)(1− πθ(yw|x))

)

E PROOF OF THEOREM 3.3

Theorem E.1 (Collinearity of β-ASFT and ORPO Gradients). Let

LβASFTAlign
= − log σ

(
β roddsθ (yw, x)

)
− log σ

(
−β roddsθ (yl, x)

)
,

where
roddsθ (y, x) = log

(
πθ(y|x)

1−πθ(y|x)

)
.

Define the ORPO alignment loss as

LORPOAlign
= − log σ

(
roddsθ (yw, x) − roddsθ (yl, x)

)
.

Then,

lim
β→0

∇θ LβASFTAlign∥∥∇θ LβASFTAlign

∥∥ =
∇θ LORPOAlign∥∥∇θ LORPOAlign

∥∥ ,
i.e., their gradients become collinear in the same direction as β → 0.

Proof. Step 1. Gradient of β-ASFT.
Denote pw = πθ(yw | x), pl = πθ(yl | x). Then

roddsθ (yw, x) = log
(

pw
1−pw

)
, roddsθ (yl, x) = log

(
pl

1−pl

)
.

By definition,

LβASFTAlign
= − log σ

(
β roddsθ (yw, x)

)
− log σ

(
−β roddsθ (yl, x)

)
.

For small β, a first-order Taylor expansion of σ(β z) around 0 yields σ(β z) = 1
2 + β z

4 + O(β2).
Thus, σ(β roddsθ (yw, x)) ≈ 1

2 and σ(−β roddsθ (yl, x)) ≈ 1
2 . Taking gradients and applying the chain

rule gives each term approximately proportional to ±β∇θ[r
odds
θ (·)]. Concretely,

∇θ

[
− log σ(β roddsθ (yw, x))

]
≈ − β

2 ∇θ

[
roddsθ (yw, x)

]
,

∇θ

[
− log σ(−β roddsθ (yl, x))

]
≈ + β

2 ∇θ

[
roddsθ (yl, x)

]
.

Hence, summing up,

∇θ LβASFTAlign
≈ β

2

[
∇θr

odds
θ (yl, x) − ∇θr

odds
θ (yw, x)

]
.
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Observe that β > 0 implies the overall scalar factor β2 is strictly positive in front of the difference of
gradients.

Step 2. Gradient of ORPO alignment loss.
Define ∆roddsθ (x) = roddsθ (yw, x)− roddsθ (yl, x). Then

LORPOAlign
= − log σ

(
∆roddsθ (x)

)
.

Its gradient (using the chain rule) is proportional to

∇θ LORPOAlign
∝ −∇θ

[
roddsθ (yw, x)− roddsθ (yl, x)

]
= ∇θr

odds
θ (yl, x) − ∇θr

odds
θ (yw, x).

Up to a strictly positive logistic factor (since σ(·) ∈ (0, 1)), the coefficient in front of ∇θ[r
odds
θ (·)]

remains negative, but we track the absolute scalar to see it is positive. Indeed, one can write

−∇θ

(
∆roddsθ (x)

)
= κORPO ∇θr

odds
θ (yl, x)− κORPO ∇θr

odds
θ (yw, x), κORPO > 0.

Step 3. Conclusion (positive collinearity).
Comparing the two gradients:

∇θ LβASFTAlign
≈ β

2

[
∇θr

odds
θ (yl, x)−∇θr

odds
θ (yw, x)

]
, ∇θ LORPOAlign

∝
[
∇θr

odds
θ (yl, x)−∇θr

odds
θ (yw, x)

]
.

The ratio is thus strictly positive for small β. Consequently,

lim
β→0

∇θ LβASFTAlign

∥∇θ LβASFTAlign
∥

=
∇θ LORPOAlign

∥∇θ LORPOAlign
∥
,

establishing collinearity in the same direction.

F PROOF OF THEOREM 3.4

Theorem F.1 (Collinearity of β-ORPO and ORPO Gradients). Let

∆roddsθ (x) = roddsθ (yw, x)− roddsθ (yl, x),

and consider
LβORPOAlign

= − log σ
(
β∆roddsθ (x)

)
.

Its gradient is collinear with the gradient of the standard ORPO alignment loss

LORPOAlign
= − log σ

(
∆roddsθ (x)

)
for any fixed β > 0. Formally,

∇θ LβORPOAlign∥∥∇θ LβORPOAlign

∥∥ =
∇θ LORPOAlign∥∥∇θ LORPOAlign

∥∥ .
Proof. Step 1. Gradient of β-ORPO.
Let ∆roddsθ (x) = roddsθ (yw, x)− roddsθ (yl, x). Then

LβORPOAlign
= − log σ

(
β∆roddsθ (x)

)
.

By the chain rule,

∇θ LβORPOAlign
= − 1

σ(β∆roddsθ (x))
σ′(β∆roddsθ (x)

)
β∇θ

[
∆roddsθ (x)

]
.

