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Abstract

While pretrained language models achieve ex-
cellent performance on natural language un-
derstanding benchmarks, they tend to rely on
spurious correlations and generalize poorly
to out-of-distribution (OOD) data. Recent
work has explored using counterfactually-
augmented data (CAD)—data generated by
minimally perturbing examples to flip the
ground-truth label—to identify robust features
that are invariant under distribution shift. How-
ever, empirical results using CAD for OOD
generalization have been mixed. To explain
this discrepancy, we draw insights from a
linear Gaussian model and demonstrate the
pitfalls of CAD. Specifically, we show that
(a) while CAD is effective at identifying ro-
bust features, it may prevent the model from
learning unperturbed robust features; and (b)
CAD may exacerbate existing spurious cor-
relations in the data. On two crowdsourced
CAD datasets, our results show that the lack of
perturbation diversity limits their effectiveness
on OOD generalization, calling for innovative
crowdsourcing procedures to elicit diverse per-
turbation of examples.

1 Introduction

Large-scale datasets have enabled tremendous
progress in natural language understanding (NLU)
(Rajpurkar et al., 2016; Wang et al., 2018a) with the
rise of pretrained language models (Devlin et al.,
2019; Peters et al., 2018). Despite the progress,
there have been numerous works showing that mod-
els rely on spurious correlations in the datasets, i.e.
heuristics that are effective on a specific dataset but
do not hold in general (McCoy et al., 2019; Naik
et al., 2018; Wang and Culotta, 2020). For exam-
ple, high word overlap is found to be associated
with entailment in natural language inference (NLI)
datasets.

A recent promising direction is to collect
counterfactually-augmented data (CAD) (Kaushik

et al., 2020) by asking humans to minimally edit
examples to flip their ground-truth label.! Figure 1
shows example edits for NLI. Given interventions
on robust features that “cause” the label to change,
the model is expected to learn to disentangle the
spurious and robust features.

Despite recent attempt to explain the efficacy of
CAD by analyzing the underlying causal structure
of the data (Kaushik et al., 2021), empirical results
on out-of-distribution (OOD) generalization using
CAD are mixed. Specifically, Huang et al. (2020)
show that CAD does not improve OOD general-
ization for NLI; Khashabi et al. (2020) find that
for question answering, unaugmented datasets give
better performance when the annotation cost and
dataset size are controlled.

In this work, we take a step towards bridging
this gap between what theory suggests and what
we observe in practice in regards to CAD. An in-
tuitive example to illustrate our key observation
is shown in Figure 1 (a), where the verb ‘eating’
is changed to ‘drinking’ to flip the label. While
there are many other words that could have been
changed to flip the label, from this pair of examples
the model learns to use only the verbs (e.g. using
a Naive Bayes model, all other words would have
zero weights). As a result, this model would fail
when evaluated on examples such as those in (b)
where the quantifier ‘two’ is changed to ‘three’,
while a model trained on the unaugmented data
may learn to use the quantifiers.

Concretely, we formalize counterfactual aug-
mentation using a linear Gaussian model and show
that perturbations of one robust feature can prevent
the model from learning other robust features. We
then empirically demonstrate this issue in two CAD
datasets collected for NLI and Question Answering
(QA) . We identify the robust features by categoriz-

"Throughout the rest of the paper, CAD refers to
counterfactually-augmented data containing pairs of the origi-
nal example and a corresponding revised example.



Premise: The lady is standing next to her two children who are eating a pizza.
Original Hypothesis: The two children near the lady are eating something. (Entailment)

Revised Hypothesis: The two children near the lady are

(@)

something. (Contradiction)

Premise: The lady is standing next to her two children who are eating a pizza.
Original Hypothesis: The #we children near the lady are eating something. (Entailment)

Revised Hypothesis: The
(b)

children near the lady are eating something. (Contradiction)

Figure 1: Illustration of counterfactual examples in Natural Language Inference. Augmenting examples like (a)
hurts performance on examples like (b) where a different robust feature has been perturbed, since the first example
encourages the model to exclusively focus on the highlighted words.

ing the edits into different perturbation types (Wu
et al., 2021) (e.g. negating a sentence or chang-
ing the quantifiers), and show that models do not
generalize well to unseen perturbation types, some-
times even performing worse than models trained
on unaugmented data.

Our analysis of the relation between perturbation
types and generalization can help explain other
observations such as CAD being more beneficial
in the low-data regime. With increasing data size,
improvement from using CAD plateaus compared
to unaugmented data, suggesting that the number
of perturbation types in existing CAD datasets does
not keep increasing.

