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Abstract

We present state-of-the-art results on mor-001
phosyntactic tagging across different varieties002
of Arabic using fine-tuned pre-trained trans-003
former language models. Our models consis-004
tently outperform existing systems in Modern005
Standard Arabic and all the Arabic dialects we006
study, achieving 2.6% absolute improvement007
over the previous state-of-the-art in Modern008
Standard Arabic, 2.8% in Gulf, 1.6% in Egyp-009
tian, and 8.3% in Levantine. We explore differ-010
ent training setups for fine-tuning pre-trained011
transformer language models, including train-012
ing data size, the use of external linguistic re-013
sources, and the use of annotated data from014
other dialects in a low-resource scenario. Our015
results show that strategic fine-tuning using016
datasets from other high-resource dialects is017
beneficial for a low-resource dialect. Addition-018
ally, we show that high-quality morphological019
analyzers as external linguistic resources are020
beneficial especially in low-resource settings.021

1 Introduction022

Fine-tuning pre-trained language models like023

BERT (Devlin et al., 2019) have achieved great suc-024

cess in a wide variety of natural language process-025

ing (NLP) tasks, e.g. sentiment analysis (Abu Farha026

et al., 2021), question answering (Antoun et al.,027

2020), and named entity recognition (Ghaddar028

et al., 2022), and dialect identification (Abdelali029

et al., 2021). Pre-trained LMs have also been used030

for enabling technologies such as part-of-speech031

(POS) tagging (Lan et al., 2020; Khalifa et al.,032

2021; Inoue et al., 2021), to produce features for033

downstream processes. Previous POS tagging re-034

sults using pre-trained LMs focused on core POS035

tagsets; however, it is still not clear how these mod-036

els perform on the full morphosyntactic tagging037

task of very morphologically rich languages, where038

the size of the full tagset can be in the thousands.039

One such language is Arabic, where lemmas in-040

flect to a large number of forms through different041

combinations of morphological features and cliti- 042

cization. Additionally, Arabic orthography omits 043

the vast majority of its optional diacritical marks 044

which increases morphosyntactic ambiguity. 045

A third challenge for Arabic is its numerous vari- 046

ants. Modern Standard Arabic (MSA) is the primar- 047

ily written variety used in formal settings. Dialectal 048

Arabic (DA), by contrast, is the primarily spoken 049

unstandardized variant. MSA and different DAs, 050

e.g., Gulf (GLF), Egyptian (EGY), and Levantine 051

(LEV), vary in terms of their grammar and lexicon 052

to the point of impeding usability cross-dialectally 053

(Habash et al., 2012). Furthermore, these variants 054

differ in the degree of data availability: MSA is the 055

highest resourced variant, followed by GLF and 056

EGY, and then LEV. 057

In this paper, we explore different training setups 058

for fine-tuning Arabic pre-trained language models 059

in the complex morphosyntactic tagging task for 060

four Arabic variants (MSA, GLF, EGY, and LEV) 061

under controlled experimental settings. 062

We aim to answer the following questions: 063

• How does the size of the fine-tuning data af- 064

fect the performance? 065

• What kind of tagset scheme is suitable for 066

modeling morphosyntactic features? 067

• Is there any additional value of using external 068

linguistic resources? 069

• How can we make use of annotated data in 070

other dialects to improve performance in a 071

low-resourced dialect? 072

Our system1 achieves state-of-the-art (SOTA) 073

performance in full morphosyntactic tagging ac- 074

curacy in all the variants we study, resulting in 075

2.6% absolute improvement over previous SOTA 076

in MSA, 2.8% in GLF, 1.6% in EGY, and 8.3% in 077

LEV. 078

1We will make our models and data publicly available.
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877 26 39 74 29 51 75 39 38 38 38 38 30 31 38 30 31 37 24 28 70 73
diac lex gloss pos prc3 prc2 prc1 prc0 per gen num asp vox mod stt cas enc0 Variant

(a) حَفیِدَكَ Hafiydaka حَفیِد Hafiyd grandchild noun - - - - - m s - - - c a 2ms_poss MSA
(b) حَفیِدَكِ Hafiydaki حَفیِد Hafiyd grandchild noun - - - - - m s - - - c a 2fs_poss MSA
(c) حَفیِدُكَ Hafiyduka حَفیِد Hafiyd grandchild noun - - - - - m s - - - c n 2ms_poss MSA
(d) حَفیِدُكِ Hafiyduki حَفیِد Hafiyd grandchild noun - - - - - m s - - - c n 2fs_poss MSA
(e) حَفیِدِكَ Hafiydika حَفیِد Hafiyd grandchild noun - - - - - m s - - - c g 2ms_poss MSA
(f) حَفیِدِكِ Hafiydiki حَفیِد Hafiyd grandchild noun - - - - - m s - - - c g 2fs_poss MSA
(g) حَفیِدِك Hafiydik حَفیِد Hafiyd grandchild noun - - - - - m s - - - c - 2ms_poss GLF
(h) حَفیِدَك Hafiydak حَفیِد Hafiyd grandchild noun - - - - - m s - - - c - 2ms_poss EGY,LEV
(i) حَفیِدِك Hafiydik حَفیِد Hafiyd grandchild noun - - - - - m s - - - c - 2fs_poss EGY,LEV
(j) حَفیِدَك Hafiydak فاد fAd benefit verb - - - fut 1 - s i - - - - 2ms_dobj EGY,LEV
(k) حَفیِدِك Hafiydik فاد fAd benefit verb - - - fut 1 - s i - - - - 2fs_dobj EGY,LEV

Table 1: This is an example of multiple readings of the word ¼YJ

	
®k Hfydk in the different variants of Arabic. The

table also shows the full range of morphological features: part-of-speech (pos), aspect (asp), mood (mod), voice
(vox), person (per), gender (gen), number (num), case (cas), state (stt) and clitics: proclitics (prc3, prc2, prc1,
prc0) and enclitic (enc0). In addition to the lemma (lex), fully diacritized form (diac), and English gloss (gloss).

