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ABSTRACT

Federated learning (FL) has gained widespread adoption as a privacy-preserving
framework for distributed model training. However, it continues to face persistent
challenges, most notably statistical heterogeneity and high communication cost.
The current dominant paradigm in FL is consensus-driven averaging of model
parameters across clients. Most recent methods, despite their innovations, remain
anchored in repeated round averaging as the backbone of their design. The sub-
stantial communication overhead from repeated rounds is an obvious drawback,
but another matter of debate is whether this approach can succeed under hetero-
geneous data, which forms the central focus of this paper. We argue that this
prevailing approach fails to address heterogeneity. Using extreme label skew as
a lens to expose its limitations, we demonstrate that even the most recent meth-
ods that ultimately rely on parameter averaging remain fundamentally limited in
such settings. We instead advocate for an emerging alternative: ensemble-based
FL with open-set recognition (OSR), which, by preserving client-specific mod-
els and selectively leveraging their strengths, directly mitigates the information
loss and distortion caused by parameter averaging in heterogeneous settings. We
consider this approach a principled path forward for addressing heterogeneity,
substantiating our view through both theoretical analysis and extensive experi-
ments. However, we acknowledge its primary limitation: the linear growth of
ensemble size with client count, which hinders scalability. As a step forward
in this direction, we introduce FedEOV, which incorporates improved negative
sample generation to prevent shortcut cues, and FedEOV-pruned, which explores
pruning as a solution to the scalability problem, rather than relying on distillation,
thus avoiding the need for server-side data or additional training at the server.
Our experiments across multiple datasets and heterogeneity settings confirm the
superiority of our method, achieving an average improvement of 16.76% over
the state-of-the-art ensemble baseline, FedOV, under extreme label skew and up
to 102% over FedGF, the top-performing parameter averaging method. Further-
more, we show that pruned federated ensembles achieve performance on par with
distilled ensembles, without any server-side data or training requirements, even
when the latter is distilled using data from the same datasets. Code is available at:
https://github.com/Anonymous6868—-hue/FedEOV

1 INTRODUCTION

Real-world distributed machine learning scenarios often involve strict privacy constraints, where
sharing raw data between parties is not permitted. Federated Learning (FL) has emerged as a popular
paradigm in such settings, enabling clients to collaboratively train a global model without exchanging
their private data|Yang et al.| (2019). A key objective in FL is to learn a model that generalizes well
across all client distributions while keeping the confidentiality of individual data intact.

Standard FL framework, FedAvg, is based on parameter averaging where clients perform local
training before sending it to a central server for averaging over multiple communication rounds to
produce a global model McMabhan et al.|(2017). While simple and widely adopted, FedAvg relies
on the assumption that client data is independent and identically distributed (IID), an assumption
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that rarely holds in practice. In reality, federated systems often involve statistical heterogeneity,
where clients have data drawn from different distributions. By averaging parameters, FedAvg seeks
consensus across clients even when their local objectives diverge, making parameter averaging
unreliable and slow in convergence, requiring massive communication rounds. Additional challenges
arise from system heterogeneity, where clients differ in compute power and availability; model
heterogeneity, where clients may use different architectures; and continual learning, where clients
receive new data over time |Pei et al .| (2024);|Criado et al.| (2022)).

Recently ensemble-based approaches have been proposed to address the communication efficiency
and heterogeneity problems. While earlier works showed ensemble methods perform well under
homogeneous data, more recent works have demonstrated their effectiveness to heterogeneous
scenarios Diao et al.|(2023). The state-of-the-art ensemble method, FedOV, uses open-set recognition
(OSR) to identify an introduced unknown class while retaining the discriminative power of local
models. This in a sense, naturally bypasses the issues like parameter misalignment Wang et al.| (2020)),
and is inherently robust to statistical, system, and model heterogeneity. Notably, the performance of
FedOV hinges on how effectively the OSR mechanism handles out of distribution shift at the local
level. However, the primary limitation is that ensemble size grows linearly with the number of clients,
making this approach impractical at scale.

