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Abstract Freezing layers in deep neural networks has been shown to enhance generalization and ac-

celerate training, yet the underlying mechanisms remain unclear. This paper investigates the

impact of frozen layers from the perspective of linear separability, examining how untrained,

randomly initialized layers influence feature representations and model performance. Using

multilayer perceptrons trained on MNIST, CIFAR-10, and CIFAR-100, we systematically

analyze the effects freezing layers and network architecture. While prior work attributes the

benefits of frozen layers to Cover’s theorem, which suggests that nonlinear transformations

improve linear separability, we find that this explanation is insufficient. Instead, our results

indicate that the observed improvements in generalization and convergence stem from other

mechanisms. We hypothesize that freezing may have similar effects to other regularization

techniques and that it may smooth the loss landscape to facilitate training. Furthermore,

we identify key architectural factors—such as network overparameterization and use of

skip connections—that modulate the effectiveness of frozen layers. These findings offer

new insights into the conditions under which freezing layers can optimize deep learning

performance, informing future work on neural architecture search.

1 Introduction

Deep neural networks, although effective for a variety of tasks, are costly to train. This is in-

creasingly apparent as the parameter count of deep neural networks skyrocket and get trained on

ever-growing datasets. In response, researchers have developed a variety of techniques to make

training neural networks more efficient. One such method is by freezing layers before training,

relying on the randomly initialized transformations to add expressivity to the network instead of

training the entire network. Using these frozen layers with randomly initialized transformations to

boost model performance is akin to using random, nonlinear high-dimension transformations in

recurrent neural networks (RNNs), referred to as reservoir computing (Lukoševičius and Jaeger,

2009). Prior work on reservoir computing has focused on liquid state machines (Maass et al., 2002)

and echo state networks (Jaeger, 2002). Shen et al. (2020) formally linked reservoir computing with

RNNs to freezing layers, using "reservoir" as a term to describe any network with frozen layers.

We adopt this terminology, referring to any network with frozen layers as reservoir networks.

We investigate freezing layers in neural networks to explain two previously documented

benefits in reservoir networks: better generalization and faster training convergence, requiring

fewer training steps to achieve peak performance (as demonstrated by Shen et al. (2020)). One often

theorized explanation for both the better generalization and faster training convergence is through

application of Cover’s theorem (Cover, 1965), interpreted as a nonlinear mapping of a data points

into a higher dimension feature space are more likely to be linearly separable than were the points

in their original, lower dimension input space (Gallicchio and Micheli, 2023; Kanevski et al., 2002;

Shen et al., 2020). Although this idea is often cited as the theoretical explanation for the improved

generalizability and faster training convergence of reservoir networks demonstrated in a variety

of experiments (Shen et al., 2020), we have not identified any work that has empirically validated

whether increased linear separability predicted from application of Cover’s theorem explains the
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observed benefits of frozen layers. We explore this by investigating the linear separability of

features extracted from the hidden states of fully connected neural reservoir networks.

Specifically, this paper investigates the following questions:

• Does freezing layers improve the linear separability of learned representations? We find that

reservoir networks often have increased hidden state linear separability (see Section 4.1). This is

more pronounced when using skip connections (see Section 4.1.3).

• How does freezing layers affect generalization and performance in reservoir networks? Freezing

layers usually but not always increases generalizability (see Sections 4.1.1, 4.1.2, and 4.1.3).

• What architectural conditions influence the benefits of freezing layers? Freezing layers improves

performance in massively overparameterized networks (see Sections 4.1.1, 4.1.2, and 4.1.3).

Additionally, the position of the frozen layers impacts whether generalization improves (see

Appendix A.2.3).

• Does Cover’s theorem explain increases in generalization and convergence rate in reservoir

networks? Our results indicate that Cover’s theorem provides only a partial explanation, and

other factors play a larger role (see Sections 4.1 and 4.2).

• What alternative explanations account for the observed effects? The effectiveness of freezing

layers is more likely due other factors. We hypothesize that the benefits from freezing layers in

neural networks either stems from freezing as a a form of regularization or its ability to smooth

the loss landscape rather than the application of Cover’s theorem. We provide intuition and

preliminary evidence to support these hypotheses (see Section 4.2 and Appendix A.2.2).

2 Background & Related Work

Freezing Parts of Neural Networks. Freezing parts of neural networks is a common practice in

transfer learning as a way to speed up model convergence or to reduce forgetting (Dar et al., 2022;

Lee et al., 2019; Liu et al., 2021; Xiao et al., 2019). This approach is increasingly applied to randomly

initialized networks for improving training efficiency. Recent work has focused on developing

techniques to sequentially freeze layers during training (Brock et al., 2017; S. Li et al., 2024; Wang

et al., 2023), freezing layers in varied architectures (Shen et al., 2020), freezing parts of layers

(Isikdogan et al., 2020), freezing individual weights (Miao and Zhao, 2023), or using freezing layers

as a dropout alternative Goutam et al., 2020. Shen et al. (2020) also explored the effect of the position

of the frozen layers, finding that alternating frozen and trainable layers led to the best performance.

Some research shows that networks with trainable batch normalization and all other parameters

frozen can achieve high performance (Frankle, Schwab, et al., 2020). Additionally, researchers

connected freezing parts of neural networks with pruning and other methods of identifying and

training sparse networks (Wimmer et al., 2023). Related to pruning is the Lottery Ticket Hypothesis

(LTH) (Frankle and Carbin, 2018), which states that sufficiently overparameterized networks likely

contain a sparse subnetwork with equal performance. Both freezing randomly initialized layers

and the LTH place importance on randomly initialized parameters. Freezing uses random layers

as general feature extractors to improve performance while the LTH uses them to find optimal

subnetworks. Furthermore, as we demonstrate in Section 4.1, the benefits of freezing layers in

neural networks manifest in overparameterized networks, which connects to a core tenet of the

LTH suggesting that neural networks are massively overparameterized. The key difference between

freezing, which we investigate in this work, and pruning-based strategies (inclusive of both post-

training pruning and the LTH) is that freezing keeps all weights active in the network, but some

weights are not updated during training. This means that information flows through all weights

of the network, even if the weight never trains. In pruning-based strategies, certain weights are

replaced with 0, resulting in that connection being removed in the network.
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Some prior work has discussed the impact of pruning on neural network linear separability.

Lengellé and Denoeux (1996) measured linear relationships between internal representations and

outputs using the sample coefficient of multiple determination (CMD), and the authors found that

networks could be slightly pruned without any reduction in the CMD. Additional pruning then

led to more substantial reductions in CMD. Jiang et al. (2021) illustrated that linear separability

increased with pruning ratio for ResNet-18 trained on a subset of CIFAR-100 until a ratio of 90%.

After that, linear separability scores fell dramatically. This pattern mirrors findings from the LTH

(Frankle and Carbin, 2018): performance improves with moderate pruning but deteriorates beyond

a critical threshold, suggesting a shared underlying mechanism where moderate sparsification

sharpens representations impacting both linear separability and overall network accuracy, while

excessive pruning degrades them.

