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Abstract

While pretrained language models achieve ex-001
cellent performance on natural language un-002
derstanding benchmarks, they tend to rely on003
spurious correlations and generalize poorly004
to out-of-distribution (OOD) data. Recent005
work has explored using counterfactually-006
augmented data (CAD)—data generated by007
minimally perturbing examples to flip the008
ground-truth label—to identify robust features009
that are invariant under distribution shift. How-010
ever, empirical results using CAD for OOD011
generalization have been mixed. To explain012
this discrepancy, we draw insights from a013
linear Gaussian model and demonstrate the014
pitfalls of CAD. Specifically, we show that015
(a) while CAD is effective at identifying ro-016
bust features, it may prevent the model from017
learning unperturbed robust features; and (b)018
CAD may exacerbate existing spurious cor-019
relations in the data. On two crowdsourced020
CAD datasets, our results show that the lack of021
perturbation diversity limits their effectiveness022
on OOD generalization, calling for innovative023
crowdsourcing procedures to elicit diverse per-024
turbation of examples.025

1 Introduction026

Large-scale datasets have enabled tremendous027

progress in natural language understanding (NLU)028

(Rajpurkar et al., 2016; Wang et al., 2018a) with the029

rise of pretrained language models (Devlin et al.,030

2019; Peters et al., 2018). Despite the progress,031

there have been numerous works showing that mod-032

els rely on spurious correlations in the datasets, i.e.033

heuristics that are effective on a specific dataset but034

do not hold in general (McCoy et al., 2019; Naik035

et al., 2018; Wang and Culotta, 2020). For exam-036

ple, high word overlap is found to be associated037

with entailment in natural language inference (NLI)038

datasets.039

A recent promising direction is to collect040

counterfactually-augmented data (CAD) (Kaushik041

et al., 2020) by asking humans to minimally edit 042

examples to flip their ground-truth label.1 Figure 1 043

shows example edits for NLI. Given interventions 044

on robust features that “cause” the label to change, 045

the model is expected to learn to disentangle the 046

spurious and robust features. 047

Despite recent attempt to explain the efficacy of 048

CAD by analyzing the underlying causal structure 049

of the data (Kaushik et al., 2021), empirical results 050

on out-of-distribution (OOD) generalization using 051

CAD are mixed. Specifically, Huang et al. (2020) 052

show that CAD does not improve OOD general- 053

ization for NLI; Khashabi et al. (2020) find that 054

for question answering, unaugmented datasets give 055

better performance when the annotation cost and 056

dataset size are controlled. 057

In this work, we take a step towards bridging 058

this gap between what theory suggests and what 059

we observe in practice in regards to CAD. An in- 060

tuitive example to illustrate our key observation 061

is shown in Figure 1 (a), where the verb ‘eating’ 062

is changed to ‘drinking’ to flip the label. While 063

there are many other words that could have been 064

changed to flip the label, from this pair of examples 065

the model learns to use only the verbs (e.g. using 066

a Naive Bayes model, all other words would have 067

zero weights). As a result, this model would fail 068

when evaluated on examples such as those in (b) 069

where the quantifier ‘two’ is changed to ‘three’, 070

while a model trained on the unaugmented data 071

may learn to use the quantifiers. 072

Concretely, we formalize counterfactual aug- 073

mentation using a linear Gaussian model and show 074

that perturbations of one robust feature can prevent 075

the model from learning other robust features. We 076

then empirically demonstrate this issue in two CAD 077

datasets collected for NLI and Question Answering 078

(QA) . We identify the robust features by categoriz- 079

1Throughout the rest of the paper, CAD refers to
counterfactually-augmented data containing pairs of the origi-
nal example and a corresponding revised example.

1



Premise: The lady is standing next to her two children who are eating a pizza.
Original Hypothesis: The two children near the lady are eating something. (Entailment)
Revised Hypothesis: The two children near the lady are drinking something. (Contradiction)

Premise: The lady is standing next to her two children who are eating a pizza.
Original Hypothesis: The two children near the lady are eating something. (Entailment)
Revised Hypothesis: The three children near the lady are eating something. (Contradiction)

(a)

(b)

Figure 1: Illustration of counterfactual examples in Natural Language Inference. Augmenting examples like (a)
hurts performance on examples like (b) where a different robust feature has been perturbed, since the first example
encourages the model to exclusively focus on the highlighted words.

