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Abstract

Self-paced reinforcement learning (RL) aims to
improve the data efficiency of learning by auto-
matically creating sequences, namely curricula,
of probability distributions over contexts. How-
ever, existing techniques for self-paced RL fail
in long-horizon planning tasks that involve tem-
porally extended behaviors. We hypothesize that
taking advantage of prior knowledge about the un-
derlying task structure can improve the effective-
ness of self-paced RL. We develop a self-paced RL
algorithm guided by reward machines, i.e., a type
of finite-state machine that encodes the underly-
ing task structure. The algorithm integrates reward
machines in 1) the update of the policy and value
functions obtained by any RL algorithm of choice,
and 2) the update of the automated curriculum that
generates context distributions. Our empirical re-
sults evidence that the proposed algorithm achieves
optimal behavior reliably even in cases in which
existing baselines cannot make any meaningful
progress. It also decreases the curriculum length
and reduces the variance in the curriculum genera-
tion process by up to one-fourth and four orders of
magnitude, respectively.

1 INTRODUCTION

The design of task sequences, i.e., curricula [Bengio et al.,
2009], aims to reduce the sample complexity of teaching re-
inforcement learning (RL) agents complex behaviors. Given
a target task, a common curriculum design approach is to
begin with easier tasks and increase the difficulty in a grad-
ual manner, which requires domain expertise to define what
is easy or hard [Narvekar et al., 2020]. To eliminate the need
for manual curriculum design, many studies such as Baranes
and Oudeyer [2010], Svetlik et al. [2017], Andrychowicz
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Figure 1: Workflow diagram for an existing self-paced RL
approach, and two methods that we propose: intermediate
self-paced RL and reward-machine-guided, self-paced RL.

et al. [2017] focus on automating the process of curriculum
generation. Klink et al. [2020a] adopt self-paced learning
[Kumar et al., 2010] in RL by developing an algorithm that
creates a sequence of probability distributions over contexts
[Hallak et al., 2015]. The dynamics, the reward function,
and the initial state distribution of an environment change
with respect to the context. Given a target context distribu-
tion, a self-paced RL algorithm iteratively generates context
distributions that maximizes the expected discounted return,
regularized by the Kullback-Leibler (KL) divergence from
the target context distribution.

Although empirical evidence by Klink et al. [2021] sug-
gests that self-paced RL outperforms the state-of-the-art
curriculum learning methods [Florensa et al., 2018, Portelas
et al., 2020], existing self-paced RL approaches work poorly
in long-horizon planning tasks, which involve temporally
extended behaviors. We focus on tasks where the reward
depends on the history of states and actions. In other words,
the reward function of such a long-horizon planning task is
non-Markovian. A remedy to tasks that require temporally
extended behaviors is to expose the high-level structural
relationships to the agent [Singh, 1992, Parr and Russell,
1997]. Icarte et al. [2018a] use a type of finite-state ma-
chine, called reward machines, as the high-level structural

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<cevahir.koprulu@utexas.edu>?Subject=Your UAI 2023 paper


knowledge to encode non-Markovian reward functions in
RL.

We claim that exploiting the high-level structural knowledge
about a long-horizon planning task can improve self-paced
RL. To this end, we study self-paced RL for long-horizon
planning tasks in which such knowledge is available a priori
to the agent in the form of reward machines. Specifically, we
focus on contextual long-horizon planning tasks, where the
context parameterizes the dynamics and the non-Markovian
reward function. The underlying temporal task structure
remains the same irrespective of the context, hence a reward
machine can encode all possible non-Markovian reward
functions. We define a labeled contextual Markov decision
process (MDP) to model such long-horizon planning tasks
(see Figure 1).

Contribution. Our contribution is three-fold. 1) We pro-
pose an intermediate self-paced RL algorithm that combines
a labeled contextual MDP and its reward machine in a prod-
uct contextual MDP to update the policy and value functions
of an RL agent. 2) We establish a mapping that, given a tran-
sition in the reward machine, outputs the smallest set of
context parameters, that determine whether the transition,
namely a high-level event, occurs or not. 3) We develop a re-
ward-machine-guided, self-paced RL algorithm that exploits
reward machines not only to update the policy and value
functions but also to navigate the generation of curricula via
the proposed mapping (see Figure 1).

Our experiments conclude that, first, proposed reward-
machine-guided and intermediate self-paced RL algorithms
enable RL agents to accomplish long-horizon planning tasks
by encoding non-Markovian reward functions as reward
machines, whereas state-of-the-art automated curriculum
generation methods fail to do so; and, second, guiding cur-
riculum generation via a reward-machine-context mapping
not only boosts learning speed reliably but also stabilizes
the curriculum generation process by reducing curricula
variance by up to four orders of magnitude, and thus avoid
inefficient exploration of the curriculum space.

2 RELATED WORK

We propose an automated curriculum generation method,
that exploits high-level structural knowledge about long-
horizon planning tasks. Our work falls under two subjects.