Recent works such as FENS |Allouah et al.|(2024) and FedConcat [Diao et al.|(2024) propose hybrid
approaches that combine elements of parameter averaging and ensemble. These methods correctly
identify specialization, rather than consensus, as a key to handling client heterogeneity. However,
both fall into the same core trap: they ultimately rely on parameter averaging to train the aggregation
mechanism that combines specialized models. In doing so, they merely defer the heterogeneity
problem to the final stage, where averaging, as a consensus mechanism, is inherently incapable of
reconciling divergent client objectives. In this paper, we argue that parameter averaging should be
avoided altogether. Instead, we theoretically show that open-set recognition during local training is
sufficient for model aggregation, as it enables each client model to learn domain-specific information
directly. The key idea is that when clients possess disjoint information, a specialization step within
the solution is required to preserve each clients unique local knowledge. While this approach avoids
global coordination and repeated communication entirely, it does lead to increased model size, a
trade-off that we show can be managed through pruning. We term our method FedEOV: Federated
Enhanced Open-set Voting. Our main contributions in this paper are:

* We provide a theoretical analysis of why parameter averaging is fundamentally limited in
heterogeneous FL, particularly under extreme label skew, and why aggregation via OSR
correctly preserves and integrates client-specific knowledge without the distortion caused by
averaging. To our knowledge, prior works have not established this theoretical basis.

* We introduce FedEOV, an enhanced ensemble-based framework that improves the OSR
mechanism through more principled negative sample generation. We demonstrate that
through a small yet well-motivated change, FedEOV consistently outperforms FedOV (the
strongest baseline under the extreme heterogeneity we study) in label-skewed scenarios.

* We identify model scalability as the key barrier to practical deployment of ensemble-based
FL. To this end, we propose FedEOV-Pruned, a pruning-based strategy that compresses
ensembles without requiring server-side data, unlike prior distillation-based methods. To the
best of our knowledge, we are the first to propose pruning in ensemble-based FL, achieving
significant model size reduction while maintaining competitive or superior accuracy even at
high pruning levels, compared to distillation.

The remainder of the paper is organized as follows. In Section [2] we review related work in FL.
Section [3| presents a comparative analysis of parameter averaging and ensemble-based methods. In
Section 4] we introduce our proposed methods, FedEOV and FedEOV-Pruned. Section [5|covers our
experimental setup/results, and we conclude in Section [6]

2 BACKGROUND AND RELATED WORK

Non-IID Data in FL: Early Solutions and Theoretical Insights: FL. must confront data hetero-
geneity across clients, which significantly degrades its performance. The seminal FedAvg algo-
rithm [McMabhan et al.|(2017) performs well under IID data, but its accuracy degrades under non-1ID
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settings. When clients have divergent data distributions (e.g., different label proportions or label
skew), the global model update from averaging local parameters can diverge from the true descent
direction. Numerous works have documented this issue: for example, Zhao et al.|(2018) showed
that highly skewed label distributions can cause FedAvg’s accuracy to drop by over 50%, and [Li
et al.| (2020a) introduced FedProx to stabilize training via a proximal term. Even under IID data,
averaging neural network weights can suffer from permutation inconsistency, leading to misaligned
layers as noted by FedMA |Wang et al.| (2020). Mitigation strategies include correction of local
updates (e.g., SCAFFOLD |[Karimireddy et al.| (2020)), gradient harmonization [Zhang et al.| (2023)),
promoting flatter minima|Qu et al.| (2022a), explicit local-global alignment L1 et al.|(2021), and data
sharing/augmentation. On the theoretical side, much early analysis of FedAvg focused on convex
settings with guaranteed convergence under standard assumptions [Li et al.|(2020c)), later extended
to non-convex settings via bounded-dissimilarity assumptions in methods such as FedProx |Li et al.
(2020a) and FedDANE |Li et al.|(2020b). However, follow-up work [Yuan & Li/ (2022)) has shown that
these assumptions conflict with the severe heterogeneity found in practice. Additional theoretical
studies Diao et al.|(2024)); |/Allouah et al.| (2024) have analyzed the fundamental limits of parameter
averaging, including information-theoretic perspectives and quantification of the performance gap
with alternative aggregation strategies. We refer readers to Appendix C.4 for a brief discussion on
these error analyses.

Recent Approaches to Label Skew in Federated Learning: Despite these advances, there is still
no single clear solution to the label skew problem, and a variety of techniques continue to be proposed.
FedConcat |Diao et al.|(2024)) clusters clients according to their label distributions, trains cluster-
specific models via FedAvg, and constructs a global model by concatenating feature extractors across
clusters while averaging only the classifier head. FedVLS |Guo et al.|(2025) addresses vacant-class
scenarios by combining vacant-class distillation with logit suppression for non-local classes, thereby
improving recognition of unseen labels while retaining parameter averaging. In addition, other
approaches reflect different directions: FedLMD |Lu et al.|(2023) employs label-masking distillation
to enhance minority-class learning, while FLea [Xia et al.| (2024)) introduces obfuscated feature
sharing with mixup-based augmentation under FedAvg. A particularly promising line of research
focuses on sharpness-aware optimization, first explored in federated settings by FedSAM |Qu et al.
(2022a)). Building on this idea, MoFedSAM |Qu et al.[(2022b) and the recent FedGF |[Lee et al.| (2024)
pursue flatter minima to alleviate client-drift and reduce the risk of model collapse under disjoint
data.

