

000 RETHINKING FEDERATED AGGREGATION UNDER HET- 001 EROGENEITY: SCALABLE ENSEMBLES WITH OPEN- 002 SET RECOGNITION 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009

010 ABSTRACT 011

012 Federated learning (FL) has gained widespread adoption as a privacy-preserving
013 framework for distributed model training. However, it continues to face persistent
014 challenges, most notably statistical heterogeneity and high communication cost.
015 The current dominant paradigm in FL is consensus-driven averaging of model
016 parameters across clients. Most recent methods, despite their innovations, remain
017 anchored in repeated round averaging as the backbone of their design. The sub-
018 stantial communication overhead from repeated rounds is an obvious drawback,
019 but another matter of debate is whether this approach can succeed under hetero-
020 geneous data, which forms the central focus of this paper. We argue that this
021 prevailing approach fails to address heterogeneity. Using extreme label skew as
022 a lens to expose its limitations, we demonstrate that even the most recent meth-
023 ods that ultimately rely on parameter averaging remain fundamentally limited in
024 such settings. We instead advocate for an emerging alternative: ensemble-based
025 FL with open-set recognition (OSR), which, by preserving client-specific mod-
026 els and selectively leveraging their strengths, directly mitigates the information
027 loss and distortion caused by parameter averaging in heterogeneous settings. We
028 consider this approach a principled path forward for addressing heterogeneity,
029 substantiating our view through both theoretical analysis and extensive experi-
030 ments. However, we acknowledge its primary limitation: the linear growth of
031 ensemble size with client count, which hinders scalability. As a step forward
032 in this direction, we introduce FedEOV, which incorporates improved negative
033 sample generation to prevent shortcut cues, and FedEOV-pruned, which explores
034 pruning as a solution to the scalability problem, rather than relying on distillation,
035 thus avoiding the need for server-side data or additional training at the server.
036 Our experiments across multiple datasets and heterogeneity settings confirm the
037 superiority of our method, achieving an average improvement of 16.76% over
038 the state-of-the-art ensemble baseline, FedOV, under extreme label skew and up
039 to 102% over FedGF, the top-performing parameter averaging method. Further-
040 more, we show that pruned federated ensembles achieve performance on par with
041 distilled ensembles, without any server-side data or training requirements, even
042 when the latter is distilled using data from the same datasets. Code is available at:
043 <https://github.com/Anonymous6868-hue/FedEOV>

044 1 INTRODUCTION 045

046 Real-world distributed machine learning scenarios often involve strict privacy constraints, where
047 sharing raw data between parties is not permitted. Federated Learning (FL) has emerged as a popular
048 paradigm in such settings, enabling clients to collaboratively train a global model without exchanging
049 their private data Yang et al. (2019). A key objective in FL is to learn a model that generalizes well
050 across all client distributions while keeping the confidentiality of individual data intact.

051 Standard FL framework, FedAvg, is based on parameter averaging where clients perform local
052 training before sending it to a central server for averaging over multiple communication rounds to
053 produce a global model McMahan et al. (2017). While simple and widely adopted, FedAvg relies
on the assumption that client data is independent and identically distributed (IID), an assumption

054 that rarely holds in practice. In reality, federated systems often involve statistical heterogeneity,
 055 where clients have data drawn from different distributions. By averaging parameters, FedAvg seeks
 056 consensus across clients even when their local objectives diverge, making parameter averaging
 057 unreliable and slow in convergence, requiring massive communication rounds. Additional challenges
 058 arise from system heterogeneity, where clients differ in compute power and availability; model
 059 heterogeneity, where clients may use different architectures; and continual learning, where clients
 060 receive new data over time Pei et al. (2024); Criado et al. (2022).

061 Recently ensemble-based approaches have been proposed to address the communication efficiency
 062 and heterogeneity problems. While earlier works showed ensemble methods perform well under
 063 homogeneous data, more recent works have demonstrated their effectiveness to heterogeneous
 064 scenarios Diao et al. (2023). The state-of-the-art ensemble method, FedOV, uses open-set recognition
 065 (OSR) to identify an introduced unknown class while retaining the discriminative power of local
 066 models. This in a sense, naturally bypasses the issues like parameter misalignment Wang et al. (2020),
 067 and is inherently robust to statistical, system, and model heterogeneity. Notably, the performance of
 068 FedOV hinges on how effectively the OSR mechanism handles out of distribution shift at the local
 069 level. However, the primary limitation is that ensemble size grows linearly with the number of clients,
 070 making this approach impractical at scale.

071 Recent works such as FENS Allouah et al. (2024) and FedConcat Diao et al. (2024) propose hybrid
 072 approaches that combine elements of parameter averaging and ensemble. These methods correctly
 073 identify specialization, rather than consensus, as a key to handling client heterogeneity. However,
 074 both fall into the same core trap: they ultimately rely on parameter averaging to train the aggregation
 075 mechanism that combines specialized models. In doing so, they merely defer the heterogeneity
 076 problem to the final stage, where averaging, as a consensus mechanism, is inherently incapable of
 077 reconciling divergent client objectives. In this paper, we argue that parameter averaging should be
 078 avoided altogether. Instead, we theoretically show that open-set recognition during local training is
 079 sufficient for model aggregation, as it enables each client model to learn domain-specific information
 080 directly. The key idea is that when clients possess disjoint information, a specialization step within
 081 the solution is required to preserve each clients unique local knowledge. While this approach avoids
 082 global coordination and repeated communication entirely, it does lead to increased model size, a
 083 trade-off that we show can be managed through pruning. We term our method FedEOV: Federated
Enhanced Open-set Voting. Our main contributions in this paper are:

- 084 • We provide a theoretical analysis of why parameter averaging is fundamentally limited in
 085 heterogeneous FL, particularly under extreme label skew, and why aggregation via OSR
 086 correctly preserves and integrates client-specific knowledge without the distortion caused by
 087 averaging. To our knowledge, prior works have not established this theoretical basis.
- 088 • We introduce FedEOV, an enhanced ensemble-based framework that improves the OSR
 089 mechanism through more principled negative sample generation. We demonstrate that
 090 through a small yet well-motivated change, FedEOV consistently outperforms FedOV(the
 091 strongest baseline under the extreme heterogeneity we study) in label-skewed scenarios.
- 092 • We identify model scalability as the key barrier to practical deployment of ensemble-based
 093 FL. To this end, we propose FedEOV-Pruned, a pruning-based strategy that compresses
 094 ensembles without requiring server-side data, unlike prior distillation-based methods. To the
 095 best of our knowledge, we are the first to propose pruning in ensemble-based FL, achieving
 096 significant model size reduction while maintaining competitive or superior accuracy even at
 097 high pruning levels, compared to distillation.