Another consequence of the lack of diversity in
edits is annotation bias, which may produce spuri-
ous correlations similar to what happened in stan-
dard crowdsourcing procedures. While CAD is
intended to debias the dataset, surprisingly, we find
that crowdsourced CAD for NLI exacerbates word
overlap bias (McCoy et al., 2019) and negation
bias (Gururangan et al., 2018a) observed in exist-
ing benchmarks.

In sum, we show that the effectiveness of current
CAD datasets is limited by the set of robust features
that are perturbed. Furthermore, they may exacer-
bate spurious correlations in existing benchmarks.
Our results highlight the importance of increasing
the diversity of counterfactual perturbations during
crowdsourcing: We need to elicit more diverse ed-
its of examples and collect targeted counterfactual
examples that fix bugs in current models.

2 Analysis of a Linear Model

In this section, we formalize counterfactual aug-
mentation and discuss under what conditions it is
effective using a linear Gaussian model and squared
loss.

2.1 Learning under Spurious Correlation

We adopt the setting in Rosenfeld et al. (2020):
each example consists of robust features x, € R
whose joint distribution with the label is invariant
during training and testing, and spurious features
z, € R% whose joint distribution varies at test
time. Here d,. and d denote the feature dimensions.
We consider a binary classification setting where
the label y € {—1, 1} is drawn from a uniform dis-
tribution, and both the robust and spurious features
are drawn from Gaussian distributions. Specifi-
cally, an example x = [z, z,] € R? is generated
by the following process (where d = d, + d):

1 w.p. 0.5
= 1
Y —1 otherwise M
2y |y~ N(ypr,o21) )
zs |y ~ N(yps,021) | 3)

where p, € R4 Us € RYs: or,0s € R; and 1
is the identity matrix.> The corresponding data
distribution is denoted by D. Note that the relation
between y and the spurious features xs depends
on us and o5, which may change at test time, thus
relying on zs may lead to poor OOD performance.
We consider the setting with infinite samples
and learn a linear model (y = w” x where w € R%)
by least square regression. Let @ € RY be the
optimal solution on D (without any counterfactual
augmentation). The closed form solution is:

Cov(z, z)w = Cov(z,y) 4
W = Cov(z,z) pu 5

>This model corresponds to the anti-causal setting
(Scholkopf et al., 2012), i.e. the label causing the features. We
adopt this setting since it is consistent with how most data is
generated in tasks like NLI, sentiment analysis etc.



where 1 = [y, i1s] € R? and Cov(-) denotes the
covariance matrix:

2y NTMT]
Cov(z,x) = s, 6
V@) [Ns,uz s ©

where X, Y5 are covariance matrices of x, and x4

respectively. This model relies on p that can vary

at test time, thus it may have poor performance

under distribution shift. A robust model wjyy that is

invariant to spurious correlations would ignore :

-1

Winy = [Er Moy 0} . (7

We define the error of w to be the squared loss

with respect to the predictions given by the robust
model:

U(w) = Epp [(wihyx — w'z)?]. (8)

inv
2.2 Counterfactual Augmentation

The counterfactual data is generated by editing an
example to flip its label. We model the perturbation
by an edit vector z that translates = to change its
label from y to —y (i.e. from 1 to -1 or vice versa).
For instance, the counterfactual example of a posi-
tive example (x, +1) is (x + z, —1). Specifically,
we define the edit vector to be z = [yz,, yzs] € R,
where z, € R% and z, € R% are the displace-
ments for the robust and spurious features. Here, z
is label-dependent so that examples with different
labels are translated in opposite directions. There-
fore, the counterfactual example (z¢, —y) gener-
ated from (zx, y) has the following distribution:

zg | —y ~ N(y(pr + 2),071) 9)
xS | =y ~ N(y(ps + 25), 021) . (10)

The model is then trained on the combined set of
original examples x and counterfactual examples
x¢, whose distribution is denoted by D..

Optimal edits. Ideally, the counterfactual data
should de-correlate x5 and y, thus it should only
perturb the robust features .., i.e. z = [yz,0]. To
find the displacement z, that move = across the
decision boundary, we maximize the log-likelihood
of the flipped label under the data generating distri-
bution D:

2y = argmax K, ) plogp(—y | = + [y2,,0])
zrERAr

= —2/,. (1D

Intuitively, it moves the examples towards the mean
of the opposite class along coordinates of the robust
features.

Using the edits specified above, if the model
trained on D, has optimal solution ., we have:

Cov(z, z)w, = Cov(z,y)

We = [Er_l,ura 0] = Winy- (12)
Thus, the optimal edits recover the robust model
Winy, demonstrating the effectiveness of CAD.

Incomplete edits. There is an important assump-
tion made in the above result: we have assumed a/l
robust features are edited. Suppose we have two
sets of robust features =, and z,2,> then nor edit-
ing z,2 would effectively make it appear spurious
to the model and indistinguishable from x.

