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Abstract

Performance of machine learning models may dif-
fer significantly in novel environments compared
to during training due to shifts in the underly-
ing data distribution. Attributing performance
changes to specific data shifts is critical for iden-
tifying sources of model failures and designing
stable models. In this work, we design a novel
method for attributing performance differences
between environments to shifts in the underlying
causal mechanisms. To this end, we construct a
cooperative game where the contribution of each
mechanism is quantified as their Shapley value.
We demonstrate the ability of our method to iden-
tify sources of spurious correlation and attribute
performance drop to shifts in label and/or feature
distributions on synthetic and real-world datasets.

1. Introduction
Machine learning models are widely deployed in dynamic
environments ranging from recommendation systems to
personalized clinical care. Such environments are prone to
dataset shifts, which may lead to serious degradations in
model performance (Guo et al., 2022; Chirra et al., 2018;
Koh et al., 2021; Geirhos et al., 2020; Nestor et al., 2019).
Importantly, the shifts are hard to anticipate and reduce the
ability of model developers to design reliable systems.

When the performance of a model does degrade during de-
ployment, it is crucial for the model developer to know how
the dataset has shifted to cause this change. Cognizant of
this information, the model developer can then take mitigat-
ing actions such as additional data collection, data augmen-
tation, and model retraining (Ashmore et al., 2021; Zenke
et al., 2017; Subbaswamy et al., 2019).
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In this work, we present a method to attribute model per-
formance changes to shifts in a given set of distributions.
Dataset shifts can occur in various marginal or conditional
distributions comprising variables involved in the model.
Given that many distributions can change simultaneously,
we define the effect of changing any set of distributions and
use the concept of Shapley values (Roth, 1988) to attribute
the change to individual distributions.

We build on a recent line of work that defines distribu-
tion shifts as interventions on causal mechanisms (Pearl
& Bareinboim, 2011; Subbaswamy et al., 2019; 2021; Bud-
hathoki et al., 2021; Thams et al., 2022). Most relevant is
Budhathoki et al. (2021) which attributes a shift between two
joint distributions to the causal mechanisms denoted by a
sub-distributions (i.e. factorization of the joint distribution).
We differ by attributing a change in model performance to
sub-distributions. Note that each shifted sub-distributions
may have different influences on model performance. In
this work, we demonstrate that explaining performance dis-
crepancy requires us to develop specialized methods.

We make the following contributions:

• We formalize the problem of attributing model perfor-
mance changes due to distribution shifts.

• We propose a principled approach based on Shapley
values for the attribution, and show that it satisfies
several desirable properties.

• We validate the correctness of our method on synthetic
and real-world datasets.

2. Related work
There has been extensive work that tests whether the data
distribution has shifted (e.g. ones evaluated in Rabanser et al.
(2019)). Past work has proposed to identify sub-distributions
(factors constituting the joint distribution as determined by
a generative model for the data) that comprise the shift
between two joint distributions and order them by their con-
tribution to the shift (Budhathoki et al., 2021). The method
proposed in Budhathoki et al. (2021) does not attribute the
contribution of each sub-distribution to model performance.
Even a small change in some factors may have a large ef-
fect on model performance. Conversely, many shifts in
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Figure 1. Inputs and outputs for attribution. The goal is to
attribute the model’s performance change ∆ between source and
target distributions. In this example, out of the three candidate
distributions only the marginal distribution of X1 changes. Thus,
the method attributes all of the performance change to X1.

sub-distributions may lead to no model performance degra-
dation at all. Thereby, the attribution in Budhathoki et al.
(2021) may yield multiple shifting sub-distributions that the
model developer has to filter out to identify the relevant ones
(see Property 2.2 below).

Shapley value-based attribution has recently become pop-
ular for interpreting model predictions (Štrumbelj &
Kononenko, 2014; Lundberg & Lee, 2017; Wang et al.,
2021). However, in most prior work, Shapley values have
been leveraged for attributing changes in specific model pre-
dictions to variables (Sundararajan & Najmi, 2020). Chal-
lenges to appropriately interpreting such attributions and
desirable properties thereof have been extensively discussed
in Janzing et al. (2020); Kumar et al. (2021). Recently, Wu
et al. (2021) decompose performance change to changes in
marginal distributions using Shapley value framework. In
contrast, we advance the use of Shapley values for interpret-
ing model performance changes, particularly by attributing
discrepancy to any sub-distribution.

