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Abstract

Estimating conditional average treatment effect from observational data is highly
challenging due to the existence of treatment selection bias. Prevalent methods
mitigate this issue by aligning distributions of different treatment groups in the
latent space. However, there are two critical problems that these methods fail
to address: (1) mini-batch sampling effects (MSE), which causes misalignment
in non-ideal mini-batches with outcome imbalance and outliers; (2) unobserved
confounder effects (UCE), which results in inaccurate discrepancy calculation due
to the neglect of unobserved confounders. To tackle these problems, we propose
a principled approach named Entire Space CounterFactual Regression (ESCFR),
which is a new take on optimal transport in the context of causality. Specifically,
based on the framework of stochastic optimal transport, we propose a relaxed mass-
preserving regularizer to address the MSE issue and design a proximal factual
outcome regularizer to handle the UCE issue. Extensive experiments demonstrate
that our proposed ESCFR can successfully tackle the treatment selection bias and
achieve significantly better performance than state-of-the-art methods.

1 Introduction

The estimation of the conditional average treatment effect (CATE) through randomized controlled
trials serves as a cornerstone in causal inference, finding applications in diverse fields such as health
care [63], e-commerce [2, 43, 81], and education [15]. Although randomized controlled trials are
often considered the gold standard for CATE estimation [38, 53], the associated financial and ethical
constraints can make them infeasible in practice [39, 79]. Therefore, alternative approaches that
rely on observational data have gained prominence. For instance, drug developers could utilize
post-marketing monitoring reports to assess the efficacy of new medications rather than conducting
costly clinical A/B trials. With the growing access to observational data, estimating CATE from
observational data has attracted intense research interest [41, 80, 84].

Estimating CATE with observational data has two main challenges: (1) missing counterfactuals, i.e.,
only one factual outcome out of all potential outcomes can be observed; (2) treatment selection bias,
i.e., individuals have different propensities for treatment, leading to non-random treatment assign-
ments and a resulting covariate shift between the treated and untreated groups [77, 79]. Traditional
meta-learners [36] handle the issue of missing counterfactuals by breaking down the CATE estimation
into more tractable sub-problems of factual outcome estimation. However, the covariate shift makes
it difficult to generalize the factual outcome estimators trained within respective treatment groups to
the entire population and thus biases the derived CATE estimator.

Beginning with counterfactual regression [67] and its remarkable performance, there are various
attempts that handle the selection bias by minimizing the distribution discrepancy between the
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Figure 1: Overview of handling treatment selection bias with ESCFR. The red and blue colors
signify the treated and untreated groups, respectively. (a) The treatment selection bias manifests as
a distribution shift between X; and X,. The scatters and curves represent the units and the fitted
outcome mappings. (b) ESCFR mitigates the selection bias by aligning units from different treatment
groups in the representation space: R = 1 (X'), which enables ¢; and ¢ to generalize across groups.

treatment groups in the representation space [13, 27, 85, 86]. However, two critical issues with these
methods have long been neglected, which impedes them from handling the treatment selection bias.
The first issue is the mini-batch sampling effects (MSE). Specifically, current representation-based
methods compute the distribution discrepancy within mini-batches instead of the entire data space,
making it vulnerable to bad sampling cases. For example, the presence of an outlier in a mini-batch
can falsely increase the estimate of the distribution discrepancy, thereby misleading the update of
the estimator. The second issue is the unobserved confounder effects (UCE). Specifically, current
approaches mainly operate under the unconfoundedness assumption [48] and ignore the pervasive
influence of unobserved confounders, which makes the resulting estimators biased given the existence
of unobserved confounders.

Contributions and outline. In this paper, we propose an effective CATE estimator based on optimal
transport, namely Entire Space CounterFactual Regression (ESCFR), which handles both the MSE
and UCE issues with a generalized sinkhorn discrepancy. Specifically, after presenting preliminaries
in Section 2, we redefine the problem of CATE estimation within the framework of stochastic optimal
transport in Section 3.1. We subsequently showcase the MSE issue faced by existing approaches
in Section 3.2 and introduce a mass-preserving regularizer to counter this issue. In Section 3.3, we
explore the UCE issue and propose a proximal factual outcome regularizer to mitigate its impact. The
architecture and learning objectives of ESCFR are elaborated upon in Section 3.4, followed by the
presentation of our experimental results in Section 4.

2 Preliminaries

2.1 Causal inference from observational data

This section formulates preliminaries in observational causal inference. We first formalize the
fundamental elements in Definition 2.1 following the general notation convention”.

Definition 2.1. Let X be the random variable of covariates, with support X and distribution P(x);
Let R be the random variable of induced representations, with support R and distribution P(r); Let
Y be the random variable of outcomes, with support ) and distribution P(y); Let T be the random
variable of treatment indicator, with support T = {0, 1} and distribution P(T).

In the potential outcome framework [61], a unit characterized by the covariates x has two potential
outcomes, namely Y;(z) given it is treated and Yj(z) otherwise. The CATE is defined as the
conditionally expected difference of potential outcomes as follow:

T(z) =E[Y1 - Yo | 2], )

2We use uppercase letters, e.g., X to denote a random variable, and lowercase letters, e.g.,  to denote an
associated specific value. Letters in calligraphic font, e.g., X represent the support of the corresponding random
variable, and IP() represents the probability distribution of the random variable, e.g., P(X).



where one of these two outcomes is always unobserved in the collected data. To address such
missing counterfactuals, the CATE estimation task is commonly decomposed into outcome estimation
subproblems that are solvable with supervised learning method [36]. For example, T-learner models
the factual outcomes Y for units in the treated and untreated groups separately; S-learner regards T’
as a covariate, and then models Y for units in all groups simultaneously. The CATE estimate is then
the difference of the estimated outcomes when 7' is set to treated and untreated.

Definition 2.2. Let ) : X — R be a mapping from support X to R, i.e., Vx € X, r = (x) € R. Let
¢ : RxT — Y be a mapping from support R xT to ), i.e., it maps the representations and treatment
indicator to the corresponding factual outcome. Denote Y1 = ¢1(R) and Yy = ¢o(R), where we
abbreviate (R, T = 1) and ¢(R,T =0) to ¢1(R) and ¢o(R), respectively, for brevity.

TARNet [67] combines T-learner and S-learner to achieve better performance, which consists of a
representation mapping ¢ and an outcome mapping ¢ as defined in Definition 2.2. For an unit with
covariates x, TARNet estimates the CATE as:

tpo(2) = Y1 - Yo, Yi=¢1(d(x), Yo=¢o(v(x)), 2

where ) is trained over all individuals, ¢, and ¢q are trained over the treated and untreated group,
respectively. Finally, the quality of CATE estimation is evaluated with the precision in estimation of
heterogeneous effect (PEHE) metric:

crpie (. 0) = [ (Fu(@) = () () da 3

However, according to Figure 1(a), the treatment selection bias causes a distribution shift of covariates
across groups, which misleads ¢ and ¢ to overfit their respective group’s properties and generalize
poorly to the entire population. Therefore, the CATE estimate 7 by these methods would be biased.