ing the edits into different perturbation types (Wu080

et al., 2021) (e.g. negating a sentence or chang-081

ing the quantifiers), and show that models do not082

generalize well to unseen perturbation types, some-083

times even performing worse than models trained084

on unaugmented data.085

Our analysis of the relation between perturbation086

types and generalization can help explain other087

observations such as CAD being more beneficial088

in the low-data regime. With increasing data size,089

improvement from using CAD plateaus compared090

to unaugmented data, suggesting that the number091

of perturbation types in existing CAD datasets does092

not keep increasing.093

.094

Another consequence of the lack of diversity in095

edits is annotation bias, which may produce spuri-096

ous correlations similar to what happened in stan-097

dard crowdsourcing procedures. While CAD is098

intended to debias the dataset, surprisingly, we find099

that crowdsourced CAD for NLI exacerbates word100

overlap bias (McCoy et al., 2019) and negation101

bias (Gururangan et al., 2018a) observed in exist-102

ing benchmarks.103

In sum, we show that the effectiveness of current104

CAD datasets is limited by the set of robust features105

that are perturbed. Furthermore, they may exacer-106

bate spurious correlations in existing benchmarks.107

Our results highlight the importance of increasing108

the diversity of counterfactual perturbations during109

crowdsourcing: We need to elicit more diverse ed-110

its of examples and collect targeted counterfactual111

examples that fix bugs in current models.112

2 Analysis of a Linear Model113

In this section, we formalize counterfactual aug-114

mentation and discuss under what conditions it is115

effective using a linear Gaussian model and squared116

loss.117

2.1 Learning under Spurious Correlation 118

We adopt the setting in Rosenfeld et al. (2020): 119

each example consists of robust features xr ∈ Rdr 120

whose joint distribution with the label is invariant 121

during training and testing, and spurious features 122

xs ∈ Rds whose joint distribution varies at test 123

time. Here dr and ds denote the feature dimensions. 124

We consider a binary classification setting where 125

the label y ∈ {−1, 1} is drawn from a uniform dis- 126

tribution, and both the robust and spurious features 127

are drawn from Gaussian distributions. Specifi- 128

cally, an example x = [xr, xs] ∈ Rd is generated 129

by the following process (where d = dr + ds): 130

y =

{
1 w.p. 0.5

−1 otherwise
(1) 131

xr | y ∼ N (yµr, σ
2
rI) , (2) 132

xs | y ∼ N (yµs, σ
2
sI) , (3) 133

where µr ∈ Rdr ; µs ∈ Rds ; σr, σs ∈ R; and I 134

is the identity matrix.2 The corresponding data 135

distribution is denoted by D. Note that the relation 136

between y and the spurious features xs depends 137

on µs and σs, which may change at test time, thus 138

relying on xs may lead to poor OOD performance. 139

We consider the setting with infinite samples 140

and learn a linear model (y = wTx where w ∈ Rd) 141

by least square regression. Let ŵ ∈ Rd be the 142

optimal solution on D (without any counterfactual 143

augmentation). The closed form solution is: 144

Cov(x, x)ŵ = Cov(x, y) (4) 145

ŵ = Cov(x, x)−1µ (5) 146

2This model corresponds to the anti-causal setting
(Scholkopf et al., 2012), i.e. the label causing the features. We
adopt this setting since it is consistent with how most data is
generated in tasks like NLI, sentiment analysis etc.
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where µ = [µr, µs] ∈ Rd and Cov(·) denotes the147