Ensemble-Based Approaches in Federated Learning: Ensemble methods in FL. were originally
introduced to address the communication bottleneck, particularly in one-shot settings where each
client trains locally and sends a model to the server only once (Guha et al.| (2019). Early designs
simply averaged client models in a single round (one-shot FedAvg), but under severe heterogeneity
this often yielded suboptimal results. This led to the alternative of combining outputs rather than
weights, forming an ensemble at the server. While naive voting or averaging of predictions works for
IID data, it fails in label-skewed settings, as models tend to misclassify unseen classes into seen ones,
causing majority voting to collapse. Methods such as FEDBE |Chen & Chao| (2020), which treats
global aggregation as a Bayesian ensemble over multiple global models, and FEDBOOST |Hamer
et al.[(2020), which builds ensembles via weighted model averaging with theoretical guarantees for
certain distributions, extended the ensemble concept but still faced this limitation. FEDOV Diao et al.
(2023) addressed the problem by equipping each model with an open-set recognition mechanism
that trains with synthetic outlier samples labeled as an unknown class, enabling models to abstain on
unfamiliar inputs and improving ensemble decisions under heterogeneity. This OSR-based ensemble
showed strong potential but has remained relatively underexplored. More recently, FEDCONCAT Diao
et al.| (2024) constructs a global model by concatenating the feature extractors of per-cluster models
trained via FedAvg, averaging only the final classifier, thereby preserving specialized knowledge
while still partially relying on parameter averaging, and FENS |Allouah et al.|(2024) learns a small
neural aggregator at the server to fuse the outputs of client models in a stacked-generalization manner.
Despite good performance under certain conditions and hyperparameters, these newer ensemble-
style methods ultimately rely on parameter averaging to aggregate the unique information of the
clients. This continued reliance reflects a common misunderstanding of the fundamental limitations
of parameter averaging in FL, which motivates our theoretical analysis to clarify when and why
averaging cannot be effectively used. For completeness, we review other One Shot FL categories in
Appendix C.5, since they are not central to our analysis.
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Model Compression and Pruning in FL: Although ensemble-based approaches were initially
valued for reducing communication cost in federated learning and have recently shown strong
potential in addressing heterogeneity, they carry a critical caveat: scalability. The scalability problem
in FL has been recognized since early work such as Guha et al.|Guha et al.| (2019), where the cost of
communicating and aggregating full models was shown to be a major bottleneck. Even if parameter
averaging is avoided, a practical challenge for ensemble-based FL is the rapid growth in model size
and deployment cost as the number of clients increases. Unlike FedAvg’s single global model, an
ensemble that retains all local models can become prohibitively large, with total parameters scaling
linearly with the number of clients. This scalability issue makes vanilla ensembling impractical
in large networks or on edge devices. A common strategy to address this has been knowledge
distillation, explored since FedMD |Li et al.|(2019), which demonstrated that heterogeneous models
can collaborate via public-data logit sharing without revealing architectures or private data. In the
ensemble compression setting, the server uses a public or generated dataset to train a compact global
model that imitates the ensemble’s predictions. FedDF |Lin et al.| (2020) and related approaches
exemplify this strategy, but they often assume access to auxiliary data at the server and risk sacrificing
the diversity of the ensemble by collapsing it into a single model. Distillation essentially averages
out the unique features of each client model, potentially losing the heterogeneity-based gains that
ensembles offer. An alternative line of work explores model pruning to compress federated models.
Li et al. [Li et al|(2024) propose a client-side pruning approach where each client trains a local model
and prunes less significant parameters before sending to the server, which then aggregates these
slimmed models. Building on a similar intuition, our work (FedEOV-Pruned) applies pruning in
the context of ensembles. As we will show, this strategy can compress an ensemble by an order of
magnitude with minimal loss in accuracy, addressing the final barrier that prevents ensemble methods
from becoming practical FL solutions at scale.