Finally, recent work aims to find subsets of the dataset that
have significantly worse (or better) performance (d’Eon
et al., 2021; Eyuboglu et al., 2022). The main difference
in our work is the data representations used for attribu-
tion. These works chose to identify subsets of data that
are relevant to performance change whereas we find sub-
distributions represented by causal mechanisms.

3. Preliminaries
Notation Consider a learning setup where we have some
system variables denoted by V . We are given a fixed model
f and a loss function ℓ : v, f 7→ ℓ(v, f) ∈ R which assigns
a real value to the model evaluated at a specific setting of the
variables. For example, in the case of supervised learning,
V = (X,Y ) comprises the features and labels, the model
f maps features into the label space, and a loss function
such as the squared error ℓ((x, y), f) := (y − f(x))2 is
used to evaluate the model. Assume that the loss function is

computed separately for each data point. Then, performance
of the model is summarized by the average of the losses,

Perf(D) := Ev∼D[ℓ(v, f)]

on data from a given distribution D. We use Dsource to denote
the distribution of data for the source domain and Dtarget for
the target domain. Subscripts on D refer to the distribution
of specific variables. For example, DX is the distribution of
features, and DY |X is the conditional distribution of labels
given features.

Sources of performance change Model performance can
change between development and deployment of models for
many reasons (Jacobs & Wallach, 2021). We restrict our
attention to a narrow yet important source of performance
change which is the shift in the distribution of input features
or labels. Since we have combinatorially many shifts that
can be defined on subsets of V = (X,Y ), we leverage the
knowledge of causal mechanisms in the form of a causal
graph to identify potential shifts to consider (Pearl, 2009).

3.1. Problem setup

Suppose we are given a candidate set of distributions CD
that may account for the shift from source Dsource to target
Dtarget distributions: Perf(Dtarget)−Perf(Dsource). Our goal
is to attribute this change to each candidate distribution
in the candidate set CD. For our method, we assume access
to the model f , and samples from Dsource as well as Dtarget

(see Figure 1).

3.2. Choice of candidate set and causal mechanisms

Candidate distributions can be defined in multiple ways.
For instance, it can be the set of marginal distributions
on each system variable, CD = {DX1

,DX2
, · · · }, or dis-

tribution of each variable after conditioning on the rest,
CD = {DX1|V \X1

,DX2|V \X2
, · · · }.

Motivated by Budhathoki et al. (2021), we propose to use the
causal mechanisms constituting the structural causal graph
for the system as our candidate set. A causal graph specifies
a particular factorization of the joint distribution into a set
of distributions (alternatively called causal mechanisms)
(Pearl, 2009). That is DV =

∏
Xi∈V DXi|parent(Xi) where

parent(Xi) are the variables that have a directed edge to
Xi in the causal graph. These distributions are assumed
to be independent, i.e. an intervention to change one of
the distributions does not change any other distribution in
the factorization. We also assume that the causal graph is
sufficient (Spirtes et al., 2000). Thus, the candidate set is

CD = {DX1|parent(X1), · · · ,DXi|parent(Xi), · · · }i=1,··· ,|V |.

Advantages of using causal mechanisms. This choice of
candidate set has three main advantages. First, it is inter-



Attributing model performance changes to distribution shifts




Players:

Coalition:

Value

of coalition: Perf( )  Perf( )

Attribute to players
using Shapley value

P1 P2

Figure 2. Sketch of the game theoretic attribution method. Each
causal mechanism is a player that, if present in the coalition,
changes to the target distribution and, if absent, remains fixed
at the source distribution. This defines the distribution of the result-
ing coalition D̃. Performance on D̃ is estimated using importance
sampling from training data samples. After computing values for
each possible coalition, Shapley value (Eq. 2) gives the attribution
to each player. Thus, we estimate the performance change under
all possible ways to shift the mechanisms from source to target
and use these to distribute the total performance change among the
individual mechanisms.

pretable since the candidate shifts are specified by domain
experts who constructed the causal graph. Second, it is
actionable since identifying the causal mechanisms most
responsible for performance change can inform training
methods for handling distribution shifts (Subbaswamy et al.,
2019). Third, it will lead to succinct attributions due to the
independence property. Consider the case where only one
conditional distribution D(Xi|parent(Xi)) changes across
domains. This will result in a change in distributions of all
descendants of Xi (due to the factorization given above).
In this case, a candidate set defined by all marginals is not
succinct, as one would attribute performance changes to
all marginals of descendants of Xi. Instead, focusing on
our candidate set determined by the causal mechanism will
isolate the appropriate conditional distribution.