Curriculum learning for RL. Automatically generating
curricula in RL modifies the configuration of the environ-
ment iteratively to accelerate convergence to optimal poli-
cies. As we do, many studies in the literature consider a
curriculum as a sequence of distributions over environment
configurations. Florensa et al. [2017] proposes the genera-
tion of distributions over initial states that iteratively get fur-
ther away from goal states. Others focus on goal-conditioned

RL where a curriculum is a sequence of distributions over
goal states that optimize value disagreement [Zhang et al.,
2020], feasibility and coverage of goal states [Racaniere
et al., 2020], intrinsic motivation [Baranes and Oudeyer,
2010, Portelas et al., 2020], and intermediate goal difficulty
[Florensa et al., 2018]. For procedural content generation en-
vironments, curricula prioritize levels with higher learning
potential [Jiang et al., 2021b,a]. In comparison, self-paced
RL is adopted from supervised learning where training sam-
ples are automatically ordered in increasing complexity [Ku-
mar et al., 2010, Jiang et al., 2015]. Ren et al. [2018] con-
sider curricula as a sequence of environment interactions
and proposes a self-paced mechanism that minimizes cover-
age penalty. Eimer et al. [2021]’s work generates a sequence
of contexts, not distributions, with respect to their capacity
of value improvement. Klink et al. [2020a,b, 2021, 2022],
Koprulu et al. [2023] formulate the generation of curricula
as interpolations between distributions over contexts. Simi-
larly, Chen et al. [2021] study interpolations between task
distributions, but not under the self-paced RL framework.

Incorporating high-level structural knowledge into RL.
Singh [1992], Parr and Russell [1997], Sutton et al. [1999],
Dietterich [2000] propose the idea of incorporating high-
level structural knowledge to decompose a task into a hier-
archy of subtasks. The proposed hierarchy allows the agent
to learn a meta-controller that chooses between subtasks
to pursue, and a low-level controller that acts in the cho-
sen subtask. Another way to incorporate such knowledge is
to capture temporal abstractions in long-horizon planning
tasks via temporal logic [Bacchus et al., 1996, Li et al.,
2017, Littman et al., 2017], or reward machines [Icarte et al.,
2018a, Camacho et al., 2019], which address MDPs with
non-Markovian structures. We investigate a multi-task set-
ting with non-Markovian reward functions and propose an
automated curriculum generation approach that uses reward
machines, 1) to encode non-Markovian reward functions;
and 2) to guide the curriculum generation process. Similar
to curriculum learning, Icarte et al. [2018b], Xu and Topcu
[2019], Kuo et al. [2020], Zheng et al. [2022], Velasquez
et al. [2021] study the use of temporal logic and reward
machines in topics such as generalization, transfer learning,
and multi-task learning.

3 PRELIMINARIES

In this section, we provide the background for our prob-
lem of interest. We illustrate a two-door environment, (see
Figure 2), which we will revisit throughout the paper. The
agent has to complete 4 subtasks in the following order: (1)
Passing through Door 1, (2) getting a key from Box, (3)
opening Door 2 with the key, and (4) arriving at Goal. The
agent has to avoid hitting the walls that separate the rooms.
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Figure 2: The two-door environment: A context c =
(c[1], c[2]) determines the positions of Door 1 and Door
2 with c[1] and c[2], respectively.

3.1 LABELED MDPS AND REWARD MACHINES

Definition 1. A labeled Markov decision process Xu et al.
[2020] is a tuple M = ⟨S,A, p,R, ϕ, γ,P, L⟩ consisting of
a state space S, an action space A, a probabilistic transition
function p : S×A×S → [0, 1], and an initial state distribu-
tion ϕ : S → [0, 1]. A reward function R : (S×A)+×S →
R, and a discount factor γ ∈ [0, 1) specify the returns to
the agent. A finite set P of propositional variables, and a
labeling function L : S ×A× S → 2P determine the set of
high-level events that the agent sees in the environment.

A policy π is a function mapping states in S to a probability
distribution over actions in A. At state s ∈ S, an agent using
policy π picks an action a with probability π(s, a), and the
new state s′ is chosen with probability p(s, a, s′).

For a fixed context, we can model the two-door environment
as a labeled MDP. The states are the coordinates of the agent
and the actions are moving in the four cardinal directions,
whereas the transitions are deterministic. The agent receives
the labels {d1}, {b}, {d2}, {g}, and {w} when it moves
onto Door 1, Box, Door 2, Goal, and the walls, respectively.

Definition 2. A reward machine Icarte et al. [2018a] R =
⟨Q, qI , 2

P , O, δq, δr⟩ consists of a finite, nonempty set Q of
states, an initial state qI ∈ Q, an input alphabet 2P , an
output alphabet O ⊂ R, a deterministic transition function
δq : Q×2P → Q, and an output function δr : Q×2P → O.