2 Arabic Language and Resources079

2.1 Arabic and its Dialects080

MSA is the primarily written form of Arabic used081

in official media communications, official docu-082

ments, news, and education. In contrast, the pri-083

marily spoken varieties of Arabic are its dialects.084

Arabic dialects vary among themselves and can be085

categorized at different levels of regional classifi-086

cations (Salameh et al., 2018). They are also differ-087

ent from MSA in most linguistic aspects (namely088

phonology, morphology, and syntax). Moreover,089

dialects have no official status despite being widely090

used in different means of daily communication091

– spoken as well as increasingly written on social092

media. In this work we focus on MSA, Gulf Ara-093

bic (GLF), Egyptian Arabic (EGY), and Levantine094

Arabic (LEV).095

2.2 Orthography096

In this paper, we focus on Arabic written in Ara-097

bic script for MSA and DA. An important feature098

of Arabic orthography is the omission of diacriti-099

cal marks which are mostly used to indicate short100

vowels and consonantal doubling. This omission101

introduces ambiguity to the text, e.g., the word102

I.
�
J» ktb2 could mean ‘to write’ (I.

��
J
�
» katab) or103

‘books’ (I.
��
J
�
» kutub) among other readings.104

Unlike MSA, Arabic dialects have no official105

standard orthography. Depending on the writer,106

words are sometimes spelled phonetically or closer107

to an MSA spelling through cognates or a mix of108

both. It has been found that in extreme cases a word109

2Arabic transliteration is presented in the HSB scheme
(Habash et al., 2007).

can have more than 20 different spellings (Habash 110

et al., 2018). This results in highly inconsistent and 111

sparse datasets and models. The Conventional Or- 112

thography for Dialectal Arabic (CODA) (Habash 113

et al., 2018) has been proposed and used in man- 114

ual annotations of many datasets including some 115

of those used in this paper. Ideally, the process of 116

morphological disambiguation should take raw text 117

as input, as this is more authentic than convention- 118

alized spelling. We follow this principle for EGY 119

and LEV where analyses are paired with the raw 120

text. However, the GLF dataset analyses are linked 121

to the CODA version only, since orthographic con- 122

ventionalization was applied as an independent step 123

during manual data annotations and there are no 124

simple direct mappings between the raw text and 125

the analyses (Khalifa et al., 2018). 126

2.3 Morphology 127

Arabic is a morphologically rich language where 128

a single lemma inflects to a large number of forms 129

through different combinations of morphological 130

features (gender, number, person, case, state, mood, 131

voice, aspect) and cliticization (prepositions, con- 132

junctions, determiners, pronominal objects, and 133

possessives). As some of the morphological fea- 134

tures are primarily expressed with optional diacriti- 135

cal marks, orthographic ambiguity results in differ- 136

ent morphological analyses, e.g., MSA can have up 137

to 12 analyses per word (out-of-context) on aver- 138

age (Pasha et al., 2014). MSA and DA differ in the 139

degree of morphological complexity, for example, 140

MSA retains nominal case and verbal mood fea- 141

tures; but these are absent in DA. On the other hand, 142

many dialects take more clitics than MSA, e.g., the 143
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Variant Resource Size Orthography Analyzer
MSA PATB 629k Standard Manual
GLF Gumar 202k CODA Automatic
EGY ARZTB 175k Spontaneous Manual
LEV Curras 57k Spontaneous Automatic

Table 2: An overview of the current status of the data
and morphological analyzers used in this work.