Linear Probing. The goal of linear probing is to understand the inner workings of deep neural

networks using simple linear classifiers. Alain and Bengio (2016) introduced linear probes to

explore the dynamics of intermediate layers and diagnose network pathologies. They used a

densely connected map into a softmax output layer with cross-entropy to assess linear separability.

Since then, numerous researchers have used linear classifier probes to better explore neural network

hidden layers in a variety of models and tasks (Fan et al., 2024; Frati et al., 2024; Xu et al., 2025;

Zhang et al., 2023).

Neural Architecture Search. This work’s investigation of neural architecture and its connection
with hidden state linear separability and overall network performance is reminiscent of work in

neural architecture search (NAS). In NAS, the goal is to automatically identify an architecture with

optimal performance on a certain task (Elsken et al., 2019). One naive method to assess neural

architectures is a grid search over a search space of architectural parameters, which has been widely

discussed and applied (Liashchynskyi and Liashchynskyi, 2019; Schmitz et al., 2024). Although

far more sophisticated NAS search strategies exist (Chitty-Venkata et al., 2023), basic sweeps over

architectural parameters help understand what architectural features are relevant for a search

space. Freezing parts of networks is not an entirely new concept in NAS. For example, Fahlman

and Lebiere (1989) introduced Cascade-Correlation, which added units to a network one-by-one

and froze its input weights after being added. B. Chen et al. (2021) introduced BN-NAS, which used

a supernet with frozen weights and trained only the batch normalization layers of the supernet

to help identify candidate subnetworks. However, the initially frozen weights were eventually

unfrozen for subnet retraining. While these demonstrate that some approaches have used freezing

as a tool to facilitate NAS, we have not found a NAS approach that has leaves randomly initialized

and never-trained parameters in the final models.

3 Experimental Setup

We train multilayer perceptrons on MNIST (LeCun et al., 1998), CIFAR-10 (Krizhevsky, Hinton,

et al., 2009), and CIFAR-100 (Krizhevsky, Hinton, et al., 2009) to explore the relationship between

freezing layers, linear separability, and network architecture. Our networks consist of reservoir

blocks, each with three layers: a trainable layer, a reservoir layer, and another trainable layer. This

structure follows Shen et al. (2020), who found that alternating trainable and frozen layers optimizes

performance. We explored the impact of the position of the frozen reservoir layers in the network

and included the results of that investigation in Appendix A.2.3. In reservoir networks, reservoir

layers remain fixed at initialization during training. In both reservoir and fully trainable networks,

we scale the reservoir layer width by a factor. Our base networks have two reservoir blocks for a

total of 6 layers, a reservoir layer scaling factor of two, alternating trainable and reservoir layers,

and no regularization. For experiments on MNIST, we set the network’s base width to 64 neurons.

For experiments on CIFAR-10 or CIFAR-100, we set the network’s base width to 256 neurons. For

each set of hyperparameters, we train 25 reservoir networks and 25 fully trainable networks of the
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same configuration for comparison. We perform a t-test of the accuracy scores to understand the

significance of the difference between reservoir networks and fully trainable networks.

We assess the linear separability of hidden states of the neural network using a least-squares

solvers trained on the features of each hidden layer using the training set. We use those least-

squares solvers to evaluate linear separability of the hidden state features for both the training and

testing sets. This linear separability score is the accuracy of the linear solver for classification using

the hidden state features. As such, linear separability scores are constrained between 0 and 1, with

1 indicating perfect accuracy and linear separability of the hidden state features. Linear separability

scores are often similar to the network’s overall accuracy score; therefore, are best interpreted

relative to accuracy and other linear separability scores on the same dataset. Although linear probes

traditionally use a densely connected map into a softmax operation (Alain and Bengio, 2016), we

find that using a least-squares solver produces a similar result with substantially less compute. In

Appendix A.1, we demonstrate that linear separability scores evaluated using a least-squares solver

and a traditional densely connected map are highly correlated with 𝑟 2 = 0.978 and 𝑟 2 = 0.864 for

training and testing linear separability scores, respectively.

All experimentswere run on anNVIDIAV100GPU andXeon(R) Gold 6130 CPUwith TensorFlow

2.17.0 (Abadi et al., 2016). Code and results are available on GitHub.
1

4 Results

4.1 Link between Linear Separability and Model Performance

In the following set of results, we demonstrate the relationship between neural network architecture,

linear separability, and network performance. We present accuracies and figures on the average

hidden state linear separability scores of the testing sets of CIFAR-10 and CIFAR-100. We provide

linear separability plots using the MNIST testing set in Appendix A.2.4, training sets of each dataset

in Appendix A.3, and tables of average model accuracy in Appendix A.5. We examine freezing and

other regularizers in Appendix A.2.2 and the position of the reservoir layers in A.2.3.

The following sweeps over architectural parameters serve multiple purposes. First, they allow us

to explore the applicability of Cover’s theorem to explain the performance boost seen from freezing

layers in neural networks. Sweeps over network widths and reservoir layer scaling factor allow us

to investigate nonlinear random transformations in increasing dimensions. Intuitively, increasing

network width and reservoir layer scaling factors results in mappings to higher dimensions, which

should result in more linearly separable data. With regard to network depths, prior research has

documented that linear separability increases with network depth (Alain and Bengio, 2016). As

such, we expect that deeper networks display more linear separability. The hyperparameter sweeps

we present in the following section provide insights for NAS on reservoir networks by exploring

how freezing layers and network architecture interact to influence overall performance.

4.1.1 Network Width. We first examine how network width interacts with frozen layers and linear

separability. Prior research suggests that freezing layers improves generalizability (Shen et al.,

2020). From Cover’s theorem, we expect wider networks to enhance linear separability by pro-

jecting data into higher-dimensional spaces. This sweep explores how width impacts separability,

generalizability, and the capacity of frozen layers to create a set of functions to span the space. For

CIFAR-10 and CIFAR-100, we assess base widths from 2
5
to 2

10
neurons. For MNIST, we assess base

widths from 2
4
to 2

9
neurons. Each trainable layer has neurons equal to the base width, and each

reservoir layer has neurons equal to the base width times a scaling factor of 2.