098 The remainder of the paper is organized as follows. In Section 2, we review related work in FL.
 099 Section 3 presents a comparative analysis of parameter averaging and ensemble-based methods. In
 100 Section 4, we introduce our proposed methods, FedEOV and FedEOV-Pruned. Section 5 covers our
 101 experimental setup/results, and we conclude in Section 6.

104 2 BACKGROUND AND RELATED WORK

105 **Non-IID Data in FL: Early Solutions and Theoretical Insights:** FL must confront data heterogeneity
 106 across clients, which significantly degrades its performance. The seminal FedAvg algo-
 107 rithm McMahan et al. (2017) performs well under IID data, but its accuracy degrades under non-IID

108 settings. When clients have divergent data distributions (e.g., different label proportions or label
 109 skew), the global model update from averaging local parameters can diverge from the true descent
 110 direction. Numerous works have documented this issue: for example, Zhao et al. (2018) showed
 111 that highly skewed label distributions can cause FedAvg’s accuracy to drop by over 50%, and Li
 112 et al. (2020a) introduced FedProx to stabilize training via a proximal term. Even under IID data,
 113 averaging neural network weights can suffer from permutation inconsistency, leading to misaligned
 114 layers as noted by FedMA Wang et al. (2020). Mitigation strategies include correction of local
 115 updates (e.g., SCAFFOLD Karimireddy et al. (2020)), gradient harmonization Zhang et al. (2023),
 116 promoting flatter minima Qu et al. (2022a), explicit local–global alignment Li et al. (2021), and data
 117 sharing/augmentation. On the theoretical side, much early analysis of FedAvg focused on convex
 118 settings with guaranteed convergence under standard assumptions Li et al. (2020c), later extended
 119 to non-convex settings via bounded-dissimilarity assumptions in methods such as FedProx Li et al.
 120 (2020a) and FedDANE Li et al. (2020b). However, follow-up work Yuan & Li (2022) has shown that
 121 these assumptions conflict with the severe heterogeneity found in practice. Additional theoretical
 122 studies Diao et al. (2024); Allouah et al. (2024) have analyzed the fundamental limits of parameter
 123 averaging, including information-theoretic perspectives and quantification of the performance gap
 124 with alternative aggregation strategies. We refer readers to Appendix C.4 for a brief discussion on
 125 these error analyses.

126 **Recent Approaches to Label Skew in Federated Learning:** Despite these advances, there is still
 127 no single clear solution to the label skew problem, and a variety of techniques continue to be proposed.
 128 FedConcat Diao et al. (2024) clusters clients according to their label distributions, trains cluster-
 129 specific models via FedAvg, and constructs a global model by concatenating feature extractors across
 130 clusters while averaging only the classifier head. FedVLS Guo et al. (2025) addresses vacant-class
 131 scenarios by combining vacant-class distillation with logit suppression for non-local classes, thereby
 132 improving recognition of unseen labels while retaining parameter averaging. In addition, other
 133 approaches reflect different directions: FedLMD Lu et al. (2023) employs label-masking distillation
 134 to enhance minority-class learning, while FLea Xia et al. (2024) introduces obfuscated feature
 135 sharing with mixup-based augmentation under FedAvg. A particularly promising line of research
 136 focuses on sharpness-aware optimization, first explored in federated settings by FedSAM Qu et al.
 137 (2022a). Building on this idea, MoFedSAM Qu et al. (2022b) and the recent FedGF Lee et al. (2024)
 138 pursue flatter minima to alleviate client-drift and reduce the risk of model collapse under disjoint
 139 data.

140 **Ensemble-Based Approaches in Federated Learning:** Ensemble methods in FL were originally
 141 introduced to address the communication bottleneck, particularly in one-shot settings where each
 142 client trains locally and sends a model to the server only once Guha et al. (2019). Early designs
 143 simply averaged client models in a single round (one-shot FedAvg), but under severe heterogeneity
 144 this often yielded suboptimal results. This led to the alternative of combining *outputs* rather than
 145 weights, forming an ensemble at the server. While naive voting or averaging of predictions works for
 146 IID data, it fails in label-skewed settings, as models tend to misclassify unseen classes into seen ones,
 147 causing majority voting to collapse. Methods such as FEDBE Chen & Chao (2020), which treats
 148 global aggregation as a Bayesian ensemble over multiple global models, and FEDBOOST Hamer
 149 et al. (2020), which builds ensembles via weighted model averaging with theoretical guarantees for
 150 certain distributions, extended the ensemble concept but still faced this limitation. FEDOV Diao et al.
 151 (2023) addressed the problem by equipping each model with an open-set recognition mechanism
 152 that trains with synthetic outlier samples labeled as an *unknown* class, enabling models to abstain on
 153 unfamiliar inputs and improving ensemble decisions under heterogeneity. This OSR-based ensemble
 154 showed strong potential but has remained relatively underexplored. More recently, FEDCONCAT Diao
 155 et al. (2024) constructs a global model by concatenating the feature extractors of per-cluster models
 156 trained via FedAvg, averaging only the final classifier, thereby preserving specialized knowledge
 157 while still partially relying on parameter averaging, and FENS Allouah et al. (2024) learns a small
 158 neural aggregator at the server to fuse the outputs of client models in a stacked-generalization manner.
 159 Despite good performance under certain conditions and hyperparameters, these newer ensemble-
 160 style methods ultimately rely on parameter averaging to aggregate the unique information of the
 161 clients. This continued reliance reflects a common misunderstanding of the fundamental limitations
 of parameter averaging in FL, which motivates our theoretical analysis to clarify when and why
 averaging cannot be effectively used. For completeness, we review other One Shot FL categories in
 Appendix C.5, since they are not central to our analysis.