�
�+ + AÓ mA+ +š negation circumclitic structure144

found in EGY and not MSA (Habash et al., 2012).145

Table 1 shows different possible readings for the146

word ¼YJ

	
®k Hfydk among MSA, EGY, GLF, and147

LEV. Rows (a) to (i) are different inflections for148

case or possessive pronouns or both of the lemma149

YJ

	
®�
�
k Hafiyd ‘grandchild’ for all variants. Rows (j)150

and (k) show different readings that are inflections151

of the verb lemma XA
�	
¯ fAd ‘to benefit’, the inflec-152

tions are for different object pronouns. Note that153

even between the different POS inflections words154

can sound and look exactly the same, this shows the155

degree of morphological complexity and ambiguity156

in Arabic and its dialects.157

2.4 Resources158

In this work, we use datasets that have been159

fully annotated for morphological features and160

cliticization among other lexical features such as161

lemmas. We use the Penn Arabic Treebank for162

MSA (Maamouri et al., 2004), ARZTB (Maamouri163

et al., 2012) for EGY, the Gumar corpus (Khalifa164

et al., 2018) for GLF, and the Curras corpus (Jarrar165

et al., 2014) for LEV. We also use morphological166

analyzers that provides out-of-context analyses for167

a given word, those analyzers provide the same168

set of features that are seen in the annotated data.169

For MSA we use the SAMA database (Graff et al.,170

2009), and for EGY we use CALIMA (Habash171

et al., 2012). Both GLF and LEV do not have mor-172

phological analyzers, instead we use automatically173

generated analyzers from their training data using174

paradigm completion as described in Eskander et al.175

(2013, 2016) and Khalifa et al. (2020). The qual-176

ity and coverage of analyzers in general can differ177

depending on how they were created. Manually178

created analyzers (MSA and EGY in this work)179

tend to have a better quality and lexical coverage180

over automatically created ones (GLF and LEV in181

this work). The quality of automatically generated182

analyzers are also highly dependent on the quality183

and size of the training data used to create them.184

Table 2 shows the overall state of the resources185

for each dialect studied in this work. In terms of 186

the size of fully annotated corpora in tokens, MSA 187

is approximately three times larger than GLF and 188

EGY and 11 times larger than LEV. Both MSA and 189

GLF have consistent orthography whereas EGY 190

and LEV are more noisy. When it comes to exter- 191

nal morphological analyzers, only MSA and EGY 192

have manually created and checked morphological 193

analyzers, while both GLF and LEV have analyz- 194

ers created automatically. This contrast of resource 195

availability allows us to study how challenging the 196

morphosyntactic tagging task can be in different 197

real world situations. 198

3 Related Work 199

Arabic morphological modeling proved to be use- 200

ful in a number of downstream NLP tasks such 201

as machine translation (Sadat and Habash, 2006; 202

El Kholy and Habash, 2012) speech synthesis (Ha- 203

labi, 2016), dependency parsing (Marton et al., 204

2013), sentiment analysis (Baly et al., 2017), and 205

gender reinflection (Alhafni et al., 2020). We ex- 206

pect all of these applications and others to benefit 207

from improvements in morphosyntactic tagging. 208

There have been multiple approaches to morpho- 209

logical modeling for Arabic. Those approaches dif- 210

fer depending on the target tagset (POS vs full mor- 211

phology) and the availability of linguistic resources. 212

When it comes to MSA and DA full morphological 213

tagging, MADAMIRA (Pasha et al., 2014), trained 214

separate SVM taggers for each morphological fea- 215

ture (including cliticization) and selected the most 216

probable answer provided by an external morpho- 217

logical analyzer all in one step for both MSA and 218

EGY. AMIRA (Diab et al., 2004) on the other hand 219

used a cascading approach where it performed POS 220

tagging after automatically segmenting the text. 221

A more recent similar approach to MADAMIRA 222

was introduced by Zalmout and Habash (2017) but 223

using a neural architecture instead. Inoue et al. 224

(2017) presented a multitask neural architecture 225

that jointly models individual morphological fea- 226

tures for MSA. Zalmout and Habash (2019) ex- 227

tended Zalmout and Habash (2017)’s work using 228

multitask learning and adversarial training for full 229

morphological tagging in MSA and EGY. Simi- 230

larly, Zalmout and Habash (2020) proposed an 231

approach where they jointly model lemmas, dia- 232

critized forms, and morphosyntactic features, pro- 233

viding the current state-of-the-art in MSA. The 234

same approach was used in Khalifa et al. (2020), 235
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where they focused on the effect of the size of the236