covariance matrix:148

Cov(x, x) =

[
Σr µrµ

T
s

µsµ
T
r Σs

]
, (6)149

where Σr,Σs are covariance matrices of xr and xs150

respectively. This model relies on µs that can vary151

at test time, thus it may have poor performance152

under distribution shift. A robust model winv that is153

invariant to spurious correlations would ignore xs:154

winv =
[
Σ−1r µr, 0

]
. (7)155

We define the error of w to be the squared loss156

with respect to the predictions given by the robust157

model:158

`(w) = Ex∼D
[
(wT

invx− wTx)2
]
. (8)159

2.2 Counterfactual Augmentation160

The counterfactual data is generated by editing an161

example to flip its label. We model the perturbation162

by an edit vector z that translates x to change its163

label from y to −y (i.e. from 1 to -1 or vice versa).164

For instance, the counterfactual example of a posi-165

tive example (x,+1) is (x+ z,−1). Specifically,166

we define the edit vector to be z = [yzr, yzs] ∈ Rd,167

where zr ∈ Rdr and zs ∈ Rds are the displace-168

ments for the robust and spurious features. Here, z169

is label-dependent so that examples with different170

labels are translated in opposite directions. There-171

fore, the counterfactual example (xc,−y) gener-172

ated from (x, y) has the following distribution:173

xcr | −y ∼ N (y(µr + zr), σ
2
rI) , (9)174

xcs | −y ∼ N (y(µs + zs), σ
2
sI) . (10)175

The model is then trained on the combined set of176

original examples x and counterfactual examples177

xc, whose distribution is denoted by Dc.178

Optimal edits. Ideally, the counterfactual data179

should de-correlate xs and y, thus it should only180

perturb the robust features xr, i.e. z = [yzr, 0]. To181

find the displacement zr that move x across the182

decision boundary, we maximize the log-likelihood183

of the flipped label under the data generating distri-184

bution D:185

z∗r = arg max
zr∈Rdr

E(x,y)∼D log p(−y | x+ [yzr, 0])186

= −2µr. (11)187

Intuitively, it moves the examples towards the mean 188

of the opposite class along coordinates of the robust 189

features. 190

Using the edits specified above, if the model 191

trained on Dc has optimal solution ŵc, we have: 192

Cov(x, x)ŵc = Cov(x, y) 193

ŵc =
[
Σ−1r µr, 0

]
= winv. (12) 194

Thus, the optimal edits recover the robust model 195

winv, demonstrating the effectiveness of CAD. 196

Incomplete edits. There is an important assump- 197

tion made in the above result: we have assumed all 198

robust features are edited. Suppose we have two 199

sets of robust features xr1 and xr2,3 then not edit- 200

ing xr2 would effectively make it appear spurious 201

to the model and indistinguishable from xs. 202

In practice, this happens when there are multi- 203

ple robust features but only a few are perturbed 204

during counterfactual augmentation (which can be 205

common during data collection if workers rely on 206

simple patterns to make the minimal edits). Con- 207

sidering the NLI example, if all entailment exam- 208

ples are flipped to non-entailment ones by inserting 209

a negation word, then the model will only rely on 210

negation to make predictions. 211

More formally, consider the case where the orig- 212

inal examples x = [xr1, xr2, xs] and counterfac- 213

tual examples are generated by incomplete edits 214

z = [zr1, 0, 0] that perturb only xr1. Using the 215

same analysis above where zr1 is chosen by maxi- 216

mum likelihood estimation, let the model learned 217

on the incompletely augmented data be denoted by 218

ŵinc. We then have the following: 219

Proposition 1. Assuming all variables have unit 220

variance and ‖µr‖ = 1, `(ŵinc) > `(ŵ) if ‖µr2‖ > 221

‖µs‖, where ‖ · ‖ denotes the Euclidean norm. 222

Proof Sketch. The proof mainly follows from alge- 223

bra and using the fact that Cov(x, x)−1 is a block 224

matrix consisting of rank-one perturbations of the 225

identity matrix. We refer the reader to Appendix 226

A for the detailed proof. 227

This shows that the error is more in the case 228

of incomplete edits compared to the unaugmented 229

case. Next, we show that the problem of incomplete 230

edits is exhibited in real CAD too. 231

3We assume they are conditionally independent given the
label.
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Type Definition Example # examples
(NLI/QA)

negation Change in negation modifier A dog is not fetching anything. 200/683
quantifier Change in words with numeral POS tags The lady has many → three children. 344/414
lexical Replace few words without breaking the POS tags The boy is swimming → running. 1568/1737
insert Only insert words or short phrases The tall man is digging the ground. 1462/536
delete Only delete word or short phrases The lazy person just woke up. 562/44

resemantic
Replaced short phrases without affecting parsing
tree

The actor saw → had just met the
director. 2760/1866

Table 1: Definition of the perturbation types and the corresponding number of examples in the NLI CAD dataset
released by (Kaushik et al., 2020) and the BoolQ CAD dataset released by Khashabi et al. (2020). In the example
edits, the deleted words are shown in red and the newly added words are shown in green.

3 Diversity and Generalization in CAD232

In this section, we test the following hypothesis233

based on the above analysis: models trained on234

CAD are limited to the specific robust features that235

are perturbed and may not learn other unperturbed236

robust features. We empirically analyze how aug-237

menting counterfactual examples by perturbing one238

robust feature affects the performance on examples239

generated by perturbing other robust features.240

3.1 Experiment Design241

Perturbation types. Unlike the Gaussian exam-242

ple, in NLU it is not easy to define robust features243

since they typically correspond to the semantics of244

the text (e.g. sentiment). We therefore define robust245

features as latent variables that generate the sen-246

tence form (e.g. sentiment, tense, action). Perturb-247

ing a robust feature would change certain words in248

the sentence. As an example, in Figure 1 (b), pertur-249

bation of the quantity is reflected as a change in the250

word ‘two’ to ‘three’. To uncover the latent robust251

features, we use linguistically-inspired rules (Wu252

et al., 2021) to categorize the edits into sev-253

eral perturbation types: negation, quantifier,254

lexical, insert, delete and resemantic. Ta-255

ble 1 gives the definitions of each type.4256

Train/test sets. Both the training sets and the test257

sets contain counterfactual examples generated by258

a particular perturbation type. To test the general-259

ization from one perturbation type to another, we260

use two types of test sets: aligned test sets where261

examples are generated by the same perturbation262

type as the training data; and unaligned test sets263

where examples are generated by unseen perturba-264

tion types (e.g. training on examples from lexical265

and testing on negation).266

4Since these types are not mutually exclusive, we set a
precedence order among them when there are ambiguities.

