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Abstract

Setting up and controlling optical systems is often a challenging and tedious task. The high
number of degrees of freedom to control mirrors, lenses, or phases of light makes automatic
control challenging, especially when the complexity of the system cannot be adequately
modeled due to noise or non-linearities. Here, we show that reinforcement learning (RL) can
overcome these challenges when coupling laser light into an optical fiber, using a model-free
RL approach that trains directly on the experiment without pre-training on simulations. By
utilizing the sample-efficient algorithms Soft Actor-Critic (SAC), Truncated Quantile Critics
(TQC), or CrossQ, our agents learn to couple with 90% efficiency. A human expert reaches
this efficiency, but the RL agents are quicker. In particular, the CrossQ agent outperforms the
other agents in coupling speed while requiring only half the training time. We demonstrate
that direct training on an experiment can replace extensive system modeling. Our result
exemplifies RL’s potential to tackle problems in optics, paving the way for more complex
applications where full noise modeling is not feasible.

1 Introduction

In experimental physics, we work with complex and sensitive setups. Working in an optics lab means adjusting
numerous mirrors, lenses, and other optical elements while optimizing complex parameters. Two of the
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main challenges are precision and the number of degrees of freedom. Often, tasks have to be repeated
frequently. One example of such a task is coupling laser beams into optical fibers, used in many physics
labs (Addanki et al., 2018; Lu et al., 2019; Larsen et al., 2019; Xavier & Lima, 2020). It can be a laborious and
time-consuming task, especially in experiments with many fibers. Automating tasks like this can, therefore,
free up domain expertise for more challenging tasks. Most of these repeated tasks have a very clear goal and
can either be described as alignment or control problems. Alignment means the correct steering of a laser
beam through an optical setup. Control refers to maintaining a dynamic experiment at a desired position
using feedback loops. While fiber coupling is primarily an alignment problem, correcting for drift can be
considered control.

Automation of alignment and control tasks is a classic use case of reinforcement learning (RL) (Sutton &
Barto, 2018; Krenn et al., 2023; Vernuccio et al., 2022). RL has seen considerable success in recent years, both
in general (Silver et al., 2017; 2018; Mnih et al., 2015; Vinyals et al., 2019; Berner et al., 2019; Fawzi et al.,
2022; Ruiz et al., 2024) and specifically in robotics (James et al., 2019; Andrychowicz et al., 2020; Kumar et al.,
2023; Sontakke et al., 2023; Zhao et al., 2020). However, due to many RL algorithms relying on a huge amount
of data, at least in environments with continuous action spaces, most of these were performed in simulated
or toy environments (Akkaya et al., 2019; Ranaweera & Mahmoud, 2023). Comparatively few experiments
were done in real-world environments (Dulac-Arnold et al., 2019; 2021; Ding & Dong, 2020). With the recent
advance of more sample-efficient algorithms for continuous action spaces, like Deep Deterministic Policy
Gradient (DDPG) (Lillicrap et al., 2019), Twin Delayed Policy Gradient (TD3) (Fujimoto et al., 2018), Soft
Actor-Critic (SAC) (Haarnoja et al., 2018), Truncated Quantile Critics (TQC) (Kuznetsov et al., 2020), and
CrossQ (Bhatt et al., 2024) directly training in an experiment has become more feasible. However, we still
face several challenges, such as partial observability, time-consuming training, and noise, when applying RL
to real-world setups (Dulac-Arnold et al., 2019; 2021).

In this work, we demonstrate how an RL agent successfully learns to couple light into an optical fiber, reaching
efficiencies equivalent to those of a human expert. We set up an experiment for fiber coupling on an optical
table, motorizing the mirrors that guide the laser beam into the fiber. Our goal is to reach a specific coupling
efficiency, which is the fraction of light entering the fiber. We have not included the absolute motor positions
in the observation to train our agent to improve the coupling efficiency for any type of misalignment. This
means that the partial observability increases, but the agent generalizes to setup perturbations.

The primary issue we encountered was the lack of precision in the motors. For instance, returning to a
position was only possible with a considerable and unpredictable offset, which leads to noise in the actions,
a special type of stochasticity of the environment. In contrast to adding artificial noise to the actions for
exploration (Chiappa et al., 2023; Eberhard et al., 2022; Hollenstein et al., 2022; Zhang & Hoof, 2021; Plappert
et al., 2018), in our case, the noisy actions are inherent to the system. To solve this problem without a full
analysis and modeling of the behavior, we let our agent train directly on the experiment with the standard
StableBaselines3 (Raffin et al., 2021) implementations of SAC, TQC, and CrossQ. To reset a training episode,
we could not reliably move to an absolute position but implemented a reset procedure that mainly relied on
relative movement steps.

Despite the noisy actions and partial observability of the environment, the agent learns to reliably couple to
an efficiency of ≥ 90% ± 2% starting from a low power over the course of two days using CrossQ or SAC and
nearly four days when trained with TQC. If we only need a smaller efficiency, e.g., 87% ± 2%, the training
only takes twenty hours and can be performed in two nights, not taking away experimenting time. For
comparison, the maximum coupling efficiency observed by the experimenter was 92%, and the one reached
by the agent was 93%. We find that tuning the environment parameters thoroughly is crucial to reducing
training time, which is of high priority for real-world RL applications.

Our successful training is a first step towards further applications. First, our experiment shows that laser
beam alignment using RL is generally possible. A transfer to other scenarios, such as interference optimization
of two beams at a beam splitter or alignment of a laser field to an optical resonator, is straightforward and
requires only a change of sensor (Siegman, 1986). Secondly, with training directly on the experiment, we show
an example of applying RL to control tasks without having to model the experiment in detail beforehand.
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This is particularly important for more complicated experiments, such as those in quantum and atomic optics,
where it may be disproportionate or impossible to simulate the exact dynamics and noise.

2 Related work

Reinforcement learning is widely used in robotics (Singh et al., 2022). In many real-world robotics environments,
the challenge of noisy observations is apparent, while there is less focus on noisy or inaccurate actions (Zhao
et al., 2020). Still, in sim-to-real transfer studies, different forms of actuator imprecision have been shown to
significantly affect policy transferability, but agents can still learn in environments with backlash (Golemo
et al., 2018). We identified backlash as a key challenge for our agent, rather than the widely studied problem
of noisy observations. As the robotics field is highly diverse and direct comparisons between experiments are
generally difficult, we focus our discussion of related work on the subfield of optical experiments.

The application of RL to optical systems encompasses a wide range of topics, including optical networks (Kiran
et al., 2007; Suárez-Varela et al., 2019; Chen et al., 2019b;a; Luo et al., 2019; Troia et al., 2019; Li et al.,
2020; Natalino & Monti, 2020; Yu et al., 2023), adaptive optics (Ke et al., 2019; Nousiainen et al., 2021;
Durech et al., 2021; Landman et al., 2021; Nousiainen et al., 2022a;b; Pou et al., 2022; Nousiainen et al.,
2024), and optical nanostructure, thin films and optical layers (Sajedian et al., 2019; Jiang et al., 2020; Wang
et al., 2021; Wankerl et al., 2021). More related to our problem is work that studies how RL can be used
to align and control tabletop optical experiments with lasers. In this category, some works are realized
merely on simulation. Examples include studying mode-locked lasers (Sun et al., 2020), combining laser
beams (Tünnermann & Shirakawa, 2021), and stacking laser pulses (Abuduweili et al., 2021; Abuduweili
& Liu, 2022). Other works include investigating how RL performs in an actual experiment. Most agents
in these studies are, however, not trained in the experiment but in simulation. Examples include aligning
an optical interferometer (Sorokin et al., 2020; Mukund et al., 2023), operating optical tweezers (Praeger
et al., 2021), combining laser beams (Shpakovych et al., 2021) and operating pulsed lasers (Kuprikov et al.,
2022). It is rare that the agent is trained directly on the experiment (Ding & Dong, 2020). One example
is a study combining pulsed laser beams (Tünnermann & Shirakawa, 2019). Here, one actuator performs
the actions, and the output is a scalar, the power. The training time is about 4 hours; simulations show
that this would quickly go up to 1-2 days if more than two beams should be combined. Another example is
the generation of a white light continuum (Valensise et al., 2021). Thereby, both the states and the actions
are given by absolute positions of three actuators and moving to those positions, respectively. This gives
their environment a relatively high observability for a real-world task. The authors claim to have obtained a
successfully trained agent in 20 minutes. We deal with a higher (4) dimensional action space than both of
these works. RL was also used to optimize the output power of an X-ray source (Mareev et al., 2023). For
this, a single actuator was discretely controlled based on a scalar signal. As a side project, the paper looks
at a simplified approach to fiber coupling using only two degrees of freedom and working with a discrete
action space of size 4 employing DQNs (Mnih et al., 2013). The work does not present the achieved coupling
efficiencies. In contrast, we work with continuous action spaces and control all four degrees of freedom
necessary for general beam alignment required for optimal fiber coupling. While training on the experiment
can be difficult for many reasons (see Section 3), it can be the last resort in cases where creating a model
that accurately represents the noise and dynamics of the system is very time-consuming, if not infeasible.
Using a too-inaccurate model, however, would make it impossible to cross the simulation-reality gap (Salvato
et al., 2021). We therefore decided to study the little-explored field of in-situ training.