data and the available linguistic resources and the237

impact on the overall performance on morphosyn-238

tactic tagging for GLF. Zalmout (2020) provides239

the current state-of-the-art performance in LEV by240

extending Khalifa et al. (2020)’s work to LEV.241

Another line of research that works with DA in-242

cludes Darwish et al. (2018), where they presented243

a multi-dialectal CRF POS tagger, using a small set244

of 350 manually annotated tweets for each of EGY,245

GLF, LEV, and Maghrebi Arabic (Samih et al.,246

2017). We do not evaluate on their data because247

their task is defined as shallow morpheme segmen-248

tation and tagging; this is quite different from, and249

not easily mappable to, our task, where we dis-250

ambiguate morphosyntactic features of the whole251

word without identifying its morpheme segments.252

Additionally, their tagset includes social media spe-253

cific tags, such as HASH, EMOT, and MENTION,254

which are not in any of the large standard dataset255

and analyzers we study in this paper.256

Pre-trained LM-based efforts in Arabic mor-257

phosyntactic tagging are relatively limited and ei-258

ther assume gold segmentation or only produce259

core POS tags. Kondratyuk (2019) leveraged the260

multilingual BERT model with additional word-261

level and character-level LSTM layers for lemmati-262

zation and morphological tagging, assuming gold263

segmentation. They reported the results for the SIG-264

MORPHON 2019 Shared Task (McCarthy et al.,265

2019), which includes MSA. Inoue et al. (2021) re-266

ported POS tagging results in MSA, GLF, and EGY267

using BERT models pre-trained on Arabic text with268

various pre-training configurations. They do not269

assume pre-segmentation of the text, however, they270

only consider the core POS tag, rather than the fully271

specified morphosyntactic tag. Khalifa et al. (2021)272

proposed a self-training approach for core POS273

tagging where they iteratively improve the model274

by incorporating the predicted examples into the275

training set used for fine-tuning.276

In this paper, we work with full morphosyntactic277

modeling on unsegmented text in four different278

variants of Arabic: MSA, GLF, EGY, and LEV.279

Furthermore, we explore the behavior of the pre-280

trained LM with respect to fine-tuning data size281

under different training setups. Given the available282

resources, we recognize our results’ limitations in283

terms of applicability to different genres and styles,284

as well as noisy social media text and Roman script285

Arabic text (Darwish, 2014).286

4 Methodology 287

4.1 Morphosyntactic Tagging with 288

Pre-trained LMs 289

To obtain a fully specified morphosyntactic tag 290

sequence, we build a classifier for each mor- 291

phosyntactic feature independently, inspired by 292

MADAMIRA. Unlike MADAMIRA where they 293

use an SVM classifier, we use two pre-trained LM 294

based classifiers: CAMeLBERT-Mix for DA and 295

CAMeLBERT-MSA for MSA (Inoue et al., 2021). 296

In selecting these pre-trained language models, we 297

considered the results from Inoue et al. (2021) who 298

showed that CAMeLBERT-Mix, their largest Ara- 299

bic BERT model by training data size, gives the 300

best results on DA tasks. CAMeLBERT-MSA, 301

which outperforms CAMeLBERT-Mix on MSA 302

tasks, is only second to AraBERT (Antoun et al., 303

2020), but since it was created under the same set- 304

ting as CAMeLBERT-Mix, it minimizes experi- 305

mental variations in our study.3 Following the work 306

of Devlin et al. (2019), fine-tuning the CAMeL- 307

BERT models is done by appending a linear layer 308

on top of its architecture. We use the representation 309

of the first sub-token as an input to the linear layer. 310

4.2 Factored and Unfactored Tagset 311

One of the challenges of morphosyntactic tagging 312

is the large size of the full tagset due to morpholog- 313

ical complexity of the language, where a complete 314

single tag is a concatenation of all the morphosyn- 315

tactic features. For example, MSA and EGY data 316

have approximately 2,000 unique complete tags 317

in the training data, whereas GLF and LEV have 318

around 1,400 and 1,000 tags, respectively. These 319

are not the full tagsets as there are many feature 320

combinations that are not seen in the data. 321

MADAMIRA’s basic approach is to use a fac- 322

tored feature tagset that comprises multiple tags, 323

each representing a corresponding morphosyntac- 324

tic category.4 This approach remedies the issue 325

of the large tagset size by dividing it into multiple 326

sub-tagsets of small sizes, however, it may produce 327

inconsistent tag combinations. 328

Alternatively, one can combine the individual 329

tags into a single tag. This approach has the advan- 330

tage of guaranteeing consistency of morphosyntac- 331

3We leave engineering optimization using other pre-trained
language models to future work.

4For example, the tagset for MSA comprises POS (34
tags), per (4), gen (3), num (5), asp (4), vox (4), mod (5), stt
(5), cas (5), prc3 (3), prc2 (9), prc1 (17), prc0 (7), enc0 (48).
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tic feature combination. However, it may not be332

optimal in terms of tag coverage due to the large333

number of unseen tags in the test data in addition334

to the large space of classes.335

To determine which approach is most suitable336

for modeling, we build morphosyntactic taggers337

with both the factored tagset and the unfactored338

tagset for each variant. Additionally, we explore339

the effect of the training data size for both settings.340

4.3 Retagging via Morphological Analyzers341

In previous efforts (Zalmout and Habash, 2017;342

Khalifa et al., 2020), it has been shown that lexi-343

cal resources such as morphological analyzers can344

boost the performance of morphosyntactic tagging345

through in-context ranking of out-of-context an-346

swers provided by the analyzer.347

In this work, we follow their approach, where we
use the morphological analyzers as a later step after
tagging with the fine-tuned pre-trained model. We
use the analyzers described in Section 2.4 to pro-
vide out-of-context analyses. For each word, the
analyzer may provide more than one answer.5 The
analyses are then ranked based on the unweighted
sum of successful matches between the values of
the predictions from the individual taggers and
those provided by the analyzer. To break ties during
the ranking, we take the sum of the probability of
the unfactored feature tag and the probability of all
the individual tags happening together as follows:

1

2
P (tunfactored) +

1

2

∏
m∈M

P (tm) (1)

where t is the tag for the feature m and M is the348

set of morphosyntactic features. The probabilities349

are obtained through unigram models based on the350

respective training data split.351

4.4 Merged and Continued Training352

Morphosyntactic modeling for DA is especially353

challenging because of data scarcity. Among the354

datasets that we use, LEV is the least resourced355

variant, having 11 times less training data than356

MSA. Therefore, we want to investigate an opti-357

mal approach to utilize data from other variants to358

improve upon the performance of morphosyntactic359

tagging for LEV.360

5Both the MSA and EGY analyzers provide backoff modes.
We use the recommended setting by Zalmout and Habash
(2017). For GLF and LEV analyzers we keep the original
predictions if no answer is returned.

Split MSA GLF EGY LEV
TRAIN 478k 154k 127k 43k
TUNE 26k 8k 7k 2k
DEV 63k 20k 21k 6k
TEST 63k 20k 20k 6k
ALL 629k 202k 175k 57k

Table 3: Statistics on TRAIN, TUNE, DEV, and TEST
for each variant in terms of number of words.