Reward machines encode non-Markovian reward functions.
The run q0(ℓ1, r1)q1(ℓ2, r2) . . . (ℓk, rk)qk+1 of a reward
machine R on a label sequence ℓ1 . . . ℓk ∈ (2P)∗ is a se-
quence of states and label-reward pairs such that q0 = qI ,
δq(qi, ℓi) = qi+1 and δr(qi, ℓi) = ri for all i ∈ {0, . . . , k}.
The reward machine R produces a sequence of rewards from
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(b, 2)

(d2, 3)

(g, 4)

(w, 0)
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(¬(b ∨ w ∨ d2),
0)
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Figure 3: Reward machine of the two-door environment

an input label sequence as R(ℓ1 . . . ℓk) = r1 . . . rk. We say
that a reward machine R implements the reward function R
of an MDP if for every trajectory s0a0 . . . skaksk+1 and the
corresponding label sequence ℓ1 . . . ℓk, the reward sequence
equals R(ℓ1 . . . ℓk).

The reward machine of the two-door environment is in Fig-
ure 3. Every node is a state in the reward machine. An edge
(qi, qj) with tuple (ρ, r) indicates that given a label ℓ ∈ 2P

satisfying propositional formula ρ, the transition from state
qi to qj yields reward r = δr(qi, ℓ). For instance, the transi-
tion (q1, q5) with (w ∨ d2, 0) in Figure 3 occurs if a label ℓ
satisfies ρ = w∨d2, i.e., if the agent moves into a wall w or
passes the second door d2, yielding a reward of 0. The agent
receives rewards of 1, 2, 3, and 4 upon completing the four
subtasks, respectively. We note that there can be multiple
reward machines that encode an MDP’s reward function,
and reward machines may differ on a label sequence that
does not correspond to any trajectory of the MDP.

3.2 CONTEXTUAL MDPS

Definition 3. A contextual Markov decision process
(CMDP) Hallak et al. [2015] M̄ = ⟨S,A, C,M⟩ is de-
fined by a state space S, an action space A, a context
space C and a mapping M from C to MDP parameters.
M̄ represents a family of MDPs parameterized by contexts
c ∈ C ⊆ Rn, n ∈ Z+. An MDP in this family is a tu-
ple M(c) = ⟨S,A, pc, Rc, ϕc, γ⟩ that shares the same state
space S and action space A with other members, but its
probabilistic transition function pc : S × A × S → [0, 1],
reward function Rc : S ×A → [0, 1] and initial state distri-
bution ϕc : S → [0, 1] depend on c.

CMDPs appear in the multi-task RL literature to model
tasks, where transition functions, reward functions, and ini-
tial state distributions are parameterized via contexts. Al-
though the two-door environment in Figure 2 has a context



that determines the door positions, which in return affects
the transition and reward functions, the CMDP framework
fails to model such an environment as the two-door environ-
ment has a non-Markovian reward function. We present a
new MDP formulation to address this limitation in Section 4.

Given a CMDP M̄, contextual RL Hallak et al. [2015]
aims to learn a policy that maximizes the expectation of
the value of an initial state in context c sampled from
a target context distribution φ : C → [0, 1], namely,
maxω Eφ(c),ϕc(s)[Vω(s, c)], where Vω(s, c) is the value
of state s in context c and encodes the expected dis-
counted return obtained by following the policy πω(a|s, c)
as Vω(s, c) = Eπω(a|s,c)[Rc(s, a)+γEpc(s′|s,c)[Vω(s

′, c)]].

3.3 SELF-PACED REINFORCEMENT LEARNING

Klink et al. [2020a,b, 2021] propose algorithms under the
Self-paced RL framework to address the contextual RL prob-
lem. Self-paced RL aims to iteratively generate a sequence
of context distributions by maximizing the expected per-
formance with respect to the current distribution, which is
regularized by the KL divergence from the target context
distribution, namely,

max
ν,ω

Eϱ(c|ν),ϕc(s)[Vω(s, c)]− αDKL(ϱ(c|ν) || φ(c))

s.t. DKL(ϱ(c|ν) || ϱ(c|νprev)) ≤ ϵ, (1)

where ϱ(c|ν) and α are the current context distribution
parameterized by ν and the regularization coefficient,
respectively. Klink et al. [2020a] introduce the con-
straint in (1) to restrict the divergence of the current
context distribution from the previous context distribution
parameterized by νprev. Klink et al. [2020b] propose
a way to estimate the expectation in (1). By follow-
ing policy πω, they collect a set D = {(ci, τi)|ci ∼
ϱ(c|νprev), i ∈ {1, 2, · · · ,M}} of trajectories τi =
(si,0, ai,0, ri,1, si,1), · · · , (si,Ti−1, ai,Ti−1, ri,Ti , si,Ti),
where ri,t+1 = Rci(si,t, ai,t, si,t+1) is the reward received
at time t+ 1 in trajectory τi. Then, they use the cumulative
sum of discounted rewards collected in trajectories to obtain
an unbiased estimator of the expectation as

1

N

N∑
i=1

ϱ(ci|ν)
ϱ(ci|νprev)

Ti−1∑
t=0

γtri,t+1, (2)

where ϱ(ci|ν)
ϱ(ci|νprev)

is an importance weight used to estimate
the value of state si,0 in context ci with respect to the current
context distribution ϱ(·|ν), as ci is sampled from ϱ(·|νprev).

4 PROBLEM FORMULATION

We begin with integrating a labeling function into a CMDP
to propose a labeled CMDP. We use labeled CMDPs to
model long-horizon planning tasks, described via contexts.