162 **Model Compression and Pruning in FL:** Although ensemble-based approaches were initially
 163 valued for reducing communication cost in federated learning and have recently shown strong
 164 potential in addressing heterogeneity, they carry a critical caveat: scalability. The scalability problem
 165 in FL has been recognized since early work such as Guha et al. Guha et al. (2019), where the cost of
 166 communicating and aggregating full models was shown to be a major bottleneck. Even if parameter
 167 averaging is avoided, a practical challenge for ensemble-based FL is the rapid growth in model size
 168 and deployment cost as the number of clients increases. Unlike FedAvg’s single global model, an
 169 ensemble that retains all local models can become prohibitively large, with total parameters scaling
 170 linearly with the number of clients. This scalability issue makes vanilla ensembling impractical
 171 in large networks or on edge devices. A common strategy to address this has been knowledge
 172 distillation, explored since FedMD Li et al. (2019), which demonstrated that heterogeneous models
 173 can collaborate via public-data logit sharing without revealing architectures or private data. In the
 174 ensemble compression setting, the server uses a public or generated dataset to train a compact global
 175 model that imitates the ensemble’s predictions. FedDF Lin et al. (2020) and related approaches
 176 exemplify this strategy, but they often assume access to auxiliary data at the server and risk sacrificing
 177 the diversity of the ensemble by collapsing it into a single model. Distillation essentially averages
 178 out the unique features of each client model, potentially losing the heterogeneity-based gains that
 179 ensembles offer. An alternative line of work explores *model pruning* to compress federated models.
 180 Li et al. Li et al. (2024) propose a client-side pruning approach where each client trains a local model
 181 and prunes less significant parameters before sending to the server, which then aggregates these
 182 slimmed models. Building on a similar intuition, our work (FedEOV-Pruned) applies pruning in
 183 the context of ensembles. As we will show, this strategy can compress an ensemble by an order of
 184 magnitude with minimal loss in accuracy, addressing the final barrier that prevents ensemble methods
 185 from becoming practical FL solutions at scale.

3 ANALYSIS OF AGGREGATION METHODS UNDER STATISTICAL HETEROGENEITY

190 In this section, we first build intuition for when and why parameter averaging and ensemble-based
 191 aggregation succeed or fail, starting from homogeneous scenarios and moving to increasingly skewed
 192 label distributions, with brief comments on communication cost. We then present theoretical bounds
 193 that formalize these observations. While our analysis centers on label skew, the advantages of
 194 ensembles with OSR extend to other FL challenges outlined in the introduction, including system
 195 heterogeneity, model heterogeneity, feature skew, and continual learning. Since these extensions are
 196 easier to see once the core case is understood, we present them separately in Appendix C.1 to keep
 197 the main discussion focused.

198 **In homogeneous setting, both parameter averaging and ensembling with OSR are effective, but differ in communication cost.** The first point to recall is that averaging, by its nature, accentuates
 199 commonalities and suppresses variability. This is why, under homogeneous data where each
 200 client approximates the same underlying function, parameter averaging is effective: the overlapping
 201 information enables convergence of the models toward a stable consensus. While the permutation
 202 invariance of neural networks may initially cause misalignment across client weights Wang et al.
 203 (2020), this typically resolves within a few rounds. Ensemble methods with OSR, in contrast, achieve
 204 strong performance in these settings using only a single communication round. In homogeneous
 205 settings, ensembling enhances generalization via a mixture-of-experts effect, leveraging model diver-
 206 sity across the clients. Also unlike parameter averaging, ensembles sidestep issues like permutation
 207 sensitivity and domain-specific misalignment, though at the cost of increased model size.

209 **Under mild label skew, parameter averaging can succeed given enough communication, with alignment-based methods offering more reliable performance.** In this setting, clients retain some
 210 label overlap, allowing global consensus to emerge over time. Even simple approaches like FedAvg
 211 may eventually converge, though often slowly and with reduced stability. Methods that explicitly aim
 212 to align client objectives or updates, such as SCAFFOLD, tend to perform better by correcting client
 213 drifts and accelerating convergence.

215 **Under extreme label skew, parameter averaging fails fundamentally, driven by two core issues: local drift and an information collapse caused by label partitioning.**

216 The first problem, local drift, is a well-known consequence of label skew, where clients converge to
 217 misaligned local optima. Although methods such as SCAFFOLD Karimireddy et al. (2020) recognize
 218 these challenges and attempt to realign client objectives to preserve the consensus-based formulation,
 219 these corrections are based on estimates of global gradients, which in turn rely on the very local
 220 gradients they aim to fix, creating a circular dependency. Debate continues around their utility under
 221 varying Dirichlet partitions, but in extreme label skew, where local gradients are entirely misaligned,
 222 these methods break down. Ensemble methods sidestep these elaborate alignment strategies by
 223 aggregating directly in function space, where such alignment is unnecessary as long as local models
 224 are trained to recognize out-of-distribution inputs.

225 The second failure is deeper: even with ideal
 226 optimization, heterogeneous label partitioning
 227 causes an information collapse. When clients
 228 see only a fraction of the global label space, the
 229 mutual information between model outputs and
 230 true global labels degrades with the number of
 231 labels per client, even under ideal training, as
 232 we will later show formally. This leads to triv-
 233 ial local optima; for example, when each client
 234 sees only a single label, a constant function min-
 235 imizes the cross-entropy loss without learning
 236 anything meaningful for the global task. How-
 237 ever, this collapse can be completely reversed by
 238 adding an abstention mechanism such as OSR.
 239 When clients are trained to abstain on unfamiliar
 240 inputs, the mutual information is fully recovered,
 241 as models must learn features that distinguish
 242 known from unknown. By preventing this col-
 243 lapsed through OSR, the stage is set for functional
 244 aggregation.