3 ANALYSIS OF AGGREGATION METHODS UNDER STATISTICAL
HETEROGENEITY

In this section, we first build intuition for when and why parameter averaging and ensemble-based
aggregation succeed or fail, starting from homogeneous scenarios and moving to increasingly skewed
label distributions, with brief comments on communication cost. We then present theoretical bounds
that formalize these observations. While our analysis centers on label skew, the advantages of
ensembles with OSR extend to other FL challenges outlined in the introduction, including system
heterogeneity, model heterogeneity, feature skew, and continual learning. Since these extensions are
easier to see once the core case is understood, we present them separately in Appendix C.1 to keep
the main discussion focused.

In homogeneous setting, both parameter averaging and ensembling with OSR are effective,
but differ in communication cost. The first point to recall is that averaging, by its nature, accen-
tuates commonalities and suppresses variability. This is why, under homogeneous data where each
client approximates the same underlying function, parameter averaging is effective: the overlapping
information enables convergence of the models toward a stable consensus. While the permutation
invariance of neural networks may initially cause misalignment across client weights Wang et al.
(2020), this typically resolves within a few rounds. Ensemble methods with OSR, in contrast, achieve
strong performance in these settings using only a single communication round. In homogeneous
settings, ensembling enhances generalization via a mixture-of-experts effect, leveraging model diver-
sity across the clients. Also unlike parameter averaging, ensembles sidestep issues like permutation
sensitivity and domain-specific misalignment, though at the cost of increased model size.

Under mild label skew, parameter averaging can succeed given enough communication, with
alignment-based methods offering more reliable performance. In this setting, clients retain some
label overlap, allowing global consensus to emerge over time. Even simple approaches like FedAvg
may eventually converge, though often slowly and with reduced stability. Methods that explicitly aim
to align client objectives or updates, such as SCAFFOLD, tend to perform better by correcting client
drifts and accelerating convergence.

Under extreme label skew, parameter averaging fails fundamentally, driven by two core issues:
local drift and an information collapse caused by label partitioning.
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The first problem, local drift, is a well-known consequence of label skew, where clients converge to
misalgined local optima. Although methods such as SCAFFOLD Karimireddy et al.|(2020) recognize
these challenges and attempt to realign client objectives to preserve the consensus-based formulation,
these corrections are based on estimates of global gradients, which in turn rely on the very local
gradients they aim to fix, creating a circular dependency. Debate continues around their utility under
varying Dirichlet partitions, but in extreme label skew, where local gradients are entirely misaligned,
these methods break down. Ensemble methods sidestep these elaborate alignment strategies by
aggregating directly in function space, where such alignment is unnecessary as long as local models
are trained to recognize out-of-distribution inputs.

The second failure is deeper: even with ideal  Aggregation in Parameter Space | Ensemble in Functional Space

optimization, heterogeneous label partitioning * I

causes an information collapse. When clients T Doscent |\ /_
see only a fraction of the global label space, the . o:w : Clent 1 Client 2
mutual information between model outputs and o o e I +

true global labels degrades with the number of o /, . | /\

labels per client, even under ideal training, as Fodtve 1P *® : | J
we will later show formally. This leads to triv- Direction | Global Model

ial local optima; for example, when each client Client 1 Client 2 :

sees only a single label, a constant function min-
imizes the cross-entropy loss without learning
anything meaningful for the global task. How-
ever, this collapse can be completely reversed by
adding an abstention mechanism such as OSR.
When clients are trained to abstain on unfamiliar
inputs, the mutual information is fully recovered,
as models must learn features that distinguish
known from unknown. By preventing this col-
lapse through OSR, the stage is set for functional
aggregation.

Figure 1: Left: Parameter-space averaging (e.g.,
FedAvg) can deviate significantly from the true
descent direction, leading to unbounded error.
Right: Functional-space aggregation (e.g., ensem-
bles with OSR) preserves each client’s specializa-
tion, enabling robust stitching of functions into a
globally consistent model. Aggregation error here
depends primarily on OSR performance.

These two failure modes, local drift and information collapse, motivate a formal analysis of the
expected error in FL under extreme label skew, where we contrast parameter averaging with ensemble-
based aggregation. Theorem 1 establishes bounds on mutual information, showing that label par-
titioning inevitably causes information loss even under ideal conditions, Theorem 2 establishes
that ensemble aggregation with OSR constitutes an exact minimizer for an objective maximizing
functional alignment of global model with all local models, and Theorem 3 provides error bounds
that decompose into information, optimization, and local training errors for both parameter averaging
and OSR-based ensembles. Complete proofs are provided in Appendix A.