Figure 1 shows that wider networks consistently exhibit higher linear separability. Across all

widths, reservoir networks outperform fully trainable ones in both separability (see Figure 1) and

1
The following GitHub repository contains all code and results related to this paper: https://github.com/

CollinCoil/freezing-linear-separability
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(a) CIFAR-10 Testing Set Results (b) CIFAR-100 Testing Set Results

Figure 1: Average linear separability of the hidden state features for CIFAR-10 (a) and CIFAR-100 (b)

with 95% confidence intervals for a sweep over network widths. Wider networks produced

greater average hidden state feature linear separability scores. In reservoir networks, the

frozen, reservoir layers are denoted by the vertical dotted black lines. All other layers are

trainable in reservoir networks. In fully trainable networks, all layers are trainable, including

the wider reservoir layers.

test accuracy (𝑝 < 0.01 for each width; see Table 1 for CIFAR-10 and Table 14 in the supplement

for CIFAR-100). An exception occurs at the narrowest width (32 neurons), where fully trainable

networks achieve significantly higher test accuracy and linear separability scores. This suggests

overparameterization is necessary for freezing layers to provide benefits. Results for MNIST are

shown in supplementary material Section A.2.4 and show that freezing layers does not improve

model test accuracy for any network base width. Finally, comparing Figure 1a with Table 1 confirms

a strong correlation between final-layer separability and network accuracy, reinforcing the link

between linear separability and performance.

Table 1: CIFAR-10 width sweep tabular results. Reservoir is reservoir model; trainable is fully trainable

model. Bold accuracy scores represent significantly greater average accuracy for the reservoir

models or fully trainable models. Bold p-values signify scores less than 0.01 based on a t-test

of the mean accuracy scores of the reservoir model and fully trainable model.

CIFAR-10 Training Accuracy Testing Accuracy

Width Reservoir Trainable P-value Reservoir Trainable P-value

32 0.483 0.501 1.146E-01 0.436 0.439 7.399E-01

64 0.606 0.638 1.818E-07 0.472 0.460 2.119E-04
128 0.750 0.796 1.209E-15 0.465 0.456 6.441E-05
256 0.852 0.882 7.880E-15 0.463 0.456 3.470E-03
512 0.888 0.900 1.147E-04 0.463 0.449 4.075E-05
1024 0.876 0.886 4.354E-02 0.464 0.436 4.436E-12

4.1.2 Reservoir Layer Scaling Factor. Intuitively, Cover’s theorem suggests that if you transform data

using a random nonlinear map, the data tend to be more linearly separable the transformation

goes into increasingly higher dimension. We explore this by sweeping over scaling factors for

the reservoir layer, which determines the number of neurons in the reservoir layer relative to the

network’s base width. We assess scaling factors from 0.25 to 32 in powers of 2.

As shown in Figure 2, larger reservoir layers generally yield higher separability in layers 1 and

4, except at extreme scaling factors (32 times in CIFAR-10, 16 times and 32 times in CIFAR-100),
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(a) CIFAR-10 Testing Set Results (b) CIFAR-100 Testing Set Results

Figure 2: Average linear separability of the hidden state features for (a) CIFAR-10 and (b) CIFAR-100

for a sweep over reservoir layer scaling factor. Reservoir networks with greater scaling

factors produced greater average linear separability in the reservoir layer (denoted by the

dotted black line) The exception to this trend is networks with scaling factors of 32 in (a)

and networks with scaling factors of 16 or 32 in (b). These networks often failed to train,

meaning they never performed substantially better than random chance.

where networks often failed to train due to overparameterization, likely resulting in vanishing

gradients. Freezing layers led to increased testing set accuracy in CIFAR-10 for most scaling factors

greater than or equal to 1 (𝑝 ≪ 0.01 for scaling factors 1-16, 𝑝 ≈ 0.54 for scaling factor of 32; see

Table 2). In CIFAR-100, reservoir networks with scaling factors from 0.25 to 8 had increased testing

accuracy (𝑝 ≈ 0.95 for scaling factor of 0.25, 𝑝 ≪ 0.01 for scaling factors 0.5-8; see Table 15).

Table 2: CIFAR-10 reservoir layer scaling factor sweep tabular results. Reservoir is reservoir model;

trainable is fully trainable model. Bold accuracy scores represent significantly greater average

accuracy for the reservoir models or fully trainable models. Bold p-values signify scores less

than 0.01.

CIFAR-10 Training Accuracy Testing Accuracy

Scaling Factor Reservoir Trainable P-value Reservoir Trainable P-value

0.25 0.861 0.804 1.022E-28 0.453 0.463 5.811E-07
0.5 0.888 0.842 6.778E-29 0.461 0.462 3.696E-01

1 0.878 0.868 5.247E-05 0.466 0.458 2.719E-05
2 0.857 0.877 5.003E-07 0.463 0.453 4.123E-05
4 0.811 0.866 4.577E-16 0.459 0.443 1.550E-07
8 0.747 0.803 1.870E-06 0.456 0.402 4.745E-13
16 0.625 0.633 7.858E-01 0.443 0.382 7.017E-18
32 0.369 0.369 9.954E-01 0.334 0.319 5.392E-01

Unexpectedly, scaling factors less than 1 led to higher separability between the first trainable

layer (0) and the first reservoir layer (1) when reservoir layers were frozen, contradicting the

intuitive application of Cover’s theorem. This suggests trainable layers adapt to leverage frozen

layers’ expressivity. Nevertheless, this result calls into question the application of Cover’s theorem

to explain the increased performance of neural networks. In the second reservoir layer of the

networks (layer index 4), we see that linear separability scores decrease from layer 3 to layer

4, aligning with intuition. This result underscores the complex interaction between network

architecture and frozen layers, suggesting that Cover’s theorem alone may not fully explain benefits

from freezing layers.
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4.1.3 Network Depth. A deeper network with more reservoir blocks results in more nonlinear mappings

into higher dimension followed by reducing dimension and noise. This, coupled with the fact that

deeper layers tend to extract more linearly separable features (Alain and Bengio, 2016), could make

increasing depth a major architectural influence on hidden state feature linear separability and

overall network performance. To assess this, we sweep over networks of one reservoir block deep

to eight reservoir blocks deep (i.e., three to 24 hidden layers).

(a) CIFAR-10 Testing Set Results (b) CIFAR-10 Testing Set Results with Skip Con-

nections

Figure 3: Average linear separability of the hidden state features for (a) networks trained on CIFAR-10

and (b) networks with skip connections trained on CIFAR-10 for a sweep over network

depth. Reservoir networks had higher average linear separability scores and accuracies for

all depths on CIFAR-10 and most on CIFAR-100. Skip connections dramatically altered linear

separability dynamics in hidden layers. Results on CIFAR-100 are in Appendix A.2.1.

The results of this sweep are shown in Figure 3. Freezing layers produced higher average

hidden state linear separability scores and accuracies for all depths on CIFAR-10 (𝑝 ≪ 0.01 for each

depth; see 10). On CIFAR-100, networks with 6, 7, or 8 reservoir blocks failed to train, resulting

in performing no better than chance. However, in networks with fewer reservoir blocks, freezing

layers produced significantly higher accuracy (𝑝 ≪ 0.01 for each depth; see Table 16). Notably,

fully trainable deep networks (8 blocks in CIFAR-10, 5 or more in CIFAR-100) often failed, whereas

frozen counterparts performed significantly better, highlighting layer freezing as a regularization

mechanism that stabilizes training in overparameterized models. Freezing layers serves to constrain

certain parameters to remain at their initial values, preventing them from updating during the

optimization process. This constraint clearly has a regularization effect, often reducing overfitting

on the training set and improving generalization to the testing set.