245 These two failure modes, local drift and information collapse, motivate a formal analysis of the
 246 expected error in FL under extreme label skew, where we contrast parameter averaging with ensemble-
 247 based aggregation. Theorem 1 establishes bounds on mutual information, showing that label par-
 248 titioning inevitably causes information loss even under ideal conditions, Theorem 2 establishes
 249 that ensemble aggregation with OSR constitutes an exact minimizer for an objective maximizing
 250 functional alignment of global model with all local models, and Theorem 3 provides error bounds
 251 that decompose into information, optimization, and local training errors for both parameter averaging
 252 and OSR-based ensembles. Complete proofs are provided in Appendix A.

253 **Theorem 1: Mutual Information under Idealized Training and Label Skew** Consider a classifi-
 254 cation task over N labels with uniform class priors. Each client is assigned a disjoint subset of M
 255 labels, and models are trained under idealized conditions (perfect optimization, sufficient data). Let
 256 Z_{nosr} denote the output of a model trained on disjoint labels without abstention, and Z_{osr} denote the
 257 output of a model trained with OSR, where clients abstain on out-of-distribution inputs. Then, the
 258 mutual information between the model output and the true label satisfies:

$$\text{Without OSR: } I(Z_{\text{nosr}}; Y) \leq \frac{M}{N} \log M, \quad (1)$$

$$\text{With OSR: } I(Z_{\text{osr}}; Y) \leq \log N. \quad (2)$$

259 **Discussion:** The quantity $I(Z_{\text{nosr}}; Y)$ is strictly bounded by the fraction of the label space each client
 260 observes, increasing monotonically with M , and reaching its maximum $\log N$ only in the centralized
 261 case $M = N$. In contrast, training with OSR fully recovers the information about the global label
 262 space, achieving the optimal bound $\log N$ regardless of how labels are partitioned across clients.

263 **Theorem 2: Optimal Functional Aggregation** Let $\{f_c\}_{c=1}^C$ be local client models trained with
 264 OSR, where each model outputs a class probability vector over its known labels plus an abstention
 265 token \perp . Define the confidence weight for client c on input x as $\alpha_c(x) = 1 - f_c(x)_{\perp}$. Then, the

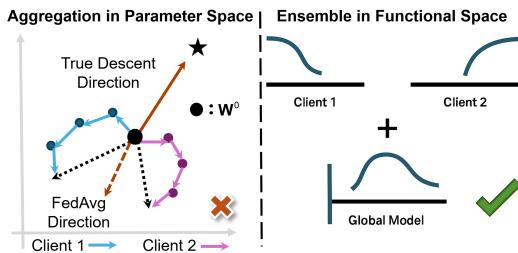


Figure 1: **Left:** Parameter-space averaging (e.g., FedAvg) can deviate significantly from the true descent direction, leading to unbounded error. **Right:** Functional-space aggregation (e.g., ensembles with OSR) preserves each client’s specialization, enabling robust stitching of functions into a globally consistent model. Aggregation error here depends primarily on OSR performance.

270 global model f^* that minimizes the following confidence-weighted functional alignment objective:
 271

$$272 \quad 273 \quad 274 \quad \mathcal{L}(f^*) = \sum_{c=1}^C \mathbb{E}_{x \sim \mathcal{D}_c} [\alpha_c(x) \cdot \|f^*(x) - f_c(x)\|^2] \quad (3)$$

275 has the following solution, which acts as a confidence-weighted ensemble of the local models:
 276

$$277 \quad 278 \quad 279 \quad f^*(x) = \frac{1}{\sum_{c=1}^C \alpha_c(x)} \sum_{c=1}^C \alpha_c(x) \cdot f_c(x) \quad (4)$$

280 **Discussion:** The global objective $\mathcal{L}(f^*)$ is convex in f^* , and the solution above is the exact global
 281 minimizer in closed form. This is why it requires only a single communication round and guarantees
 282 optimal alignment in the output space, with residual error determined solely by the accuracy and
 283 abstention behavior of the local models. In contrast, FedAvg operates in parameter space and
 284 performs only an approximate gradient descent step, which explains its iterative nature. However, this
 285 approximation breaks down in highly non-IID scenarios, where local objectives diverge significantly.
 286 As a result, the aggregation step is no longer a true descent direction, and the associated error becomes
 287 unbounded. Ensemble methods with OSR avoid this failure by aggregating directly in function space,
 288 effectively stitching together the specialized knowledge of local models using information about
 289 where each model is valid.

290 **Theorem 3: Expected Test Error under Extreme Label Skew** Let \mathcal{E}_{avg} and \mathcal{E}_{ens} denote the expected
 291 test error of a global model obtained via parameter averaging and ensemble aggregation with OSR,
 292 respectively, in a federated setting with disjoint label partitions. Let $w_c(x) = \frac{\alpha_c(x)}{\sum_{c=1}^C \alpha_c(x)}$ denote the
 293 normalized confidence weights used in ensemble aggregation. Then:

$$294 \quad 295 \quad 296 \quad \text{Parameter Averaging: } \mathcal{E}_{\text{avg}} \leq \underbrace{\sum_{c=1}^C \mathbb{E}[\ell(f_c(x), y)]}_{\text{Local training error}} + \underbrace{\varepsilon_{\text{align}}}_{\text{Alignment error}} + \underbrace{\left(\log N - \frac{M}{N} \log M\right)}_{\text{Label distribution error}} \quad (5)$$

$$297 \quad 298 \quad 299 \quad \text{Ensemble with OSR: } \mathcal{E}_{\text{ens}} \leq \underbrace{\sum_{c=1}^C \mathbb{E}_{(x,y) \sim \mathcal{D}_c} [w_c(x) \cdot \ell(f_c(x), y)]}_{\text{Local + OSR error}} + \underbrace{0}_{\text{Label dist \& alignment error}} \quad (6)$$