Theorem 1: Mutual Information under Idealized Training and Label Skew Consider a classifi-
cation task over N labels with uniform class priors. Each client is assigned a disjoint subset of M
labels, and models are trained under idealized conditions (perfect optimization, sufficient data). Let
Znosr denote the output of a model trained on disjoint labels without abstention, and Z,, denote the
output of a model trained with OSR, where clients abstain on out-of-distribution inputs. Then, the
mutual information between the model output and the true label satisfies:

Without OSR:  I(Zpe:;Y) < % log M, (1)
With OSR:  I(Zyy:Y) < log N. )

Discussion: The quantity (Zns; Y') is strictly bounded by the fraction of the label space each client
observes, increasing monotonically with M, and reaching its maximum log IV only in the centralized
case M = N. In contrast, training with OSR fully recovers the information about the global label
space, achieving the optimal bound log IV regardless of how labels are partitioned across clients.

Theorem 2: Optimal Functional Aggregation Let {f.}C_, be local client models trained with
OSR, where each model outputs a class probability vector over its known labels plus an abstention
token 1. Define the confidence weight for client ¢ on input x as a.(x) = 1 — f.(x)). Then, the
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global model [* that minimizes the following confidence-weighted functional alignment objective:

ZEM ac(@) - |[f* (@) = fe(x)]?] 3)

has the following solution, which acts as a confidence-weighted ensemble of the local models:

ff@)= Zc e cz_jac el 4)

Discussion: The global objective £(f*) is convex in f*, and the solution above is the exact global
minimizer in closed form. This is why it requires only a single communication round and guarantees
optimal alignment in the output space, with residual error determined solely by the accuracy and
abstention behavior of the local models. In contrast, FedAvg operates in parameter space and
performs only an approximate gradient descent step, which explains its iterative nature. However, this
approximation breaks down in highly non-IID scenarios, where local objectives diverge significantly.
As aresult, the aggregation step is no longer a true descent direction, and the associated error becomes
unbounded. Ensemble methods with OSR avoid this failure by aggregating directly in function space,
effectively stitching together the specialized knowledge of local models using information about
where each model is valid.

Theorem 3: Expected Test Error under Extreme Label Skew Let &,,, and &,,, denote the expected

test error of a global model obtained via parameter averaging and ensemble aggregation with OSR,
ac(z)

respectively, in a federated setting with disjoint label partitions. Let w.(x) = ST @ denote the
normalized confidence weights used in ensemble aggregation. Then:
C
Parameter Averaging: &, < ZE[[( fe@), )]+ caign  + (log N — X log M) (3)
— A
- Alignment error Label distribution error
Local training error
C
Ensemble with OSR:  Eens < Y E(yy)op, [we(x) - £(fe(2), y)] + 0 (6)
c=1 Label dist & alignment error

Local + OSR error

Implication: In ensemble aggregation, the only source of error arises from local model training and
the performance of the OSR, which controls confidence weighting w.(z). In contrast, parameter
averaging introduces additional error through the aggregation of model parameters, which is not a
true descent direction, especially when local objectives differ. Most prior works focus primarily on
this error caused by misalignment, with a range of analyses attempting to bound it under various
assumptions. We discuss these efforts and the alignment error term in greater detail in Appendix C.4.
However, the conditions under which these theoretical bounds hold are rarely satisfied in practice.
As a result, the misalignment error remains substantial in realistic federated settings. Moreover,
parameter averaging incurs an additional large error due to disjoint label distributions, leading to
much higher test error in practice. Therefore, under extreme label skew, we consistently observe
Eavg > Eens.

4 FEDEOV: FEDERATED ENHANCED OPEN-SET VOTING

We propose FedEOV, a one-shot ensemble method for FL that enhances OSR and addresses scalability
via model pruning. We introduce a more structured and effective negative sample generation process
that improves robustness to unseen classes. To mitigate the ensemble size growth inherent to one-shot
ensembling, we further introduce FedEOV-Pruned, a client-side, data-driven pruning scheme that
significantly compresses each local model with minimal accuracy degradation.