In this work, we experiment with the follow- 361

ing two settings: (a) We merge all the datasets 362

together and fine-tune a pre-trained LM on the 363

merged datasets in a single step; and (b) Similar to 364

Zalmout (2020), we start fine-tuning a pre-trained 365

LM on a mix of high-resource datasets (MSA, GLF, 366

and EGY), and then continue fine-tuning on a low- 367

resource dataset (LEV). 368

5 Experiments 369

5.1 Experimental Settings 370

Data To be able to compare with previous SOTA 371

(Zalmout and Habash, 2020, 2019; Khalifa et al., 372

2020; Zalmout, 2020), we follow the same con- 373

ventions they used for data splits: MSA and EGY 374

(Diab et al., 2013), GLF (Khalifa et al., 2018), and 375

LEV (Eskander et al., 2016). In Table 3, we show 376

the statistics of our datasets. 377

Fine-tuning We fine-tuned the CAMeLBERT 378

models (Inoue et al., 2021) on each morphosyn- 379

tactic tagging task. Following their recommenda- 380

tion, we used CAMeLBERT-MSA for MSA and 381

CAMeLBERT-Mix for the dialects. We used Hug- 382

ging Face’s transformers (Wolf et al., 2020) for 383

implementation. We trained our models for 10 384

epochs with a learning rate of 5e-5, a batch size of 385

32, and a maximum sequence length of 512. We 386

pick the best checkpoint based on TUNE and report 387

results on DEV and TEST from a single run. 388

Learning Curve To investigate the effect of fine- 389

tuning data sizes, we randomly sample training 390

examples on a scale of 5k, 10k, 20k, 40k, 80k, 391

120k, and 150k tokens. We use 150k, 120k, and 392

40k since they are comparable to the number of 393

tokens in GLF, EGY, and LEV datasets, respec- 394

tively. This allows us to measure the performance 395

difference across different dialects in a controlled 396

manner. This also gives us insight into the amount 397

of annotated data required to achieve a certain per- 398

formance, which is useful when creating annotated 399
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29 85 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 44 44 842

ALL TAGS POS Ortho
M

orph5k 10k 20k 40k 80k 120k 150k 480k 5k 10k 20k 40k 80k 120k 150k 480k

M
SA

Unfactored 43.2 65.5 79.2 88.1 91.6 93.3 93.9 95.5 80.1 90.5 94.1 96.9 97.7 98.0 98.1 98.5 C
onsistent

M
anual

 +Morph 63.4 77.6 85.4 91.3 93.3 94.4 94.8 95.9 81.6 91.6 95.1 97.4 98.1 98.3 98.5 98.7
Factored 75.3 86.1 90.8 93.0 94.1 94.7 94.9 95.5 93.0 96.4 97.6 98.1 98.3 98.3 98.4 98.6

 +Morph 86.5 91.3 93.6 94.7 95.2 95.5 95.7 96.1 95.1 97.1 98.0 98.5 98.6 98.6 98.7 98.8

G
L

F

Unfactored 75.1 81.0 89.6 93.3 94.8 95.3 95.8 90.3 92.6 95.6 96.8 97.2 97.7 97.8 C
onsistent

A
uto

 +Morph 86.4 87.1 90.7 92.3 93.1 93.4 93.8 93.9 94.1 95.5 96.1 96.4 96.7 96.6
Factored 87.1 89.8 92.4 94.0 94.7 95.1 95.5 94.6 95.5 96.6 97.1 97.5 97.9 98.0

 +Morph 90.8 90.6 92.1 92.9 93.4 93.8 93.9 95.4 95.5 96.0 96.3 96.6 96.8 96.8

E
G

Y

Unfactored 64.6 77.3 83.0 86.1 87.7 88.8 84.0 87.8 90.5 92.0 92.7 93.0

Spontaneous

M
anual

 +Morph 76.4 83.8 87.4 89.2 89.9 90.5 81.9 87.9 91.5 93.1 93.7 94.0
Factored 77.1 82.0 84.1 85.7 86.8 87.4 89.9 91.0 92.0 92.6 92.9 93.2

 +Morph 86.3 88.3 89.2 89.8 90.3 90.6 90.9 92.6 93.4 93.7 94.0 94.1

L
E

V

Unfactored 73.6 80.8 85.0 88.1 86.7 91.0 93.1 94.5

Spontaneous

A
uto

 +Morph 77.0 80.6 83.2 85.4 87.8 90.2 92.0 93.1
Factored 80.6 84.6 86.6 88.9 91.4 93.2 94.1 94.7

 +Morph 81.2 83.4 84.7 86.2 90.5 91.7 92.7 93.4

Table 4: DEV results on a learning curve of the training data size. Morph refers to the model with an additional step
of retagging using a morphological analyzer. We bold the best score for each variant. Underlined scores denote
that the differences between those scores and the best scores are statistically insignificant with McNemar’s test
(p < 0.05).