2.2 Discrete optimal transport and Sinkhorn divergence

Optimal transport (OT) quantifies distribution discrepancy as the minimum transport cost, offering
a tool to quantify the selection bias in Figure 1(a). Monge [49] first formulated OT as finding an
optimal mapping between two distributions. Kantorovich [34] further proposed a more applicable
formulation in Definition 2.3, which can be seen as a generalization of the Monge problem.

Definition 2.3. For empirical distributions o and 8 with n and m units, respectively, the Kantorovich
problem aims to find a feasible plan 7 € R which transports « to [ at the minimum cost:
W(a,8):= min (D,n), II(a,f):= {ﬂ' eR™™:ql,, =a, 71, = b}, )
well(a,B)
where W (o, B) € R is the Wasserstein discrepancy between o and 3; D € RTY*™ is the unit-wise
distance between « and (3, which is implemented with the squared Euclidean distance; a and b

indicate the mass of units in « and 3, and 11 is the feasible transportation plan set which ensures the
mass-preserving constraint holds.

Since exact solutions to (4) often come with high computational costs [5], researchers would com-
monly add an entropic regularization to the Kantorovich problem as follow:
We(a, B) := (D,m), 7 = argmin (D, 7) - eH(mr), H(m) := =} m;; (log(mi ;) - 1), (5)
well(a,B) %]

which makes the problem e-convex and solvable with the Sinkhorn algorithm [19]. The Sinkhorn
algorithm only consists of matrix-vector products, making it suited to be accelerated with GPUs.

3 Proposed method

In this section, we present the Entire Space CounterFactual Regression (ESCFR) approach, which
leverages optimal transport to tackle the treatment selection bias. We first illustrate the stochastic
optimal transport framework for distribution discrepancy quantification across treatment groups, and
demonstrate its efficacy for improving the performance of CATE estimators. Based on the framework,
we then propose a relaxed mass-preserving regularizer to address the sampling effect, and a proximal
factual outcome regularizer to handle the unobserved confounders. We finally open a new thread to
summarize the model architecture, learning objectives, and optimization algorithm.



3.1 Stochastic optimal transport for counterfactual regression

Representation-based approaches mitigate the treatment selection bias by calculating distribution
discrepancy in the representation space and then minimizing it. OT is a preferred method to quantify
the discrepancy due to its numerical advantages and flexibility over competitors. It is numerically
stable in the cases where other methods, such as ¢-divergence (e.g., Kullback-Leibler divergence),
fails [64]. Compared with adversarial discrepancy measures [7, 33, 87], the it can be calculated
efficiently and integrated naturally with the traditional supervised learning framework.

Formally, we denote the OT discrepancy between treatment groups as W (]P’i:1 (r), ]P’E:O(r)), where
P,=" () and Pj;=0(r) are the distributions of representations in treated and untreated groups, respec-
tively, induced by the mapping r = ¢ (x). The discrepancy is differentiable with respect to 1) [24],
and thus can be minimized by updating the representation mapping 1y with gradient-based optimizers.
Definition 3.1. Let 7= () := {z7=1}" | and PT=0(xz) := {«T=}", be the empirical distributions
of covariates at a mini-batch level, which contain n treated units and m untreated units, respectively;
szl (r) and szo(r) be that of representations induced by the mapping r = 1)(x) in Definition 2.2.

However, since prevalent neural estimators mainly update parameters with stochastic gradient meth-
ods, only a fraction of the units is accessible within each iteration. A shortcut in this context is to
calculate the discrepancy at a stochastic mini-batch level:

Wy = W (PL1(r), PL0r)). (6)

The effectiveness of this shortcut is investigated by Theorem 3.1 (refer to Appendix A.4 for proof),
which demonstrates that the PEHE can be optimized by iteratively minimizing the estimation error of
factual outcomes and the mini-batch group discrepancy in (6).

Theorem 3.1. Let ¢ and ¢ be the representation mapping and factual outcome mapping, respectively;
W, be the group discrepancy at a mini-batch level. With the probability of at least 1 - §, we have:

evene(,6) < 217 (1,0) + €00, 0) + ByW, - 20% + O ™

where €1 and €170 are the expected errors of factual outcome estimation, N is the batch size, o3

is the variance of outcomes, By, is a constant term, and O(-) is a sampling complexity term.

—3

3.2 Relaxed mass-preserving regularizer for sampling effect

Although Theorem 3.1 guarantees that the empirical
OT discrepancy (6) bounds the PEHE, the sampling
complexity term O(-) inspires us to investigate the
potential risks of bad cases caused by stochastic
sampling. Precisely, the term O(-) results from
the discrepancy between the entire population and

the sampled mini-batch units (see (30) and (32) in 858|808 [0
Appendix A) which is highly dependent on the un-

controllable sampling quality. Therefore, a reliable

discrepancy measure should be robust to bad sam- . ;
pling cases, otherwise the resulting vulnerability — e —

would impede us from quantifying and minimizing (a) Ideal (b) Imbalance (c) Outlier

the actual discrepancy.

Figure 2: Optimal transport plan (upper) and its
geometric interpretation (down) in three cases,
where the connection strength represents the
transported mass. Different colors and vertical
positions indicate different treatments and out-
comes, respectively.

We consider three sampling cases in Figure 2, where
the transport strategy is reasonable and applicable
in the ideal sampling case in Figure 2(a). However,
the transport strategy calculated with (6) is vulner-
able to disturbances caused by non-ideal sampling
conditions. For instance, Figure 2(b) reveals false
matching of units with disparate outcomes in the
sampled mini-batch where the outcomes of the two groups are imbalanced; Figure 2(c) showcases
false matching of the mini-batch outliers with normal units, causing a substantial disruption of the



transport strategy for other units. Therefore, the vanilla OT in (6) fails to quantify the group discrep-
ancy for producing erroneous transport strategies in non-ideal mini-batches, thereby misleading the
update of the representation mapping 0. We term this issue the mini-batch sampling effect (MSE).

Furthermore, this MSE issue is not exclusive to OT-based methods but is also prevalent in other
representation-based approaches. Despite this, OT offers a distinct advantage: it allows the formaliza-
tion of the MSE issue through its mass-preservation constraint, as indicated in (5). This constraint
mandates a match for every unit in both groups, regardless of the real-world scenarios, complicating
the transport of normal units and the computation of true group discrepancies. This issue is further
exacerbated by small batch sizes. Such formalizability through mass-preservation provides a lever
for handling the MSE issue, setting OT apart from other representation-based methods [85, 86].