Enhancing Open-Set Recognition with Progressive Augmentations: In OSR, the goal is to ensure
that models abstain confidently on inputs from unseen classes. FedOV approaches this by introducing
synthetic negatives using cut-paste operations, region erasure, and adversarial perturbations using the
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Fast Gradient Sign Method (FGSM) Goodfellow et al.|(2014)). However, these augmentations often
leave behind structured low-level artifacts (e.g., hard edges or textures) that models can overfit to; this,
in turn, can enable trivial rejection of synthetic samples without learning semantically meaningful
boundaries. We refine this mechanism by employing a progressive three-stage training strategy,
designed to remove such shortcut cues. The first two stages mirror FedOV augmentations: standard
region erasure and cut-paste operations to introduce coarse disruptions, followed by untargeted FGSM
adversarial samples to confuse decision boundaries. In the final stage, we introduce harder samples
in the form of shuffled-patch augmentations with smoothed transitions. These transitions eliminate
shortcut cues such as sharp edges, preserving textural consistency while disrupting global semantics,
forcing the model to learn more meaningful representations. Appendix D provides the full algorithm,
and the implementation is available on GitHub through the link in the abstract.

Ensemble Scalability via Pruning: A core challenge in one-shot ensemble FL is that the global
model size grows linearly with the number of clients. Knowledge distillation has been proposed
as a remedy, but it typically requires server-side data and often dilutes model diversity, making it
ill-suited for many FL settings. Instead of relying on distillation, we note that a dense model trained
in a centralized manner can achieve strong performance with fixed capacity. This motivates the
hypothesis that a carefully pruned ensemble (effectively a convex combination of multiple models)
should, with the same overall parameter budget, retain sufficient capacity to perform well.

To test this, we employ an iterative lottery ticket pruning scheme executed locally on each client. At
fixed intervals (e.g., every 10 epochs), each model undergoes per-layer pruning based on activation
magnitudes. Surviving weights are reset to their original pre-training values before training resumes.
Repeating this process gradually reduces model size while preserving essential representational
capacity. Our aim is to demonstrate that pruning, unlike distillation, which often conflicts with FL
constraints, not only remains feasible but also tends to sustain higher accuracy. Further details of the
pruning procedure are provided in Appendix D, with a discussion of training and inference costs,
along with the limitations of distillation, in comparison to distillation in Appendix C.2.
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Figure 2: Overview of FedEOV and its scalable extensions. Left: FedEOV client-side training
is carried out in three stages involving negative augmentation, adversarial attacks, and shuffled
negatives to enable OSR. Middle: Server-side ensemble voting aggregates client predictions based
on unknown class confidences to infer the true label. Right: FedEOV-Pruned applies layer-wise
pruning and reinitialization on clients to reduce model size before sending it to server for ensemble.
Bottom: FedEOV-Distilled compresses the ensemble into a student model trained with distillation
using centralized class-balanced data.
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5 EXPERIMENTS

5.1 MAIN RESULTS

We primarily evaluate FedEOV under the extreme label skew setting, where each client has disjoint
class labels, representing the most challenging non-IID scenario (see Table[2). For completeness, we
also report results on two additional settings: a standard label skew scenario using Dirichlet sampling
(a=0.1) (TableE]) and a homogeneous 11D setting (Table E[) The parameter counts across methods
and client numbers are summarized in Table[T]

Table 1: Parameter Count Comparison Across Methods

Clients | FedAvg SCAFFOLD FedConcat MoFedSAM FedGF FedOV FedEOV* FedEOV-Distilled FedEOV-Pruned*
5 150K 150K 750K T50K 150K 750K 750K T50K T50K
10 150K 150K 750K 150K 150K 1.5M 1.5M 150K 150K
20 150K 150K 750K 150K 150K 3M 3M 150K 150K

Table 2: Performance Comparison of Federated Learning Methods (Extreme Heterogeneity)

# Dataset FedAvg | SCAFFOLD | FedConcat | MoFedSAM | FedGF | FedOV | FedEOV* | FedEOV-Distilled | FedEOV-Pruned*

MNIST 81.56 82.97 83.88 93.69 9395 | 8377 | 8762 672 85.69
FMNIST 66.05 64.68 63.34 75.31 75.57 68.89 74.0 61.8 75.41

5 SVHN 60.58 63.91 51.36 44.0 53.37 51.5 71.74 73.96 75.62
CIFAR-10 | 49.03 49.05 46.49 47.68 4822 | 69.09 | 80.83 67.53 68.68
CIFAR-100 29.54 29.5 3.81 28.62 29.98 86.14 87.69 62.38 67.16
Tiny-ImageNet 16.97 14.94 0.45 15.03 15.58 65.76 73.06 27.55 40.86
MNIST 4529 50.44 30.66 60.76 611 | 6842 | 85.61 4572 7379
FMNIST 60.3 60.31 28.84 64.62 64.73 64.64 73.12 54.69 65.22