Surprisingly, linear separability does not increase monotonically with depth, contradicting prior

findings (Alain and Bengio, 2016). This suggests that reservoir dynamics are somewhat contrary to

prior findings. This is further supported by an investigation into the position of the frozen reservoir

layers in a network. We find that the location of the frozen reservoir layers substantially impacts

the representations learned throughout the network (see Appendix A.2.3). We also performed a set

of experiments to compare freezing to other kinds of regularization, finding that networks with

both frozen layers and traditional regularization strategies were overpenalized and did not perform

as well, suggesting that the benefits of freezing and regularization may manifest through the same

mechanism (see Appendix A.2.2).

Given that frozen layers enable training deep networks, we examine whether skip connec-

tions—another common deep network trick—interact with layer freezing. Inspired by Shen et al.

(2020), who described freezing as a “cheap way to increase depth,” we assess whether skip connec-

tions complement or duplicate this effect. We modify networks (depths 2–8 blocks) by adding skip
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connections from the output of the first layer of a reservoir block to the pre-activation input of

the next block (Figure 6). While traditional skip connections pass over entire blocks, we start ours

following the first layer of a reservoir block to avoid needing to correct for mismatched dimensions.

The results show that in networks with skip connections, frozen layers still yield higher accuracy

(𝑝 ≪ 0.01; see Tables 13 and 19) and higher linear separability than fully trainable counterparts. The

linear separability scores in networks with skip connections are radically different than networks

without skip connections. In networks without skip connections, linear separability scores trended

down progressing through the network. However, the addition of skip connections prevented a

downward trend in linear separability scores. Moreover, skip connections alter how features evolve

within reservoir blocks. In fully trainable networks, average hidden state linear separability peaks

at the beginning of a reservoir block before falling in the subsequent two layers, suggesting key

features propagate through the first layer while later layers contribute less. In reservoir networks,

however, we see a different dynamic. While linear separability score shoots up at the beginning of

each block, it peaks in the frozen layer before collapsing in the final trainable layer of the block.

This suggests that while both freezing layers and skip connections serve to enhance trainability of

deeper networks, they do so through different and complementary mechanisms.

4.2 Learned Linear Separability

The above results relate to the increased generalizability in reservoir networks but are uninformative

about the faster training convergence, as illustrated by fewer training iterations necessary for

reservoir networks to reach peak performance. To assess this, we explore the linear separability of

hidden state features throughout the training process.

The fact that neural networks learn linearly separable features during training has been previ-

ously documented (Xu et al., 2025). However, we are unaware of an explicit demonstration that

reservoir networks learn linearly separable features faster than their fully trainable counterparts.

To investigate this, we perform a new experiment. In addition to freezing entire layers, we freeze a

certain percentage of weights per layer, ensuring that the weights do not update during the training

process. We sweep over freezing 10% to 50% of weights in each layer of the network. The goal is

to explore whether the speedup in training convergence is from freezing layers or if it can more

generally be achieved by freezing random weights.

(a) CIFAR-10 Testing Set Results (b) CIFAR-100 Testing Set Results

Figure 4: Average linear separability of the hidden state features from layer 1 for (a) CIFAR-10 and

(b) CIFAR-100 over the first 10 training epochs. Networks with frozen parameters converge

faster than fully trainable networks, regardless of whether random weights or entire layers

are frozen. Freezing more frozen parameters results in networks learning linearly separable

faster. Note that layer 1 is a reservoir layer, meaning it is completely frozen in reservoir

networks. Similar results from other layers are in appendix Section A.4.

8



In Figure 4, we see that freezing parameters leads to networks learning linearly separable

features faster than fully trainable networks. Interestingly, freezing more parameters in the network

results in faster learning of linearly separable features. Since this increase in convergence speed is

seen in both networks with frozen layers (i.e., reservoir networks) and randomly frozen parameters,

it appears that this phenomenon is likely a result of something besides application of Cover’s

theorem. However, it is interesting to note that layer-frozen networks learn linearly separable

features fastest, including networks with more frozen parameters (the reservoir networks have

about 19% frozen parameters). These findings extend to accuracy, which is presented in Tables 3

and 20. These tables demonstrate that reservoir networks increase accuracy fastest, and increasing

the percent of randomly frozen weights resulted in networks learning faster. We suspect that the

increase in convergence rate is a result of freezing parameters having a smoothing effect on the

loss landscape, but this remains an open question for future study.

Table 3: CIFAR-10 testing accuracy for the first several epochs. Reservoir is reservoir model; trainable

is fully trainable model. Columns with percentages represent networks with that percent

of weights randomly frozen per layer. Bold accuracy scores represent significantly greater

average accuracy for the reservoir models or random weight frozen models when compared

to the fully trainable model (p-values less than 0.01).

CIFAR-10 Random Weights Frozen

Epoch Unfrozen Reservoir 10% 20% 30% 40% 50%

0 0.101 0.099 0.101 0.100 0.101 0.098 0.100

1 0.347 0.357 0.353 0.346 0.356 0.355 0.353

2 0.386 0.397 0.391 0.390 0.393 0.396 0.398
3 0.412 0.426 0.414 0.415 0.416 0.418 0.424
4 0.429 0.440 0.432 0.433 0.435 0.438 0.438

5 0.444 0.454 0.445 0.446 0.451 0.450 0.449

5 Conclusion

Our investigation to understand the mechanisms powering the increased generalizability and

convergence rate of reservoir networks reveals several key insights that challenge conventional

understanding and offer new directions for neural architecture design.

First, Cover’s theorem, which posits that nonlinear transformations increase the likelihood of

linear separability, has often been cited to explain the benefits of freezing layers. However, our

findings suggest that Cover’s theorem alone is insufficient to account for the observed improvements,

as even networks with scaling factors less than one benefited from freezing (see Section 4.1.2),

contradicting the application of Cover’s theorem. We suspect that both the benefits from freezing

layers and the impacts on hidden state linear separability scores are caused by a third, unexplored

factor (such as smoothness of the loss landscape potentially caused by the freezing parameters or

the inability to overfit parameters that we do not train). This discrepancy underscores the need for

alternative explanations to fully understand the advantages of freezing layers.