Definition 4. A labeled CMDP M̄L = ⟨S,A, C,ML⟩
consists of a CMDP M̄ and a labeling function Lc :
S × A × S → 2P . A member of a labeled CMDP M̄L

is a labeled MDP ML(c) = ⟨S,A, pc, R
L
c , ϕc, γ,P, Lc⟩ pa-

rameterized by a context c ∈ C.

A labeled MDP ML(c) differs from a labeled MDP M,
from Definition 1, as the former depends on a context c ∈ C.
However, every labeled MDP ML(c) obtained in M̄L can
use the same reward machine, that encodes the underlying
task structure. Throughout this paper, we make Assumption
1 on the context space C of a labeled CMDP M̄L.

Assumption 1. There exists Γ ∈ Z+ and C[1], · · · , C[Γ]
such that C =

∏Γ
i=1 C[i]. For c = (c[1], · · · , c[Γ]) ∈ C,

we call c[i] the ith context parameter of c. We say Γ is the
dimension of the context space C, referred to as dim(C).

The assumption of a box-shaped context space C of a la-
beled CMDP M̄L allows us to establish a mapping from
the transitions in the reward machine to context parameters.

Problem statement. Given a labeled CMDP M̄L, a re-
ward machine R that encodes the non-Markovian reward
function of M̄L, and a target context distribution φ, we want
to obtain a policy that maximizes the expected discounted
return in contexts c drawn from φ, namely,

max
ω

Eφ(c),ϕc(s),πω(a|s,c)[

T−1∑
t=0

γtRL
c (ht)], (3)

where ht = s0a0 · · · statst+1 is the history at time t. Note
that as the reward machine R encodes the reward function
RL

c for any context c, we have RL
c (ht) = R(ℓ1 · · · ℓt+1)

with labels ℓτ = Lc(sτ−1, aτ−1, sτ ) for τ ∈ [t+ 1].

5 METHOD

We first present an intermediate self-paced RL algorithm by
adopting the approach by Icarte et al. [2018a], which runs an
RL algorithm using reward machines. Then, we discuss how
contexts affect the transitions in a reward machine, and de-
fine a reward-machine-context mapping. Finally, integrating
the proposed mapping into the intermediate algorithm, we
develop a reward-machine-guided self-paced RL algorithm.

5.1 INTERMEDIATE SELF-PACED RL

We construct a product contextual MDP that combines a
labeled contextual MDP M̄L and its reward machine R.

Definition 5. Given a labeled contextual Markov decision
process M̄L and a reward machine R, we define a prod-
uct contextual MDP as the tuple M̄L

R = ⟨S̄, A, C, M̄L⟩



that has an extended state space S̄ = S × Q, an ac-
tion space A, a context space C, and a mapping M̄L from
the context space to product MDP parameters. A mem-
ber of this product contextual MDP is a tuple M̄L(c) =
⟨S̄, A, p̄c, R̄L

c , ϕ̄c, γ,P, Lc⟩ with a probabilistic transition
function p̄c : S̄ × A × S̄ → [0, 1], a reward function
R̄L

c : S̄ × A × S̄ → R, and an initial state distribution
ϕ̄c : S × {qI} → [0, 1]. We define them as

p̄c((s, q), a, (s
′, q′))

=

{
pc(s, a, s

′) if q′ = δq(q, Lc(s, a, s
′));

0 otherwise,
(4)

R̄L
c ((s, q), a, (s

′, q′)) = δr(q, Lc(s, a, s
′))), (5)

ϕ̄c(s, qI) = ϕc(s), (6)

where states s, s′ ∈ S and q, q′ ∈ Q come from labeled
contextual MDP M̄L and reward machine R, respectively.

A trajectory of length T on the product MDP M̄L(c) is
τ̄i = (s̄0, a0, r̄1, s̄1), · · · , (s̄T−1, aT−1, r̄i,T , s̄T ), where
r̄t = R̄L

c (s̄t−1, at−1, s̄t), t ∈ {1, 2, · · · , T}. The interme-
diate self-paced RL algorithm replaces the contextual MDP
trajectories with the product contextual MDP trajectories.
Therefore, an RL agent can capture the temporal task struc-
ture by learning a policy via trajectories rolled out in a
product contextual MDP. The intermediate self-paced RL
algorithm optimizes the following objective to generate con-
text distribution

max
νk

1

N

N∑
i=1

Ti−1∑
t=0

γt ϱ(ci|νk)
ϱ(ci|νk−1)

r̄i,t+1

− αkDKL(ϱ(c|νk) || φ(c))
s.t. DKL(ϱ(c|νk) || ϱ(c|νk−1)) ≤ ϵ, (7)

where αk is the regularization coefficient at the context
distribution update k. Appendix B provides the pseudocode
for this algorithm.