10 SVHN 16.75 12.49 9.13 19.07 19.07 37.29 77.86 67.61 74.33
CIFAR-10 | 22.45 2171 18.75 25.66 2596 | 4327 | 64.06 48.27 49.59
CIFAR-100 20.5 20.51 3.44 19.03 20.07 71.07 81.89 55.96 54.58
Tiny-ImageNet 11.9 11.46 1.04 11.01 11.13 73.09 82.01 26.14 32.87
MNIST 25.04 332 3873 60.87 6125 | 8506 | 89.69 74.59 89.63
FMNIST 38.56 61.2 36.12 65.23 65.19 71.5 76.42 70.71 79.19

20 SVHN 19.05 12.57 9.47 14.41 14.41 63.24 76.47 71.57 73.46
CIFAR-10 | 23.63 24.22 18.83 25.95 2609 | 6277 | 719 63.83 58.93
CIFAR-100 12.87 12.7 3.69 12.11 12.51 85.4 93.56 58.59 55.5
Tiny-ImageNet 10.45 10.21 1.53 7.02 7.53 64.56 72.64 25.31 26.13

Table 3: Performance Comparison of Federated = Table 4: Performance Comparison of Federated

Learning Methods (Non-IID (Dirichlet 0.1)) Learning Methods (Homogeneous)
# Dataset FedAvg | FedOV | FedEOV* | FedEOV-Distilled | FedEOV-Pruned® # Dataset FedAvg | FedOV | FedEOV* | FedEOV-Distilled | FedEOV-Pruned*
MNIST 93.69 93.07 90.15 90.84 87.56 MNIST 95.31 99.24 99.08 98.96 98.97
FMNIST 76.16 81.82 80.98 79.57 70.23 FMNIST 81.36 93.03 92.41 91.54 90.98
5 SVHN 71.88 72.67 79.91 77.31 79.16 5 SVHN 50.48 92.62 90.99 90.09 89.32
CIFAR-10 54.36 80.91 83.53 76.47 69.91 CIFAR-10 79.19 91.2 92.33 88.78 843
CIFAR-100 34.93 88.85 90.04 66.79 73.78 CIFAR-100 48.57 90.16 89.88 68.94 67.7
Tiny-IN 26.38 71.42 69.74 338 44.09 Tiny-ImageNet | 34.07 71.35 69.25 33.78 41.69
MNIST 85.48 89.5 87.93 87.41 87.54 MNIST 91.77 98.94 98.87 98.7 99.14
FMNIST 71.85 79.76 80.76 78.41 85.3 FMNIST 76.3 91.8 91.35 90.62 93.35
10 SVHN 50.78 78.49 81.45 80.01 67.26 10 SVHN 19.15 90.9 89.58 88.78 91.79
CIFAR-10 43.27 73.28 82.06 74.19 63.35 CIFAR-10 69.06 71.44 89.8 86.58 77.16
CIFAR-100 25.81 90.11 92.77 70.39 61.68 CIFAR-100 32.88 90.34 92.09 71.04 61.68
Tiny-ImageNet 18.54 77.94 79.13 31.97 40.9 Tiny-ImageNet | 22.32 79.64 79.83 33.61 37.75
MNIST 59.55 92.67 93.06 92.25 92.5 MNIST 88.84 98.37 98.42 9.3 97.49
FMNIST 62.96 81.09 81.98 82.42 80.04 FMNIST 74.32 90.14 89.71 89.22 86.47
20 SVHN 17.53 76.95 81.81 80.35 74.89 20 SVHN 19.07 87.96 88.18 87.32 83.41
- CIFAR-10 40.59 774 81.83 75.26 66.96 - CIFAR-10 59.04 922 95.51 92.06 76.12
CIFAR-100 19.2 92.93 95.3 74.18 63.07 CIFAR-100 22.1 97.25 98.23 84.69 75.01
Tiny-IN 13.62 82.66 87.43 33.98 34.76 Tiny-ImageNet 12.25 84.62 87.2 36.31 30.53

Baseline Methods: We evaluate a range of federated learning methods spanning different aggrega-
tion paradigms. For standard parameter averaging approaches, we include FedAvg, SCAFFOLD,
MoFedSAM, and FedGF, using the hyperparameters provided in the original implementations of
MoFedSAM and FedGF. For ensemble-based methods, we compare our FedEOV with FedOV which
is state-of-the-art in ensemble methods. We also evaluate FedConcat, a hybrid ensemble approach
that incorporates both ensemble aggregation and parameter averaging, using the default clustering
hyperparameter from its original implementation. Additionally, we assess the efficacy of different
compression methods at the same parameter budget, by evaluating compressed variants of FedEOV:
FedEOV-Pruned and FedEOV-Distilled. To demonstrate the maximum potential of distillation, we
perform server-side distillation using IID data sampled from the actual dataset. We adjust the pruning
ratio per client setting to match the budget.