4. Method
We motivate a game theoretic formulation for attributing
performance changes to distributions over variable subsets.

4.1. Game theoretic attribution

Consider the following attribution game. The set of players
in this game are the candidate distributions. A coalition
of any subset of players determines the distributions that
are allowed to shift, keeping the rest fixed. The value for
the coalition is the model performance change between the
resulting distribution for the coalition and the train distribu-
tion. See Figure 2 for an overview of the method.

Consider a coalition that consists of two factors in the candi-

date set, that is {DX1|parent(Xi),DX2|parent(X2)} = C̃ ⊂ CD.
The resulting distribution for the coalition C̃ is

D̃ = Dtarget
X1|parent(X1)

Dtarget
X2|parent(X2)

∏
i∈V \X1,X2

Dsource
Xi|parent(Xi)

.

The value of the coalition C̃ with distribution D̃ is given by

Val(C̃) := Perf(D̃)− Perf(Dsource) (1)

Shapley value for this game gives the attribution of each
player d ∈ CD as 1

Attr(d) =
∑

C̃⊆CD\{d}

(
|CD| − 1

|C̃|

)−1 (
Val(C̃ ∪ {d})− Val(C̃)

)
(2)

Thus, to compute our attributions, we need estimates of
model performance under D̃. Note that we only have model
performance estimates under Dsource and Dtarget but not for
any arbitrary coalition where a subset of the distributions
have shifted. To compute this, we propose to use importance
sampling.

4.2. Estimating attribution using importance sampling

Importance sampling allows us to re-weight the samples
drawn from a given distribution, which can be Dsource or
Dtarget, to simulate expectations for a desired distribution,
which is the candidate D̃ in our case. Thus, we re-write the
value as

Val(C̃) = Perf(D̃)− Perf(Dsource) (3)
= Ev∼D̃[ℓ(v, f)]− Ev∼Dsource [ℓ(v, f)]

= Ev∼Dsource

[
D̃(v)

Dsource(v)
ℓ(v, f)

]
− Ev∼Dsource [ℓ(v, f)]

The importance weights are themselves a product of ratios
of source and target distributions corresponding to the causal
mechanisms in CD as follows:

wC̃(v) :=
D̃(v)

Dsource(v)
=

∏
d∈C̃

Dtarget
d (v)

Dsource
d (v)

=:
∏
d∈C̃

wd(v) (4)

There are multiple ways to estimate the importance weights
wd(v), which are ratio of densities, in the literature
(Sugiyama et al., 2012).

Computing Importance Weights Here, we use a simple
approach for density ratio estimation via probabilistic clas-
sifiers as described in Sugiyama et al. (2012, Section 2.2),
based on training probabilistic classifiers.

1Here, we use exact Shapley value computation, though ap-
proximations can be made for larger candidate sets (Castro et al.,
2009; Lundberg & Lee, 2017) for reduced computational effort.
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Let D be a binary random variable, such that when D =
1, X ∼ Dtarget(X), and when D = 0, X ∼ Dsource(X).
Suppose d = DXi|parent(Xi), then

wd =
P(D = 1|Xi)

P(D = 0|Xi)
· P(D = 1|parent(Xi))

P(D = 0|parent(Xi))

Where each term is computed using a probabilistic classifier
trained to discriminate data points from Dsource and Dtarget

from the concatenated dataset. In total, we need to learn
O(|CD|) models for computing all importance weights.

4.3. Properties of Our Method

Under perfect computation of importance weights, the Shap-
ley values resulting from the performance-change game
have the following desirable properties, which follow di-
rectly from properties of Shapley values (Winter, 2002).