3.2 Experimental Setup 267

Data. We experiment on two CAD datasets col- 268

lected for SNLI (Kaushik et al., 2020) and BoolQ 269

(Khashabi et al., 2020). The size of the paired 270

data (seed examples and edited examples) for each 271

perturbation type is given in Table 1. Since some 272

types (e.g. delete) contain too few examples for 273

training, we train on the top three largest perturba- 274

tion types: lexical, insert, and resemantic for 275

SNLI; and lexical, negation, and resemantic 276

for BoolQ. 277

For SNLI, to control for dataset sizes across all 278

experiments, we use 700 seed examples and their 279

corresponding 700 perturbations for each perturba- 280

tion type. As a baseline (‘SNLI seed’), we subsam- 281

ple examples from SNLI to create a similar sized 282

dataset for comparison.5 283

For BoolQ (Clark et al., 2019a), our initial exper- 284

iments show that training on only CAD does not 285

reach above random-guessing. Thus, we include 286

all original training examples in BoolQ (Khashabi 287

et al., 2020), and replace part of them with CAD 288

for each perturbation type. This results in a training 289

set of 9427 examples of which 683 are CAD for 290

each perturbation type. The size 683 is chosen to 291

match the the smallest CAD type for BoolQ. As a 292

baseline (‘BoolQ seed’), we train on the complete 293

BoolQ training set. 294

Model. We use the Hugging Face implementa- 295

tion (Wolf et al., 2019) of RoBERTa (Liu et al., 296

2019) to fine-tune all our models. To account for 297

the small dataset sizes, we run all our experiments 298

with 5 different random seeds and report the mean 299

and standard deviation. Details on hyperparameter 300

tuning are reported in Appendix B.1. 301

5We observe similar trends when using different subsets
of the SNLI data. We report the mean and standard deviation
across different subsets in Appendix B.3.
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Train Data lexical insert resemantic quantifier negation delete

SNLI seed 75.160.32 74.941.05 76.770.74 74.360.21 69.252.09 65.762.34
lexical 79.702.07 68.615.26 71.463.07 69.903.83 66.002.99 61.765.27
insert 67.833.96 79.300.39 70.532.19 66.313.10 55.04.10 69.752.43

resemantic 77.142.12 76.431.05 75.311.10 71.260.36 66.751.69 70.161.09

Table 2: Accuracy of NLI CAD on both aligned and unaligned test sets. We report the mean and standard
deviation across 5 random seeds. Each dataset has a total of 1400 examples. On average models perform worse on
unaligned test sets (i.e. unseen perturbation types).

Train Data lexical negation resemantic quantifier insert

BoolQ seed 65.792.11 62.612.65 68.971.83 61.001.65 57.110.67
lexical 77.381.04 64.322.18 80.781.46 70.752.03 66.771.35
negation 63.181.46 72.912.31 66.742.22 61.752.44 65.421.45

resemantic 72.290.72 64.921.56 75.602.11 70.002.85 64.912.31

Table 3: Accuracy of BoolQ CAD on both aligned and unaligned test sets. We report the mean and standard
deviation across 5 random seeds. Each dataset has a total of 9427 examples. On average models perform worse on
unaligned test sets (i.e. unseen perturbation types).
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Figure 2: OOD accuracy on MNLI of models trained
on SNLI CAD and SNLI seed (baseline) with increas-
ing number of perturbation types and fixed training set
size. More perturbation types in the training data leads
to higher OOD accuracy.

3.3 Generalization to Unseen Perturbation302

Types303

We discuss results for the main question in this304

section—how does adding CAD generated from305

one perturbation type affect performance on ex-306

amples generated from other perturbation types?307

Table 2 and 3 show results for SNLI and BoolQ .308

CAD performs well on aligned test sets. We309

see that on average models perform very well on310

the aligned test sets (same perturbation type as311

the training set), but do not always do well on un-312

aligned test sets (unseen perturbation types), which313

is consistent with our analysis in Section 2. On314

SNLI, one exception is resemantic, which per-315

forms well on unseen perturbation types. We be-316

lieve this is because it is a broad category (replac- 317

ing any constituent) that covers other types such 318

as lexical (replacing any word). Similarly, on 319

BoolQ, lexical and resemantic both perform 320

better than the baseline on some unaligned test sets 321

(e.g. quantifier), but they perform much better 322

on the aligned test sets. 323

CAD sometimes performs worse than the base- 324

line on unaligned test sets. For example, on 325

SNLI, training on insert does much worse than 326

the seed baseline on lexical and resemantic, 327

and SNLI seed performs best on quantifier and 328

negation. On BoolQ, training on negation does 329

slightly worse than the baseline on lexical and 330

resemantic. This suggests that augmenting per- 331

turbations of one robust feature may prevent the 332

model from learning other robust features (that 333

could have been learned without the augmentation). 334

3.4 Generalization to Out-of-Distribution 335

Data 336

In Section 3.3, we have seen that training on CAD 337

generated by a single perturbation type does not 338

generalize well to unseen perturbation types. How- 339

ever, in practice CAD contains many different per- 340

turbation types. Do they cover enough robust fea- 341

tures to enable OOD generalization? 342

Increasing Diversity. We first verify that in- 343

creasing the number of perturbed robust features 344

leads to better OOD generalization. Specifically, 345

we train models on subsets of SNLI CAD with 346

increasing coverage of perturbation types and eval- 347
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Figure 3: Accuracy on the OOD set (MNLI)
for models trained on increasing amounts of NLI
CAD. CAD is more beneficial in the low data
regime, but its benefits taper off (compared to
SNLI baseline of same size) as the dataset size in-
creases.