3 Fiber coupling

3.1 Experimental setup

To efficiently couple laser light into an optical fiber, we need a specific setup. Our goal is to reach a certain
coupling efficiency, which is the fraction of light entering the fiber. To achieve this, the light has to enter
the fiber at a specific angle and precise spot. The coupling efficiency depends on how accurately both are
matched. To fulfill both constraints, we need two degrees of freedom in each axis, horizontal (x) and vertical
(y) (Senior, 2009; Knigge et al., 2021). These are the same requirements as for any other beam alignment
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Figure 1: Panel (a) and (b) show a conceptual scheme and lab setup of the fiber coupling experiment. Panel (c)
shows the dead-zone characterization of the four motorized mirror mount axes on a log scale axis. Dead-zone
means movement steps performed by the actuators that do not result in a change in power. Appendix B
gives a detailed description of the characterization.

task. This means that two mirrors, each tiltable in x and y, are sufficient to acquire an arbitrary beam
alignment. Furthermore, the laser beam must have the correct size, which is achieved by placing lenses in
the correct position before the light enters the fiber. To simplify the setup, we decided to motorize only the
mirrors but not the lenses. In addition to the motorized mirrors, we have two mirrors that can be steered
with hand-tuneable knobs. This makes it easier for humans to couple light into the fiber and can be used
to introduce perturbations to the setup. We measure the power at the output of the fiber with a power
meter (Thorlabs PM160). With the help of a reference power measurement, we can track power fluctuations
and determine the coupling efficiency or normalized output power with an error of 2%. Our experiment is
depicted in Figure 1, and further details are given in Appendix A.

The four actuators moving the mirrors are stepper motors (Thorlabs ZFS 13). They are attached to the
mirror mounts, each tilting the respective mirror in one axis. To understand the special constraints of our
problem, we move all actuators to a position where we have maximal coupling. Then, while holding the
other three actuators fixed, we scan the relevant movement range with one actuator. The power dependence
on each motorized degree of freedom looks Gaussian. Fitting it with a Gaussian, we obtained standard
deviations in the range of 104 − 2 × 104 actuator steps (see Appendix C for more details).

3.2 RL challenges

When we use RL to fiber couple in our lab, we face several challenges. The training is time-consuming as one
environment step takes about one second. Furthermore, due to laser safety and possible equipment damage,
we have to restrict the movement range of our actuators. The two challenges that are most crucial for shaping
our environment are partial observability and motor imprecision.

Partial observability We work with a strongly underdetermined, only partially observable experiment.
To describe the state of the experiment perfectly, we would need a lot of information not available to us,
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e.g., the exact angle, position, and size of the incoming laser beam, as well as the exact position of all of
the mirrors and lenses. Even if we could get all of this information at the time of training, environmental
drift, such as temperature, would require careful calibration to occur frequently. To make the agent robust
against drift, we do not use the actuator positions as part of the observation. Even if we did, they would be
very inaccurate due to motor imprecision (see below). Instead, we solely rely on the power at the output of
the fiber and the previous actions as our observation. This makes our environment partially observable and
underdetermined due to four mirror positions leading to one output. Also, the signal is very scarce, as when
the motors leave a certain movement range, no power at all gets coupled into the fiber, which means the
agent does not get any feedback. Hence, the environment is reset when falling below a certain power.

Motor imprecision Our main challenge is based on the complex relationship between the expected
movement of the used motors and their actual movement, which we call noisy actions. When we report
actuator steps here, these are the steps the controller intended to move the motor. There is no feedback, e.g.,
an encoder, to ensure the intended position is reached. The imprecision includes backlash of the mechanical
system, step loss, non-orthogonal degrees of freedom, i.e., the x and y-axis are not independent from each
other, and other errors. This leads to noise in the action. To understand its severity, Figure 1 (c) shows the
number of steps each actuator moves without any change of power, called dead-zone. Although all mirror
axes are motorized with the same motor, gearbox, and linear actuator, different dead-zone sizes are observed.
A more detailed explanation of the imprecision and its characterization can be found in Appendix B. The
variety in the motor imprecision makes the action noise distribution hard to describe. On top of that, this
affects our reset method (see Section 4).

4 Our method

We cannot write down a Markov state (see e.g. Sutton & Barto (2018) for an introduction) for our system.
Therefore, we treat it as an unknown episodic partially observable Markov decision process (POMDP, see
e.g. Graesser & Keng (2020)). When sampling from it, we get a stochastic process o1, a1, r1, o2, a2, r2, ..., oτ ,
where ot, at and rt are observations, actions and rewards at the discretized time t, and τ is the episode length
limitited by the maximal episode length T , i.e. τ ≤ T . See Tables 1 and 2 for environment hyperparameters.

To test out various RL algorithms and investigate differently designed environments before training on the
actual experiment, we use a virtual testbed. This is created by fitting the power depending on the position of
each individual actuator with Gaussians. By multiplying them, we get an approximate map from all four
actuator positions to the power. We then set the amplitude to the highest power we observed until that
point, which is 0.92. Using this, we create a simplified virtual environment, not including noise. Although
it is a strong simplification, it helped us get various insights much quicker than in the experiment. These
numerical results can be found in Appendix C.

Actions We treat our action space as the 4-dimensional continuous action space [−1, 1]×4. At time t, we
can decompose the action at as at = (am1x, am1y, am2x, am2y) where each component belongs to a different
actuator. For example, am1x belongs to the actuator that tilts mirror 1 in the horizontal (x) direction. Each
of these actions is then multiplied by the maximum allowed action in actuator steps amax, rounded to the
next integer, and sent to the different controllers. Using the virtual testbed, we find that maximum actions of
approximately amax = 6 · 103 are optimal (see Appendix C.6). However, in the experimental environment, the
actuators have no feedback loop, so, potentially, they move significantly less due to their imprecision. This
makes our actions noisy, which adds to the stochasticity in the environment. As discussed in Appendix C.8,
this especially complicates the task for high powers.

Observations As we are dealing with a partially observable system, for successful training, we need to
take great care in defining our observations. The only thing we observe in our environment is the coupling
efficiency or normalized power, denoted P ∈ [0, 1]. For example, Pt denotes the normalized power at time
t. As usual in POMDPs (Tünnermann & Shirakawa, 2019; Sorokin et al., 2020)), we include a history of
length n ∈ N in the observation. This would lead to an observation like ot = (Pt−n, ..., Pt−1, Pt) at time step
t. It is common in RL experiments to observe the environment before and after an action, not during this
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Table 1: Environment parameters for the main experiments where Pmin − 0.1 is the lowest power at which
the training starts, Pfail is the power at which the agent fails and the reset is called, Pgoal is the power the
agent should learn to reach, T is the maximal episode length in time steps, and n is the history length used
in the observation.