300 **Implication:** In ensemble aggregation, the only source of error arises from local model training and
 301 the performance of the OSR, which controls confidence weighting $w_c(x)$. In contrast, parameter
 302 averaging introduces additional error through the aggregation of model parameters, which is not a
 303 true descent direction, especially when local objectives differ. Most prior works focus primarily on
 304 this error caused by misalignment, with a range of analyses attempting to bound it under various
 305 assumptions. We discuss these efforts and the alignment error term in greater detail in Appendix C.4.
 306 However, the conditions under which these theoretical bounds hold are rarely satisfied in practice.
 307 As a result, the misalignment error remains substantial in realistic federated settings. Moreover,
 308 parameter averaging incurs an additional large error due to disjoint label distributions, leading to
 309 much higher test error in practice. Therefore, under extreme label skew, we consistently observe
 310 $\mathcal{E}_{\text{avg}} > \mathcal{E}_{\text{ens}}$.
 311

314 4 FEDEOV: FEDERATED ENHANCED OPEN-SET VOTING

315 We propose FedEOV, a one-shot ensemble method for FL that enhances OSR and addresses scalability
 316 via model pruning. We introduce a more structured and effective negative sample generation process
 317 that improves robustness to unseen classes. To mitigate the ensemble size growth inherent to one-shot
 318 ensembling, we further introduce FedEOV-Pruned, a client-side, data-driven pruning scheme that
 319 significantly compresses each local model with minimal accuracy degradation.
 320

321 **Enhancing Open-Set Recognition with Progressive Augmentations:** In OSR, the goal is to ensure
 322 that models abstain confidently on inputs from unseen classes. FedOV approaches this by introducing
 323 synthetic negatives using cut-paste operations, region erasure, and adversarial perturbations using the

Fast Gradient Sign Method (FGSM) Goodfellow et al. (2014). However, these augmentations often leave behind structured low-level artifacts (e.g., hard edges or textures) that models can overfit to; this, in turn, can enable trivial rejection of synthetic samples without learning semantically meaningful boundaries. We refine this mechanism by employing a progressive three-stage training strategy, designed to remove such shortcut cues. The first two stages mirror FedOV augmentations: standard region erasure and cut-paste operations to introduce coarse disruptions, followed by untargeted FGSM adversarial samples to confuse decision boundaries. In the final stage, we introduce harder samples in the form of shuffled-patch augmentations with smoothed transitions. These transitions eliminate shortcut cues such as sharp edges, preserving textural consistency while disrupting global semantics, forcing the model to learn more meaningful representations. Appendix D provides the full algorithm, and the implementation is available on GitHub through the link in the abstract.

Ensemble Scalability via Pruning: A core challenge in one-shot ensemble FL is that the global model size grows linearly with the number of clients. Knowledge distillation has been proposed as a remedy, but it typically requires server-side data and often dilutes model diversity, making it ill-suited for many FL settings. Instead of relying on distillation, we note that a dense model trained in a centralized manner can achieve strong performance with fixed capacity. This motivates the hypothesis that a carefully pruned ensemble (effectively a convex combination of multiple models) should, with the same overall parameter budget, retain sufficient capacity to perform well.

To test this, we employ an iterative lottery ticket pruning scheme executed locally on each client. At fixed intervals (e.g., every 10 epochs), each model undergoes per-layer pruning based on activation magnitudes. Surviving weights are reset to their original pre-training values before training resumes. Repeating this process gradually reduces model size while preserving essential representational capacity. Our aim is to demonstrate that pruning, unlike distillation, which often conflicts with FL constraints, not only remains feasible but also tends to sustain higher accuracy. Further details of the pruning procedure are provided in Appendix D, with a discussion of training and inference costs, along with the limitations of distillation, in comparison to distillation in Appendix C.2.

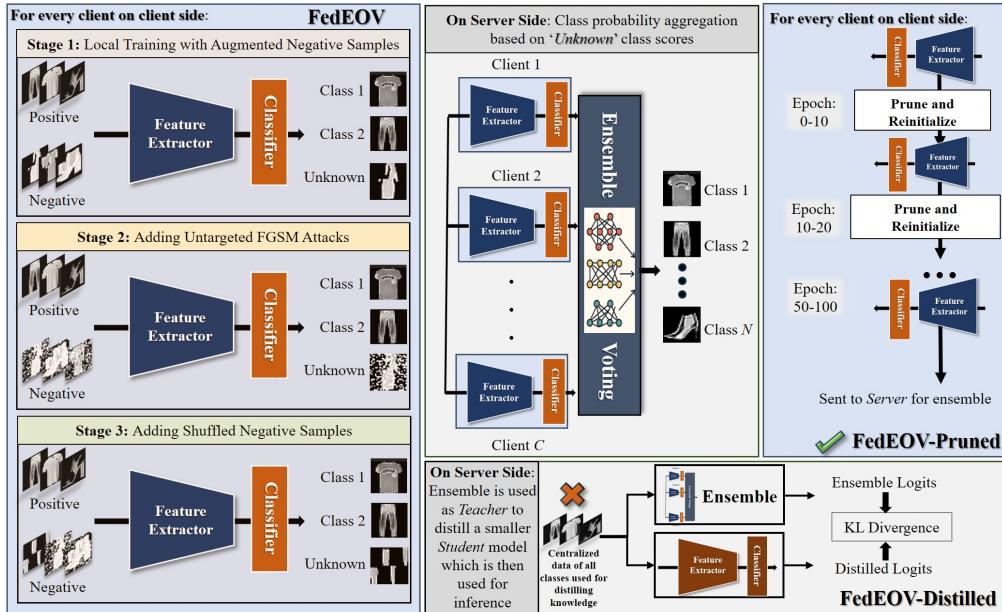


Figure 2: Overview of FedEOV and its scalable extensions. **Left:** *FedEOV client-side training* is carried out in three stages involving negative augmentation, adversarial attacks, and shuffled negatives to enable OSR. **Middle:** *Server-side ensemble voting* aggregates client predictions based on unknown class confidences to infer the true label. **Right:** *FedEOV-Pruned* applies layer-wise pruning and reinitialization on clients to reduce model size before sending it to server for ensemble. **Bottom:** *FedEOV-Distilled* compresses the ensemble into a student model trained with distillation using centralized class-balanced data.