resources for new dialects. We use this setup in all400

the experimental setups.401

Pre-processing for Merged and Continued402

Training Although the different datasets provide403

the same set of the morphosyntactic features, there404

exist some inconsistencies between them. The405

datasets were annotated by different groups using406

slightly different annotation guidelines, therefore,407

we need to bring all the feature values into a com-408

mon space with LEV. We performed the following409

steps to address those inconsistencies: (a) We drop410

the state, case, mood, and voice features; (b) We411

remove the diactization from the lexical parts of the412

proclitic features, e.g. the conjunction w realized413

as wa_conj in MSA and wi_conj in EGY both maps414

to w_conj in LEV; and (c) For certain POS classes415

some features have default values in case they are416

not present, those default values were different for417

different datasets. Thus, we mapped those default418

values to match whatever was specified as default419

in LEV. We only performed these modifications for420

the experiments on merged and continued training.421

Evaluation Metrics We compute the accuracy422

in terms of the core POS and the combined mor-423

phosyntactic features (ALL TAGS).424

5.2 Results425

Factored vs Unfactored Models Table 4 shows426

the DEV results for the models trained with the fac-427

tored and unfactored tagset (henceforth, factored 428

and unfactored models, respectively) on a learning 429

curve of the training data size. In the extremely low- 430

resource setting of 5k tokens in the ALL TAGS 431

metric, we observe that factored models consis- 432

tently outperform unfactored models across all the 433

variants (15.9% absolute increase on average). In 434

particular, MSA benefited most with 32.1% ab- 435

solute increase, followed by EGY (12.5%), GLF 436

(12.0%), and LEV (7.1%). 437

However, this gap shrinks as the data size in- 438

creases. For instance in MSA, the differences be- 439

tween the scores of the factored model and the un- 440

factored model become statistically insignificant by 441

McNemar’s test (McNemar, 1947) with p < 0.05 442

when trained on the full data. This is presumably 443

due to the decrease in the number of unseen unfac- 444

tored tags in DEV. In fact, 3.9% of the unfactored 445

tags in DEV are not seen in TRAIN in the 5k set- 446

ting, whereas only 0.1% of tags are unseen in DEV 447

when we use the full data. 448

The factored model performs better than the un- 449

factored model across all the data sizes in MSA and 450

LEV. The EGY and GLF models follow a similar 451

pattern in the low resourced settings, however, the 452

unfactored models begin to perform better than the 453

factored ones from 20k for EGY and 40k for GLF. 454

Our results suggest that the factored tagset is opti- 455

mal compared to the unfactored tagset, especially 456

in low-resource settings. 457
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ALL TAGS POS BASE CLITICS
5k 10k 20k 40k 5k 10k 20k 40k 5k 10k 20k 40k 5k 10k 20k 40k

SINGLE 81.5 85.4 87.4 89.2 91.4 93.2 94.1 94.7 84.8 88.1 89.6 91.1 93.0 94.6 95.3 96.0
MERGED 77.9 80.6 82.7 85.0 87.3 89.4 90.9 92.3 81.2 83.7 85.5 87.8 90.8 91.6 92.7 93.4

CONTINUED 85.1 86.9 88.2 89.5 92.0 93.3 94.2 94.8 87.5 89.1 90.5 91.4 94.4 95.1 95.4 96.2

697 105 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37Table 5: DEV results on LEV for the merged train-
ing setup (MERGED) and the continued training setup
(CONTINUED). SINGLE refers to the model trained
only on LEV.

Retagging with Morphological Analyzer We458

observe that the use of a morphological analyzer459

consistently improves performance of both unfac-460

tored and factored models across all the differ-461

ent training data sizes in MSA and EGY in ALL462

TAGS. The value of a morphological analyzer is es-463

pecially apparent in the very low resourced setting464

(5k), with an increase of 20.2% (MSA) and 11.8%465

(EGY) in the unfactored model and 11.2% (MSA)466

and 9.2% (EGY) in the factored model. However,467

the effect of retagging with a morphological an-468

alyzer diminishes as the data size increases, yet469

providing a performance gain of and 0.4% in the470

unfactored model with the analyzer and 0.5% in its471

factored counterpart in the high resourced setting472

in MSA.473

Similarly, we observe an increase in performance474

when we include a morphological analyzer in the475

very low resourced settings in GLF and LEV. How-476

ever, as we increase the training data size, the use477

of a morphological analyzer starts to hurt the per-478

formance at 40k in GLF and 10k in LEV in the479

unfactored model and 20k in GLF and 10k in LEV480

in the factored model. We observe here that the481

quality of the analyzer has direct implications on482

the performance. The analyzers used for MSA and483

EGY are of high quality since they were manu-484

ally created and checked, whereas GLF and LEV485

analyzers are impacted by the quality and size of486

the annotated data used to create them. This is also487

consistent with the findings of Khalifa et al. (2020).488

Comparison with Previous SOTA Systems Ta-489

ble 6 shows DEV and TEST results for our mod-490

els and a number of previously published state-of-491

the-art morphosyntactic tagging systems. For our492

models, we use the best systems in terms of ALL493

TAGS metric, namely, the factored model with a494

morphological analyzer for MSA and EGY, the un-495

factored model for GLF, and the factored model496

for LEV. For existing models, we report the best497

results from Zalmout and Habash (2020) (ZH’20)498

for MSA, Khalifa et al. (2020) (K’20) for GLF, 499

Zalmout and Habash (2019) (ZH’19) for EGY, and 500

Zalmout (2020) (Z’20) for LEV. 501

Since some of these systems do not report on 502

all of the features that we report on, but rather on 503

different subsets of them, we include in the table 504

our results when matched with their features (ALL 505

TAGS* in Table 6). There is no difference for 506

MSA; however the ALL TAGS* setting for EGY 507

and LEV excludes enc1 and enc2. As for GLF, 508

ALL TAGS* consists of only 10 features: pos, 509

asp, per, gen, num, prc0, prc1, prc2, prc3, enc0. 510

We observe that our models consistently out- 511

perform the existing systems in all variants. Our 512

model achieves 2.6% absolute improvement over 513

the state-of-the-art system in MSA, 2.8% in GLF, 514

1.6% in EGY, and 8.3% in LEV. 515

Merged and Continued Training Table 5 shows 516

the results on LEV for the merged and the contin- 517

ued training setups. The results for merged training 518

are consistently below those for the baseline across 519

different data sizes, even though they have access 520

to more data. This is most likely a result of the 521

disproportionately small size of the LEV dataset 522

when compared to the other variants. 523

In contrast, the results for continued training 524

show consistent improvements over the LEV-only 525

baseline model. Continued training provides a sub- 526

stantial increase in performance, especially in the 527

very low resourced setting with only 5k tokens, giv- 528

ing 3.6% absolute improvement over the baseline. 529

Our results show that continued training from the 530

model trained on high resourced dialects is very 531

beneficial with lower amounts of training data. 532

5.3 Error Analysis 533

OOV To better understand the effect of differ- 534

ent training setups, we look at the performance of 535

our models in terms of out-of-vocabulary (OOV) 536

tokens alone. We observe a stronger and a more 537

consistent pattern when evaluated on OOV tokens. 538

In fact, the average difference between the best 539

model and the weakest model across variants is 540

larger in OOV tokens (6.7% in ALL TAGS) than 541

in all tokens (2.3%). On OOV tokens, the factored 542

model with a morphological analyzer consistently 543

performs best in all the data sizes for all the variants 544

except for LEV. In LEV, however, the same model 545

without the morphological analyzer outperforms 546

the one with the analyzer. This is presumably due 547

to the orthographic inconsistency in the data along 548
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DEV TEST
MSA GLF EGY LEV MSA GLF EGY LEV