An intuitive approach to mitigate the MSE issue is to relax the marginal constraint, i.e., to allow for
the creation and destruction of the mass of each unit. To this end, inspired by unbalanced and weak
transport theories [14, 65], a relaxed mass-preserving regularizer (RMPR) is devised in Definition 3.2.
The core technical point is to replace the hard marginal constraint in (4) with a soft penalty in (9) for
constraining transport strategy. On the basis, the stochastic discrepancy is calculated as

Wor = Wer (P71 (r), Bi=0(r)) ®)

where the hard mass-preservation constraint is removed to mitigate the MSE issue. Building on
Lemma 1 in Fatras et al. [23], we derive Corollary 3.1 to investigate the robustness of RMPR to
sampling effects, showcasing that the effect of mini-batch outliers is upper bounded by a constant.

Definition 3.2. For empirical distributions o and 8 with n and m units, respectively, optimal transport
with relaxed mass-preserving constraint seeks the transport strategy T at the minimum cost:

WE’K(O‘a B) = (Daﬂ-) , T = arg II£D<D,W) - eH(ﬂ-) + K(DKL(Wlnua) + DKL(WTlna b)) 9

where D € R7*™ is the unit-wise distance, and a, b indicate the mass of units in « and 3, respectively.

Corollary 3.1. For empirical distributions «, 8 with n and m units, respectively, adding an outlier
a’ to o and denoting the disturbed distribution as o', we have

WO (o, B) - WO (@, B) < 2(1 — e Zoea @020y (1 1 1), (10)
which is upper bounded by 2x/(n +1). W is the unbalanced discrepancy as per Definition 3.2.

In comparison with alternative methods [9, 83] to relax the marginal constraint, the RMPR imple-
mentation in Definition 3.2 enjoys a collection of theoretical properties [65] and can be calculated via
the generalized Sinkhorn algorithm [14]. The calculated discrepancy is differentiable w.r.t. 1 and
thus can be minimized via stochastic gradient methods in an end-to-end manner.

3.3 Proximal factual outcome regularizer for unobserved confounders

Existing representation-based methods fail to elim-

inate the treatment selection bias due to the unob- °

served confounder effects (UCE). Beginning with

CFR [67], the unconfoundedness assumption A.1 ..

(see Appendix A) is often taken to circumvent the 0 °

UCE issue [75]. In this context, given two units ) b
r; € Pizl(r) and r; € Pizo(r), for instance, OT (@ ®)
discrepancy in Definition 3.2 calculates the unit- Figure 3: Causal graphs with (a) and w/o (b)
wise distance as D;; := |[r; — ;. If Assump- the unconfoundedness assumption. The shaded
tion A.1 holds, it eliminates the treatment selection node indicates the hidden confounder X".
bias since it blocks the backdoor path X — T in Figure 3(a) by balancing confounders in the latent
space. However, Assumption A.l is usually violated due to the existence of unobserved confounders
as per Figure 3(b), which hinders existing methods from handling treatment selection bias since the
backdoor path X’ — T is not blocked. The existence of unobserved covariates X’ also makes the
transport strategy in vanilla OT unidentifiable, which invalidates the calculated discrepancy.

To mitigate the effect of X', we introduce a modification to the unit-wise distance. Specifically, we
observe that given balanced X and identical T', the only variable reflecting the variation of X" is the



outcome Y. As such, resonating with Courty et al. [16], we calibrate the unit-wise distance D with
potential outcomes as follow:

DY = [ri =+ [y = = 12+ lyf = = w77, (11)

where ~ controls the strength of regularization. The underlying regularization is straightforward: units
with similar (observed and unobserved) confounders should also have similar potential outcomes. As
such, for a pair of units with similar observed covariates, i.e., |r; —r;|? ~ 0, if their potential outcomes
given the same treatment ¢ = {0, 1} differ greatly, i.e., |y} — y§ | >> 0, their unobserved confounders
should likewise differ significantly. The vanilla OT technique in (6) where D;; = |r; — ;| would
incorrectly match this pair, generate a false transport strategy, and consequently misguide the update
of the representation mapping 1. In contrast, OT based on D;Yj would not match this pair as the
difference of unobserved confounders is compensated with that of potential outcomes.

Moving forward, since y =° and ij=1 in (11) are unavailable due to the missing counterfactual
outcomes, the proposed proximal factual outcome regularizer (PFOR) uses their estimates instead.
Specifically, let §; and §; be the estimates of 3/ =* and y -, respectively, PFOR refines (11) as

H2+”Z7j—yi||2]» Ui = do(ri), 95 =b1(r5), (12)

Additional justifications, assumptions and limitations of PFOR are discussed in Appendix D.3.

D}, = Iri =15l v+ (19 - s

3.4 Architecture of entire space counterfactual regression

The architecture of ESCFR is presented in Figure 1(b), where the covariate X is first mapped to the
representations R with t(+), and then to the potential outcomes with ¢(-). The group discrepancy W
is calculated with the optimal transport equipping with the RMPR in (9) and PFOR in (12).

The learning objective is to minimize the risk of factual outcome estimation and the group discrepancy.

Given mini-batch distributions P7=!(z) and P7=°(z) in Definition 3.1, the risk of factual outcome
estimation following [68] can be formulated as

Lr(¥,9) = E;pte[@Tzl(z) [o1 (@) = wil® + Ezje]j»T:O(g;) [¢o(v(x5)) - v; 1%, (13)
where y; and y; are the factual outcomes for the corresponding treatment groups. The discrepancy is:
LB5 () = W (B~ (r), Py (r)), (14)

which is in general the optimal transport with RMPR in Definition 3.2, except for the unit-wise
distance D7 calculated with the PFOR in (12). Finally, the overall learning objective of ESCFR is

Lisdin = Le(,0) + X L5 (1), (15)

where ) controls the strength of distribution alignment, e controls the entropic regularization in (5),
+ controls RMPR in (9), and ~ controls PFOR in (12). The learning objective (15) mitigates the
selection bias following Theorem 3.1 and handles the MSE and UCE issues.

The optimization procedure consists of three steps as summarized in Algorithm 3 (see Appendix B).
First, compute 7€ by solving the OT problem in Definition 3.2 with Algorithm 2 (see Appendix B),
where the unit-wise distance is calculated with D?7. Second, compute the discrepancy in (14) as
(w7 D7), which is differentiable to ¢ and ¢. Finally, calculate the overall loss in (15) and update
1) and ¢ with stochastic gradient methods.