378 5 EXPERIMENTS

380 5.1 MAIN RESULTS

382 We primarily evaluate FedEOF under the *extreme label skew* setting, where each client has disjoint
 383 class labels, representing the most challenging non-IID scenario (see Table 2). For completeness, we
 384 also report results on two additional settings: a standard *label skew* scenario using Dirichlet sampling
 385 ($\alpha = 0.1$) (Table 3) and a *homogeneous* IID setting (Table 4). The parameter counts across methods
 386 and client numbers are summarized in Table 1.

388 Table 1: Parameter Count Comparison Across Methods

Clients	FedAvg	SCAFFOLD	FedConcat	MoFedSAM	FedGF	FedOV	FedEOF*	FedEOF-Distilled	FedEOF-Pruned*
5	150K	150K	750K	150K	150K	750K	750K	150K	150K
10	150K	150K	750K	150K	150K	1.5M	1.5M	150K	150K
20	150K	150K	750K	150K	150K	3M	3M	150K	150K

392 Table 2: Performance Comparison of Federated Learning Methods (Extreme Heterogeneity)

#	Dataset	FedAvg	SCAFFOLD	FedConcat	MoFedSAM	FedGF	FedOV	FedEOF*	FedEOF-Distilled	FedEOF-Pruned*
5	MNIST	81.56	82.97		83.88	93.69	93.95	83.77	87.62	67.2
	FMNIST	66.05	64.68		63.34	75.31	75.57	68.89	74.0	61.8
	SVHN	60.58	63.91		51.36	44.0	53.37	51.5	77.74	73.96
	CIFAR-10	49.03	49.05		46.49	47.68	48.22	69.09	80.83	67.53
	CIFAR-100	29.54	29.5		3.81	28.62	29.98	86.14	87.69	62.38
	Tiny-ImageNet	16.97	14.94		0.45	15.03	15.58	65.76	73.06	27.55
10	MNIST	45.29	50.44		40.66	60.76	61.1	68.42	85.61	45.72
	FMNIST	60.3	60.31		28.84	64.62	64.73	64.64	73.12	54.69
	SVHN	16.75	12.49		9.13	19.07	19.07	37.29	77.86	67.61
	CIFAR-10	22.45	21.71		18.75	25.66	25.96	43.27	64.06	48.27
	CIFAR-100	20.5	20.51		3.44	19.03	20.07	77.07	81.89	55.96
	Tiny-ImageNet	11.9	11.46		1.04	11.01	11.13	73.09	82.01	26.14
20	MNIST	25.04	43.32		38.73	60.87	61.25	85.06	89.69	74.59
	FMNIST	38.56	61.2		36.12	65.23	65.19	71.5	76.42	70.71
	SVHN	19.05	12.57		9.47	14.41	14.41	63.24	76.47	71.57
	CIFAR-10	23.63	24.22		18.83	25.95	26.09	62.77	71.9	63.83
	CIFAR-100	12.87	12.7		3.69	12.11	12.51	85.4	93.56	58.59
	Tiny-ImageNet	10.45	10.21		1.53	7.02	7.53	64.56	72.64	25.31

406 Table 3: Performance Comparison of Federated Learning Methods (Non-IID (Dirichlet 0.1))

#	Dataset	FedAvg	FedOV	FedEOF*	FedEOF-Distilled	FedEOF-Pruned*
5	MNIST	93.69	93.07	90.15	90.84	87.56
	FMNIST	76.16	81.82	80.98	79.57	70.23
	SVHN	71.88	72.67	79.91	77.31	79.16
	CIFAR-10	54.36	80.91	83.53	76.47	69.91
	CIFAR-100	34.93	88.85	90.04	66.79	73.78
	Tiny-ImageNet	26.38	71.42	69.74	33.8	44.09
10	MNIST	85.48	89.5	87.93	87.41	87.54
	FMNIST	71.85	79.76	80.76	78.41	85.3
	SVHN	50.78	78.49	81.45	80.01	67.26
	CIFAR-10	43.27	73.28	82.06	74.19	63.35
	CIFAR-100	25.81	90.11	92.77	70.39	61.68
	Tiny-ImageNet	18.54	77.94	79.13	31.97	40.9
20	MNIST	59.55	92.67	93.06	92.25	92.5
	FMNIST	62.96	81.09	81.98	82.42	80.04
	SVHN	17.53	76.95	81.81	80.35	74.89
	CIFAR-10	40.59	77.4	81.83	75.26	66.96
	CIFAR-100	19.2	92.93	95.3	74.18	63.07
	Tiny-ImageNet	13.62	82.66	87.43	33.98	34.76

407 Table 4: Performance Comparison of Federated Learning Methods (Homogeneous)

#	Dataset	FedAvg	FedOV	FedEOF*	FedEOF-Distilled	FedEOF-Pruned*
5	MNIST	95.31	99.24	99.08	98.96	98.97
	FMNIST	81.36	93.03	92.41	91.54	90.98
	SVHN	50.48	92.62	90.99	90.09	89.32
	CIFAR-10	79.19	91.2	92.33	88.78	84.3
	CIFAR-100	48.57	90.16	89.88	68.94	67.7
	Tiny-ImageNet	34.07	71.35	69.25	33.78	41.69
10	MNIST	91.77	98.94	98.87	98.7	99.14
	FMNIST	76.3	91.8	91.35	90.62	93.35
	SVHN	19.15	90.9	89.58	88.78	91.79
	CIFAR-10	69.06	71.44	89.8	86.58	77.16
	CIFAR-100	32.88	90.34	92.09	71.04	61.68
	Tiny-ImageNet	22.32	79.64	79.83	33.61	37.75
20	MNIST	88.84	98.37	98.42	98.3	97.39
	FMNIST	74.32	90.14	89.71	89.22	86.47
	SVHN	19.07	87.96	88.18	87.32	83.41
	CIFAR-10	59.04	92.2	95.51	92.06	76.12
	CIFAR-100	22.1	97.25	98.23	84.69	75.01
	Tiny-ImageNet	12.25	84.62	87.2	36.31	30.53