Parameter Pmin Pfail Pgoal amax T n
Value 0.2 0.05 [0.85, 0.9] 6 · 103 30 4

action. However, this is not the only information available to us: In principle, we can record the power almost
continuously while the actuators are moving, i.e., we can record (Pt, Pt+1/mt

, ..., Pt+1) during action at where
mt is the number of powers measured during that time. In the virtual testbed, we noticed that it is beneficial
to use some of this information in our observation (see Appendix C.5). In particular, we take the average
power Pave,t =

∑mt

i=0 Pt−1+i/mt
/(mt + 1) the maximal power observed Pmax,t = maxi=0,...,mt

Pt−1+i/mt
and

its relative position in the list of powers xmax,t = (arg maxi=0,...,mt Pt−1+i/mt
)/(mt + 1) into account. In

addition, it is helpful to use the performed actions as part of the observation. This leaves us with the
observation

ot =
(

(Pk−1, ak−1, Pave,k, Pmax,k, xmax,k)k=t−n,...,t , Pt

)
,

i.e., the observation includes a history of the power before taking an action, the action, the average and
maximum power and its relative position during the action, and the power afterward. Using the virtual
testbed, we find that history lengths of approximately n = 4 are optimal when using TQC (see Appendix C.5).
We deliberately do not take the absolute actuator positions as part of our observation. The main reason is
that we want to make our agent robust to experimental alignment changes such as drift. When this happens,
the absolute positions where the maximum power is reached will change. An agent trained with the absolute
motor positions being part of the observation is not able to handle such situations (see Appendix C.5).

Episode and Resets We reset the environment either after a chosen maximum episode length t = T ∈ N,
when the agent reached its goal (i.e., Pt > Pgoal), or the agent failed (i.e., Pt < Pfail). While training with
TQC on the virtual testbed, we find that it helps with reaching higher goals like Pgoal = 0.9 if we implement
an instance of curriculum learning (Narvekar et al., 2020) by starting with lower goal powers and raising the
goal power during training, especially starting from Pstart, goal = 0.85 (see Appendix C.4).
A common way of resetting at the start of an episode is to move to a random position within a defined range.
However, our actuators do not present the required precision for this. We, therefore, need a different way to
reset. We nevertheless define neutral positions given in motor steps. These are positions where we had high
power when we started our training. When we return to the neutral positions during training, depending on
the original actuator position, the power varies between no power and high power.
The reset procedure depends on the last power value, and we want the power after the reset to be higher
than Pmin. We distinguish between 3 cases. If, during the reset procedure, the condition of a different case
applies, we jump to the corresponding case:
1. Pt ≥ Pmin: we choose a random power between Pmin + 0.1 and Pgoal and do random steps until the power
drops below the chosen power value.
2. 0.09 < Pt < Pmin: we first reverse the last action. As long as the power is still under Pmin, we move the
actuators one after the other in random order in the direction in which the power increases. If the power
decreases, we change the actuator’s direction of movement. We repeat this process until we reach Pt ≥ Pmin.
3. Pt < 0.09 or every ten episodes: We first move to the neutral positions. From there, we do random steps
until P ≥ 0.09, and then follow the procedure of Case 1 or 2 depending on the power.
The values of 0.09 and ten episodes were determined empirically by observing the algorithm performing on the
experiment. Before starting the episode, we always perform some random steps to randomize the process more.
Our reset procedure introduces a small dependence between successive episodes. Full independence was not
possible in this experiment due to the motors’ inherent inaccuracies. In contrast, a fully random-based reset
procedure is applicable while training solely on the virtual testbed. We compared this with our custom reset
method on the virtual testbed and found no major effect on the training performance (see Appendix C.3).
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Table 2: Reward hyperparameters for the main experiments

Parameter As Af Ag αs αf αg βs βf1 βf2 βg1 βg2
Value 10 100 100 0.9 0.5 0.5 5 5 5 5 1

Rewards We design our reward with the purpose of making the agent reach the goal as quickly as possible.
The agent gets a low negative reward when failing (Pt < Pfail), a high reward when reaching the goal
(Pt > Pgoal), and else a small reward every step depending on the power. We define the reward function
depending on the current power Pt, the time step t, the goal power Pgoal, minimal power Pmin, fail power
Pfail and the episode length T as

rt =R(Pt, t, T, Pfail, Pgoal, Pmin)

=


−Af

(
(1 − αf ) exp (−βf,1

t
T ) + αf exp (−βf,2

Pt

Pfail
)
)

if Pt < Pfail

Ag

(
(1 − αg) exp (−βg,1

t
T ) + αg exp (βg,2

Pt

Pgoal
)
)

if Pt > Pgoal
As

T ((1 − αs) exp (βs(Pt − Pgoal)) + αs (Pt − Pmin)) else

where βs, βf1, βf2, βg1, βg2, As, Af , Ag ∈ R, αs, αf , αg ∈ (0, 1). See Table 2 for their values in the main
experiment, which were tuned in the virtual testbed as described in Appendix C.1. The return should
never be higher when staying just below the goal than when actually reaching the goal. In the same way, it
should always be better to stay just above the failing threshold than to fail. We enforce this by choosing
the amplitudes according to Af , Ag ≥ As. Each of the rewards consists of two terms. The α’s are used
to weigh their importance relative to one another. The failing reward consists of a term punishing it less
when the agent fails later in the episode and a term punishing it less when the power with which the agent
fails is close to the failing threshold. The two terms in the goal reward ensure that the agent is rewarded
more for reaching the goal quickly and for reaching it with a higher power. The step reward contains both
an exponential and a linear part to ensure that the agent clearly notes a change to higher powers for low
and high values. As the reward depends on the goal power, we normalize the return in the shown plots by
dividing it by the maximum possible return for that given goal power. The maximum possible return is given
by the return when reaching the maximum possible power in the first step.

Algorithms The continuous action space limits our choice of algorithm. Our main environment parameter
searches on the virtual testbed were performed with TQC. Subsequently, we also tested CrossQ, TD3, SAC,
DDPG, PPO, and Advantage Actor-Critic (A2C). Of these, PPO and A2C performed worst. As they both
do not use a replay buffer, this was expected. They are closely followed by DDPG. CrossQ, SAC, TD3, and
TQC performed much better. SAC performed almost always slightly better than TD3. TQC has a small
drop compared to SAC in the middle of training that gets larger with rising goal powers. With rising goal
powers CrossQ shows an advantage over the other algorithms. See Appendix C.7 for a discussion. Thus,
in the main experiment, we tested CrossQ, TQC, and SAC as algorithms. We used the algorithms from
StableBaselines3 (Raffin et al., 2021) with standard hyperparameters further discussed in Appendix E.

Comparability of the virtual testbed and the real-world experiment The experiment has two main
differences from the virtual testbed. Firstly, the actions are highly noisy due to the motors’ inaccuracies.
Secondly, as described in Section 3, the two elements of the action belonging to one axis are coupled. However,
in the virtual testbed, to keep the design simple, we uncoupled these actions. The interaction of the different
actuators to achieve high coupling efficiencies is therefore easier in the virtual testbed, and for the agent, it is
harder to learn a working policy in the real experiment. The ablation studies on the observation done on the
virtual testbed (see Appendix C.5) are generally transferable to the real-world experiment: as the level of
partial observability is similar in both environments and the dimension of the action space is the same the
studies of the history length are fully transferable (see Figure 10 a). The observation design (see Figure 10 b)
is also transferable, as we have low noise in the power sensors, and saving these values is the same in both
environments. Given that the power is the only environmental value utilized in the reward, and considering
its low noise, the reward design is likewise transferable.
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For both the main experiment and virtual testbed, we used a gymnasium environment (Brockman et al.,
2016) and the parameters provided in Tables 1 and 2 if not specified differently. Our strategy is that the agent
learns to deal with the noisy actions directly in the experiment. We are especially interested in investigating
this in-situ learning of noise as, in our area, we are often dealing with noise sources that cannot be modeled
accurately, for example, when dealing with quantum states of light. In these cases, the only solution will be
to learn to handle the noise through direct interaction with the experiment.