4 Experiments

4.1 Experimental setup

Datasets. Missing counterfactuals impede the evaluation of PEHE using observational benchmarks.
Therefore, experiments are conducted on two semi-synthetic benchmarks [67, 85], i.e., IHDP and
ACIC. Specifically, IHDP is designed to estimate the effect of specialist home visits on infants’ po-
tential cognitive scores, with 747 observations and 25 covariates. ACIC comes from the collaborative
perinatal project [51], and includes 4802 observations and 58 covariates.



Table 1: Performance (mean+std) on the PEHE and AUUC metrics. “*” marks the baseline estimators
that ESCFR outperforms significantly at p-value < 0.05 over paired samples t-test.

Dataset ACIC (PEHE) IHDP (PEHE) ACIC (AUUC) IHDP (AUUC)
Model In-sample Out-sample In-sample Out-sample In-sample Out-sample In-sample Out-sample
OLS 3.749+0.080* 4.340+0.117* 3.856+6.018  5.674+9.026 0.843+0.007  0.496+0.017* 0.652+0.050  0.492+0.032*

R.Forest 3.597+0.064* 3.399+0.165* 2.635£3.598  4.671+9.291 0.902+0.016  0.702+0.026* 0.736+0.142  0.661£0.259
S.Learner 3.572+0.269* 3.636+0.254* 1.706+1.600* 3.038+5.319 0.905+0.041  0.627+0.014* 0.633+0.183  0.702+0.330
T.Learner 3.429+0.142* 3.566+0.248* 1.567+1.136* 2.730+3.627 0.846+0.019  0.632+0.020* 0.651+0.179  0.707£0.333

TARNet 3.236+0.266* 3.254+0.150* 0.749+0.291  1.788+2.812 0.886+0.046  0.662+0.014* 0.654+0.184  0.711£0.329
C.Forest 3.449+0.101* 3.196+0.177* 4.018+5.602* 4.486+8.677 0.717£0.005* 0.709+0.018* 0.643+0.141  0.695£0.294
k-NN 5.605+0.168" 5.892+0.138* 2.208+2.233* 4.319+7.336 0.892+0.007* 0.507+0.034* 0.725+0.142  0.668+0.299
O.Forest 8.094+4.669* 4.148+2.224* 2.605+2.418" 3.136+5.642 0.744£0.013  0.699+0.022* 0.664+0.157  0.702+0.325
PSM 5.228+0.154* 5.094+0.301* 3.219+4.352* 4.634+8.574 0.884+0.010  0.745+0.021 0.740+0.149  0.681+0.253
BNN 3.345+0.233* 3.368+0.176* 0.709+0.330  1.806+2.837 0.882+0.033  0.645+0.013* 0.654+0.184  0.711£0.329

CFR-MMD  3.182+0.174* 3.357+0.321* 0.77740.327  1.791+2.741 0.871+0.032  0.659+0.017* 0.655+0.183  0.710£0.329
CFR-WASS  3.128+0.263* 3.207+0.169* 0.657+0.673  1.704+3.115 0.873+0.029  0.669+0.018* 0.656+0.187  0.715+0.311

ESCFR 2.252+0.297  2.316+0.613 0.502+0.252  1.282+2.312 0.796+0.030  0.754+0.021 0.665+0.166  0.719+0.311

Baselines. We consider three groups of baselines. (1) Statistical estimators: least square regression
with treatment as covariates (OLS), random forest with treatment as covariates (R.Forest), a single
network with treatment as covariates (S.learner [36]), separate neural regressors for each treatment
group (T.learner [36]), TARNet [67]; (2) Matching estimators: propensity score match with logistic
regression (PSM [60]), k-nearest neighbor (k-NN [18]), causal forest (C.Forest [73]), orthogonal
forest (O.Forest [73]); (3) Representation-based estimators: balancing neural network (BNN [31]),
counterfactual regression with MMD (CFR-MMD) and Wasserstein discrepancy (CFR-WASS) [67].

Training protocol. A fully connected neural network with two 60-dimensional hidden layers is
selected to instantiate the representation mapping 1 and the factual outcome mapping ¢ for ESCFR
and other neural network based baselines. To ensure a fair comparison, all neural models are trained
for a maximum of 400 epochs using the Adam optimizer, with the patience of early stopping being
30. The learning rate and weight decay are set to 1e™3 and le™#, respectively. Other settings of
optimizers follow Kingma and Ba [35]. We fine-tune hyperparameters within the range in Figure 5,
validate performance every two epochs, and save the optimal model for test.

Evaluation protocol. The PEHE in (3) is the primary metric for performance evaluation [67, 85].
However, it is unavailable in the model selection phase due to missing counterfactuals. As such, we
use the area under the uplift curve (AUUC) [2] to guide model selection, which evaluates the ranking
performance of the CATE estimator and can be computed without counterfactual outcomes. Although
AUUC is not commonly used in treatment effect estimation, we report it as an auxiliary metric for
reference. The within-sample and out-of-sample results are computed on the training and test set,
respectively, following the common settings [44, 45, 67, 85].

4.2 Overall performance
Table | compares ESCFR and its competitors. Main observations are noted as follows.

« Statistical estimators demonstrate competitive performance on the PEHE metric, with neural
estimators outperforming linear and random forest methods due to their superior ability to capture
non-linearity. In particular, TARNet, which combines the advantages of T-learner and S-learner,
achieves the best overall performance among statistical estimators. However, the circumvention to
treatment selection bias results in inferior performance.

» Matching methods such as PSM exhibit strong ranking performance, which explains their popularity
in counterfactual ranking practice. However, their relatively poor performance on the PEHE
metric limits their applicability in counterfactual estimation applications where accuracy of CATE
estimation is prioritized, such as advertising systems.

* Representation-based methods mitigate the treatment selection bias and enhance overall perfor-
mance. In particular, CFR-WASS reaches an out-of-sample PEHE of 3.207 on ACIC, advancing
most statistical methods. However, it utilizes the vanilla Wasserstein discrepancy, wherein the
MSE and UCE issues impede it from solving the treatment selection bias. The proposed ESCFR



Table 2: Ablation study (mean+std) on the ACIC benchmark. “*” marks the variants that ESCFR
outperforms significantly at p-value < 0.01 over paired samples t-test.

In-sample Out-sample
SOT RMPR PFOR PEHE AUUC PEHE AUUC
3.2367+0.2666* 0.8862+0.0462 3.2542+0.1505* 0.6624+0.0149*
v 3.1284+0.2638* 0.8734+0.0291 3.2073+0.1699* 0.6698+0.0187*
v v 2.6459+0.2747* 0.8356+0.0286 2.7688+0.4009 0.7099+0.0157*
v v 2.5705+0.3403* 0.8270+0.0341 2.6330+£0.4672 0.7110+0.0287*
v v 2.2520+0.2975 0.7968+0.0307 2.3165+0.6136 0.7542+0.0202

achieves significant improvement over most metrics compared with various prevalent baselines®.
Combined with the comparisons above, we attribute its superiority to the proposed RMPR and
PFOR regularizers, which accommodate ESCFR to the situations where MSE and UCE exist.