Since σ′(z) = σ(z) [1− σ(z)], we have

− 1

σ(β∆roddsθ (x))
σ′(β∆roddsθ (x)

)
= −β

[
1− σ

(
β∆roddsθ (x)

)]
.
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Thus,
∇θ LβORPOAlign

= −β
[
1− σ

(
β∆roddsθ (x)

)]
∇θ

[
∆roddsθ (x)

]
.

Since β > 0 and 1− σ(·) > 0, the factor multiplying ∇θ[∆roddsθ (x)] is strictly negative.

Step 2. Gradient of standard ORPO (i.e. β = 1).
For

LORPOAlign
= − log σ

(
∆roddsθ (x)

)
,

the gradient is

∇θ LORPOAlign
= −

[
1− σ(∆roddsθ (x))

]
∇θ

[
∆roddsθ (x)

]
.

This also has a strictly negative scalar in front of ∇θ

[
∆roddsθ (x)

]
.

Step 3. Conclusion (exact positive ratio).
Since ∇θ LβORPOAlign

and ∇θ LORPOAlign
both differ from ∇θ

[
∆roddsθ (x)

]
by a negative coeffi-

cient, it follows that these two gradients coincide up to a strictly positive factor:

∇θ LβORPOAlign
= κ(β)∇θ LORPOAlign

, κ(β) > 0.

Hence
∇θ LβORPOAlign

∥∇θ LβORPOAlign
∥
=

∇θ LORPOAlign

∥∇θ LORPOAlign
∥
,

proving the claimed collinearity (in the same direction) for every fixed β > 0.

G PROOF OF THEOREM 3.5

Theorem G.1 (Unified Collinearity of DPO with IPO, SimPO, NCA, Cal-DPO, and APO-Zero).
Let

∆rrefθ (x) = rrefθ
(
yw, x

)
− rrefθ

(
yl, x

)
,

and define the DPO loss

LDPO = − log
(
σ
(
β∆rrefθ (x)

))
, β > 0.

For each method X ∈
{
IPO, SimPO, NCA, Cal-DPO, APO-Zero

}
, as β → 0, the gradient

of LX is asymptotically collinear (i.e., it differs by a positive factor) with the gradient of LDPO.
Formally,

lim
β→0

∇θ LX
∥∇θ LX∥

=
∇θ LDPO

∥∇θ LDPO∥
.

Proof of Theorem 3.5. Step 1: DPO as the baseline (tracking its sign).
By definition,

LDPO = − log σ
(
β∆rrefθ (x)

)
.

Since σ(u) = 1/(1 + e−u), for β > 0, one computes

∇θ LDPO = −β
[
1− σ

(
β∆rrefθ (x)

)]
∇θ∆rrefθ (x).

Observe that β > 0 and σ(·) ∈ (0, 1) imply

1− σ
(
β∆rrefθ (x)

)
> 0.

Hence the factor multiplying ∇θ∆rrefθ (x) is negative. To unify directions by a positive multiple,
note

−∇θ LDPO = β
[
1− σ

(
β∆rrefθ (x)

)]
∇θ∆rrefθ (x),

which has a strictly positive scalar in front. Thus, ∇θ LDPO is collinear with ∇θ∆rrefθ , and in
particular its negative is a positive multiple of ∇θ∆rrefθ .
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Step 2: IPO.
The IPO loss is

LIPO =
(
∆rrefθ (x) − 1

2β

)2

.

Its gradient is

∇θ LIPO = 2
(
∆rrefθ (x) − 1

2β

)
∇θ∆rrefθ (x).

As β → 0, the term 1
2β dominates ∆rrefθ (x). Hence,

∆rrefθ (x) − 1
2β ≈ − 1

2β ,

so
∇θ LIPO ≈ − 1

β
∇θ∆rrefθ (x).

We compare this with

∇θ LDPO = −β
[
1− σ

(
β∆rrefθ (x)

)]
∇θ∆rrefθ (x).

Both gradients are negative multiples of ∇θ∆rrefθ (x). Therefore,

∇θ LIPO = κIPO(β)∇θ LDPO, with κIPO(β) > 0 as β → 0.

Hence they are collinear in the same direction asymptotically.

Step 3: SimPO.
The SimPO loss is

LSimPO = − log σ
(
β∆sθ − γ

)
,

where ∆sθ = log πθ(yw | x)− log πθ(yl | x). Its gradient takes the form

∇θ LSimPO = −
β
[
1− σ(β∆sθ − γ)

]
σ(β∆sθ − γ)

∇θ∆sθ.