5 Experimental results in the optics lab

The agent was trained in our lab on components detailed in Section 3.1. Our training speed is limited by the
time the actuators take to move, leading to each environment step taking about a second. We train each
agent until the return starts to converge as depicted in Figure 2 (a)-(b). For Pgoal ≤ 0.87, this took around
20 hours or 4 · 104 steps. That we can train successfully in only 4 · 104 steps is a result of the environment
shaping discussed in Appendix C. If we set a very high goal power (Pgoal = 0.9), the training takes longer:
for CrossQ and SAC about 1.2 · 105 time steps, which corresponds to 2 days, and for TQC 2 · 105 time steps,
which sums up to nearly 4 days of training.

Using TQC, SAC, and CrossQ, we performed two training runs per algorithm on the experiment with a goal
power of Pgoal = 0.85. In Figure 2 (a), we can see that in the beginning, the return rises quicker for SAC and
CrossQ but is slightly outperformed by TQC later on. However, these differences are small.

When we choose Pgoal = 0.9, as shown in Figure 2 (b), we need significantly more training steps. Because of
that, as discussed before, we also investigated pre-training using TQC. Although we found pre-training on the
virtual testbed with an added noise model helpful (see Appendix D), we focus on in-situ training, as we want
to find strategies that can work on experiments where a noise model is hard or impossible to obtain. Thus, we
implemented pre-training on lower goals directly on the experiment using TQC (light blue), i.e., we started
the training with the lower goal power Pgoal = 0.85, increased it in small increments to Pgoal = 0.9 over the
course of the first 105 training steps and left it at that for the next 105 steps. The normalized return of the
agent first pre-trained on lower powers always drops after changing to a higher goal power, as it first needs
to learn to handle the conditions of the changed environment. We can also see that the normalized return
reaches lower values the higher the goal gets. This is expected as the task gets harder each time. For TQC,
the normalized return for the agent pre-trained on lower goals reaches higher values than the one starting
from scratch (green). Additionally, we can use intermediate agents to align the experiment to lower powers.

The return for SAC (dark pink) reaches return values similar to those of TQC without pre-training. Both are
surpassed by CrossQ (brown) and the pre-trained TQC agent, which are again similar. The training time
is shorter for SAC and CrossQ than for the respective TQC agents. We conclude that in our experiment
curriculum learning was helpful for such a high goal when using TQC (see also Stooke et al. (2021)) while
this is not needed when employing CrossQ.

To understand the help for our everyday lab work, we tested different agents in fiber coupling (marked with
a star in Figure 2 (a) and (b)). The test results are shown in Figure 2 (c)-(e). Each of the RL agents was
tested a hundred times. We measure the power over time. If the agent does not reach the goal during an
episode, we reset the environment, and the agent tries from there. One episode was at most 40 s, and the
longest attempt took around 350 s. Figure 2 (c) shows how the averaged coupled power develops in the first
30 s. Generally, the power rises quicker in the first seconds for agents that try to reach only Pgoal = 0.85.
Interestingly, even though CrossQ in total is faster in achieving the fiber coupling goal, for the first few
seconds, the pre-trained TQC agent has the steepest power rise of all the agents trained with Pgoal = 0.9.

Figure 2 (e) shows the number of steps it took for the agents to reach their goal after their last reset, i.e., in
the successful episode. In most cases, this corresponds to the first episode, and the agents need no additional
resets. More precisely, the empirical probability of successful coupling in the first episode ranges from 95%
(SAC) to 98% (CrossQ) for Pgoal = 0.85 and 83% (TQC without pre-training) to 90% (TQC pre-trained)
for Pgoal = 0.9. Of the agents trained with Pgoal = 0.85, the CrossQ and TQC agents behave very similarly,
taking only five steps at most in 75% of the cases. The corresponding SAC agent is only half as fast and
performs similarly to the TQC agent trained with Pgoal = 0.87. For Pgoal = 0.9, the CrossQ agent clearly
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Figure 2: Experimental results. (a) and (b) show the normalized return plotted against training steps
for different algorithms and goal powers. In (a), we use TQC (blue), SAC (pink), and CrossQ (orange)
with Pgoal = 0.85 and TQC with Pgoal = 0.87 (yellow). Of the agents trained on Pgoal = 0.9, shown in
(b), one TQC agent, shown in light blue, was first pre-trained on lower, over time increasing, goal powers
(0.85, 0.875, 0.89, 0.9). The others, i.e., TQC (green), SAC (dark pink), and CrossQ (brown), were trained
directly with Pgoal = 0.9. (c)-(e) show our results when testing the agents marked with a star in (a) and
(b). For testing, we reset and let the agents fiber couple, which is repeated 100 times for the RL agent
and 25 times for the human expert. If the RL agents do not reach their goal within 30 steps, we reset the
environment (still measuring the time), and the agent continues from there. This is repeated until the agent
reaches its goal. (c) shows the power plotted against the time for the first 30 s. The error band is clipped to
the power range [0, 1]. (d) shows the time each agent trained to Pgoal = 0.9 and a human expert took to reach
that goal. (e) compares the number of environment steps it took for each of the RL agents tested to reach
their goal after their last reset. (a)-(c) show the (smoothed) mean with 2σ error bands created by smoothing
and/or multiple runs. The error bands in (c) additionally include a power measurement error of 2%.

9



Published in Transactions on Machine Learning Research (07/2025)

Table 3: Reset by hand vs. automatic reset. We tested the agent (Pgoal = 0.9, pre-trained on lower goals
as described in Figure 2 (b)) using two types of resets: using the reset procedure described in Section 4
(automatic reset using the motors) or resetting by tilting the hand-steering mirrors, modeling arbitrary
experimental perturbation, 29 times. We compare the mean of the power at the start P̄0 and end of the
episode P̄T , the empirical probability p[goal] of reaching the goal in the first episode, and mean of the number
of environment steps needed to reach the goal τ̄goal.

P̄0 P̄T p[goal] τ̄goal
Reset by hand 0.384 0.914 0.86 8.33
Automatic reset 0.465 0.910 0.9 8.22

outperforms the other agents, taking in 75% of the cases at most seven steps. Of the remaining Pgoal = 0.9
agents, the pre-trained TQC agent performs best.

In Figure 2 (d), we show the total time it took each agent to reach a goal of Pgoal = 0.9. The results are
similar to the results from (e) in that CrossQ is fastest, followed by TQC with pre-training, TQC without
pre-training, and lastly SAC. For comparison, we also tested a human expert 25 times on how long they
would take to couple the fiber to Pgoal = 0.9 using the hand steering mirrors. This, however, is not a fair
comparison. The RL agents can change all four degrees of freedom at once. The experimenter, on the other
hand, has access to more information, e.g., the continuous power measurement while moving an actuator,
and does not have to deal with the imprecision in the actuators, which means they can easily go back to
an observed maximum. Despite this, we can see that the RL agents are generally faster, but all besides the
CrossQ agent take longer in a few cases, where the agent needs several episodes to get to the goal. The
CrossQ agent reaches the goal faster than the human expert in 100% of the cases. In conclusion, we show
that by using RL, we can consistently couple light into an optical fiber to high efficiencies, despite the noisy
actions.

So far, we have shown that our agent can couple light into the fiber after a reset using the motors that
it has access to but not after a general misalignment or drift in the setup. To show that the agent can
also compensate for misalignment in other parts of the experiment, we performed the resets by manually
misaligning the hand steering mirrors, e.g., tilting them until we were in a coupling regime with low power.
Next, we called the agent for realignment. Table 3 shows that the results using this alternative reset method
are very similar to the ones with automatic reset. Whether such a misalignment happened at the hand
steering mirrors or another element not accessible to the agent, such as, for example, a drift in the position
of the fiber collimator, is equivalent in terms of difficulty. Hence, our agent can also be used to control for
arbitrary drifts at an undetermined location. For this, we can use the almost continuous measurement of the
power at the output of the fiber and call the agent to set it back to the desired coupling efficiency whenever
it drops below a certain value.