Ours ZH'20 Ours K'20 Ours ZH'19 Ours Z'20 Ours Ours K'20 Ours ZH'19 Ours
POS 98.8 98.1 97.8 96.8 94.2 93.3 94.7 89.4 98.9 97.9 96.9 94.6 93.8 94.0

ALL TAGS 96.1 93.5 95.8 - 90.6 - 88.9 - 96.3 95.7 - 91.0 - 87.6
ALL TAGS* 96.1 93.5 95.8 93.3 90.7 89.3 89.1 80.8 96.3 95.7 92.9 91.0 89.4 87.8

2.6 2.5 1.4 8.3 2.8 1.6

DEV TEST
MSA GLF EGY LEV MSA GLF EGY LEV

Ours ZH'20 Ours K'20 Ours ZH'19 Ours Ours Ours K'20 Ours ZH'19 Ours Z'20
POS 98.8 98.1 97.8 96.8 94.2 93.3 94.7 98.9 97.9 96.9 94.5 93.8 94.0 89.4

ALL TAGS* 96.1 93.5 95.8 93.3 90.6 89.3 89.1 96.3 95.7 92.9 90.9 89.4 87.8 80.8
ALL TAGS 96.1 93.5 95.8 - 90.6 - 88.9 96.3 95.7 - 90.9 - 87.6 -

14 10 14 14 14 10 14 14

729 85 46 46 46 46 46 46 46 46 46 46 46 46 46 46

ours: MSAfactored+morph
GLF unfactored
EGYfactoerd+morph
LEV factored

EGY0.909988272190.99882721
GLF0.955472636895.54726368

Table 6: DEV and TEST results of our systems and previously published systems on the same datasets.
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Table 7: The number and percentage of specific feature errors among the ALL TAGS errors in the best systems on
the DEV set.

with the quality of the morphological analyzer as549

discussed in Section 2.4.550

Error Statistics Table 7 presents the number and551

percentage of specific feature errors among the552

ALL TAGS errors in the best systems on the DEV553

set. On average, there are two feature prediction554

failures within an unfactored tag across the differ-555

ent variants. We observe that MSA and DA exhibit556

different error patterns: In MSA, case is the largest557

contributor among other features, which is consis-558

tent with the previous findings along the line (Zal-559

mout and Habash, 2020), whereas in dialects, POS560

is the largest contributor.561

Among the POS errors, the most common error562

type is mislabeling a nominal tag with a different563

nominal tag, at 44.2% of the errors in GLF, 67.3%564

in EGY, and 57.8% in LEV, while this type of error565

is more dominant in MSA (80.8%). Mislabeling566

nominals with verbs is more common in DA at567

23.1% in GLF, 13.0% in EGY, and 20.1% in LEV,568

compared to MSA (7.7%).569

The core morphological features such as per, gen,570

num, and asp have a higher percentage of errors in571

DA. Another noticeable difference is enc0 feature572

(MSA ∼2% vs DA on average ∼17%). This is573

likely due to label distribution difference: MSA has574

a highly skewed distribution with 90%, 1%, and575

9% ration for 3rd, 2nd and 1st persons as expected576

in MSA news genre. In comparison, DA has less577

skew with 50%, 17%, and 32% respectively, which578

increase the likelihood of error.579

Among the three dialects, we observe similar580

patterns in terms of feature error contribution, es-581

pecially for GLF and LEV with a correlation co-582

efficient of 0.93. However, in EGY specifically, 583

we observe a high percentage of errors in mod, 584

vox, stt, and cas, partly due to the difference and 585

inconsistency in annotation schemes. 586

We also found some gold errors which affect all 587

of the systems we compared (previous SOTA and 588

ours). As the results on Arabic morphosyntactic 589

disambiguation are reaching new heights, it may 590

be useful for the community using these resources 591

to revisit their annotations. 592

6 Conclusion and Future Work 593

In this paper, we presented the state-of-the-art re- 594

sults in the morphosyntactic tagging task for Mod- 595

ern Standard Arabic and three Arabic dialects that 596

differ in terms of linguistic properties and resource 597

availability. We conducted different experiments to 598

examine the performance of pre-trained LMs under 599

different fine-tuning setups. We showed that the 600

factored model outperforms the unfactored model 601

in low-resource settings. Additionally, high quality 602

morphological analyzers proved to be helpful. Our 603

results also show that fine-tuning using datasets 604

from other dialects followed by fine-tuning using 605

the target dialect is beneficial for low-resource set- 606

tings. Our systems outperform previously pub- 607

lished SOTA on this task. 608

In the future, we plan to investigate continued 609

training further and find other ways where we can 610

utilize resources and datasets for low-resourced 611

dialects. We also intend to explore other architec- 612

tures for morphosyntactic tagging using multi-task 613

learning in the context of pre-trained LMs, as well 614

as work on the task of automatic lemmatization. 615
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7 Ethical Considerations616

The experiments reported in this work rely on pre-617

viously published datasets described in Section 2.4.618

We used the CAMeLBERT models along with mor-619

phosyntactically annotated datasets to build our620

morphosyntactic taggers, which is inline with their621

intended use. Our work is on core and generic NLP622

technologies that can be potentially used with mali-623

cious intention, for example, as part of the pipeline.624

To ensure reproducibility, we make our code pub-625

licly available. The details on the datasets and626

training are described in Appendix A. Given the627

focus of this paper and the available resources, we628

recognize the limitations of our findings in terms of629

applicability to different genres, styles, and other630

languages.631
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A Replicability887