Property 1. (Efficiency)
∑
d∈CD

Attr(d) = Val(CD) =

Perf(Dtarget)− Perf(Dsource)

By definition, we know that the sum of Shapley values equal
the value of the all-player coalition. Thus, we distribute the
total performance change due to the shift from source to
target distribution to the shifts in causal mechanisms in the
candidate set.

Property 2.1. (Null Player) Dsource
d = Dtarget

d =⇒
Attr(d) = 0.

Property 2.2. (Relevance) Consider a mechanism d.
If Perf(C̃ ∪ {d}) = Perf(C̃) for all C̃ ⊆ CD \ d, then
Attr(d) = 0.

We can verify that our method gives zero attribution to distri-
butions that do not shift between the source and target, and
distribution shifts which do not impact model performance.
First, we observe that in both cases, Val(D̃) = Val(D̃∪{d}).
For Property 2.1, this is because D̃ = D̃ ∪ {d} for any
D̃ ⊆ CD since the factor corresponding to d remains the
same between source and target even when it is allowed
to change as part of the coalition. For Property 2.2, this is
clear from Eq. 3. By definition of Shapley value in Eq. 2,
Attr(d) = 0.

Thus, the method attributes the overall performance change
only to distributions that actually change in a way that af-
fects the specified performance metric. The contribution
of each distribution is computed by considering how much
they impact the performance if they are made to change in
different combinations alongside the other distributions.

5. Experiments

(a) (b)

Figure 5. Causal graphs for (a) Synthetic and (b) Real-world data.

5.1. Synthetic datasets

We generate a synthetic binary classification dataset with
three features according to the following data generating
process, corresponding to the causal graph shown in Figure
5a. Here, ξp : {0, 1} → {0, 1} is a function that randomly
flips the input with probability p.

G ∼ Ber(0.5), Y = ξq(G), Ỹ = ξ0.25(Y )

X1 = N (ωỸ , 1), X2 = N (Ỹ , 1), X3 = N (Ỹ + µG, 1)

Where q, ω and µ are parameters of the data generating
process. In the source environment, we set q = 0.9, ω =
1 and µ = 5. We generate 20,000 samples using these
parameters, and train logistic regression (LR) and XGBoost
(XGB, (Chen & Guestrin, 2016)) models on (X1, X2, X3) to
predict Y , using 3-fold cross-validation for model selection.
We explore three data settings for the target environment:

(a) Conditional Label Shift: Vary q ∈ [0, 1]. Keep ω and µ
at their source values. Only P (Y |G) changes.

(b) Conditional Covariate Shift: Vary µ ∈ [0, 5]. Keep q
and µ at their source values. Only P (X3|G, Y ) changes
across domains.

(c) Combined Shift: Set ω = 0. Vary q ∈ [0, 1]. Keep ω
at its source value. Both P (X1|Y ) and P (Y |G) change
across domains, but their specific contribution to model
performance degradation is not known exactly.

We use our method to explain performance changes in AU-
ROC and Brier score for each model on target environments
generated within each setting (with n = 20, 000), comput-
ing density ratios using XGB models. Note that the causal
graph shown in Figure 5a implies five potential distributional
shifts: CD = {DG,DY |G,DX1|Y ,DX2|Y ,DX3|G,Y }.

5.2. Real-world datasets

For some real-world datasets, the causal graph in Figure 5b
can model the spurious correlation between X and Y (here,
due to the common cause G). We test our method on two
such binary classification datasets where G ∈ {0, 1}.

• Waterbirds (Wah et al., 2011). G is the background (wa-
ter or land), Y is the type of bird (waterbird or landbird).
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Figure 3. AUROC differences attributed by our model to five potential distributional shifts on the synthetic dataset for the LR model. We
observe that the overall change (Perf Diff) is attributed to the true shift in all of the three cases. Rest of the shifts have zero attributed value.

0.2 0.4 0.6 0.8
r

0.05

0.00

0.05

0.10

0.15

0.20

Ch
an

ge
 in

 B
rie

r S
co

re

P(G)
P(X | G,Y)
P(Y | G)
Perf Diff

(a) Waterbirds

0.2 0.4 0.6 0.8
r

0.025

0.000

0.025

0.050

0.075

0.100

0.125

Ch
an

ge
 in

 B
rie

r S
co

re

P(G)
P(X | G,Y)
P(Y | G)
Perf Diff

(b) MetaShift

Figure 4. Brier score differences attributed by our model to three potential distribution shifts on two real-world datasets for the LR model.