Again, β > 0 and 1− σ(·) > 0. Also, σ(β∆sθ − γ) ∈ (0, 1). Thus the prefactor

−
β
[
1− σ(β∆sθ − γ)

]
σ(β∆sθ − γ)

is strictly negative for each β > 0. Therefore, just like DPO, ∇θ LSimPO is in the negative direction
of ∇θ∆sθ. But ∇θ∆sθ is proportionally the same as ∇θ∆rrefθ for small-β expansions (both are
differences of log-likelihood or reward-like terms). So

∇θ LSimPO = κSimPO(β)∇θ LDPO, κSimPO(β) > 0 for small β.

Hence they are collinear with a positive factor in the low-β limit.

Step 4: NCA.
Define

rrefw = rrefθ
(
yw, x

)
, rrefl = rrefθ

(
yl, x

)
.

Then NCA is

LNCA = − log σ
(
β rrefw

)
− 1

2 log σ
(
−β rrefw

)
− 1

2 log σ
(
−β rrefl

)
.

For small β, expand

σ(β z) =
1

2
+

β z

4
+ O(β2),

so log σ(β z) = log 1
2 + log

(
1 + β z

2 + O(β2)
)

. Each gradient term then yields a linear-in-β

combination of ∇θ r
ref
w and ∇θ r

ref
l . Collecting terms shows that, as β → 0,

∇θ LNCA ∝ β∇θ

(
rrefw − rrefl

)
= β∇θ∆rrefθ (x).
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Comparing this with ∇θ LDPO = −β
[
1 − σ(. . . )

]
∇θ∆rrefθ (x) reveals another negative factor on

the DPO side. In ratio form,

∇θ LNCA = κNCA(β)∇θ LDPO with κNCA(β) > 0 for small β.

Hence collinearity follows.

Step 5: Cal-DPO.
The Cal-DPO loss is

LCal-DPO = − log σ
(
∆rrefθ (x)

)
+

(
rrefw − 1

2β

)2
+

(
rrefl + 1

2β

)2
.

For β near 0, the large constants ± 1
2β dominate. The gradient w.r.t. θ in these squared terms is

effectively

∝ − 1
β ∇θ r

ref
w + 1

β ∇θ r
ref
l = − 1

β ∇θ

(
rrefw − rrefl

)
= − 1

β ∇θ∆rrefθ (x).

Since ∇θ LDPO has the same negative sign structure in front of ∇θ∆rrefθ , their ratio is again posi-
tive. Thus

∇θ LCal-DPO = κCal-DPO(β)∇θ LDPO with κCal-DPO(β) > 0 as β → 0.

Step 6: APO-Zero.
APO-Zero is given by

LAPO-Zero = −σ
(
β rrefw

)
+ σ

(
β rrefl

)
.

Its gradient involves terms ∇θ σ(β rrefw ) and ∇θ σ(β rrefl ), each proportional to β∇θ r
ref
w and

β∇θ r
ref
l . Subtracting these yields

∇θ LAPO-Zero ∝ −β∇θ

(
rrefw − rrefl

)
= −β∇θ∆rrefθ (x).

Since ∇θ LDPO also has a negative constant factor, their ratio has a positive limit. Therefore,

∇θ LAPO-Zero = κAPO-Zero(β)∇θ LDPO, κAPO-Zero(β) > 0 for small β.

Conclusion.
In each method X , one sees that ∇θ LX has the same negative-sign structure around ∇θ∆rrefθ (x)
as does ∇θ LDPO, ensuring a positive ratio in the limit. Formally,

∇θ LX = κX(β)∇θ LDPO, κX(β) > 0, as β → 0.

Thus,

lim
β→0

∇θ LX
∥∇θ LX∥

=
∇θ LDPO

∥∇θ LDPO∥
,

which completes the proof of their alignment in the same direction.

H LLAMA 3.2 3B TL;DR GPT-4 EVALUATION RESULTS

Figure 3 presents a comparison of all methods on the Reddit TL;DR validation subset, using their
best hyperparameters.

I PARETO FRONTS FOR LLAMA 3.2 SETUPS

The results presented in this section correspond to the best hyperparameter configurations identified
during the hyperparameter search described in Section 4.2, including the optimal learning rate for
each method. This ensures that the Pareto fronts reflect the upper performance limits for alignment
quality.
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ASFT

Cal-DPO

NCA

APO Zero

ORPO

SimPO

IPO

DPO

SFT

436 5 59

457 2 41

459 5 36

463 3 34

451 3 46

458 1 41

457 2 41

456 5 39

178 24 298

Win Tie Lose Win / Tie / Lose Rate %
35.6 / 4.8 / 59.6
91.2 / 1.0 / 7.8
91.4 / 0.4 / 8.2
91.6 / 0.2 / 8.2
90.2 / 0.6 / 9.2
92.6 / 0.6 / 6.8
91.8 / 1.0 / 7.2
91.4 / 0.4 / 8.2
87.2 / 1.0 / 11.8