6 Summary and Outlook

We have shown that our model-free RL agents successfully learn to couple laser light into an optical fiber,
reaching the same efficiencies as a human expert while generally being faster. We find that sample-efficient
algorithms that use a replay buffer, such as CrossQ, SAC, and TQC, are a must to overcome the challenge of
otherwise not manageable training time. The use of CrossQ has a clear advantage. It halves the training
time with respect to TQC. Additionally, the trained agent reaches the goal faster than the agents trained
with the other two algorithms. Furthermore, our study suggests that curriculum learning can help to achieve
more difficult goals.

As we train directly on the experiment, the agent learns to handle the specific noise present, and we can avoid
creating an accurate simulation of the task. This makes our method suitable for setups where it is impossible
to model the noise accurately. Partial observability can be dealt with by carefully tuning the observations.

A central result is that the agent learns to deal with the imprecision of the mirror steering motors. Using a
classic algorithm such as gradient descent would fail with these motors as their imprecision deters us from
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experimentally determining a gradient and then going back to the starting position. One way to handle
such imprecision is using motors with internal feedback loops. Using RL, we can avoid this, which helps to
simplify the design of motors and experimental setups. Generally, automation gives us the possibility of
remote-controlling experiments, which can be especially useful in experimental areas that are difficult to
access, such as in vacuum tanks, in clean room facilities, or, in extreme cases, in underground labs or in space.

In our experiment, we used four motors to cover all degrees of freedom and demonstrated the general case of
laser beam alignment. Reducing the number of actuators lowers the possible coupling efficiency. In contrast,
increasing the number of mirror actuators offers no physical advantage. More complex setups can be divided
into parts with multiple mirror-mirror-sensor blocks.

Further exploration could include investigations into how the agents perform for other transverse optical
modes of light, including those with multiple local maxima. Secondly, we start our RL training procedure
under low-power conditions. This raises the question of how, or with how many additional sensors, we could
generalize this to the case of starting with no power. Furthermore, to reduce training time, investigating
the performance of model-based or hybrid algorithms and other methods to increase sample efficiency
is highly relevant. In addition, it might be interesting to explore replacing the use of a history as our
observation by PID-inspired RL (Char & Schneider, 2023) and to investigate whether pre-training on expert
demonstrations (Vecerik et al., 2018; Martínez et al., 2017; Ramírez et al., 2022) as well as a modified
procedure of pre-training on the virtual testbed (see Appendix D.3) could speed up the learning process.
However, in this study we focus on showcasing direct training on the real experiment.

Our experiments are a first step towards the extensive use of RL in our quantum optics laboratory. Optical
experiments typically require various control loops to stabilize the experimental degrees of freedom against
perturbations. These locks significantly increase the complexity of the experiments. For example, maintaining
the length of optical cavities to achieve resonant light field enhancement requires complex components
such as phase modulators (Drever et al., 1983), homodyne detectors (Hansch & Couillaud, 1980; Heurs
et al., 2009), or split detectors (Shaddock et al., 1999; Chabbra et al., 2021). RL offers the potential for
streamlined control loops that rely solely on the measurement of power in the reflection and transmission of
the resonator. This could enable novel control strategies, such as phase control of squeezed vacuum states.
These states are characterized by unique quantum noise properties but are otherwise dark. Consequently,
phase control typically requires an auxiliary laser field (Vahlbruch et al., 2006) or introduces unwanted phase
noise (McKenzie et al., 2005). RL has the potential to provide a noise-free solution without the need for
additional laser fields, which is particularly relevant for large-scale on-chip squeezing experiments in the field
of quantum information (Masada et al., 2015).

In conclusion, we show that a common optics task like beam alignment can be solved with standard model-free
RL algorithms. For the machine learning community, this demonstrates their versatility. Their availability
lowers the barrier for the optics community to use them in other experiments. We showcase how these RL
algorithms can be directly applied in the lab, circumventing the need for accurate experimental modeling.

Broader Impact Statement

Our work has no broader societal impact. However, if used correctly it could make work in labs less stressful.
Also, it can help to increase health situations: leaning over optical tables in uncomfortable positions for many
hours to make fine adjustments gives many researchers back pain. Using machine learning for automation
can lower this hazard. However, we would like to point out that using these methods could also accelerate
scientific work even more and thus make it more stressful if the freed-up time is used to do other work quicker.
In order to have a positive impact we therefore have to evaluate how we use these techniques sensibly.

Data availability The Python code used for obtaining the results presented here is available at https:
//github.com/ViktoriaSchmiesing/RL_Fiber_Coupling.
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A Additional details about the experimental setup

Our setup includes the following components: We use a 1064 nm laser (Mephisto, Coherent), a single mode
polarization-maintaining fiber, and a Schäfter+Kirchhoff fiber collimator (60FC-SF-4-M8-08) at the input side
of the fiber. The measurements of laser power are done with power meters (Thorlabs PM160, measurement
error 1%). In front of the experiment, we place a partially reflecting mirror to measure a fraction of the laser
light with an additional power meter for power reference. The measurement is used to pause training in the
event of a laser failure and to track power fluctuations to determine the maximum power level. In this way,
we can determine the coupling efficiency with an error of 2%. The input power is set to 1.00(1) mW.

For training on the experiment, we used an NVIDIA GeForce RTX 4070 GPU. In addition to the usual
packages (Harris et al., 2020; Abadi et al., 2015; Waskom, 2021; Hunter, 2007), we used PyLabLib, Thorlabs
Kinesis, PyVisa, Keysight Connection Expert and safe-exit (Shkarin, 2024; Thorlabs; Grecco et al., 2023;
Keysight; JianAo) for communication with the experiment.

Due to safety constraints, we have to limit our state space and, in consequence, clip our actions if the actuator
positions would otherwise move out of a certain range because it is unacceptable for the laser beam to wander
around the room. Also, in the first test run, the action size was chosen so poorly that the mirror mounts
were damaged. So, both laser safety and equipment damage are hazards that we need to consider.

B Explanation of the imprecision in the mirror steering motors and its
characterization

Backlash is a phenomenon that is present when a load is not directly connected to a motor, such as in
geared mechanical systems (Nordin & Gutman, 2002). Dependent on the exact geometry of the system,
i.e., mechanical tolerances, amount of gears, etc., it may resemble hysteresis between the expected and
actual position or a dead-zone, where moving the actuator has no effect on the actual position whenever the
rotational direction is reversed. It is thus hard to model and predict a priori. Control has to be implemented
based on the specific system and its use. These control schemes include hysteresis models, dead-zone models,
and PI control. However, additional sensors are needed to get accurate feedback if multiple actuators are
used. Step loss results from the difference in static and dynamic torque of a motor. The motor steps result in
a linear actuation, which changes the tilt of the mirror mount. Different tilt angles lead to different static
loading of the motor and gearbox. This may lead to the initial step(s) being lost, as the motor can not
deliver the starting torque, resulting in a partial step. Without feedback from, e.g., an encoder, this leads to
a difference between the expected and actual position. Lastly, the non-orthogonal degrees of freedom are a
result of the kinematic mirror mounts used and their mounting. Usually, this error is small for well-designed
kinematic mirror mounts.

We performed a dead-zone characterization. The core idea is to initiate a number of movements, i.e., generate
a movement history, after which a maximum dead-zone is expected. This can simply be an initial long
movement in one direction followed by a direction reverse. The long movement ensures a nearly linear
behavior between the expected and actual position, as backlash is overcome in the mechanical system. The
backlash after a change in rotational direction should, therefore, be large. Additionally, the movement history
is similar between repetitions, enabling their comparison. Starting from a position with high coupling, we
moved one actuator far out, then back to high coupling. From there, we reversed the movement and counted
the steps the actuator had to move before the measured power changed by more than the power measurement
error. Repeating this process 100 times yielded the distribution of the dead-zone size, shown in Figure 1 (c)
for the four motors. This data helps us understand the uncertainty of the mirror mount movements. As no
continuous feedback is employed, characterization of other positioning errors is not possible in our setup.