Second, results demonstrate a deep interplay between network architecture and the effectiveness

of layer freezing. Overparameterized networks, characterized by wide base widths, high reservoir

layer scaling factors, and increased depth, consistently benefited from freezing layers (see Section

4). Additionally, skip connections dramatically altered the dynamics of the linear separability scores

in the network (see Section 4.1.3). This architectural dependency for the effects of freezing layers

has significant implications for NAS, suggesting that the strategic freezing of layers could be a

critical factor in optimizing network architecture. By understanding how architecture influences

the benefits of freezing, researchers can design more efficient and effective neural networks.
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Third, we provided two alternative explanations for why freezing layers causes increased gen-

eralizability and convergence speed. We suspect that the phenomena are either a result of freezing

being a regularization technique or that freezing smooths the loss landscape. Our experiments

showed that freezing layers often became redundant when combined with other regularization

techniques, indicating an overlap in their effects (see Section A.2.2). Furthermore, freezing random

weights led to similar increases in model convergence rates, suggesting that this effect is not limited

to freezing entire layers but extends to freezing individual parameters (see Section 4.2). This insight

points to the potential that freezing parameters may smooth the loss landscape of the networks,

facilitating a more stable, direct convergence. Supporting this, prior work shows deeper networks

have more chaotic loss landscapes (H. Li et al., 2018), and freezing may make networks optimize

like shallower ones. This is in line with intuitions from Shen et al. (2020) which stated that freezing

is a tool to facilitate training deeper networks. Future work should assess these hypotheses.

This work was limited by its focus on fully connected networks, so additional work should assess

the validity of the findings for networks with other architectures (e.g., transformers and CNNs).

Additionally, it was limited by the simplicity of our hyperperameter sweeps. In each experiment, we

merely changed one hyperparameter at a time. Performing a grid search over multiple parameters

would provide more insight on the interplay between network architecture, freezing layers, and

network performance. Finally, this work focused exclusively on the linear separability of the testing

set features, and Appendix A.3 demonstrates that networks have substantially different trends in

the training and testing linear separability scores. Analyzing the differences between the scores

may provide insights on neural network training dynamics.

Overall, this work demonstrated that freezing layers is a previously unexplored dimension of

NAS that can substantially benefit networks through improved generalizability and faster training.

This indicates that freezing layers may be a new direction for NAS and efficient AI as we attempt

to design better networks that perform more efficiently without compromising performance.

6 Broader Impact Statement

Our work reiterates prior research that freezing layers in neural networks leads to networks

having higher performance with faster convergence. Reservoir networks are more efficient to train,

requiring fewer computations per training step and fewer epochs to train. Therefore, freezing

layers serves as a technique to make deep learning more efficient, reducing the environmental

impacts and financial requirements for our field. The training efficiencies from freezing layers could

result in less data being required to train models, enabling wider use of deep learning models on

domains with smaller curated datasets. Additionally, understanding what causes freezing leads to

neural network performance improvement provides insights into how deep neural networks learn.

This insight, along with the parameter sweeps demonstrating the relationship between network

architecture, performance, and hidden state linear separability, can assist future researchers to

design more efficient neural networks. After careful consideration, we do not see clear negative

societal impacts from our work.
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A Supplementary Materials

A.1 Assessing Least-Squares versus Densely Connected Map for Linear Separability

Our approach to measuring linear separability with a least-squares solver diverges from the standard

practice of using a densely connected map. However, the two produce substantially similar results.

To illustrate this, we trained 25 reservoir networks on CIFAR-10, extracted hidden state features

for the training and testing set, and used the features to assess linear separability scores using

both a least-squares solver and densely connected map. Figure 5 shows that both solvers produce

similar results. There is high correlation for the linear separability scores from the least-squares

and dense probes (𝑟 2 = 0.978 on the training separability scores and 𝑟 2 = 0.864 on the testing

separability scores). While there are minor differences between the linear separability scores, we do

not believe that these differences substantially alter the conclusions of this work—specifically that

linear separability of hidden state features is insufficient to explain the effects of freezing layers in

neural networks.

(a) CIFAR-10 Training Set Results (b) CIFAR-10 Testing Set Results

Figure 5: Average linear separability of the CIFAR-10 (1) training set hidden state features and (b)

testing set hidden state features. Linear separability scores from the least-squares solver and

densely connected map resulted in similar outputs for linear separability scores.

A.2 Testing Set Performance During Architectural Sweeps

A.2.1 Depth and Skip Connections on CIFAR-100. Experiments on CIFAR-100 demonstrate consistent

patterns in linear separability over sweeps of network depth.
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(a) CIFAR-100 Testing Set Results (b) CIFAR-100 Testing Set Results with Skip Con-

nections

Figure 6: Average linear separability of the hidden state features for (a) networks trained on CIFAR-10

and (b) networks with skip connections trained on CIFAR-10 for a sweep over network

depth. Reservoir networks had higher average linear separability scores and accuracies for

all depths on CIFAR-10 and most on CIFAR-100. Skip connections dramatically altered linear

separability dynamics in hidden layers.

A.2.2 Regularization on CIFAR-10 and CIFAR-100. The results in the main text suggest that freezing

layers acts as some kind of implicit regularization, reducing overfitting. This raises the question of

whether the effects of freezing layers will be seen in networks with conventional regularization

strategies. To explore this, we applied L1 regularization, batch normalization, or dropout to all the

layers in the network.

(a) CIFAR-10 Testing Set Results (b) CIFAR-100 Testing Set Results

Figure 7: Average linear separability of the hidden state features for (a) CIFAR-10 and (b) CIFAR-100

for a sweep over regularization strategies. Freezing layers has an inconsistent effect on

overall network performance when other regularization strategies are applied.

The results of this sweep are shown in Figure 7. On CIFAR-10, reservoir networks achieved

significantly higher testing accuracy than their fully trainable counterparts when using L1 regular-

ization with a factor of 0.001 (𝑝 ≈ 0.025; see Table 12). On CIFAR-100, reservoir networks achieved

higher testing accuracy than their fully trainable counterparts when using dropout with a rate of

0.1 and 0.5, but neither was significant. Adding batch normalization to all layers or 25% dropout

resulted in fully trainable networks having higher average accuracy (see Table 18). This suggests

that the regularization effect seen from freezing layers sometimes is composable with the effect

from other regularization strategies, but often leads to overregularization and hurts performance.
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A.2.3 Frozen Layer Position on CIFAR-10 and CIFAR-100. While the nonlinear mapping can assist in

making the data more linearly separable, the random nature of the mapping can add noise. As such,

a trainable layer or layers following the reservoir layer may serve to filter out that noise (Shen et al.,

2020). We explore this by rearranging the position of the trainable and reservoir layers. Our base

configuration is alternating, which means that we have blocks of a trainable layer, reservoir layer,

and trainable layer. We also explore putting all reservoir layers at the beginning of the network

(front), stacking all reservoir layers in the middle with no trainable layers in between (middle), and

placing all reservoir layers at the end of the network (back).

(a) CIFAR-10 Testing Set Results (b) CIFAR-100 Testing Set Results

Figure 8: Average linear separability of the hidden state features for (a) CIFAR-10 and (b) CIFAR-100

for a sweep over frozen layer position. The location of the reservoir layers substantially

impacted the linear separability scores of the hidden states. Notably, we see lower linear

separability scores in networks with all reservoir layers at the front of the network.