5.2 FROM REWARD MACHINES TO CONTEXTS

In the two-door environment (see Figure 2), we observe that
the first context parameter, i.e., the position of the first door,
determines which M̄L

R transitions enable the agent to pass
the first door, yielding label {d1}. If we change the value of
the first context parameter, then we have a different set of
M̄L

R transitions that yield label {d1}. However, this modifi-
cation has no impact on the transitions that enable the agent
to pass the second door, i.e., to obtain label {d2}. Taking
this observation into account, we show how context parame-
ters influence the transitions in a reward machine, then we
define reward machine-context mapping F : Q×Q → 2D,
which outputs the smallest set of context parameters that
determines if a transition in the reward machine happens.

Definition 6. Given a product contextual MDP M̄L
R, we

define a set G ⊆ D = {1, 2, · · · , dim(C)}, as the set of
identifier context parameters on a transition (q, s, a, s′) if

∀c, c′ ∈ C, c[i] = c′[i],∀i ∈ G =⇒
δq(q, Lc(s, a, s

′)) = δq(q, Lc′(s, a, s
′)), (8)

where (q, s, a, s′) ∈ Q × S × A × S. That is, G is the set
of indices of the context parameters that identify the next
state of the reward machine given a state q of the reward
machine and a transition (s, a, s′) in the labeled MDP.

Notice that D is a set of identifier context parameters for all
(q, s, a, s′) ∈ Q× S ×A× S.

Lemma 1. If G1 is a set of identifier context parameters
on (q, s, a, s′), and G1 ⊆ G2 ⊆ D, then G2 is also a set of
identifier context parameters on (q, s, a, s′).

Proof. Suppose c[i] = c′[i], ∀i ∈ G2, then c[i] = c′[i],
∀i ∈ G1 by definition.

We note that if the empty set ∅ is a set of identifier context
parameters on (q, s, a, s′), then the corresponding transition
δq(q, Lc(s, a, s

′)) in the reward machine does not depend
on the choice of context c ∈ C.

Theorem 2. Under Assumption 1, G1 and G2 are sets of
identifier context parameters on (q, s, a, s′) if and only
if G1 ∩ G2 is a set of identifier context parameters on
(q, s, a, s′).

Proof Sketch. 1 The backward statement comes from
Lemma 1. For the forward statement, let cG = [c[i]]i∈G .
Then, for any c, c′ ∈ C that satisfy cG1∩G2 = c′G1∩G2

, by As-
sumption 1 there exists c′′ for which c′′G1

= cG1
and c′′G2

=
c′G2

. Therefore, δq(q, Lc(s, a, s
′)) = δq(q, Lc′′(s, a, s

′)) =
δq(q, Lc′(s, a, s

′)).

Corollary 1. Under Assumption 1, the set Γ containing all
sets of identifier context parameters on (q, s, a, s′) is closed
under arbitrary unions and finite intersections.

Proof. Lemma 1 and Theorem 2 guarantee that Γ is closed
under unions and finite intersections, respectively.

Corollary 1 guarantees that there is a set of identifier con-
text parameters that is contained by every set of identifier
context parameters. In Definition 7, we define a mapping
that provides such a set for any transition (q, s, a, s′).

Definition 7. Given a product contextual MDP M̄L
R, we

define a mapping Hmin : Q × S × A × S → 2D such
that we call Hmin(q, s, a, s

′) “the smallest set of identifier
context parameters on (q, s, a, s′)” if Hmin(q, s, a, s

′) =

1See Appendix A for the complete proof.



⋂
Gi∈Γ Gi, where Γ is the set containing all possible sets of

identifier context parameters on (q, s, a, s′).

For practical applications, the design of Hmin is not trivial,
as one needs to separately analyze every transition in a
labeled contextual MDP M̄L. On the contrary, it is trivial
to work with the transitions in a reward machine R, as the
number of transitions in R is smaller than the number of
transitions in M̄L in general. Therefore, we define a set of
identifier context parameters for every transition in R.

Definition 8. Given a product contextual MDP M̄L
R and

the mapping Hmin, we define a reward machine-context
mapping F : Q×Q → 2D that outputs “a set of identifier
context parameters for the transition (q, q′)” as

F(q, q′) =
⋃

B(q,q′)

Hmin(q, s, a, s
′), (9)

where B(q, q′) = {(q, s, a, s′) ∈ Q × S × A ×
S |δq(q, Lc(s, a, s

′)) = q′ for some c ∈ C}.

Theorem 3. F(q, q′) is the smallest set that is a set of
identifier context parameters for all (q, s, a, s′) ∈ B(q, q′).

Proof. By Corollary 1, F(q, q′) is a set of identifier con-
text parameters for all (q, s, a, s′) ∈ B(q, q′). Also, a set U
that is guaranteed to be a set of identifier context parame-
ters for all (q, s, a, s′) ∈ B(q, q′) must contain F(q, q′) by
construction. Then, |U| ≥ |F(q, q′)|.

An expert designs mapping F by asking questions about
the task structure. For instance, for the transition (q1, q5) in
Figure 3, the expert should ask: Is there a transition (s, a, s′)
in the labeled contextual MDP M̄L such that it causes the
agent to hit the wall for some context c but lets the agent pass
through the door, i.e., (q1, q2), for a different context c′? The
idea is to find the context parameters i ∈ D for which a
change of value, e.g. c[i] ̸= c′[i], prevents a transition (q, q′)
in the reward machine from happening. For (q1, q5), the
mapping outputs the first context parameter, F(q1, q5) =
{1}, as the identifier, since it determines the position of the
first door. In short, when the agent is in the second room and
moves into the first door/wall with an upward action, then
the position of the first door determines whether it moves
into the door or the wall. Here, the position of the second
door does not identify which transition will happen.