C Environment and agent tuning on virtual testbed

We used the data of scanning each motor individually through the coupling peak to create a virtual testbed.
Each dataset was normalized and fitted with a Gaussian; all of them were then multiplied. The highest
coupling efficiency we had measured up to this point was 0.92; therefore, we use this as the amplitude. The
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following function, based on the fit values in motor steps, describes our virtual testbed:

P (xm1, ym1, xm2, ym2) = 0.92exp
(

− 1
2

((
xm1 − 5470785

11994

)2
+
(

ym1 − 5573194
19145

)2

+
(

xm2 − 5461786
12769

)2
+
(

ym2 − 5178016
17885

)2
))

We use this testbed to gain insights into the environment hyperparameters, observations, and algorithms to
use in the following order.
First, we optimized the hyperparameters of the reward (α’s, β’s, A’s). Next, we went to the parameters
of the environment that appear in the reward, i.e., the goal power Pgoal and episode length T . The usual
figure of merit is the normalized return in dependence on the training step. However, this depends on the
reward, and the reward depends on both of these sets of parameters. Therefore, it is not possible to use the
return as a figure of merit for these parameters. Instead, we trained a TQC agent for a total of 105 timesteps.
We tested the agent every 104 timesteps for 100 episodes, noting the probability of failure, the probability
of reaching the goal, and the average power at the end of each episode. Our main figure of merit was the
probability of reaching the goal after a training time in the range of 104 to 4 · 104 time steps. Still, we also
took the probability of failure and the average power at the end of each episode into account. We show the
second one here only when we used it for our decision.
After fixing the first two sets of parameters, we were able to use the normalized return to compare other
environment parameters, such as the length of the history in the observation and the maximal action, and
different algorithms. All studies in the virtual testbed were performed at least 5 times and, except for the
algorithm tests, used TQC as the algorithm as this was the algorithm most used in the experiment. If not
stated otherwise and if these were not the parameters being changed, we used the parameters in Tables 1
and 2.

C.1 Reward Hyperparameters

We want a high probability of reaching the goal after the least amount of training time, so we shape the reward
function accordingly. For tuning its hyperparameters, we chose Pfail = 0.2, Pmin = 0.4, Pgoal = 0.8, T = 20,
αs = 0.5, αf = 0.9, Af = 10, in contrast to Tables 1 and 2, if those parameters were not the ones being
changed. We tested the tuples of reward parameters given in Table 4. For each parameter we tested a
number of different values and also checked the dependence of the variables on each other. After evaluation,
we decided on the parameters in Table 2. The subscript s always refers to the step reward, f to the fail
reward, and g to the goal reward. The other parameters were Pfail = 0.2, Pmin = 0.4, Pgoal = 0.8, T = 20,
αs = 0.5, αf = 0.9, Af = 10 or given in Tables 1 and 2.

Table 4: test table tuning parameters

Parameter (Af , Ag) (αs, βs) (αf , βf1, βf2) (αg, βg1, βg2)
Value {10, 100, 1000}2 {0.1, 0.5, 0.9} {0.1, 0.5, 0.9} {0.1, 0.5, 0.9}

×{1, 5, 10} ×{1, 5}2 ×{1, 5}2

Prefactors First, we tested different prefactors Af and Ag. The results are shown in Figure 3. Looking at
the probability of reaching the goal, Af = 100 seems to be the best value. For training steps over 3 · 104, we
can see that Ag = 1000 seems to be better than the other two values, before it seems that Ag = 100 is doing
better. However, if we look at the probability of failure, we can see that using Ag = 100, the probability of
failure falls more quickly than if we are using Ag = 1000. Because resets after failure take a lot of time for
this kind of Pmin and Pfail, we want the failure probability to be as low as possible and go with Ag = 100.

Step Reward Second, we are looking at the step reward and optimizing for αs and βs. Figure 4 shows the
probability of reaching the goal. We deem βs = 5 and αs = 0.9 to be the best parameters, although there is
not a very strong difference.
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(a) Probability of reaching the goal in dependence of the training step.
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Figure 3: Results for prefactor tuning: Probability of reaching the goal or failing for different prefactors in
the reward using TQC and Pfail = 0.2, Pmin = 0.4, Pgoal = 0.8, T = 20, αs = 0.5, αf = 0.9 and otherwise
the parameters in Tables 1 and 2. The plots show the mean with 2σ error bars created by multiple runs.
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Figure 4: Results for tuning the parameters of the step reward: Probability of reaching the goal for different
αs, βs in the reward with TQC, Pfail = 0.2, Pmin = 0.4, Pgoal = 0.8, T = 20, αf = 0.9, Af = 10 and all other
parameters as in Tables 1 and 2. The plots show the mean with 2σ error bars created by multiple runs.
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Figure 5: Results for tuning the parameters of the goal reward: Probability of reaching the goal for different
αg, βg1, βg2 in the reward with TQC, Pfail = 0.2, Pmin = 0.4, Pgoal = 0.8, T = 20, αs = 0.5, αf = 0.9,
Af = 10 and all other parameters as in Tables 1 and 2. The plots show the mean with 2σ error bars created
by multiple runs.

Goal Reward Third, we are looking at the goal reward and optimizing for αg, βg1 and βg2. Figure 5 shows
the probability of reaching the goal. Here, there is a stronger difference between the different parameters. We
are going with αg = 0.5, βg1 = 5 and βg2 = 1. The other possibility would be αg = 0.1, βg1 = 1 and βg2 = 5,
which is worse in training steps 1 · 104 − 2 · 104 but better in training steps 4 · 104 − 5 · 104. However, we put
our focus on the earlier phases of training and also do not want to emphasize the power with which the goal
was reached that much over the time in which it was reached, which is why we go with the first choice of
parameters.

Fail Reward Lastly, we are looking at the fail reward and optimizing for αf , βf1 and βf2. Figure 6 shows
the probability of reaching the goal. Here, the choice is again not that clear, but we deem βf1 = βf2 = 5 and
αf = 0.5 to be the best choice of parameters.

C.2 Episode Length

We want to find a good trade-off between reaching the goal quickly and reaching it reliably. Using the same
parameters as for reward shaping, we tested different episode lengths, in particular, T = 5, 10, ..., 50. The
results are shown in Figure 7. As expected, the longer the episode, the higher the probability of reaching the
goal (or failing). For some of these (i. e. T = 20, 30, 35, 40, we also varied the maximum allowed actuator
steps per environment step amax (i. e. doing simulations with amax = [2 · 103, 104] to see if it had an effect on
this, which we could not confirm. However, we also have to take into account that longer episodes will take
more time in the experiment. This is why we select T = 30, as there is not a very big difference between this
and T > 30.
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Figure 6: Results for tuning the parameters of the fail reward: Probability of reaching the goal for different
αf , βf1, βf2 in the reward with TQC, Pfail = 0.2, Pmin = 0.4, Pgoal = 0.8, T = 20, αs = 0.5, Af = 10 and all
other parameters as in Tables 1 and 2. The plots show the mean with 2σ error bars created by multiple runs.
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Figure 7: The probability of reaching the goal in dependence of the training step for different maximum
episode lengths T and maximum actions amax with TQC, Pfail = 0.2, Pmin = 0.4, Pgoal = 0.8, T = 20,
αs = 0.5, αf = 0.9, Af = 10 and all other parameters as in Tables 1 and 2. The plots show the mean with
2σ error bars created by multiple runs.
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Figure 8: Comparison of different reset methods. The methods are the following: A – Reset as described in
the main paper (for testing at the start and end of training), B – Reset as described in the main paper, but
first, go to neutral positions in every episode, C – Reset by choosing random positions for all four actuators
in an interval of width 4.2 · 104 around the neutral positions. We use the parameters from Tables 1 and 2,
TQC and Pgoal = 0.85. (a) shows a box plot of the starting powers. (b) shows the normalized return in
dependence on time. The mean is shown with 2σ error bands created by smoothing and multiple runs.