1000 2000 3000 4000 5000
Training Data Size

0

10

20

30

40

50

60

F1
 S

co
re

Train: CAD, Eval: MultiRC
Train: BoolQ, Eval: MultiRC

Figure 4: F1 score on the OOD set (MultiRC)
for models trained on increasing amounts of QA
CAD. CAD performs comparable to the baseline
in the low data regime, but surprisingly performs
worse with increasing dataset sizes, probably due
to overfitting to a few perturbation types.

BERT RoBERTa

SNLI seed 59.740.29 73.771.16
CAD 60.181.05 70.051.15

Table 4: Accuracy (mean and std. deviation across
5 runs) on MNLI of different pretrained models fine-
tuned on SNLI seed and CAD. CAD seems to be less
beneficial when using better pretrained models.

uate on MNLI as the OOD data. Starting with348

only insert, we add one perturbation type at a349

time until all types are included; the total number350

of examples are fixed throughout the process at351

1400 (which includes 700 seed examples and the352

corresponding 700 perturbations).353

Figure 2 shows the OOD accuracy on MNLI354

when trained on CAD and SNLI seed examples355

of the same size. We observe that as the number356

of perturbation types increases, models generalize357

better to OOD data despite fixed training data size.358

The result highlights the importance of collecting a359

diverse set of counterfactual examples, even if each360

perturbation type is present in a small amount.361

A natural question to ask here is: If we continue362

to collect more counterfactual data, does it cover363

more perturbation types and hence lead to better364

OOD generalization? Thus we investigate the im-365

pact of training data size next.6366

6The results in Figure 2 when all perturbation types are
included indicate that CAD performs better than the SNLI
baseline. This is not in contradiction with the results found in
Huang et al. (2020), since our models are trained on only a
subset of CAD. This further motivates the study of how CAD
data size affects generalization.

Role of Dataset Size. To better understand the 367

role dataset size plays in OOD generalization, we 368

plot the learning curve on SNLI CAD in Figure 3, 369

where we gradually increase the amount of CAD 370

for training. The baseline model is trained on SNLI 371

seed examples of the same size, and all models are 372

evaluated on MNLI (as the OOD dataset). We also 373

conduct a similar experiment on BoolQ in Figure 4, 374

where a subset of MultiRC (Khashabi et al., 2018) 375

is used as the OOD dataset following Khashabi 376

et al. (2020). Since the test set is unbalanced, we 377

report F1 scores instead of accuracy in this case. 378

For SNLI, CAD is beneficial for OOD general- 379

ization only in low data settings (< 2000 examples). 380

As the amount of data increases, the comparable 381

SNLI baseline performs better and surpasses the 382

performance of CAD. Similarly for BoolQ, we ob- 383

serve that CAD is comparable to the baseline in the 384

low data setting (∼ 1000 examples). Surprisingly, 385

more CAD for BoolQ leads to worse OOD perfor- 386

mance. We suspect this is due to overfitting to the 387

specific perturbation types present in BoolQ CAD. 388

Intuitively, as we increase the amount of data, 389

the diversity of robust features covered by the seed 390

examples also increases. On the other hand, the 391

benefit of CAD is restricted to the perturbed robust 392

features. The plateaued performance of CAD (in 393

the case of NLI) shows that the diversity of pertur- 394

bations may not increase with the data size as fast 395

as we would like, calling for better crowdsourcing 396

protocols to elicit diverse edits from workers. 397

Role of Pretraining. Tu et al. (2020) show that 398

larger pretrained models generalize better from mi- 399
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Figure 5: Fraction of entailment/neutral/contradiction examples in the SNLI seed set and CAD where (a) negation
words are present in the hypothesis; (b) word overlap bias is observed. We observe that the distribution is more
skewed in CAD compared to the seed examples (towards contradiction for the negation bias ((a)) and towards
entailment for the word overlap bias ((b))