408 **Baseline Methods:** We evaluate a range of federated learning methods spanning different aggregation
 409 paradigms. For standard parameter averaging approaches, we include FedAvg, SCAFFOLD,
 410 MoFedSAM, and FedGF, using the hyperparameters provided in the original implementations of
 411 MoFedSAM and FedGF. For ensemble-based methods, we compare our FedEOF with FedOV which
 412 is state-of-the-art in ensemble methods. We also evaluate FedConcat, a hybrid ensemble approach
 413 that incorporates both ensemble aggregation and parameter averaging, using the default clustering
 414 hyperparameter from its original implementation. Additionally, we assess the efficacy of different
 415 compression methods at the same parameter budget, by evaluating compressed variants of FedEOF:
 416 FedEOF-Pruned and FedEOF-Distilled. To demonstrate the maximum potential of distillation, we
 417 perform server-side distillation using IID data sampled from the actual dataset. We adjust the pruning
 418 ratio per client setting to match the budget.

419 **Federated Configuration and Datasets:** Experiments span a range of standard vision benchmarks.
 420 For parameter averaging and hybrid methods, we train for 100 communication rounds across all
 421 datasets. On smaller datasets (MNIST, Fashion-MNIST, SVHN), we use 5 local epochs per round,
 422 while for larger datasets (CIFAR-10, CIFAR-100, Tiny-ImageNet), we use 10 local epochs per round.
 423 For ensemble-based methods, which require no communication rounds, we train for 10 local epochs

432 on smaller datasets and 100 local epochs on larger datasets. All experiments are conducted across 5,
 433 10, and 20 client configurations.
 434

435 **Default Setup:** All models use a simple Convolutional Neural Network (CNN) with two convolutional
 436 layers and one fully connected layer, trained with a learning rate of 0.001. Each experiment
 437 is repeated across multiple random seeds to ensure statistical reliability, with most experiments
 438 conducted over 5 seeds and mean performance reported. All experiments are run on a single NVIDIA
 439 RTX 4090 GPU.

440 **Additional Experiments.** Appendix B presents additional results, including experiments across additional
 441 heterogeneity scenarios (feature skew), larger CNN architectures, varying Dirichlet parameters,
 442 high-client-count configurations for datasets with numerous classes, and comprehensive comparisons
 443 with a broader range of FL methods.

444

445 5.2 RESULT ANALYSIS

446

447 **Ensemble-based methods consistently outperform parameter averaging and hybrid methods.**

448 Performance across all methods remains reasonable in homogeneous and non-IID (Dirichlet 0.1)
 449 settings, but ensemble methods demonstrate superior accuracy while requiring significantly less
 450 communication overhead, as explained by the theoretical foundations discussed in Section 3. However,
 451 extreme label skew serves as the ultimate stress test: ensemble-based approaches demonstrate
 452 resilience while all other methods experience severe performance degradation. This gap becomes
 453 particularly pronounced on more challenging datasets such as CIFAR-10, CIFAR-100, and Tiny-
 454 ImageNet, where the inherent challenges of extreme heterogeneous data expose the core weaknesses
 455 of parameter averaging approaches. Notably, FedConcat appears especially compromised in these
 456 extreme settings, which we attribute to its sensitivity to clustering parameters that fail to generalize
 457 across our particular testing conditions.

458

459 **FedEOV consistently outperforms FedOV in label skew settings.** This overall average gain is
 460 16.76% and can be attributed to our enhanced OSR strategy. In contrast, under homogeneous data
 461 distributions, FedEOV offers no advantage over FedOV, which means that effective OSR is not critical
 462 when all clients have access to all classes and can make confident predictions across the label space.

463

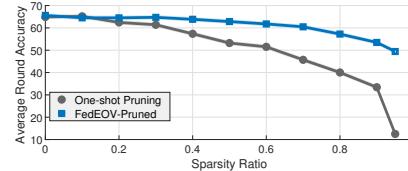
464 **FedEOV-Pruned achieves comparable performance to**
 465 **distilled models despite operating under more realistic**
 466 **assumptions.** In fact, under extreme heterogeneity pruning
 467 shows a 12.04% average gain over distillation. This
 468 result is particularly significant given that the distilled
 469 variant requires access to centralized server-side data (an
 470 unrealistic assumption in many FL deployments). In con-
 471 trast, pruned models achieve competitive accuracy without
 472 requiring such privileged information or additional com-
 473 putational overhead. Notably, on less complex datasets, pruning can actually improve performance
 474 beyond the original model. While very high pruning can degrade accuracy, its key advantage lies
 475 in providing a dial to balance performance and compression by adjusting the pruning ratio, as illus-
 476 trated in Figure 3; iterative pruning is particularly effective under extreme label skew (CIFAR-10).
 477 These results suggest that in realistic federated settings, where central data is unavailable, heavily
 478 pruned ensemble models offer a compelling alternative to distillation. Training and inference cost
 479 comparisons are discussed in Appendix C.2.

480

481 6 CONCLUSION

482

483 In this paper, we considered the problem of statistical heterogeneity in FL framework and analyzed
 484 the emerging paradigm of ensemble-based FL with OSR in comparison to dominant consensus-
 485 driven parameter averaging across client models. We have shown that ensemble with OSR mitigates
 486 information loss caused by data heterogeneity where many state-of-the-art methods struggle. Building
 487 on our analysis, we introduced FedEOV, which improves performance of ensemble-based FL by
 488 enhancing the OSR mechanism, and FedEOV-Pruned, which demonstrates that pruning is a viable
 489 solution to the scalability challenge inherent to ensemble methods.



487 Figure 3: Accuracy vs. pruning ratio.

486 REFERENCES
487

488 Youssef Allouah, Akash Dhasade, Rachid Guerraoui, Nirupam Gupta, Anne-Marie Kermarrec, Rafael
489 Pinot, Rafael Pires, and Rishi Sharma. Revisiting ensembling in one-shot federated learning. In
490 *Advances in Neural Information Processing Systems 37 (NeurIPS)*, 2024.