C.3 Reset Methods

In the virtual testbed, we compare the following reset methods:

A Reset as described in the main paper (for testing at the start and end of training).

B Reset as described in the main paper, but first, go to neutral positions in every episode.

C Reset by choosing random positions for all four actuators in an interval of width 4.2 · 104 around the
neutral positions.

We used the parameters from Tables 1 and 2 and Pgoal = 0.85. The results can be seen in Figure 8. In Panel
(a), we can see the starting power for the different reset methods. Using method C, the starting distribution
of powers is very different from the other reset methods. The median is similar, but the standard deviation is
much higher. This led us to compare methods A and B additionaly. In method B, the median is slightly
higher and independent of our policy. For method A, the distribution depends on the model used, and the
median and 75th quantile are slightly higher and more comparable to the one of B after 105 training steps
than at the start. Because of this, the return for method B is slightly higher than for method A, especially in
the middle, as can be seen in Panel (b). We would have expected a higher impact from the reset method.
However, the differences are quite small. In conclusion, even though our method makes our episodes not fully
independent of each other, we do not gain an artificial benefit from it.

C.4 Goal

The goal power is fully our choice. First, we check at what point the return starts to converge for which goal
power. Therefore, we look at the normalized return in dependence on the training steps for different goal
powers. This is shown in Figure 9 (a). We can see that the higher the goal power, the lower the normalized
return after convergence, and the later the return converges. We can see that this point happens significantly
later for high goal powers. Also, for high goal powers like Pgoal = 0.9, the distance to the last curve is bigger
than, for example, for Pgoal = 0.86.

Because of this, we wondered if it made sense to pre-train on lower goal powers. We tested this by starting
with goal powers Pstart, goal = 0.5, 0.7, 0.8, 0.85, 0.875 and raising it to 0.9 over the course of 105 training steps
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Figure 9: (a) shows the normalized return in dependence of the training step for different goal powers.
(b) shows the probability of reaching the goal power Pgoal = 0.9 after 105 training steps in dependence of
Pgoal, start. Hereby, the goal on which the model is trained either rises in a linear (orange) or step (blue)
function of the training step from Pgoal, start to Pgoal = 0.9 over the course of 105 training steps. Both panels
show the mean with 2σ error bands created by multiple runs and, in (a), smoothing.

either linearly, i.e., raising it slightly in every training step, or in a staircase way, i.e. raising it more every
104 training steps. Figure 9 shows the probability of reaching the goal Pgoal = 0.9 after 105 training steps in
dependence of the starting goal power Pstart, goal for the two different manners of raising the goal power. We
can see that it can be helpful to raise the goal power in steps, especially starting from Pstart, goal = 0.85.

C.5 Observation

We tested history lengths of n = 1, ..., 6 and the maximum sensible length n = T = 30 with Pgoal = 0.85. The
results can be found in Figure 10 (a). Depending on the training step, n = 3, 4 lead to the highest return.
We went with n = 4 as this was higher around 2 · 104 to 5 · 104 training steps.

We tested if removing Pave or Pmax and xmax from the observation influences the performance. Figure 10 (b)
shows that TQC performed worse on any of these combinations compared to the full observation presented
above. However, leaving out Pave had a much smaller impact than leaving out Pmax and xmax, which makes
the latter very important for us.

Additionally, we tested how agents perform in an environment that includes the absolute position of the
actuators in the observation compared to one that does not. The normalized return against the training step
can be found for both configurations, using the parameters in Tables 1 and 2, TQC, and Pgoal = 0.85, in
Figure 10 (c). As expected, the agent learns faster and reaches a higher normalized return if those absolute
positions are included. However, the main application for our agent is to recouple the light into the fiber
after other parts of the experiment have been misaligned. That means, that the optimal positions, i.e., the
means µi of the underlying Gaussian, change, and the agent still has to be able to reach the goal. Hence, we
tested the agent 100 times each in environments in which k = 0, ..., 4 means of the underlying Gaussian µi

were shifted by ±σi, i.e., µ′
i = µi ± σi. Figure 10 (d) shows the probability of reaching the goal against k. If

no shifts occur, the agent with the absolute position as part of the observation performs slightly better than
the one without. However, this quickly changes as more shifts are applied. The agent with absolute position
performs much worse if any shifts appear. On the other hand, the agent not observing the absolute position
performs well independent of shifts.
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Figure 10: Comparison of different observations and maximum actions. (a)-(c) show the normalized return in
dependence of the training step using the parameters in Tables 1 and 2, TQC, and Pgoal = 0.85 for different
history lengths n in (a), leaving out different parts of the observation in (b), and with or without including
the absolute positions in the observation in (c). The models with and without the absolute positions were
then tested 100 times each in an environment in which k = 0, ..., 4 means of the underlying Gaussian µi were
shifted by ±σi, i.e., µ′

i = µi ± σi. (d) shows the probability of reaching the goal against the number of shifts
k. The plots show the mean with 2σ error bands/bars created by multiple runs and, in (a)-(c), smoothing.
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Figure 11: Comparison of different maximum actions and algorithms. The plots show the normalized
return against the training step for different maximum actions amax and TQC in (a) or for seven different
algorithms: TQC, SAC, TD3, PPO, DDPG, A2C, and CrossQ in (b)-(d). (b) shows this for Pgoal = 0.8, (c)
for Pgoal = 0.85, and (b) for Pgoal = 0.9. The other parameters are chosen as in Tables 1 and 2. The plots
show the mean with 2σ error bands created by multiple runs and smoothing.

C.6 Action

We tested different maximal actions amax = 2 · 103, 4 · 103, 5 · 103, ..., 104 with Pgoal = 0.85, TQC, and the
other parameters as in Tables 1 and 2 to see which yields the highest return. The results are shown in
Figure 11 (a). Maximum actions between 4 · 103 and 8 · 103 generally performed best (4 · 103 performed
best out of them). Because of the imprecision of the motors, we also did some tests in the lab, which is why
we selected amax = 6 · 103 for our experiments. This is approximately half of the standard deviation of the
Gaussian in x− direction.

C.7 Algorithms

We tested seven different algorithms with their standard hyperparameters in StableBaselines3 with the
parameters in Tables 1 and 2 for Pgoal = 0.8, 0.85, 0.9 for either 105 (for Pgoal = 0.8, 0.85) steps or 5 · 105 (for
Pgoal = 0.9) training steps. The results are shown in Figure 11 Panel (b)-(d). We can see that in the first
105 steps, A2C and PPO always perform worst, and DDPG is next in line. However in Figure 11 (d), we
can see that for Pgoal = 0.9 PPO catches up to DDPG around training step 1.5 · 105. CrossQ, SAC, TQC,
and TD3 perform much better than these three. TD3 is nearly always worse than SAC. TQC always has a
drop in the middle region but catches up to SAC in the end. CrossQ outperforms the other algorithms for
Pgoal = 0.9, while for lower goals, its behavior is similar to the other well-performing algorithms. Overall,
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Figure 12: Comparison of different noise levels. The plots show the normalized return against the training step
for different goal powers Pgoal = 0.85, 0.9 and noise factors N = 0, ..., 3 using TQC. The other parameters
are chosen as in Tables 1 and 2. Both panels show the mean with 2σ error bands created by multiple runs
and smoothing.

CrossQ, followed by SAC, seems to be the best algorithm for this task when used on the virtual testbed.
TQC suffers from a drop in performance in the middle of training compared to SAC. In contrast to that, in
our physical experiments, TQC slightly outperforms SAC for Pgoal = 0.85.