The results of this sweep are shown in Figure 8. In both CIFAR-10 and CIFAR-100, the position

of the scaled reservoir layers, whether trainable or not, substantially impacted the average linear

separability scores of the networks. Additionally, we found that reservoir networks achieved higher

average accuracy than their fully trainable counterparts for every position of the scaled layers with

the exception of putting those layers in the front (see tables 11 and 17). Once again, we see that the

impact of the position of the reservoir layers impacts network testing performance and average

hidden state linear separability score, demonstrating the link between network architecture and

performance.

A.2.4 MNIST. Formatting
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Figure 9: Average linear separability of the hidden state features for MNIST for a sweep over base

widths. Similar to experiments on CIFAR-10 and CIFAR-100, wider networks produced

greater average hidden state feature linear separability scores. However, freezing layers

resulted in networks with lower average linear separability scores and accuracies.

Figure 10: Average linear separability of the hidden state features for MNIST for a sweep over reservoir

layer scaling factors. Similar to experiments on CIFAR-10 and CIFAR-100, greater scaling

factors produced greater average hidden state feature linear separability scores in the

reservoir layers (denoted by the dotted black line).

Figure 11: Average linear separability of the hidden state features for MNIST for a sweep over network

depth. Similar to experiments on CIFAR-10 and CIFAR-100, freezing layers increases hidden

state linear separability scores in massively overparameterized networks.
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Figure 12: Average linear separability of the hidden state features for MNIST for a sweep over frozen

layer position. We see that networks with both frozen layers up front have lower linear

separability scores than all other networks.

Figure 13: Average linear separability of the hidden state features for MNIST for a sweep over regular-

ization strategies. Similar to experiments on CIFAR-10 and CIFAR-100, reservoir networks

outperformed fully trainable networks with low L1 regularization.

A.3 Training Set Performance During Architectural Sweeps

Formatting
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(a) CIFAR-10 Training Set Results (b) CIFAR-100 Training Set Results.

(c) MNIST Training Set Results.

Figure 14: Average linear separability of the training set hidden state features for (a) CIFAR-10, (b)

CIFAR-100, and (c) MNIST for a sweep over network widths.
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(a) CIFAR-10 Training Set Results (b) CIFAR-100 Training Set Results.

(c) MNIST Training Set Results.

Figure 15: Average linear separability of the training set hidden state features for (a) CIFAR-10, (b)

CIFAR-100, and (c) MNIST for a sweep over reservoir layer scaling factors.

21



(a) CIFAR-10 Training Set Results (b) CIFAR-100 Training Set Results.

(c) MNIST Training Set Results.

Figure 16: Average linear separability of the training set hidden state features for (a) CIFAR-10, (b)

CIFAR-100, and (c) MNIST for a sweep over network depth.
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(a) CIFAR-10 Training Set Results (b) CIFAR-100 Training Set Results.

(c) MNIST Training Set Results.

Figure 17: Average linear separability of the training set hidden state features for (a) CIFAR-10, (b)

CIFAR-100, and (c) MNIST for a sweep over reservoir layer position.
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(a) CIFAR-10 Training Set Results (b) CIFAR-100 Training Set Results.

(c) MNIST Training Set Results.

Figure 18: Average linear separability of the training set hidden state features for (a) CIFAR-10, (b)

CIFAR-100, and (c) MNIST for a sweep over regularization strategies.

(a) CIFAR-10 Training Set Results (b) CIFAR-100 Training Set Results.

Figure 19: Average linear separability of the hidden state features for (a) CIFAR-10 and (b) CIFAR-100

for a sweep over network depth in networks with skip connections.

A.4 Learned Linear Separability of Networks with Frozen Parameters

Formatting
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(a) CIFAR-10 Testing Set Results - Layer 0 (b) CIFAR-100 Testing Set Results - Layer 0

(c) CIFAR-10 Testing Set Results - Layer 2 (d) CIFAR-100 Testing Set Results - Layer 2

(e) CIFAR-10 Testing Set Results - Layer 3 (f) CIFAR-100 Testing Set Results - Layer 3

Figure 20: Average linear separability of the hidden state features from layers 0, 2, and 3 of networks

trained on CIFAR-10 and CIFAR-100 over the first 10 training epochs. Networks with frozen

parameters converge faster than fully trainable networks, regardless of whether random

weights or entire layers are frozen.
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(a) CIFAR-10 Testing Set Results - Layer 4 (b) CIFAR-100 Testing Set Results - Layer 4

(c) CIFAR-10 Testing Set Results - Layer 5 (d) CIFAR-100 Testing Set Results - Layer 5

Figure 21: Average linear separability of the hidden state features from layers 4 and 5 of networks

trained on CIFAR-10 and CIFAR-100 over the first 10 training epochs. Networks with frozen

parameters converge faster than fully trainable networks, regardless of whether random

weights or entire layers are frozen.

A.5 Tabular Results of Average Model Accuracy

A.5.1 MNIST. Formatting

Table 4: MNIST width sweep tabular results. Reservoir is reservoir model; trainable is fully trainable

model. Bold accuracy scores represent significantly greater average accuracy for the reservoir

models or fully trainable models. Bold p-values signify scores less than 0.01.

MNIST Training Accuracy Testing Accuracy

Base Width Reservoir Trainable P-value Reservoir Trainable P-value

32 0.978 0.983 3.149E-14 0.952 0.958 7.790E-10
64 0.994 0.995 2.847E-06 0.965 0.970 5.169E-09
128 0.997 0.997 1.724E-01 0.974 0.977 1.930E-07
256 0.998 0.998 7.525E-01 0.979 0.981 2.930E-03
512 0.998 0.998 3.117E-03 0.981 0.982 1.946E-04
1024 0.998 0.998 2.780E-01 0.982 0.983 1.490E-01
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Table 5: MNIST reservoir layer scaling factor sweep tabular results. Reservoir is reservoir model;

trainable is fully trainable model. Bold accuracy scores represent significantly greater average

accuracy for the reservoir models or fully trainable models. Bold p-values signify scores less

than 0.01.

MNIST Training Accuracy Testing Accuracy

Scaling Factor Reservoir Trainable P-value Reservoir Trainable P-value

0.25 0.996 0.997 3.282E-05 0.970 0.973 2.188E-07
0.5 0.997 0.997 3.689E-04 0.972 0.976 1.110E-07
1 0.997 0.997 5.867E-02 0.973 0.977 4.522E-07
2 0.997 0.998 2.912E-02 0.974 0.977 3.616E-03
4 0.997 0.998 1.382E-07 0.976 0.979 2.023E-07
8 0.997 0.998 4.316E-04 0.976 0.978 5.769E-05
16 0.997 0.998 3.510E-02 0.977 0.979 8.194E-03
32 0.997 0.998 1.103E-01 0.978 0.979 2.333E-03

Table 6: MNIST depth sweep tabular results. Reservoir is reservoir model; trainable is fully trainable

model. Bold accuracy scores represent significantly greater average accuracy for the reservoir

models or fully trainable models. Bold p-values signify scores less than 0.01.