nority examples. Therefore, in our case we would400

expect CAD to have limited benefit on larger pre-401

trained models since they can already leverage402

the diverse (but scarce) robust features revealed403

by SNLI examples. We compare the results of404

BERT (Devlin et al., 2019) and RoBERTa (Liu405

et al., 2019) trained on SNLI CAD in Table 4.406

For the RoBERTa model (pretrained on more data),407

CAD no longer improves over the SNLI baseline,408

suggesting that current CAD datasets may not have409

much better coverage of robust features than what410

stronger pretrained models can already learn from411

benchmarks like SNLI.412

4 CAD Exacerbates Existing Spurious413

Correlation414

An artifact of underdiverse perturbations is the415

newly introduced spurious correlations. As an416

example, in the extreme case where all entail-417

ment examples are flipped to non-entailment by the418

negation operation in Table 1, the model would419

learn to exclusively rely on the existence of nega-420

tion words to make predictions, which is clearly421

undesirable. In this section, we study the impact422

of CAD on two known spurious correlations in423

NLI benchmarks: word overlap bias (McCoy et al.,424

2019) and negation bias (Gururangan et al., 2018b).425

Negation bias. We take examples where there is426

a presence of a negation word (i.e. "no", "not",427

"n’t") in the hypothesis, and plot the fraction of428

examples in each class in both the seed and the429

corresponding CAD examples in Figure 5a. As430

expected, contradiction is the majority class in the431

seed group, but surprisingly, including CAD ampli-432

Stress Test MNLI subset

SNLI Seed 57.514.63 63.263.83
CAD 49.581.47 55.664.24

Table 5: Accuracy of models on challenge examples
in the stress test and MNLI, where non-contradiction
examples contain a negation word in the hypothesis.
Models trained on CAD perform worse on both sets,
implying that they exacerbate the negation bias.

fies the fraction of contradiction examples! As a re- 433

sult, training on CAD leads to worse performance 434

on challenge sets that counter the negation bias 435

compared to training on seed examples of the same 436

size. Specifically, we test on the ‘negation’ part of 437

the Stress Tests (Naik et al., 2018)7 and challenge 438

examples in the combined MNLI development set 439

which contain negation words in the hypothesis but 440

are not contradictions. Table 5 shows that models 441

trained on CAD perform worse on both test sets, 442

implying that they rely more on the negation bias. 443

Word-overlap bias. Similarly, in Figure 5b, we 444

show that CAD amplifies the fraction of entail- 445

ment examples among those with high word over- 446

lap (i.e. more than 90% of words in the hypoth- 447

esis are present in the premise). Models trained 448

on SNLI and CAD both perform poorly (< 10% 449

accuracy) on the non-entailment subset of HANS 450

challenge set (McCoy et al., 2019), which exploits 451

the word overlap bias. 452

Takeaway. This section reveals that in the pro- 453

cess of creating CAD, we may inadvertently exacer- 454

7Synthetic examples where the phrase “and false is not
true” is appended to the hypothesis of MNLI examples.
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bate existing spurious correlations. The fundamen-455