4.3 Ablation study

In this section, to further verify the effectiveness of individual components, an ablation study is
conducted on the ACIC benchmark in Table 2. Specifically, ESCFR first augments TARNet with
the stochastic optimal transport to align the confounders in the representation space, as described in
Section 3.1, which reduces the out-of-sample PEHE from 3.254 to 3.207. Subsequently, it mitigates
the MSE issue with RMPR as per Section 3.2 and the UCE issue with PFOR as per Section 3.3,
which reduces the out-of-sample PEHE to 2.768 and 2.633, respectively. Finally, ESCFR combines
the RMPR and PFOR in a unified framework as detailed in Section 3.4, which further reduces the
value of PEHE and advances the best performance of other variants.

4.4 Analysis of relaxed mass-preserving regularizer

Most prevalent methods fail to handle the label ——n T, ==
imbalance and mini-batch outliers in Figure 2(b-
c). Figure 4 shows the transport plan generated
with RMPR in the same situations, where RMPR g _ (o | | oa -
alleviates the MSE issue in both bad cases. Ini- “*—— -
tially, RMPR with x = 50 presents similar matching FE—=28| [=——=] [ =
scheme with Figure 2, since in this setting the loss
of marginal constraint is strong, and the solution is [*>
thus similar to that of the vanilla OT problem in Def-
inition 2.3; RMPR with x = 10 further looses the
marginal constraint and avoids the incorrect match-  (a) x = 50 (b) k=10 (c) k=2
ing of units with different outcomes; RMPR with

x = 2 further gets robust to the outlier’s interference  Figure 4: Geometric interpretation of OT plan
and correctly matches the remaining units. This with RMPR under the outcome imbalance (up-
success is attributed to the relaxation of the mass- per) and outlier (down) settings. The dark area
preserving constraint according to Section 3.2. indicates the transported mass of a unit, i.e.,
marginal of the transport matrix . The light
area indicates the total mass.

Notably, RMPR does not transport all mass of a
unit. The closer the unit is to the overlapping zone
in a batch, the greater the mass is transferred. That
is, RMPR adaptively matches and pulls closer units that are close to the overlapping region, ignoring
outliers, which mitigates the bias of causal inference methods in cases where the positivity assumption
does not strictly hold. Current approaches mainly achieve it by manually cleaning the data or
dynamically weighting the units [32], while RMPR naturally implements it via the soft penalty in (9).

We further investigate the performance of RMPR under different batch sizes and « in Appendix D.2
to verify the effectiveness of RMPR more thoroughly.

?An exception would be the within-sample AUUC, which is reported over training data and thus easy to be
overfitted. This metric is not critical as the factual outcomes are typically unavailable in the inference phase. We
mainly rely on out-of-sample AUUC instead to evaluate the ranking performance and perform model selection.
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Figure 5: Parameter sensitivity of ESCFR, where the lines and error bars indicate the mean values and
90% confidence intervals, respectively. (a) Impact of alignment strength (\). (b) Impact of entropic
regularization strength ¢. (c) Impact of PFOR strength y (x10%). (d) Impact of RMPR strength .

4.5 Parameter sensitivity study

In this section, we investigate the role of four critical hyperparameters within the ESCFR frame-
work—namely, ], €, k, and 7. These hyperparameters have a profound impact on learning objectives
and the performance, as substantiated by the experimental results presented in Figure 5.

First, we vary X to investigate the efficacy of stochastic optimal transport. Our findings suggest that a
gradual increase in the value of A leads to consistent improvements. For instance, the out-of-sample
PEHE diminishes from 3.22 at A = 0 to roughly 2.85 at A = 1.5. Nonetheless, overly emphasizing
distribution balancing within a multi-task learning framework can result in compromised factual
outcome estimation and, consequently, suboptimal CATE estimates. The next parameter scrutinized is
€, which serves as an entropic regularizer. Our study shows that a larger € accelerates the computation
of optimal transport discrepancy [24]. However, this computational advantage comes at the cost of a
skewed transport plan, as evidenced by an increase in out-of-sample PEHE with oscillations.

Following this, we explore the hyperparameters y and x, associated with PFOR and RMPR, respec-
tively. Extending upon vanilla optimal transport, we incorporate unit-wise distance via (12) and
assess the impact of PFOR. Generally, the inclusion of PFOR positively influences CATE estimation.
However, allocating excessive weight to proximal outcome distance compromises the performance,
as it dilutes the role of the unit-wise distance in the representation space. Concurrently, we modify
the transport problem with (9) to examine the implications of RMPR. Relieving the mass-preserving
constraints through RMPR significantly enhances CATE estimation, but an excessively low value
of x hampers performance as it fails to ensure that the representations across treatment groups are
pulled closer together in the optimal transport paradigm.

5 Related works

Current research aims to alleviate treatment selection bias through the balancing of distributions
between treated and untreated groups. These balancing techniques can be broadly categorized into
three categories: reweighting-based, matching-based, and representation-based methods.

Reweighting-based methods mainly employ propensity scores to achieve global balance between
groups. The core procedure comprises two steps: the estimation of propensity scores and the
construction of unbiased estimators. Propensity scores are commonly estimated using logistic
regression [11, 20, 37, 88]. To enhance the precision of these estimates, techniques such as feature
selection [69, 76, 77], joint optimization [88, 89], and alternative training techniques [92] have
been adopted. The unbiased estimator is exemplified by the inverse propensity score method [59],
which inversely re-weights each units with the estimated propensity scores. While theoretically
unbiased, it suffers from high variance with low propensity and bias with incorrect propensity
estimates [39, 40, 74]. To alleviate these drawbacks, doubly robust estimators and variance reduction
techniques have been introduced [26, 42, 58]. Nevertheless, these methods remain constrained by
their reliance on propensity scores, affecting their efficacy in real-world applications.

Matching-based methods aim to match comparable units from different groups to construct locally
balanced distributions. The key distinctions between representative techniques [8, 46, 60, 79] lie in
their similarity measures. A notable exemplar is the propensity score matching approach [60], which



computes unit (dis)similarity based on estimated propensity scores. Notably, Tree-based methods [73]
can also be categorized as matching approaches, but use adaptive similarity measures. However,
these techniques are computationally intensive, limiting their deployment in large-scale operations.

Representation-based methods aim to construct a mapping to a feature space where distributional dis-
crepancies are minimized. The central challenge lies in the accurate calculation of such discrepancies.
Initial investigations focused on maximum mean discrepancy and vanilla Wasserstein discrepancy
[31, 67], later supplemented by local similarity preservation [85, 86], feature selection [13, 27],
representation decomposition [27, 80] and adversarial training [87] mechanisms. Despite their suc-
cess, they fail under specific but prevalent conditions, such as outlier fluctuations [23] and unlabeled
confounders [90], undermining the reliability of calculated discrepancies.