A.1 Resources888

Pretrained transfromer models We fine-tuned889

CAMeLBERT-MSA for the morphosyntactic tag-890

ging task in MSA and CAMeLBERT-Mix (Inoue891

et al., 2021) for EGY, GLF, and LEV.892

Fine-tuning Data We used the Penn Arabic893

Treebank for MSA (Maamouri et al., 2004),894

ARZTB (Maamouri et al., 2012) for EGY, the Gu-895

mar corpus (Khalifa et al., 2018) for GLF, and the896

Curras corpus (Jarrar et al., 2014) for LEV. The897

preprocessing of the data includes fixing inconsis-898

tent annotations and removing diacritics through899

CAMeL Tools (Obeid et al., 2020). This prepro-900

cessing was followed in all the previous work we901

compared with Zalmout and Habash (2019, 2020);902

Khalifa et al. (2020); Zalmout (2020).903

Data Sampling For the learning curve experi- 904

ment in Section 5.1, we sampled the training data 905

up to 5k, 20k, 40k, 80k, 120k, 150k tokens after 906

shuffling the entire dataset. Each sample after 5k is 907

inclusive of the smaller samples. 908

Morphological Analyzers The morphological 909

analyzers used in our experiments are the fol- 910

lowing: For MSA we use the SAMA database 911

(Graff et al., 2009), and for EGY we use CALIMA 912

(Habash et al., 2012). For GLF and LEV, we 913

use automatically generated analyzers from their 914

training data using paradigm completion as 915

described in Eskander et al. (2013, 2016) and 916

Khalifa et al. (2020). 917

918

Data Accessibility MSA and EGY related re- 919

sources need a license from the Linguistic 920

Data Consortium (LDC). GLF data is available 921

at https://camel.abudhabi.nyu.edu/ 922

annotated-gumar-corpus/ and the LEV 923

data is available at https://portal.sina. 924

birzeit.edu/curras/. We are happy to pro- 925

vide all of our preprocessed datasets, to those who 926

provide evidence of legal access. 927

A.2 Implementation 928

We used Hugging Face’s transformers (Wolf et al., 929

2020) for implementation. Fine-tuning is done 930

by adding a fully connected linear layer to the 931

last hidden state. We release our code including 932

the hyperparameters used in the experiments at 933

(anonymous URL). 934

For the experiments in Section 5, we use the fol- 935

lowing hyperparameters: a random seed of 12345, 936

training for 10 epochs, saving the model for every 937

500 steps, a learning rate of 5e-5, a batch size of 938

32, and a maximum sequence length of 512. We 939

pick the best checkpoint based on TUNE and report 940

results on DEV and TEST from a single run. 941

The number of parameters of the factored model 942

for MSA is about 1.5 billion, while the factored 943

model for GLF, EGY, and LEV has 1.8 billion pa- 944

rameters in total. The unfactored model has about 945

110 million parameters for MSA, GLF, EGY and 946

LEV. 947

The factored model is the most computation- 948

ally expensive model to train, which took about 21 949

hours for MSA, 16 hours for GLF, 13 hours for 950

EGY, and five hours for LEV on a single NVIDIA- 951

V100 card. The unfactored model took about 90 952

11

https://doi.org/10.18653/v1/K17-1043
https://doi.org/10.18653/v1/K17-1043
https://doi.org/10.18653/v1/K17-1043
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://proxy.library.nyu.edu/login?url=https://www.proquest.com/dissertations-theses/morphological-tagging-disambiguation-dialectal/docview/2385667717/se-2?accountid=12768
http://proxy.library.nyu.edu/login?url=https://www.proquest.com/dissertations-theses/morphological-tagging-disambiguation-dialectal/docview/2385667717/se-2?accountid=12768
http://proxy.library.nyu.edu/login?url=https://www.proquest.com/dissertations-theses/morphological-tagging-disambiguation-dialectal/docview/2385667717/se-2?accountid=12768
http://proxy.library.nyu.edu/login?url=https://www.proquest.com/dissertations-theses/morphological-tagging-disambiguation-dialectal/docview/2385667717/se-2?accountid=12768
http://proxy.library.nyu.edu/login?url=https://www.proquest.com/dissertations-theses/morphological-tagging-disambiguation-dialectal/docview/2385667717/se-2?accountid=12768
https://doi.org/10.18653/v1/P19-1173
https://doi.org/10.18653/v1/P19-1173
https://doi.org/10.18653/v1/P19-1173
https://doi.org/10.18653/v1/P19-1173
https://doi.org/10.18653/v1/P19-1173
https://doi.org/10.18653/v1/2020.acl-main.736
https://doi.org/10.18653/v1/2020.acl-main.736
https://doi.org/10.18653/v1/2020.acl-main.736
https://doi.org/10.18653/v1/2020.acl-main.736
https://doi.org/10.18653/v1/2020.acl-main.736
https://camel.abudhabi.nyu.edu/annotated-gumar-corpus/
https://camel.abudhabi.nyu.edu/annotated-gumar-corpus/
https://camel.abudhabi.nyu.edu/annotated-gumar-corpus/
https://portal.sina.birzeit.edu/curras/
https://portal.sina.birzeit.edu/curras/
https://portal.sina.birzeit.edu/curras/


minutes to train for MSA, 60 minutes for GLF, 50953

minutes for EGY, and 20 minutes for LEV on the954

same machine.955
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