tal challenge here is that perturbations of the robust456

features are only observed through word change in457

the sentence—it is hard to surface the underlying458

causal variables without introducing (additional)459

artifacts to the sentence form.460

5 Related Work461

Label-Preserving Data Augmentation. A com-462

mon strategy to build more robust models is to463

augment existing datasets with examples similar to464

those from the target distribution. Min et al. (2020)465

improve accuracy on HANS challenge set(McCoy466

et al., 2019) by augmenting syntactically-rich ex-467

amples. Jia and Liang (2016); Andreas (2020) re-468

combine examples to achieve better compositional469

generalization. There has also been a recent body470

of work using task-agnostic data augmentation by471

paraphrasing (Wei and Zou, 2019), back-translation472

(Sennrich et al., 2016) and masked language mod-473

els (Ng et al., 2020). The main difference between474

these works and CAD, is that the edits in these475

works are label-preserving whereas they are label-476

flipping in CAD—the former prevents models from477

being over-sensitive and the latter alleviate under-478

sensitivity to perturbations.479

Label-Changing Data Augmentation. Lu et al.480

(2020); Zmigrod et al. (2019) use rule-based CAD481

to mitigate gender stereotypes. Gardner et al.482

(2020) build similar contrast sets using expert edits483

for evaluation. In contrast, Kaushik et al. (2020)484

crowdsource minimal edits. Recently, Teney et al.485

(2020) also use CAD along with additional auxil-486

iary training objectives and demonstrate improved487

OOD generalization.488

Kaushik et al. (2021) analyze a similar toy model489

(linear Gaussian model) demonstrating the bene-490

fits of CAD, and showed that noising the edited491

spans hurts performance more than other spans.492

Our analysis complements theirs by showing that493

while spans identified by CAD are useful, a lack of494

diversity in these spans limit the effectiveness of495

CAD, thus better coverage of robust features could496

potentially lead to better OOD generalization.497

Robust Learning Algorithms. Another direc-498

tion of work has explored learning more robust499

models without using additional augmented data.500

These methods essentially rely on learning debi-501

ased representations—Wang et al. (2018b) create a502

biased classifier and project its representation out503

of the model’s representation. Along similar lines, 504

Belinkov et al. (2019) remove hypothesis-only bias 505

in NLI models by adversarial training. He et al. 506

(2019) and Clark et al. (2019b) correct the condi- 507

tional distribution given a biased model. Utama 508

et al. (2020) build on this to remove ‘unknown’ 509

biases, assuming that a weak model learns a biased 510

representations. More recently, Veitch et al. (2021) 511

use ideas from causality to learn invariant predic- 512

tors from counterfactual examples. The main differ- 513

ence between these methods and CAD, is that the 514

former generally requires some prior knowledge 515

of what spurious correlations models learn (e.g. 516

by constructing a biased model or weak model), 517

whereas CAD is a more general human-in-the-loop 518

method that leverages humans’ knowledge of ro- 519

bust features. 520

6 Conclusion and Future Directions 521

In this work, we first analyzed CAD theoretically 522

using a linear model and showed that models do not 523

generalize to unperturbed robust features. We then 524

empirically demonstrated this issue in two CAD 525

datasets, where models do not generalize well to un- 526

seen perturbation types. We also showed that CAD 527

amplifies existing spurious correlations, pointing 528

out another concern. Given these results, a natural 529

question is: How can we fix these problems and 530

make CAD more useful for OOD generalization? 531

We discuss a few directions which we think could 532

be helpful: 533

• We can use generative models (Raffel et al., 534

2020; Lewis et al., 2019) to generate diverse 535

minimal perturbations and then crowdsource 536

labels for them (Wu et al., 2021). We can 537

improve the diversity of the generations by 538

masking different spans in the text to be in- 539

filled, thus covering more robust features. 540

• An alternative to improving the crowdsourc- 541

ing procedure, is to devise better learning al- 542

gorithms which mitigate the issues pointed in 543

this work. For example, given that we know 544

the models do not always generalize well to 545

unperturbed features, we can regularize the 546

model to limit the reliance on the perturbed 547

features. 548

We hope that this analysis spurs future work on 549

CAD, making them more useful for OOD general- 550

ization. 551
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A Proof for the Linear Model 750

Proof for Proposition 1. In this section, we give the proof for the toy example, where we show that 751

`(ŵinc) > `(ŵ) if ‖µr2‖ > ‖µs‖ assuming all variables have unit variance and ‖µr‖ = 1 (i.e. the model 752

trained on incomplete edits has higher error than model trained on unaugmented data). 753

Given the definition in (8), we get (denote Cov(x, x) by M ): 754

`(ŵ) = Ex∼D
[
(wT

invx− ŵTx)2
]

755

= Ex∼D
[
(µTr xr − µT (M−1)Tx)2

]
756

= Ex∼D[µTr xrx
T
r µr + µT (M−1)TxxTM−1µ− 2µTr xrx

TM−1µ] (13) 757

Note that. Ex∼D
[
xxT

]
= M , Ex∼D

[
xrx

T
r

]
= I and Ex∼D

[
xrx

T
]

= [I µrµ
T
s ]. Plugging this into 758

the previous equation and simplifying we get: 759

`(ŵ) = ‖µr‖2 − [µTr , µ
T
s (2‖µr‖2 − 1)]M−1µ (14) 760

Since M is a block matrix, we can write its inverse as : 761

M−1 =

[
(I − µrµTs µsµTr )−1 −(I − µrµTs µsµTr )−1µrµ

T
s

−(I − µsµTr µrµTs )−1µsµ
T
r (I − µsµTr µrµTs )−1

]
(15) 762

Note that I here refers to the identity matrix of compatible size (i.e. either dr or ds dimensional). 763

Plugging this in (14) and simplifying gives us: 764

`(ŵ) = ‖µr‖2 − µTr (I − ‖µs‖2µrµTr )−1µr(1− ‖µs‖2)− 765

µTs (I − ‖µr‖2µsµTs )−1µs(2‖µr‖2 − 1)(1− ‖µr‖2) 766

Since we have assumed that ‖µr‖ = 1, we get: 767

`(ŵ) = 1− µTr (I − ‖µs‖2µrµTr )−1µr(1− ‖µs‖2) (16) 768

Now note that (I − ‖µs‖2µrµTr ) is a rank-one perturbation of the identity matrix, and hence we can 769

use the Sherman-Morrison formula to simplify: 770

(I − ‖µs‖2µrµTr )−1 = I + α‖µs‖2µrµTr (17) 771

where α > 0 is a constant. Simplifying using this further, we get: 772

`(ŵ) = 1− µTr (I + α‖µs‖2µrµTr )µr(1− ‖µs‖2) 773

= 1− (‖µr‖2 + α‖µs‖2‖µr‖4)(1− ‖µs‖2) 774

= 1− (1 + α‖µs‖2)(1− ‖µs‖2) 775

= α‖µs‖4 + (1− α)‖µs‖2 (18) 776

For the incomplete edits, we have ŵinc = [Σ−1r1 µr1, 0] giving us: 777

`(ŵinc) = Ex∼D
[
(wT

invx− ŵT
incx)2

]
778

= Ex∼D
[
(µTr2xr2)