The recent exploration of optimal transport in causality [71] has spawned innovative reweighting-
based [21], matching-based [10] and representation-based methods [44, 45]. For example, Li et al.
[45] utilize OT to align factual and counterfactual distributions; Li et al. [44] and Ma et al. [48]
use OT to reduce confounding bias. Despite these advancements, they largely adhere to the vanilla
Kantorovich problem that corresponds to the canonical Wasserstein discrepancy, akin to Shalit et al.
[67]. Adapting OT problems to meet the unique needs of treatment effect estimation remains an open
area for further research.

6 Conclusion

Due to the effectiveness of mitigating treatment selection bias, representation learning has been the
primary approach to estimating individual treatment effect. However, existing methods neglect the
mini-batch sampling effects and unobserved confounders, which hinders them from handling the
treatment selection bias. A principled approach named ESCFR is devised based on a generalized OT
problem. Extensive experiments demonstrate that ESCFR can mitigate MSE and UCE issues, and
achieve better performance compared with prevalent baseline models.

Looking ahead, two research avenues hold promise for further exploration. The first avenue explores
the use of normalizing flows for representation mapping, which offers the benefit of invertibility [12]
and thus aligns with the assumptions set forth by Shalit et al. [67]. The second avenue aims to apply
our methodology to real-world industrial applications, such as bias mitigation in recommendation
systems [74], an area currently dominated by high-variance reweighting methods.

Acknowledgements

This work is supported by National Key R&D Program of China (Grant No. 2021 YFC2101100),
National Natural Science Foundation of China (62073288, 12075212, 12105246, 11975207) and
Zhejiang University NGICS Platform.



References

[1] Jason M. Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear time approximation
algorithms for optimal transport via sinkhorn iteration. In NeurIPS, pages 1964-1974, 2017.

[2] Artem Betlei, Eustache Diemert, and Massih-Reza Amini. Uplift modeling with generalization
guarantees. In SIGKDD, pages 55-65, 2021.

[3] Jose H. Blanchet, Arun Jambulapati, Carson Kent, and Aaron Sidford. Towards optimal running
times for optimal transport. CoRR, abs/1810.07717, 2018.

[4] Francois Bolley, Arnaud Guillin, and Cédric Villani. Quantitative concentration inequalities for
empirical measures on non-compact spaces. Probability Theory and Related Fields, 137(3):
541-593, 2007.

[5] Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement
interpolation using lagrangian mass transport. ACM Trans. Graph., 30(6):158, 2011.

[6] M Alan Brookhart, Sebastian Schneeweiss, Kenneth J Rothman, Robert J Glynn, Jerry Avorn,

and Til Stiirmer. Variable selection for propensity score models. American journal of epidemi-
ology, 163(12):1149-1156, 2006.

[7] Aaron Chadha and Yiannis Andreopoulos. Improved techniques for adversarial discriminative
domain adaptation. IEEE Trans. Image Process., 29:2622-2637, 2020.

[8] Yale Chang and Jennifer G. Dy. Informative subspace learning for counterfactual inference. In
AAAI pages 1770-1776, 2017.

[9] Laetitia Chapel, Rémi Flamary, Haoran Wu, Cédric Févotte, and Gilles Gasso. Unbalanced
optimal transport through non-negative penalized linear regression. In NeurlPS, pages 23270-
23282, 2021.

[10] Arthur Charpentier, Emmanuel Flachaire, and Ewen Gallic. Optimal transport for counterfactual
estimation: A method for causal inference. arXiv preprint arXiv:2301.07755, 2023.

[11] Jiawei Chen, Hande Dong, Yang Qiu, Xiangnan He, Xin Xin, Liang Chen, Guli Lin, and Keping
Yang. Autodebias: Learning to debias for recommendation. In SIGIR, pages 21-30, 2021.

[12] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In NeurIPS, pages 6572—6583, 2018.

[13] Mingyuan Cheng, Xinru Liao, Quan Liu, Bin Ma, Jian Xu, and Bo Zheng. Learning disentangled
representations for counterfactual regression via mutual information minimization. In SIGIR,
pages 1802-1806, 2022.

[14] Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and Francois-Xavier Vialard. Scaling
algorithms for unbalanced optimal transport problems. Math. Comput., 87(314):2563-2609,
2018.

[15] José M Cordero, Victor Cristébal, and Daniel Santin. Causal inference on education policies: A
survey of empirical studies using pisa, timss and pirls. J. Econ. Surv., 32(3):878-915, 2018.

[16] Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution
optimal transportation for domain adaptation. In NeurIPS, pages 3730-3739, 2017.

[17] Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for
domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell., 39(9):1853-1865, 2017.

[18] Richard K Crump, V Joseph Hotz, Guido W Imbens, and Oscar A Mitnik. Nonparametric tests
for treatment effect heterogeneity. Rev. Econ. Stat., 90(3):389—405, 2008.

[19] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In NeurIPS,
pages 2292-2300, 2013.



[20] Quanyu Dai, Haoxuan Li, Peng Wu, Zhenhua Dong, Xiao-Hua Zhou, Rui Zhang, Rui Zhang,
and Jie Sun. A generalized doubly robust learning framework for debiasing post-click conversion
rate prediction. In SIGKDD, pages 252-262, 2022.

[21] Eric Dunipace. Optimal transport weights for causal inference. CoRR, abs/2109.01991, 2021.

[22] Pavel E. Dvurechensky, Alexander V. Gasnikov, and Alexey Kroshnin. Computational optimal
transport: Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm. In
ICML, volume 80, pages 1366—-1375, 2018.

[23] Kilian Fatras, Thibault Séjourné, Rémi Flamary, and Nicolas Courty. Unbalanced minibatch
optimal transport; applications to domain adaptation. In ICML, volume 139, pages 3186-3197,
2021.

[24] Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon,
Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo
Gautheron, Nathalie T. H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko,
Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander
Tong, and Titouan Vayer. POT: python optimal transport. J. Mach. Learn. Res., 22:78:1-78:8,
2021.

[25] Sergio Garrido, Stanislav Borysov, Jeppe Rich, and Francisco Pereira. Estimating causal effects
with the neural autoregressive density estimator. Journal of Causal Inference, 9(1):211-228,
2021.

[26] Siyuan Guo, Lixin Zou, Yiding Liu, Wenwen Ye, Suqi Cheng, Shuaiqiang Wang, Hechang
Chen, Dawei Yin, and Yi Chang. Enhanced doubly robust learning for debiasing post-click
conversion rate estimation. In SIGIR, pages 275-284, 2021.