Figure 3: GPT-4 Evaluation of Llama 3.2 3B TL;DR setup. The comparison shows multiple
alignment methods (rows) using their best hyperparameters, where each approach aims to generate
concise and accurate summaries. Most methods exceed 90% Win Rate; ASFT achieves 87.2%,
maintaining robust summarization performance. See Section 5.3 for more details.
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(a) Llama 3.2 3B TL;DR

0.0 0.2 0.4 0.6 0.8
KL Divergence with SFT Model

5

6

7

8

9

10

11

12

Al
pa

ca
Ev

al
 2

 L
C 

W
R 

(%
)

Method
DPO
IPO
SimPO
ORPO
APO Zero
NCA
Cal-DPO
ASFT

Pairwise Pointwise

(b) Llama 3.2 3B UF

Figure 4: Pareto front for alignment quality and KL divergence. Results for Llama 3.2 3B
TL;DR and UF setups on GPT-4 Win Rate vs. ”golden” validation subset and AlpacaEval 2 LC
respectively with different β values. Methods are grouped into pairwise and pointwise categories.
For the summarization task (Llama 3.2 3B TL;DR), both pointwise and pairwise methods achieve
strong overall results. For the UF setup, methods also perform similarly within overlapping confi-
dence intervals, indicating no clear separation.

J TOY EXAMPLE DETAILS

To analyze the differences between pairwise and pointwise ranking methods, especially with respect
to the ranking nature of alignment losses in LLMs, a simplified toy experiment was conducted under
a controlled setup. A dataset of 2000 triplets (x, yw, yl) was generated, where x, yw, and yl are
real-valued scalars satisfying yw > yl. The data was split into 80% for training and 20% for testing.
When the model processes a scalar input x together with a candidate y, these two numbers form a
vector in R2, which serves as the input of the Multi-Layer Perceptron (MLP) to predict the reward
r.

A single-hidden-layer MLP with ReLU activation was used in two capacity settings: lower
(hidden size = 1) and higher (hidden size = 3). The model takes x and a candidate y as input,
producing a reward r analogous to training a reward model for RLHF Stiennon et al. (2020).

Two losses were evaluated: the pairwise Bradley-Terry loss Bradley & Terry (1952),

LPairwise = − log
(
σ(β(rw − rl))

)
,

and the pointwise loss,

LPointwise = −
[
log

(
σ(βrw)

)
+ log

(
σ(−βrl)

)]
.
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Figure 5: Pairwise vs. Pointwise Ranking Methods on Toy Example. Model capacity impacts
ranking accuracy, with pairwise methods outperforming pointwise ones as capacity increases. This
behavior is consistent with results observed in Llama experiments on the UF dataset. See Section
5.3 for more details.

Each configuration was trained over 100 runs, tuning the learning rate from
{0.5, 0.3, 0.1, 0.01, 0.03, 0.05} and β from {5.0, 2.0, 1.0, 0.2, 0.1, 0.05, 0.01}. Alignment ac-
curacy was defined as the proportion of cases with rw > rl.

The results show that both methods yield comparable performance in the low-capacity regime, while
pairwise ranking achieves higher accuracy as model capacity increases, mirroring the effects ob-
served in larger-scale experiments from the Section 5.3.

K GPT-4 SIDE-BY-SIDE EVALUATION PROMPT

For our Side-By-Side evaluations with GPT-4o, we designed a prompt tailored to the Reddit TL;DR
dataset to assess accuracy, completeness, relevance, and conciseness. The full prompt used in our
experiments is detailed below.

Act as an impartial judge and evaluate the quality of the summaries provided
by two AI assistants for the text displayed below. Your evaluation should
consider accuracy, completeness, relevance, and conciseness.

You will be given a text, Assistant A’s summary, and Assistant B’s summary.
Your job is to evaluate which assistant’s summary is better based on the
text provided.

Begin your evaluation by comparing both assistants’ summaries with the
original text. Identify and correct any inaccuracies.
Ensure the summaries are complete, capturing all essential information
from the text without introducing fabricated details.
Assess the relevance of the information each assistant chose to include
in their summary, ensuring it reflects the core message of the text.
Evaluate the conciseness of the summaries, favoring those that efficiently
convey the necessary information without unnecessary verbosity.
Avoid any position biases and ensure the order in which the summaries
were presented does not influence your decision.
Do not allow the length of the summaries to influence your evaluation,
except in the context of conciseness and efficiency.
Do not favor certain names of the assistants.
Be as objective as possible.
You should only evaluate the summaries provided by both assistants
and NOT the original text itself.
If both summaries are irrelevant, contain hallucinations, or are
inconsistent with the original text, mark the comparison as inconclusive
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and choose option "C".

After providing your explanation, output your final verdict by strictly
following this format:

"""
Comparison: <One-sentence comparison>
Winner: <A if assistant A is better, B if assistant B is better, and C for a tie.>
"""
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