MNIST Training Accuracy Testing Accuracy

Depth (Reservoir Blocks) Reservoir Trainable P-value Reservoir Trainable P-value

1 0.998 0.998 7.909E-01 0.973 0.977 1.293E-08
2 0.997 0.997 3.255E-02 0.975 0.978 3.415E-07
3 0.997 0.997 4.286E-03 0.974 0.977 8.189E-08
4 0.996 0.996 3.088E-01 0.974 0.976 2.531E-02

5 0.996 0.994 4.832E-10 0.974 0.977 4.106E-05
6 0.994 0.985 3.338E-10 0.974 0.971 1.938E-02

7 0.989 0.965 1.984E-06 0.972 0.951 5.950E-02

8 0.981 0.922 4.302E-05 0.968 0.919 2.165E-04

Table 7: MNIST reservoir layer position sweep tabular results. Reservoir is reservoir model; trainable

is fully trainable model. Bold accuracy scores represent significantly greater average accuracy

for the reservoir models or fully trainable models. Bold p-values signify scores less than 0.01.

MNIST Training Accuracy Testing Accuracy

Reservoir Layer Position Reservoir Trainable P-value Reservoir Trainable P-value

Alternating 0.997 0.998 4.112E-03 0.974 0.978 6.077E-09
Front 0.981 0.998 9.157E-28 0.924 0.980 2.163E-34
Middle 0.997 0.997 7.219E-01 0.975 0.977 1.778E-04
Back 0.997 0.997 2.605E-02 0.976 0.977 1.015E-02
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Table 8: MNIST regularization sweep tabular results. Reservoir is reservoir model; trainable is fully

trainable model. Bold accuracy scores represent significantly greater average accuracy for the

reservoir models or fully trainable models. Bold p-values signify scores less than 0.01.

MNIST Training Accuracy Testing Accuracy

Regularization Reservoir Trainable P-value Reservoir Trainable P-value

L1 0.001 0.956 0.954 1.311E-04 0.954 0.953 4.780E-01

L1 0.01 0.112 0.112 1.000E+00 0.113 0.113 1.000E+00

Batchnorm 0.995 0.996 4.249E-15 0.978 0.980 1.586E-07
Dropout 0.1 0.983 0.989 4.577E-36 0.975 0.978 5.871E-11
Dropout 0.25 0.959 0.972 1.173E-30 0.968 0.974 3.119E-19
Dropout 0.5 0.662 0.816 9.892E-18 0.711 0.872 1.694E-17

Table 9: MNIST first several epochs tabular results. Reservoir is reservoir model; trainable is fully

trainable model. Bold accuracy scores represent significantly greater average accuracy for the

reservoir models or fully trainable models. Bold p-values signify scores less than 0.01.

MNIST Training Accuracy Testing Accuracy

Epoch Reservoir Trainable P-value Reservoir Trainable P-value

1 0.894 0.901 2.035E-10 0.948 0.951 2.029E-02

2 0.957 0.959 8.917E-08 0.959 0.962 9.208E-03
3 0.967 0.969 2.154E-07 0.964 0.966 6.028E-02

4 0.973 0.975 1.188E-08 0.967 0.969 1.074E-01

5 0.977 0.978 2.974E-09 0.968 0.971 5.091E-05

A.5.2 CIFAR-10. Formatting

Table 10: CIFAR-10 depth sweep tabular results. Reservoir is reservoir model; trainable is fully trainable

model. Bold accuracy scores represent significantly greater average accuracy for the reservoir

models or fully trainable models. Bold p-values signify scores less than 0.01.

CIFAR-10 Training Accuracy Testing Accuracy

Depth (Reservoir Blocks) Reservoir Trainable P-value Reservoir Trainable P-value

1 0.782 0.909 2.941E-28 0.476 0.451 1.353E-18
2 0.857 0.879 1.424E-15 0.464 0.455 7.309E-06
3 0.768 0.797 4.935E-03 0.472 0.446 8.091E-15
4 0.668 0.711 4.126E-04 0.474 0.449 1.035E-17
5 0.617 0.415 1.175E-09 0.469 0.386 4.461E-05
6 0.507 0.179 3.123E-14 0.434 0.176 5.526E-13
7 0.317 0.116 4.193E-07 0.303 0.118 2.632E-07
8 0.173 0.098 1.868E-03 0.171 0.100 1.843E-03
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Table 11: CIFAR-10 reservoir layer position sweep tabular results. Reservoir is reservoir model; train-

able is fully trainable model. Bold accuracy scores represent significantly greater average

accuracy for the reservoir models or fully trainable models. Bold p-values signify scores less

than 0.01.

CIFAR-10 Training Accuracy Testing Accuracy

Reservoir Layer Position Reservoir Trainable P-value Reservoir Trainable P-value

Alternating 0.859 0.882 7.995E-13 0.467 0.455 1.628E-06
Front 0.950 0.882 1.247E-37 0.438 0.469 6.799E-22
Middle 0.839 0.933 9.698E-27 0.464 0.454 8.770E-07
Back 0.878 0.868 2.085E-07 0.459 0.456 5.490E-02

Table 12: CIFAR-10 regularization sweep tabular results. Reservoir is reservoir model; trainable is fully

trainable model. Bold accuracy scores represent significantly greater average accuracy for

the reservoir models or fully trainable models. Bold p-values signify scores less than 0.01.

CIFAR-10 Training Accuracy Testing Accuracy

Regularization Reservoir Trainable P-value Reservoir Trainable P-value

L1 0.001 0.228 0.201 2.121E-02 0.226 0.201 2.512E-02

L1 0.01 0.098 0.098 6.939E-01 0.100 0.100 1.000E+00

Batchnorm 0.943 0.943 7.892E-01 0.508 0.515 1.877E-03
Dropout 0.1 0.482 0.475 7.225E-02 0.471 0.468 2.761E-01

Dropout 0.25 0.274 0.298 1.304E-02 0.287 0.323 6.703E-03
Dropout 0.5 0.151 0.141 1.866E-01 0.161 0.155 4.805E-01

Table 13: CIFAR-10 depth sweep tabular results for networks with skip connections. Reservoir is reser-

voir model; trainable is fully trainable model. Bold accuracy scores represent significantly

greater average accuracy for the reservoir models or fully trainable models. Bold p-values

signify scores less than 0.01.