[27] Negar Hassanpour and Russell Greiner. Learning disentangled representations for counterfactual
regression. In ICLR. OpenReview.net, 2020.

[28] Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and biomedical
sciences. Cambridge University Press, 2015.

[29] Arun Jambulapati, Aaron Sidford, and Kevin Tian. A direct o(1/epsilon) iteration parallel
algorithm for optimal transport. In NeurIPS, pages 1135511366, 2019.

[30] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape
saddle points efficiently. In ICML, pages 1724-1732, 2017.

[31] Fredrik D. Johansson, Uri Shalit, and David A. Sontag. Learning representations for counterfac-
tual inference. In ICML, pages 3020-3029, 2016.

[32] Fredrik D. Johansson, Uri Shalit, Nathan Kallus, and David A. Sontag. Generalization bounds
and representation learning for estimation of potential outcomes and causal effects. CoRR,
abs/2001.07426, 2020.

[33] Nathan Kallus. Deepmatch: Balancing deep covariate representations for causal inference using
adversarial training. In /JCML, volume 119, pages 5067-5077, 2020.

[34] Leonid V Kantorovich. On the translocation of masses. J. Math. Sci., 133(4):1381-1382, 2006.

[35] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In /CLR,
2015.

[36] Soren Reinhold Kiinzel, Jasjeet Sekhon, Peter Bickel, and Bin Yu. Metalearners for estimating
heterogeneous treatment effects using machine learning. Proc. Natl. Acad. Sci. U. S. A., 116
(10):4156-4165, 2019.

[37] Jae-woong Lee, Seongmin Park, and Jongwuk Lee. Dual unbiased recommender learning for
implicit feedback. In SIGIR, pages 1647-1651, 2021.



[38] Haoxuan Li, Yanghao Xiao, Chunyuan Zheng, and Peng Wu. Balancing unobserved con-
founding with a few unbiased ratings in debiased recommendations. In WWW, pages 305-315,
2022.

[39] Haoxuan Li, Quanyu Dai, Yuru Li, Yan Lyu, Zhenhua Dong, Xiao-Hua Zhou, and Peng Wu.
Multiple robust learning for recommendation. In Brian Williams, Yiling Chen, and Jennifer
Neville, editors, AAAI, pages 4417-4425, 2023.

[40] Haoxuan Li, Yanghao Xiao, Chunyuan Zheng, Peng Wu, and Peng Cui. Propensity matters:
Measuring and enhancing balancing for recommendation. In /CML, volume 202 of Proceedings
of Machine Learning Research, pages 20182-20194. PMLR, 2023.

[41] Haoxuan Li, Chunyuan Zheng, Yixiao Cao, Zhi Geng, Yue Liu, and Peng Wu. Trustworthy
policy learning under the counterfactual no-harm criterion. In /ICML, volume 202 of Proceedings
of Machine Learning Research, pages 20575-20598. PMLR, 2023.

[42] Haoxuan Li, Chunyuan Zheng, and Peng Wu. Stabledr: Stabilized doubly robust learning for
recommendation on data missing not at random. In /CLR, 2023.

[43] Haoxuan Li, Chunyuan Zheng, Peng Wu, Kun Kuang, Yue Liu, and Peng Cui. Who should be
given incentives? counterfactual optimal treatment regimes learning for recommendation. In
KDD, pages 1235-1247. ACM, 2023.

[44] Qian Li, Zhichao Wang, Shaowu Liu, Gang Li, and Guandong Xu. Deep treatment-adaptive
network for causal inference. VLDBJ, pages 1-16, 2022.

[45] Qian Li, Zhichao Wang, Shaowu Liu, Gang Li, and Guandong Xu. Causal optimal transport for
treatment effect estimation. IEEE Trans. Neural Networks Learn. Syst., 34(8):4083—-4095, 2023.

[46] Sheng Li, Nikos Vlassis, Jaya Kawale, and Yun Fu. Matching via dimensionality reduction for
estimation of treatment effects in digital marketing campaigns. In IJCAI, pages 3768-3774,
2016.

[47] Tianyi Lin, Nhat Ho, and Michael I. Jordan. On efficient optimal transport: An analysis of
greedy and accelerated mirror descent algorithms. In ICML, volume 97, pages 3982-3991,
2019.

[48] Jing Ma, Mengting Wan, Longqi Yang, Jundong Li, Brent Hecht, and Jaime Teevan. Learning
causal effects on hypergraphs. In SIGKDD, page 1202-1212, 2022.

[49] Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad.
Royale Sci., pages 666-704, 1781.

[50] X Nie and S Wager. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika,
108(2):299-319, 2020.

[51] Kenneth R Niswander and Myron Gordon. The women and their pregnancies: the Collaborative
Perinatal Study of the National Institute of Neurological Diseases and Stroke, volume 73.
National Institute of Health, 1972.

[52] Elizabeth L Ogburn and Tyler J VanderWeele. On the nondifferential misclassification of a
binary confounder. Epidemiology, 23(3):433, 2012.

[53] Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic
books, 2018.

[54] Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In ICCV, pages
460-467, 2009.

[55] Gabriel Peyré and Marco Cuturi. Computational optimal transport. Found. Trends Mach. Learn.,
11(5-6):355-607, 2019.

[56] Khiem Pham, Khang Le, Nhat Ho, Tung Pham, and Hung Bui. On unbalanced optimal transport:
An analysis of sinkhorn algorithm. In JCML, volume 119, pages 7673-7682, 2020.



[57] Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation
with optimal transport. In PKDD, volume 10535, pages 737-753, 2017.

[58] James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coefficients
when some regressors are not always observed. J. Am. Stat. Assoc., 89(427):846-866, 1994.

[59] Paul Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41-55, 1983.

[60] Paul Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41-55, 1983.

[61] Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized
studies. J. Educ. Psychol., 66(5):688, 1974.

[62] Brian C Sauer, M Alan Brookhart, Jason Roy, and Tyler VanderWeele. A review of covariate
selection for non-experimental comparative effectiveness research. Pharmacoepidemiology and
drug safety, 22(11):1139-1145, 2013.

[63] Patrick Schwab, Lorenz Linhardt, Stefan Bauer, Joachim Buhmann, and Walter Karlen. Learning
counterfactual representations for estimating individual dose-response curves. In AAAI, pages
5612-5619, 2020.

[64] Vivien Seguy, Bharath Bhushan Damodaran, Rémi Flamary, Nicolas Courty, Antoine Rolet, and
Mathieu Blondel. Large scale optimal transport and mapping estimation. In /CLR, 2018.

[65] Thibault Séjourné, Jean Feydy, Francois-Xavier Vialard, Alain Trouvé, and Gabriel Peyré.
Sinkhorn divergences for unbalanced optimal transport. CoRR, abs/1910.12958, 2019.