• MetaShift (Liang & Zou, 2022). G is the background
(indoor or outdoor), and Y is the type of animal.

In all cases, X is a vector representing the image. Here, we
use static embeddings computed from a Imagenet pretrained
ResNet-18 (He et al., 2016), and so X ∈ R512.

For the source environment, we split each dataset into a
75% train, 25% test set. We then use random upsampling
on each set to ensure that P(G = 0) = P(G = 1) = 0.5.
We train LR and XGB models to predict Y from X using
3-fold cross validation. In the target environments, we use
the same train/test splits as the source environment, and vary
a parameter r ∈ (0, 1]. For each target environment, we
randomly downsample the two majority groups (across G×
Y ) to fraction r, and randomly upsample the two minority
groups to size 1/r. Note that for r = 1, the source and
target environments are identical. We again use random
upsampling after this process to ensure that P(G) does not
change. We use our method to explain the performance
difference between the source test set and target test set,
using AUROC and Brier score as metrics.

6. Results
In Figure 3, we show the output of our method across the
three settings described in Section 5.1, with LR as the model
of interest and AUROC as the metric. We show similar re-
sults for XGB and Brier score in Appendix A. We find that
our method attributes all of the performance changes to
the correct ground truth shifts, both when there is a sin-

gle shift (Settings 1 and 2) and when there are multiple
shifts (Setting 3). In the case of Setting 3, we find that our
method attributes all of the performance drop to a shift in
P (Y |G), which makes sense as the model relies only on
the spurious information (G inferred from X3) in the source
environment.

In Figure 4, we show the results for the real world datasets,
with LR as the model of interest and Brier score as the metric.
We show similar results for XGB and AUROC in Appendix
B. We find that our model largely attributes performance
drops to the correct (P (Y |G)) distribution. However, some
shift is still attributed to the P (X|G, Y ) distribution, which
does not change. This is as a result of inaccuracies in the
estimation of importance weights (e.g. due to overfitting or
miscalibration), which is an area of future improvement for
our method.

7. Conclusions
We propose a method to attribute changes in performance
of a model deployed on a different distribution. Attribution
is naturally understood as an interventional concept. We
combine the notion of interventions on causal mechanisms
with the Shapley value framework to provide a useful de-
composition of performance changes. Improvements to the
method include relaxing the assumption of sufficiency, im-
proving the importance weighting procedure, and extending
the experiments to additional settings such as unsupervised
learning and reinforcement learning.



Attributing model performance changes to distribution shifts

References
Ashmore, R., Calinescu, R., and Paterson, C. Assuring

the machine learning lifecycle: Desiderata, methods, and
challenges. ACM Computing Surveys (CSUR), 54(5):
1–39, 2021.

Budhathoki, K., Janzing, D., Bloebaum, P., and Ng,
H. Why did the distribution change? In Baner-
jee, A. and Fukumizu, K. (eds.), Proceedings of The
24th International Conference on Artificial Intelligence
and Statistics, volume 130 of Proceedings of Machine
Learning Research, pp. 1666–1674. PMLR, 13–15 Apr
2021. URL https://proceedings.mlr.press/
v130/budhathoki21a.html.
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A. Additional Experimental Results On Synthetic Data
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Figure A.1. Brier score differences attributed by our model to five potential distributional shifts on the synthetic dataset for the LR model.
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Figure A.2. AUROC differences attributed by our model to five potential distributional shifts on the synthetic dataset for the XGB model.
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Figure A.3. Brier score differences attributed by our model to five potential distributional shifts on the synthetic dataset for the XGB model.
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B. Experimental Results On Real-World Data
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Figure B.4. AUROC differences attributed by our model to three potential distributional shifts on two real-world datasets for the LR
model.
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Figure B.5. AUROC differences attributed by our model to three potential distributional shifts on two real-world datasets for the XGB
model.
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Figure B.6. Brier score differences attributed by our model to three potential distributional shifts on two real-world datasets for the XGB
model.