2
]

779

= Ex∼D
[
µTr2xr2x

T
r2µr2

]
780

= ‖µr2‖2 (19) 781
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Test Set Size (NLI) Size (QA)

lexical 406 314
resemantic 640 332
negation 80 268

quantifier 206 80
insert 376 118
delete 250 -

Table 6: Size of the tests sets corresponding to the different perturbation types for both NLI and QA. For QA, the
number of examples in delete were extremely small and hence we do not use that perturbation type for QA.

Train Data All types lexical insert resemantic quantifier negation delete

SNLI seed 67.840.84 75.160.32 74.941.05 76.770.74 74.360.21 69.252.09 65.762.34
SNLI seed (subsamples) 64.871.02 75.061.89 71.382.30 73.841.60 69.123.17 66.752.87 63.602.44

lexical 70.441.07 81.810.99 74.041.04 74.931.16 72.421.58 68.752.16 67.043.00
insert 66.001.41 71.082.53 78.981.58 71.741.53 68.150.88 57.754.54 68.802.71

resemantic 70.801.68 77.232.35 76.591.12 75.401.44 70.771.04 67.252.05 70.401.54

Table 7: Results for the different perturbation types in NLI with multiple subsamples of the dataset. ( denotes
aligned test sets). We observe that there is variance across different subsamples, but the majority of the trends
reported in Section 3.3 still hold true.

Now, if ‖µs‖ < ‖µr2‖, then ‖µs‖ < 1 (since ‖µr2‖ < ‖µr‖ = 1). Thus, ‖µs‖4 < ‖µs‖2, giving782

`(ŵ) < ‖µs‖2 < ‖µr2‖2 = `(ŵinc).783

784

B Additional Experiments & Results785

Here, we report more details on the experiments as well as present some additional results.786

B.1 Experiment Details787

For NLI, models are trained for a maximum of 10 epochs, and for QA all models are trained for a788

maximum of 5 epochs (convergence is faster due to the larger dataset size). The best model is selected by789

performance on a held-out development set, that includes examples from the same perturbation type as in790

the training data.791

B.2 Dataset Details792

The size of the training datasets and how they are constructed are described in Section 3.2. Here, we give793

more details on the size of the various test sets used in the experiments. The size of the CAD datasets794

for the different perturbation types are given Table 6 for both NLI and QA. Note that all test sets contain795

paired counterfactual examples, i.e. the seed examples and their perturbations belonging to that specific796

perturbation type.797

B.3 Accounting for small dataset sizes798

The experiments in Section 3.2 were run for 5 different random initializations, and we report the mean799

and standard deviation across the random seeds. For completeness, we also report results when using800

different subsamples of the SNLI dataset. Table 7 shows the mean and standard deviation across 5 different801

subsamples, along with the rest of the results which were presented in Section 3.3. We observe that even802

though there is variance in results across the different subsamples, majority of the trends reported in 3.3803

are consistent across the different subsamples — CAD performs well on aligned test sets, but does not804

necessarily generalize to unaligned test sets.805

To account for the small dataset sizes, we also ran an experiment using the NLI CAD dataset analogous806

to the QA setup—using a larger number of SNLI examples (7000) and replace a small percentage of them807
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Train Data All types lexical insert resemantic quantifier negation delete

SNLI seed 71.410.40 79.901.00 78.080.49 79.841.17 75.921.17 77.252.42 70.880.68
lexical 73.100.56 83.540.91 77.280.64 80.810.47 75.720.86 78.001.69 70.721.46
insert 72.910.54 80.390.88 78.930.66 80.560.76 76.890.84 77.252.66 71.432.40

resemantic 73.440.33 81.230.64 77.970.51 81.060.49 76.601.42 75.752.03 73.841.25

Table 8: Results for the different perturbation types in NLI with larger dataset sizes, with 10% of the data being
the perturbations ( denotes aligned test sets).

(10%) with perturbations of the corresponding perturbation type. We ensure that the original examples 808

from which the perturbations were generated are also present in the dataset. Thus, all experiments will 809

have much larger dataset sizes than before (7000 vs 1400), while still using counterfactual examples 810

generated only by one specific perturbation type. The results for this experiment are reported in Table 8. 811

We observe that CAD still performs best on aligned test sets but only marginally — this happens since 812

a large fraction of the dataset (90%) is similar across all experiments. Although CAD performs worse 813

on unaligned test sets than the aligned test sets, it does not necessarily perform worse than the SNLI 814

baseline — this happens since the larger number of seed examples will implicitly regularize the model 815

from overfitting to that specific perturbation type. 816
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