491 Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable to federated
492 learning. *arXiv preprint arXiv:2009.01974*, 2020.

493

494 Marcos F Criado, Fernando E Casado, Roberto Iglesias, Carlos V Regueiro, and Senén Barro. Non-iid
495 data and continual learning processes in federated learning: A long road ahead. *Information Fusion*,
496 88:263–280, 2022.

497 Yiqun Diao, Qinbin Li, and Bingsheng He. Towards addressing label skews in one-shot federated
498 learning. In *International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=rzrqh85f4Sc>.

499

500 Yiqun Diao, Qinbin Li, and Bingsheng He. Exploiting label skews in federated learning with model
501 concatenation. In *Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI)*,
502 pp. 11227–11235, 2024. doi: 10.1609/aaai.v38i10.29063. URL <https://ojs.aaai.org/index.php/AAAI/article/view/29063>.

503

504 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
505 examples. *arXiv preprint arXiv:1412.6572*, 2014.

506

507 Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot federated learning. *arXiv preprint
arXiv:1902.11175*, 2019.

508

509 Kuangpu Guo, Yuhe Ding, Jian Liang, Zilei Wang, Ran He, and Tieniu Tan. Exploring vacant
510 classes in label-skewed federated learning. In *Proceedings of the AAAI Conference on Artificial
511 Intelligence*, volume 39, pp. 16960–16968, 2025.

512

513 Jenny Hamer, Mehryar Mohri, and Ananda Theertha Suresh. Fedboost: A communication-efficient
514 algorithm for federated learning. In *International Conference on Machine Learning*, pp. 3973–3983.
515 PMLR, 2020.

516

517 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian U Stich, and
518 Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
519 *Proceedings of the 37th International Conference on Machine Learning (ICML)*, pp. 5132–5143,
520 2020.

521

522 Taehwan Lee et al. Rethinking flat minima searching in federated learning. In *ICML 2024 Workshop
523 or Poster (Federated Optimization / Sharpness-Aware FL)*, 2024. Poster presentation; exact venue
524 details TBD.

525

526 Andy Li, Milan Markovic, Peter Edwards, and Georgios Leontidis. Model pruning enables localized
527 and efficient federated learning for yield forecasting and data sharing. *Expert Systems with
528 Applications*, 242:122847, 2024.

529

530 Daliang Li, Jianshu Wang, and Yiming Wang. Fedmd: Heterogeneous federated learning via model
531 distillation. *arXiv preprint arXiv:1910.03581*, 2019.

532

533 Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In *Proceedings of
534 the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10713–10722.
535 IEEE, 2021.

536

537 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
538 Federated optimization in heterogeneous networks. In *Proceedings of Machine Learning and
539 Systems (MLSys)*, volume 2, pp. 429–450. MLSys, 2020a.

540

541 Tian Li, Anit Kumar Sahu, Muzammal Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
542 Feddane: A federated newton-type method. *arXiv preprint arXiv:2001.01920*, 2020b.

540 Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
 541 of fedavg on non-iid data. In *Proceedings of the 8th International Conference on Learning*
 542 *Representations (ICLR)*, 2020c.

543

544 Tian Lin, Lingjuan Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust
 545 model fusion in federated learning. In *Advances in Neural Information Processing Systems 33*
 546 (*NeurIPS*), pp. 2351–2363, 2020.

547 Jianghu Lu, Shikun Li, Kexin Bao, Pengju Wang, Zhenxing Qian, and Shiming Ge. Federated
 548 learning with label-masking distillation. In *Proceedings of the 31st ACM International Conference*
 549 *on Multimedia (ACM MM '23)*, pp. 222–232, 2023. doi: 10.1145/3581783.3611984.

550

551 H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 552 Communication-efficient learning of deep networks from decentralized data. In *Proceedings of the*
 553 *20th International Conference on Artificial Intelligence and Statistics (AISTATS)*, pp. 1273–1282,
 554 2017.

555 Jiaming Pei, Wenxuan Liu, Jinhai Li, Lukun Wang, and Chao Liu. A review of federated learning
 556 methods in heterogeneous scenarios. *IEEE Transactions on Consumer Electronics*, 70(3):5983–
 557 5999, 2024. doi: 10.1109/TCE.2024.3385440.

558 Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning
 559 via sharpness aware minimization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
 560 Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International*
 561 *Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*,
 562 pp. 18250–18280. PMLR, 17–23 Jul 2022a. URL <https://proceedings.mlr.press/v162/qu22a.html>.

563

564 Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning via
 565 sharpness aware minimization. In *International conference on machine learning*, pp. 18250–18280.
 566 PMLR, 2022b.

567

568 Jianyu Wang, Qiang Liu, H Brendan Liang, Gauri Joshi, and H Vincent Poor. Federated learning
 569 with matched averaging. In *International Conference on Learning Representations (ICLR)*, 2020.

570

571 Tong Xia, Abhirup Ghosh, Xinchi Qiu, and Cecilia Mascolo. Flea: Addressing data scarcity and label
 572 skew in federated learning via privacy-preserving feature augmentation. In *Proceedings of the*
 573 *30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '24)*, Barcelona,
 574 Spain, August 2024. doi: 10.1145/3637528.3671899.

575

576 Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and
 577 applications. *ACM Transactions on Intelligent Systems and Technology (TIST)*, 10(2):1–19, 2019.

578

579 Xiaotong Yuan and Ping Li. On convergence of fedprox: Local dissimilarity invariant bounds,
 580 non-smoothness and beyond. *arXiv preprint arXiv:2206.05187*, 2022. URL <https://arxiv.org/abs/2206.05187>.

581

582 Xinyu Zhang, Weiyu Sun, and Ying Chen. Tackling the non-iid issue in heterogeneous federated
 583 learning by gradient harmonization. *arXiv preprint arXiv:2309.06692*, 2023. URL <https://arxiv.org/abs/2309.06692>.

584

585 Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
 586 learning with non-iid data. *arXiv preprint arXiv:1806.00582*, 2018.

587

588

589

590

591

592

593