In practice, this happens when there are multi-
ple robust features but only a few are perturbed
during counterfactual augmentation (which can be
common during data collection if workers rely on
simple patterns to make the minimal edits). Con-
sidering the NLI example, if all entailment exam-
ples are flipped to non-entailment ones by inserting
a negation word, then the model will only rely on
negation to make predictions.

More formally, consider the case where the orig-
inal examples © = [z,1, 2, Z] and counterfac-
tual examples are generated by incomplete edits
z = [z1,0,0] that perturb only x,;. Using the
same analysis above where 2,1 is chosen by maxi-
mum likelihood estimation, let the model learned
on the incompletely augmented data be denoted by
Wine. We then have the following:

Proposition 1. Assuming all variables have unit
variance and ||, || = 1, £(Wine) > (@) if ||pre|| >
||ies|, where || - || denotes the Euclidean norm.

Proof Sketch. The proof mainly follows from alge-
bra and using the fact that Cov(x, z) ! is a block
matrix consisting of rank-one perturbations of the
identity matrix. We refer the reader to Appendix
A for the detailed proof. O

This shows that the error is more in the case
of incomplete edits compared to the unaugmented
case. Next, we show that the problem of incomplete
edits is exhibited in real CAD too.

3We assume they are conditionally independent given the
label.



# examples

Type Definition Example (NLI/QA)
negation Change in negation modifier A dog is not fetching anything. 200/683
quantifier  Change in words with numeral POS tags The lady has many — three children. 344/414
lexical Replace few words without breaking the POS tags ~ The boy is swimming — running. 1568/1737
insert Only insert words or short phrases The tall man is digging the ground. 1462/536
delete Only delete word or short phrases The lazy person just woke up. 562/44

Replaced short phrases without affecting parsing  The actor saw — had just met the 2760/1866

resemantic tree

director.

Table 1: Definition of the perturbation types and the corresponding number of examples in the NLI CAD dataset
released by (Kaushik et al., 2020) and the BoolQ CAD dataset released by Khashabi et al. (2020). In the example
edits, the deleted words are shown in red and the newly added words are shown in green.

3 Diversity and Generalization in CAD

In this section, we test the following hypothesis
based on the above analysis: models trained on
CAD are limited to the specific robust features that
are perturbed and may not learn other unperturbed
robust features. We empirically analyze how aug-
menting counterfactual examples by perturbing one
robust feature affects the performance on examples
generated by perturbing other robust features.

3.1 Experiment Design

Perturbation types. Unlike the Gaussian exam-
ple, in NLU it is not easy to define robust features
since they typically correspond to the semantics of
the text (e.g. sentiment). We therefore define robust
features as latent variables that generate the sen-
tence form (e.g. sentiment, tense, action). Perturb-
ing a robust feature would change certain words in
the sentence. As an example, in Figure 1 (b), pertur-
bation of the quantity is reflected as a change in the
word ‘two’ to ‘three’. To uncover the latent robust
features, we use linguistically-inspired rules (Wu
et al.,, 2021) to categorize the edits into sev-
eral perturbation types: negation, quantifier,
lexical, insert, delete and resemantic. Ta-
ble 1 gives the definitions of each type.*

Train/test sets. Both the training sets and the test
sets contain counterfactual examples generated by
a particular perturbation type. To test the general-
ization from one perturbation type to another, we
use two types of test sets: aligned test sets where
examples are generated by the same perturbation
type as the training data; and unaligned test sets
where examples are generated by unseen perturba-
tion types (e.g. training on examples from lexical
and testing on negation).

“Since these types are not mutually exclusive, we set a
precedence order among them when there are ambiguities.

3.2 Experimental Setup

Data. We experiment on two CAD datasets col-
lected for SNLI (Kaushik et al., 2020) and BoolQ
(Khashabi et al., 2020). The size of the paired
data (seed examples and edited examples) for each
perturbation type is given in Table 1. Since some
types (e.g. delete) contain too few examples for
training, we train on the top three largest perturba-
tion types: lexical, insert, and resemantic for
SNLI; and lexical, negation, and resemantic
for BoolQ.

For SNLI, to control for dataset sizes across all
experiments, we use 700 seed examples and their
corresponding 700 perturbations for each perturba-
tion type. As a baseline (‘SNLI seed’), we subsam-
ple examples from SNLI to create a similar sized
dataset for comparison.’

For BoolQ (Clark et al., 2019a), our initial exper-
iments show that training on only CAD does not
reach above random-guessing. Thus, we include
all original training examples in BoolQ (Khashabi
et al., 2020), and replace part of them with CAD
for each perturbation type. This results in a training
set of 9427 examples of which 683 are CAD for
each perturbation type. The size 683 is chosen to
match the the smallest CAD type for BoolQ. Asa
baseline (‘BoolQ seed’), we train on the complete
BoolQ training set.