5.3 REWARD-MACHINE-GUIDED, SELF-PACED
REINFORCEMENT LEARNING

Klink et al. [2020b]’s self-paced RL algorithm uses an
importance weight in (2) as the ratio between probabili-
ties of a context with respect to the current and previous
contexts distributions. In other words, the algorithm as-
sumes that every context parameter has an effect on the

reward that an environment interaction yields. On the other
hand, by Theorem 3, a reward machine-context mapping
F outputs the smallest set of identifier context parameters
for a transition (q, q′) in the reward machine R. There-
fore, we can remove the naive assumption of Klink et al.
[2020b] and use the context parameters that the mapping
provides to compute the importance weight of a reward re-
ceived in a transition (q, q′). We achieve this by utilizing
the marginal context distributions for the context parameters
in the set F(q, q′) as 1

N

∑N
i=1

∑Ti−1
t=0 γt ϱft (ci|νk)

ϱft (ci|νk−1)
r̄i,t+1,

where r̄i,t = R̄L
ci(s̄i,t−1, ai,t−1, s̄i,t) and ft = F(qt, qt+1).

Here, we introduce ϱft(·|νk) and ϱft(·|νk−1), that are the
current and previous marginal context distributions, where
the marginal variables are the identifier context parameters
in ft, respectively. We note that for the case ft = ∅, we
assign ϱft (ci|νk)

ϱft (ci|νk−1)
= 1. Consequently, the reward-machine-

guided, self-paced RL algorithm optimizes the following
objective for context distribution updates, namely,

max
νk

1

N

N∑
i=1

Ti−1∑
t=0

γt ϱft(ci|νk)
ϱft(ci|νk−1)

r̄i,t+1

− αkDKL(ϱ(c|νk) || φ(c))
s.t. DKL(ϱ(c|νk) || ϱ(c|νk−1)) ≤ ϵ, (10)

where αk is the regularization coefficient at the context
distribution update k. Similar to the intermediate self-paced
RL, the reward-machine-guided, self-paced RL algorithm
runs on a product contextual MDP M̄L

R, as well. We outline
the complete algorithm in Algorithm 1. Lines 3-5 update
the policy π using trajectories in the sampled contexts via
an RL algorithm Ψ. Line 6 generates context distributions.

6 EMPIRICAL RESULTS

We evaluate the proposed RM-guided SPRL and Intermedi-
ate SPRL with three state-of-the-art automated curriculum
generation methods2: SPDL [Klink et al., 2020b], Goal-
GAN [Florensa et al., 2018], and ALP-GMM [Portelas et al.,
2020]. We also include two baseline approaches: Default,
which draws samples from the target context distribution
without generating a curriculum, and Default*, which ex-
tends Default by running the RL algorithm on a product
contextual MDP, hence we observe the effect of capturing
temporal abstractions. Appendix B includes more details.

Two-door environment. The two-door environment is
a variation of the point-mass environment Klink et al.
[2020a,b, 2021, 2022] with a temporal structure. Similar
to commonly studied domains such as the office world,
craft world, and water world Icarte et al. [2018a], Camacho
et al. [2019], Icarte et al. [2022], the two-door environ-
ment has discrete state and action spaces as a 40-by-40 grid

2See https://github.com/cevahir-koprulu/
rm-guided-sprl to access the code repository of this work.

https://github.com/cevahir-koprulu/rm-guided-sprl
https://github.com/cevahir-koprulu/rm-guided-sprl


Algorithm 1 Reward-Machine-Guided, Self-Paced RL
Input: Product MDP M̄L

R, reward machine-context map-
ping F, target context distribution φ, initial context distribu-
tion ϱ(·|ν0),
Parameter: KL penalty proportion ζ , relative entropy bound
ϵ, KL penalty offset offset Kα, number K of iterations, num-
ber N of rollouts
Output: Final policy πωK

1: Initialize policy πω0
.

2: for k = 1 to K do
3: ci ∼ ϱ(c|νk−1), i ∈ [N ], ▷ sample contexts
4: Dk ← {(ci, τ̄i)|τ̄i = (s̄i,0, ai,0, r̄i,1, s̄i,1), · · · ,

(s̄i,Ti−1, ai,Ti−1, r̄i,Ti , s̄i,Ti), i ∈ [N ]}, ▷ collect
trajectories

5: πωk ← Ψ(Dk, πωk−1) ▷ update policy with RL algorithm
Ψ

6: Compute next context distribution parameter νk by opti-
mizing (10) with

αk =

{
0 if k ≤ Kα;

B(νk−1,Dk) otherwise,

where B(νk−1,Dk) = ζ
max (0, 1

N

∑N
i=1

∑Ti
t=1 γtr̄i,t)

DKL(ϱ(c|νk−1)||φ(c))
.