Federated Configuration and Datasets: Experiments span a range of standard vision benchmarks.
For parameter averaging and hybrid methods, we train for 100 communication rounds across all
datasets. On smaller datasets (MNIST, Fashion-MNIST, SVHN), we use 5 local epochs per round,
while for larger datasets (CIFAR-10, CIFAR-100, Tiny-ImageNet), we use 10 local epochs per round.
For ensemble-based methods, which require no communication rounds, we train for 10 local epochs
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on smaller datasets and 100 local epochs on larger datasets. All experiments are conducted across 5,
10, and 20 client configurations.

Default Setup: All models use a simple Convolutional Neural Network (CNN) with two convolu-
tional layers and one fully connected layer, trained with a learning rate of 0.001. Each experiment
is repeated across multiple random seeds to ensure statistical reliability, with most experiments
conducted over 5 seeds and mean performance reported. All experiments are run on a single NVIDIA
RTX 4090 GPU.

Additional Experiments. Appendix B presents additional results, including experiments across addi-
tional heterogeneity scenarios (feature skew), larger CNN architectures, varying Dirichlet parameters,
high-client-count configurations for datasets with numerous classes, and comprehensive comparisons
with a broader range of FL methods.

5.2 RESULT ANALYSIS

Ensemble-based methods consistently outperform parameter averaging and hybrid methods.
Performance across all methods remains reasonable in homogeneous and non-1ID (Dirichlet 0.1)
settings, but ensemble methods demonstrate superior accuracy while requiring significantly less
communication overhead, as explained by the theoretical foundations discussed in Section[3] However,
extreme label skew serves as the ultimate stress test: ensemble-based approaches demonstrate
resilience while all other methods experience severe performance degradation. This gap becomes
particularly pronounced on more challenging datasets such as CIFAR-10, CIFAR-100, and Tiny-
ImageNet, where the inherent challenges of extreme heterogeneous data expose the core weaknesses
of parameter averaging approaches. Notably, FedConcat appears especially compromised in these
extreme settings, which we attribute to its sensitivity to clustering parameters that fail to generalize
across our particular testing conditions.

FedEOV consistently outperforms FedOV in label skew settings. This overall average gain is
16.76% and can be attributed to our enhanced OSR strategy. In contrast, under homogeneous data
distributions, FedEOV offers no advantage over FedOV, which means that effective OSR is not critical
when all clients have access to all classes and can make confident predictions across the label space.

FedEOV-Pruned achieves comparable performance to

> 70

distilled models despite operating under more realistic £ cof

assumptions. In fact, under extreme heterogeneity prun- =5l

ing shows a 12.04% average gain over distillation. This ézz - v

result is particularly significant given that the distilled %20

variant requires access to centralized server-side data (an <0 o2 o o5 o

Sparsity Ratio

unrealistic assumption in many FL deployments). In con-
trast, pruned models achieve competitive accuracy without ~ Figure 3: Accuracy vs. pruning ratio.
requiring such privileged information or additional com-

putational overhead. Notably, on less complex datasets, pruning can actually improve performance
beyond the original model. While very high pruning can degrade accuracy, its key advantage lies
in providing a dial to balance performance and compression by adjusting the pruning ratio, as illus-
trated in Figure [3} iterative pruning is particularly effective under extreme label skew (CIFAR-10).
These results suggest that in realistic federated settings, where central data is unavailable, heavily
pruned ensemble models offer a compelling alternative to distillation. Training and inference cost
comparisons are discussed in Appendix C.2.

6 CONCLUSION

In this paper, we considered the problem of statistical heterogeneity in FL. framework and analyzed
the emerging paradigm of ensemble-based FL with OSR in comparison to dominant consensus-
driven parameter averaging across client models. We have shown that ensemble with OSR mitigates
information loss caused by data heterogeneity where many state-of-the-art methods struggle. Building
on our analysis, we introduced FedEOV, which improves performance of ensemble-based FL by
enhancing the OSR mechanism, and FedEOV-Pruned, which demonstrates that pruning is a viable
solution to the scalability challenge inherent to ensemble methods.
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