CIFAR-10, Skip Conn. Training Accuracy Testing Accuracy

Depth (Reservoir Blocks) Reservoir Trainable P-value Reservoir Trainable P-value

2 0.843 0.909 3.100E-22 0.464 0.454 9.423E-06
3 0.839 0.903 2.301E-19 0.461 0.447 2.544E-07
4 0.827 0.880 1.639E-11 0.458 0.437 8.970E-08
5 0.800 0.840 5.661E-03 0.449 0.422 4.781E-09
6 0.783 0.785 9.384E-01 0.443 0.408 1.067E-09
7 0.756 0.719 5.560E-02 0.440 0.395 4.875E-18
8 0.697 0.571 1.560E-04 0.431 0.383 3.741E-11

A.5.3 CIFAR-100. Formatting
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Table 14: CIFAR-100 width sweep tabular results. Reservoir is reservoir model; trainable is fully

trainable model. Bold accuracy scores represent significantly greater average accuracy for

the reservoir models or fully trainable models. Bold p-values signify scores less than 0.01.

CIFAR-100 Training Accuracy Testing Accuracy

Width Reservoir Trainable P-value Reservoir Trainable P-value

32 0.151 0.182 7.645E-03 0.134 0.151 4.863E-02

64 0.238 0.264 5.916E-02 0.178 0.168 1.161E-01

128 0.384 0.468 1.701E-09 0.194 0.174 8.521E-11
256 0.552 0.684 1.689E-16 0.183 0.164 1.803E-09
512 0.671 0.807 2.734E-28 0.180 0.158 1.450E-11
1024 0.711 0.782 8.216E-03 0.178 0.145 2.678E-10

Table 15: CIFAR-100 reservoir layer scaling factor sweep tabular results. Reservoir is reservoir model;

trainable is fully trainable model. Bold accuracy scores represent significantly greater average

accuracy for the reservoir models or fully trainable models. Bold p-values signify scores less

than 0.01.

CIFAR-100 Training Accuracy Testing Accuracy

Scaling Factor Reservoir Trainable P-value Reservoir Trainable P-value

0.25 0.580 0.486 3.123E-30 0.180 0.180 9.489E-01

0.5 0.638 0.562 5.158E-20 0.181 0.176 4.787E-05
1 0.611 0.633 7.999E-05 0.182 0.174 1.031E-10
2 0.547 0.697 1.072E-25 0.184 0.165 2.676E-13
4 0.458 0.690 9.763E-10 0.182 0.146 1.080E-10
8 0.263 0.343 1.039E-01 0.154 0.110 7.723E-09
16 0.059 0.080 2.248E-01 0.056 0.062 5.955E-01

32 0.041 0.039 8.455E-01 0.041 0.033 3.422E-01

Table 16: CIFAR-100 depth sweep tabular results. Reservoir is reservoir model; trainable is fully

trainable model. Bold accuracy scores represent significantly greater average accuracy for

the reservoir models or fully trainable models. Bold p-values signify scores less than 0.01.

CIFAR-100 Training Accuracy Testing Accuracy

Depth (Reservoir Blocks) Reservoir Trainable P-value Reservoir Trainable P-value

1 0.430 0.690 2.203E-33 0.209 0.181 1.844E-28
2 0.546 0.686 2.394E-12 0.184 0.165 3.698E-09
3 0.398 0.276 6.776E-08 0.175 0.147 1.336E-07
4 0.232 0.129 6.319E-06 0.161 0.099 4.503E-05
5 0.174 0.014 4.560E-14 0.140 0.014 3.013E-15
6 0.054 0.009 4.578E-03 0.010 0.010 1.000E+00

7 0.009 0.009 5.625E-01 0.010 0.010 1.000E+00

8 0.009 0.009 4.022E-01 0.010 0.010 1.000E+00
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Table 17: CIFAR-100 reservoir layer position sweep tabular results. Reservoir is reservoir model;

trainable is fully trainable model. Bold accuracy scores represent significantly greater

average accuracy for the reservoir models or fully trainable models. Bold p-values signify

scores less than 0.01.

CIFAR-100 Training Accuracy Testing Accuracy

Reservoir Layer Position Reservoir Trainable P-value Reservoir Trainable P-value

Alternating 0.528 0.689 6.065E-22 0.183 0.161 1.090E-11
Front 0.844 0.612 2.866E-47 0.169 0.178 1.199E-11
Middle 0.541 0.716 2.483E-37 0.187 0.171 7.034E-15
Back 0.672 0.771 1.167E-35 0.178 0.169 3.451E-10

Table 18: CIFAR-100 regularization sweep tabular results. Reservoir is reservoir model; trainable is

fully trainable model. Bold accuracy scores represent significantly greater average accuracy

for the reservoir models or fully trainable models. Bold p-values signify scores less than 0.01.

CIFAR-100 Training Accuracy Testing Accuracy

Regularization Reservoir Trainable P-value Reservoir Trainable P-value

L1 0.001 0.009 0.009 4.750E-01 0.010 0.010 1.000E+00

L1 0.01 0.009 0.009 8.553E-01 0.010 0.010 1.000E+00

Batchnorm 0.835 0.857 3.664E-28 0.235 0.243 1.534E-08
Dropout 0.1 0.141 0.137 5.456E-01 0.155 0.147 2.277E-01

Dropout 0.25 0.041 0.042 6.936E-01 0.037 0.043 1.257E-01

Dropout 0.5 0.012 0.010 2.361E-01 0.013 0.012 3.591E-01

Table 19: CIFAR-100 depth sweep tabular results for networks with skip connections. Reservoir is

reservoir model; trainable is fully trainable model. Bold accuracy scores represent signif-

icantly greater average accuracy for the reservoir models or fully trainable models. Bold

p-values signify scores less than 0.01.

CIFAR-100, Skip Conn. Training Accuracy Testing Accuracy

Depth (Reservoir Blocks) Reservoir Trainable P-value Reservoir Trainable P-value

2 0.532 0.744 7.794E-33 0.192 0.178 2.996E-12
3 0.528 0.693 2.815E-17 0.184 0.167 9.366E-09
4 0.504 0.642 1.955E-08 0.180 0.161 2.851E-07
5 0.421 0.531 1.974E-03 0.171 0.149 5.262E-07
6 0.362 0.454 8.994E-03 0.165 0.140 1.282E-05
7 0.342 0.402 5.477E-02 0.162 0.141 6.473E-04
8 0.254 0.226 4.419E-01 0.142 0.113 4.983E-03
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Table 20: CIFAR-100 testing accuracy for the first several epochs. Reservoir is reservoir model; trainable

is fully trainable model. Columns with percentages represent networks with that percent

of weights randomly frozen per layer. Bold accuracy scores represent significantly greater

average accuracy for the reservoir models random weight frozen models when compared to

the fully trainable model (p-values less than 0.01).

CIFAR-100 Random Weights Frozen

Epoch Trainable Reservoir 10% 20% 30% 40% 50%

0 0.009 0.010 0.010 0.009 0.010 0.010 0.009

1 0.073 0.081 0.075 0.076 0.077 0.081 0.082
2 0.107 0.117 0.107 0.111 0.111 0.113 0.116
3 0.130 0.144 0.134 0.133 0.135 0.140 0.142
4 0.148 0.160 0.150 0.151 0.154 0.155 0.159
5 0.159 0.170 0.164 0.164 0.165 0.168 0.170
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