7: end for
8: return πωK

world. The context space C = [−4, 4]2 includes all avail-
able horizontal positions for two doors. The target context
distribution φ(c) is a normal distribution N (µ,Σ), where
µ = (µ1, µ2) = (2, 2) and Σ = diag((σ2

1 , σ
2
2)) = I2,

where I2 is the identity matrix.

Figure 4a demonstrates how the curricula generated by each
method evolve over the training. Here, we exclude Goal-
GAN, Default*, and Default, since they do not have a no-
tion of a target context distribution. RM-guided SPRL pro-
duces sequences of context distributions that vary less over
the same curriculum updates and converges faster, by one-
fourth, than Intermediate SPRL and SPDL. Table 1 demon-
strates the average variance of the statistics of the context
distributions, i.e., mean and variance of normal distribu-
tions, generated until convergence to the target distribution.
RM-guided SPRL has the lowest variances for all statistics,
up-to four orders of magnitude, with statistical significance
p < 0.001. Intuitively, guiding the curriculum generation
process via a reward-machine-context mapping F allows for
avoiding redundant exploration of the curriculum space.

Figure 4b shows the expected discounted return progression.
Although Default* obtains a higher return early on, it lags
behind RM-guided SPRL and Intermediate SPRL since it
does not generate a curriculum, but samples from the target
context distribution directly. As we set Kα to 70 for all
self-paced algorithms, the agent draws easy contexts from
the initial context distribution ϱ(·|ν0). RM-guided SPRL
surpasses Default* quickly, but the agent seems to get stuck
in the final phase, finding the goal. Intermediate SPRL do
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Figure 4: Two-door environment: Progression of the cur-
ricula and performance during the training. Shaded regions
cover the quartiles. Bold lines indicate the median values.

not experience this as its curricula converge later (see red
lines in Figure 4a). Other approaches cannot learn a policy
that accomplishes the task because they do not capture the
temporal structure described by the reward machine.

Customized Swimmer-v3 environment. We customize
the Swimmer-v3 environment Brockman et al. [2016] by
adding two flags, namely checkpoints, to the left, f1, and the
right, f2, of the initial position of the swimmer. In compari-
son to the two-door environment, customized Swimmer-
v3 has continuous state (8-dimensional) and action (2-
dimensional) spaces. However, the underlying task is the
simplest in our experimental setup, with a reward machine
of 3 states (see Figure 5): The swimmer has to visit flag 2
f2 first, and then flag 1, obtaining a reward of 100 and 1000,
respectively. Inspired by Icarte et al. [2022], we use a con-
trol penalty, noted as CP, for rewards received by the agent



Table 1: Curricula variance: Average variance of the statis-
tics of the context distributions generated by self-paced RL
methods in three case studies. µi and σ2

i correspond to the
statistics of a normal distribution, i.e., the mean and the
variance for the ith context parameter, respectively. The
variances that are highlighted in bold are significantly better
results (lower variance of a statistic) with p < 0.001.

Stat RM-guided Intermediate SPDL

Tw
o-

do
or µ1 4.09 · 10−3 2.06 · 10−1 1.21 · 10−1

µ2 4.61 · 10−3 1.69 · 10−1 8, 78 · 10−2

σ2
1 2.23 · 10−3 3.75 · 10−2 2.46 · 10−2

σ2
2 2.31 · 10−3 2.59 · 10−2 2.42 · 10−2

Sw
im

m
er µ1 3.02 · 10−4 8.18 · 10−4 2.37 · 10−2

µ2 5.07 · 10−4 1.13 · 10−4 2.90 · 10−2

σ2
1 2.83 · 10−6 9.55 · 10−7 8.40 · 10−6

σ2
2 2.68 · 10−6 2.77 · 10−6 6.16 · 10−5

H
al

fC
he

et
ah

µ1 2.90 · 10−2 6.23 · 10−1 -
µ2 2.39 · 10−2 9.84 · 10−1 -
µ3 9.85 · 10−2 1.27 · 10−1 -
σ2
1 9.13 · 10−4 5.80 · 10−3 -

σ2
2 1.92 · 10−3 1.95 · 10−4 -

σ2
3 2.86 · 10−3 5.35 · 10−2 -

q0 q1 q2
(f1, 100) (f2, 1000)

(¬f1,CP) (¬f2,CP) (⊤, 0)

Figure 5: Reward machine of the Swimmer environment

following the self-loop transitions in the reward machine,
to discourage the agent from applying large forces to the
joints. The context space is 2-dimensional and determines
the positions of the flags: C2 = [−0.6, 0] × [1, 1.6]. The
target context distribution is N ((0.6, 1.6, I3 · 1.6 · 10−7).

Figure 6 shows that only RM-guided-SPRL and Default*
achieve 100% success ratio in median. RM-guided SPRL
converges faster, and is more reliable as the quartiles con-
verge before the training ends, as well. Default*’s perfor-
mance evidence that this task does not require a curriculum
as much as the two-door environment. Intermediate SPRL’s
failure supports this argument, as it cannot achieve a success
ratio of more than 20%, in the median. The other algorithms,
again, fail to accomplish the task. Table 1 indicates that the
curricula variance of RM-guided SPRL is not significantly
different than Intermediate SPRL. Nevertheless, RM-guided
SPRL is reliable as it is 100% successful (median) while
avoiding the redundant exploration of the curriculum space.