[66] Thibault Séjourné, Frangois-Xavier Vialard, and Gabriel Peyré. Faster unbalanced optimal
transport: Translation invariant sinkhorn and 1-d frank-wolfe. In AISTATS, volume 151, pages
4995-5021, 2022.

[67] Uri Shalit, Fredrik D. Johansson, and David Sontag. Estimating individual treatment effect:
generalization bounds and algorithms. In /CML, pages 3076-3085, 2017.

[68] Claudia Shi, David M. Blei, and Victor Veitch. Adapting neural networks for the estimation of
treatment effects. In NeurlIPS, pages 2503-2513, 2019.

[69] Susan M Shortreed and Ashkan Ertefaie. Outcome-adaptive lasso: variable selection for causal
inference. Biometrics, 73(4):1111-1122, 2017.

[70] Tamar Sofer, David B Richardson, Elena Colicino, Joel Schwartz, and Eric J Tchetgen Tchetgen.
On negative outcome control of unobserved confounding as a generalization of difference-in-
differences. Stat. Sci., 31(3):348, 2016.

[71] Ruibo Tu, Kun Zhang, Hedvig Kjellstrom, and Cheng Zhang. Optimal transport for causal
discovery. In ICLR. OpenReview.net, 2022.

[72] Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

[73] Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects
using random forests. J. Am. Stat. Assoc., 113(523):1228-1242, 2018.

[74] Hao Wang, Tai-Wei Chang, Tiangiao Liu, Jianmin Huang, Zhichao Chen, Chao Yu, Ruopeng Li,

and Wei Chu. Escm?: Entire space counterfactual multi-task model for post-click conversion
rate estimation. In SIGIR, 2022.

[75] Haotian Wang, Wenjing Yang, Longqi Yang, Anpeng Wu, Liyang Xu, Jing Ren, Fei Wu, and
Kun Kuang. Estimating individualized causal effect with confounded instruments. In KDD,
pages 1857-1867. ACM, 2022.

[76] Haotian Wang, Kun Kuang, Haoang Chi, Longqi Yang, Mingyang Geng, Wanrong Huang, and
Wenjing Yang. Treatment effect estimation with adjustment feature selection. In KDD, pages
2290-2301. ACM, 2023.



[77] Haotian Wang, Kun Kuang, Long Lan, Zige Wang, Wanrong Huang, Fei Wu, and Wenjing
Yang. Out-of-distribution generalization with causal feature separation. IEEE Trans. Knowl.
Data Eng., 2023.

[78] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

[79] Anpeng Wu, Kun Kuang, Ruoxuan Xiong, Bo Li, and Fei Wu. Stable estimation of heteroge-
neous treatment effects. In ICML, volume 202 of Proceedings of Machine Learning Research,
pages 37496-37510. PMLR, 2023.

[80] Anpeng Wu, Junkun Yuan, Kun Kuang, Bo Li, Runze Wu, Qiang Zhu, Yueting Zhuang, and Fei
Wu. Learning decomposed representations for treatment effect estimation. IEEE Trans. Knowl.
Data Eng., 35(5):4989-5001, 2023.

[81] Peng Wu, Haoxuan Li, Yuhao Deng, Wenjie Hu, Quanyu Dai, Zhenhua Dong, Jie Sun, Rui
Zhang, and Xiao-Hua Zhou. On the opportunity of causal learning in recommendation systems:
Foundation, estimation, prediction and challenges. In IJCAI, pages 23-29, 2022.

[82] Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
Stochastic gradient descent exponentially favors flat minima. In /CLR, 2020.

[83] Renjun Xu, Pelen Liu, Yin Zhang, Fang Cai, Jindong Wang, Shuoying Liang, Heting Ying, and
Jianwei Yin. Joint partial optimal transport for open set domain adaptation. In IJCAI, pages
2540-2546, 2020.

[84] Mengyue Yang, Xinyu Cai, Furui Liu, Weinan Zhang, and Jun Wang. Specify robust causal
representation from mixed observations. In KDD, pages 2978-2987. ACM, 2023.

[85] Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, and Aidong Zhang. Representation
learning for treatment effect estimation from observational data. In NeurIPS, pages 2638-2648,
2018.

[86] Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, and Aidong Zhang. ACE: adaptively
similarity-preserved representation learning for individual treatment effect estimation. In /ICDM,
pages 1432-1437, 2019.

[87] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GANITE: estimation of individualized
treatment effects using generative adversarial nets. In ICLR, 2018.

[88] Wenhao Zhang, Wentian Bao, Xiao-Yang Liu, Keping Yang, Quan Lin, Hong Wen, and Ramin
Ramezani. Large-scale causal approaches to debiasing post-click conversion rate estimation
with multi-task learning. In WWW, pages 2775-2781, 2020.

[89] Yang Zhang, Dong Wang, Qiang Li, Yue Shen, Ziqi Liu, Xiaodong Zeng, Zhigiang Zhang,
Jinjie Gu, and Derek F Wong. User retention: A causal approach with triple task modeling. In
IJCAL 2021.

[90] Jiajing Zheng. Sensitivity Analysis for Causal Inference with Unobserved Confounding. Univer-
sity of California, Santa Barbara, 2021.

[91] Jiajing Zheng, Alexander D’ Amour, and Alexander Franks. Copula-based sensitivity analysis
for multi-treatment causal inference with unobserved confounding. CoRR, abs/2102.09412,
2021.

[92] Ziwei Zhu, Yun He, Yin Zhang, and James Caverlee. Unbiased implicit recommendation and
propensity estimation via combinational joint learning. In RecSys, pages 551-556, 2020.



	Introduction
	Preliminaries
	Causal inference from observational data
	Discrete optimal transport and Sinkhorn divergence

	Proposed method
	Stochastic optimal transport for counterfactual regression
	Relaxed mass-preserving regularizer for sampling effect
	Proximal factual outcome regularizer for unobserved confounders
	Architecture of entire space counterfactual regression

	Experiments
	Experimental setup
	Overall performance
	Ablation study
	Analysis of relaxed mass-preserving regularizer
	Parameter sensitivity study

	Related works
	Conclusion
	Causal Inference with Observational Studies
	Problem Formulation
	Meta-learners for CATE estimation with observational data
	Representation-based Methods for Treatment Selection Bias
	Theoretical Results and Extensions

	Discrete Optimal Transport
	Problem Formulation
	Sinkhorn Discrepancy and Algorithm
	Unbalanced optimal transport and generalized sinkhorn
	Optimization of Entire Space Counterfactual Regression
	Complexity Analysis

	Reproduction Details
	Datasets
	Baselines

	Additional Discussions
	Additional Discussion for Stochastic Optimal Transport
	Additional Discussion for Relaxed Mass-Preserving Regularizer
	Additional Discussion for Proximal Factual Outcome Regularizer