C.8 Effect of noise on the learning process

We use the characterization of the dead-zone in the actuators to derive a simple noise model: Each time the
agent performs an action, its size is reduced by a value randomly sampled from the dead-zone characterization
multiplied by a noise factor N . For a noise factor of N = 0, there is no noise, and the results are similar
to the ones discussed in the virtual testbed section up to this point. A noise factor of N = 1 should make
the noise level of the virtual testbed comparable to the one present in the experiment. In comparison, noise
factors of N > 2 correspond to higher noise levels than in the experiment. For Pgoal = 0.85, 0.9 and noise
factors of N = 0, ..., 3, the normalized return is shown in Figure 12. As expected, the return for higher noise
levels is generally smaller than the one for no noise, but for each of the presented noise levels, the agents are
still able to learn. For Pgoal = 0.85, the graphs for N = 0, 1 are very similar and only for the higher noise
factors (N = 2, 3) the learning curve clearly differs. That means that for a moderate goal power, the noise
in the experiment does not affect the agent as much. However, this is different for Pgoal = 0.9, the graph for
N = 1 is grouped with the ones for N = 2, 3. Hence, the agents’ learning curves are significantly impacted
by the noise level found in the experiment.

D Other experimental runs in the optics lab

D.1 Different goal powers

We run experiments with Pgoal = 0.85, 0.86, 0.87, 0.88, 0.9 using TQC. The normalized return is shown in
Figure 13 (a). We can see that, just like in the virtual testbed, the training needs longer to converge the higher
the goal. It is interesting that there is a big gap between the agents with Pgoal = 0.87 and Pgoal = 0.88. Please
note that we performed these training runs (except for Pgoal = 0.85) only once and draw our conclusions
from there.

D.2 Replay buffer

We already discussed in the main paper that it can make sense to pre-train agents on lower goals. However,
we did not discuss what we do with the replay buffer when changing the goal power. Here, we test if it would
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be better to keep or delete it when changing to the next higher goal power. We perform two training runs
on the experiment starting with Pgoal = 0.85, raising it to Pgoal = 0.875 after 3.8 · 104 training steps, then
raising it to Pgoal = 0.89 after approximately 6.35 · 104 training steps, and then raising it to Pgoal = 0.9 after
9.8 · 104 training steps. In the first, we delete the replay buffer after changing our goal to Pgoal = 0.875 and
Pgoal = 0.89 (yellow, discussed in main paper); in the second, we do not (green). Both runs are shown in
Figure 13 (b). In the yellow ones we see more drops after each rise in goal power, but its normalized return is
slightly higher in the end. Overall, the results are quite similar.

D.3 Pre-training on virtual testbed

Furthermore, we want to know if pre-training on the virtual testbed helps with the experiment’s training
times. We tested both an agent pre-trained on the virtual testbed without noise and on a version of the
virtual testbed with noise. As noise, we sample random values for each of the actuators from the dead-zone
characterization in Figure 1 (c) and reduce the absolute value of the action by these sampled values. Figure 14
shows the results next to the agent pre-trained on the experiment with lower goal powers. Panel (a) shows
the normalized return plotted against training steps. Overall, the agent pre-trained on the virtual testbed
without noise is more stable but not significantly better or faster in training. The agent pre-trained on the
virtual testbed with noise reaches higher returns and is faster than the other two. Panel (b) shows test results
(time needed to fiber couple to Pgoal = 0.9) for the three agents and two agents trained only in the virtual
testbed, either with or without noise. The agent pre-trained on the virtual testbed with noise performed
slightly better than the other two pre-trained agents, which showed no significant difference between them.
The two agents only trained in the virtual testbed are significantly slower, the one trained with noise being
slightly faster than the other. However, they are not as slow that it could not be useful: If the time for
coupling is not relevant, it might be enough to learn on the very simple virtual testbed (even without noise).

E Algorithm Hyperparameters

We use the default hyperparameters in StableBaselines3 (incl. contrib), Version 2.3.0 (Raffin et al., 2021) or
the way they appear in their tutorials. For completeness, we list them here and print the ones that are not
default but used in the tutorial in bold.

TQC learning rate: 0.0003, replay buffer size: 1000000, learning starts after 100 steps, batch size: 256, soft
update coefficient: 0.005, discount factor: 0.99, update model every step, do 1 gradient step after
each rollout, no added action noise, update target network every 1 step, number of quantiles to drop
per net: 2, number of critics networks: 2, number of quantiles for critic: 25

SAC learning rate: 0.0003, replay buffer size: 1000000, learning starts after 100 steps, batch size: 256, soft
update coefficient: 0.005, discount factor: 0.99, update model every step, do 1 gradient step after
each rollout, no added action noise, update target network every 1 step

CrossQ learning rate: 0.0003, replay buffer size: 1000000, learning starts after 100 steps, batch size: 256,
discount factor: 0.99, update model every step, do 1 gradient step after each rollout, no added action
noise

TD3 learning rate: 0.001, replay buffer size: 1000000, learning starts after 100 steps, batch size: 256, soft
update coefficient: 0.005, discount factor: 0.99, update model every step, do 1 gradient step after each
rollout, action noise: NormalActionNoise(mean=np.zeros(number actions), sigma=0.1 ×
np.ones(number actions), policy and target network updated every 2 steps, standard deviation of
smoothing noise on target policy: 0.2, clip absolute value of target policy smoothing noise at: 0.5

DDPG learning rate: 0.001, replay buffer size: 1000000, learning starts after 100 steps, batch size: 256, soft
update coefficient: 0.005, discount factor: 0.99, update model every step, do 1 gradient step after each
rollout, action noise: NormalActionNoise(mean=np.zeros(number actions), sigma=0.1 ×
np.ones(number actions)
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PPO learningrate: 0.0003, number of steps between updates: 2048, batch size: 64, number of epochs when
optimizing surrogate loss: 10, discount factor: 0.99, factor for trade-off between bias vs. variance for
GAE: 0.95, clip range: 0.2, normalize advantage, entropy coefficient: 0.0, value function coefficient
for loss calculation: 0.5, maximum norm for gradient clipping: 0.5

A2C learning rate: 0.0007, number of steps between updates: 5, discount factor: 0.99, factor for trade-off
between bias vs. variance for GAE: 1.0, entropy coefficient: 0.0, value function coefficient for loss
calculation: 0.5, maximum norm for gradient clipping: 0.5, RMSProp epsilon: 1e-05, use RMSprop
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Figure 13: Both panels show the normalized return plotted against the training step. (a) shows the training
from the start for different goal powers. In (b), Pgoal is raised in steps at each black vertical line from 0.85
over 0.875 and 0.89 to 0.9. For training one of the models (yellow), we delete the replay buffer after the first
two black lines; for the other (green), we do not. Both panels show the mean with 2σ error bands created by
smoothing.
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Figure 14: Pre-training on virtual testbed. (a) shows the normalized return plotted against time for three
agents: one is trained directly on the experiment with successively higher goal powers (blue), the other two
are already pre-trained for 5 · 105 training steps on the virtual testbed either without noise (orange) or with
noise (red). We used Pgoal = 0.9, TQC, and the parameters in Tables 1 and 2. (b) shows how long the agents
marked with a star in (a) (green and pink are both only trained on the virtual testbed, without or with
noise, respectively) need to couple to Pgoal = 0.9 on the experiment. (a) shows the mean with 2σ error bands
created by smoothing.

32


	Introduction
	Related work
	Fiber coupling
	Experimental setup
	RL challenges

	Our method
	Experimental results in the optics lab
	Summary and Outlook
	Additional details about the experimental setup
	Explanation of the imprecision in the mirror steering motors and its characterization
	Environment and agent tuning on virtual testbed
	Reward Hyperparameters
	Episode Length
	Reset Methods
	Goal
	Observation
	Action
	Algorithms
	Effect of noise on the learning process

	Other experimental runs in the optics lab
	Different goal powers
	Replay buffer
	Pre-training on virtual testbed

	Algorithm Hyperparameters