Customized HalfCheetah-v3 environment. We also cus-
tomize the HalfCheetah-v3 environment Brockman et al.
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Figure 6: Swimmer-v3 environment: Progression of the suc-
cessful episodes ratio in contexts drawn from the target
context distribution over curriculum updates.
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Figure 7: HalfCheetah-v3 environment: Progression of the
expected discounted return with respect to the target context
distribution over curriculum updates.

[2016] by adding three flags, f1, f2, and f3, ordered in as-
cending distance to the right of the cheetah’s initial position.
The reward machine in Figure 8 describes the following
task: The cheetah has to visit flags 1 and 2, then go back
to flag 1, and finally pass flag 3. The underlying task re-
quires the cheetah to change direction 3 times. The original
HalfCheetah-v3 Brockman et al. [2016] and its variation
in Icarte et al. [2022] are single-task environments and re-
ward the cheetah for running forward, only. In comparison,
customized HalfCheetah-v3 has a running backward sub-
task (the transition (q2, q3) in the reward machine in Figure
Figure 8), which is challenging for the agent. Similar to cus-
tomized Swimmer-v3, customized HalfCheetah-v3 has con-
tinuous state (17-dimensional) and action (6-dimensional)
spaces. The 3-dimensional context space determines the
flag positions: C3 = [0.5, 4]× [2, 7]× [3.5, 10]. The target
context distribution is N ((4, 7, 10), I3 · 1.6 · 10−7).

Figure 7 shows that RM-guided SPRL is the only algorithm
that can learn a policy that accomplishes the target contexts
in every independent training run. Intermediate SPRL fails
in one run, where the generated curricula cannot converge
to the target context distribution during the training (see Ap-
pendix B). SPDL suffers from a similar issue because they
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Figure 8: Reward machine of the HalfCheetah environment

(a) Swimmer-v3 (b) HalfCheetah-v3

Figure 9: Images from Customized Swimmer-v3 and Cus-
tomized HalfCheetah-v3 environments.

both obtain a negative expected discounted return, which
sets αk in (10) to zero, hence the generated curricula do
not approach, even diverge from, the target context distri-
bution. Default*, Default, GoalGAN, and ALP-GMM are
unsuccessful in this domain. In Table 1, we exclude SPDL,
as none of its curricula converge to the target before the
training ends. Similar to Case-2, RM-guided SPRL gener-
ates curricula whose variance is significantly smaller with
p < 0.001.

7 CONCLUSIONS

We propose two self-paced RL algorithms that exploit the
high-level structural knowledge about long-horizon plan-
ning tasks via reward machines. First, we present an in-
termediate self-paced RL algorithm that uses reward ma-
chines to update the policy and value functions of an RL
agent. Then, we establish a mapping, called reward-machine-
context mapping, that, given a transition in the reward ma-
chine, outputs the smallest set of identifier context param-
eters that determines whether the transition occurs or not.
Lastly, we develop a reward-machine-guided, self-paced
RL algorithm that builds on the intermediate algorithm and
navigates the automated curriculum generation via reward-
machine-context mapping. We evaluate the proposed algo-
rithms in three domains. We empirically show that existing
approaches fail to accomplish the given long-horizon plan-
ning tasks, whereas the proposed algorithms can capture the

temporal structure of such tasks. Compared to the interme-
diate algorithm, the reward-machine-guided, self-paced RL
algorithm is more reliable, as it achieves successful com-
pletion of the task in every use case, and it also reduces
curricula variance by up to four orders of magnitude.

Limitations. The limitations come from the self-paced RL
algorithm used in the proposed approaches, the assumption
of a priori available reward machine, and task knowledge to
construct a reward-machine-context mapping: 1) Interme-
diate SPRL and RM-guided SPRL employ a self-paced RL
algorithm, SPDL Klink et al. [2020b], which uses a paramet-
ric family of context distributions to generate a curriculum.
Similar to Klink et al. [2020b, 2021], we study Gaussian
context distributions. Hence, SPDL does not address set-
tings with arbitrary target context distributions. 2) We focus
on long-horizon planning tasks with a priori available re-
ward machines. The proposed approaches require a reward
machine to construct a product contextual MDP, which cap-
tures the temporal task structure. 3) Task knowledge about
the connection between the reward machine and the context
space enables the design of a reward-machine-context map-
ping. Unless such knowledge is available, RM-guided SPRL
and Intermediate SPRL become equivalent, as the latter do
not utilize the mapping.

Future Work. Taking into account the limitations of the
proposed approaches, we will study how to infer a reward
machine and a reward-machine-context mapping of a do-
main online to remove the need for a priori available task
knowledge. In addition, we will extend RM-guided SPRL
to address arbitrary context distributions, which Klink et al.
[2022] studies without integrating high-level structural task
knowledge.
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