Model. We use the Hugging Face implementa-
tion (Wolf et al., 2019) of RoBERTa (Liu et al.,
2019) to fine-tune all our models. To account for
the small dataset sizes, we run all our experiments
with 5 different random seeds and report the mean
and standard deviation. Details on hyperparameter
tuning are reported in Appendix B.1.

>We observe similar trends when using different subsets
of the SNLI data. We report the mean and standard deviation
across different subsets in Appendix B.3.



Train Data lexical insert resemantic quantifier negation delete
SNLI seed 75.16032 74.941,05 76.770‘74 74.360‘21 69.252,09 65.762‘34
lexical 79.70,07 68.6152¢ 71.4657 69.903 83 66.002.99 61.76527
insert 67.83396 79.30(),39 70.532‘19 66.313‘10 55.04,10 69.752‘43
resemantic 77.145 1> 76.431 05 75.311.10 71.260.36 66.751.60 70.16, o9

Table 2: Accuracy of NLI CAD on both aligned and unaligned test sets. We report the mean and standard
deviation across 5 random seeds. Each dataset has a total of 1400 examples. On average models perform worse on

unaligned test sets (i.e. unseen perturbation types).

Train Data lexical negation resemantic quantifier insert
BoolQ seed  65.79,.11 62.61265 68.97183 61.001 .65 57. 11067
lexical 77.381,04 64.32213 80.781‘46 70.752‘03 66.77135
negation 63.18146 729153 66.74222 61.7544 65.42, 45
resemantic 72.290‘72 64.92156 75.602‘11 70-002,85 64.91231

Table 3: Accuracy of BoolQ CAD on both aligned and unaligned test sets. We report the mean and standard
deviation across 5 random seeds. Each dataset has a total of 9427 examples. On average models perform worse on

unaligned test sets (i.e. unseen perturbation types).
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Figure 2: OOD accuracy on MNLI of models trained
on SNLI CAD and SNLI seed (baseline) with increas-
ing number of perturbation types and fixed training set
size. More perturbation types in the training data leads
to higher OOD accuracy.

3.3 Generalization to Unseen Perturbation
Types

We discuss results for the main question in this
section—how does adding CAD generated from
one perturbation type affect performance on ex-
amples generated from other perturbation types?
Table 2 and 3 show results for SNLI and BoolQ .

CAD performs well on aligned test sets. We
see that on average models perform very well on
the aligned test sets (same perturbation type as
the training set), but do not always do well on un-
aligned test sets (unseen perturbation types), which
is consistent with our analysis in Section 2. On
SNLI, one exception is resemantic, which per-
forms well on unseen perturbation types. We be-

lieve this is because it is a broad category (replac-
ing any constituent) that covers other types such
as lexical (replacing any word). Similarly, on
BoolQ, lexical and resemantic both perform
better than the baseline on some unaligned test sets
(e.g. quantifier), but they perform much better
on the aligned test sets.

CAD sometimes performs worse than the base-
line on unaligned test sets. For example, on
SNLI, training on insert does much worse than
the seed baseline on lexical and resemantic,
and SNLI seed performs best on quantifier and
negation. On BoolQ, training on negation does
slightly worse than the baseline on lexical and
resemantic. This suggests that augmenting per-
turbations of one robust feature may prevent the
model from learning other robust features (that
could have been learned without the augmentation).

3.4 Generalization to Out-of-Distribution
Data

In Section 3.3, we have seen that training on CAD
generated by a single perturbation type does not
generalize well to unseen perturbation types. How-
ever, in practice CAD contains many different per-
turbation types. Do they cover enough robust fea-
tures to enable OOD generalization?

Increasing Diversity. We first verify that in-
creasing the number of perturbed robust features
leads to better OOD generalization. Specifically,
we train models on subsets of SNLI CAD with
increasing coverage of perturbation types and eval-
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Figure 3: Accuracy on the OOD set (MNLI)
for models trained on increasing amounts of NLI
CAD. CAD is more beneficial in the low data
regime, but its benefits taper off (compared to
SNLI baseline of same size) as the dataset size in-
creases.

BERT RoBERTa
SNLI seed 59.740_29 73-771.16
CAD 60.18,0s  70.051.15

Table 4: Accuracy (mean and std. deviation across
5 runs) on MNLI of different pretrained models fine-
tuned on SNLI seed and CAD. CAD seems to be less
beneficial when using better pretrained models.

uate on MNLI as the OOD data. Starting with
only insert, we add one perturbation type at a
time until all types are included; the total number
of examples are fixed throughout the process at
1400 (which includes 700 seed examples and the
corresponding 700 perturbations).

Figure 2 shows the OOD accuracy on MNLI
when trained on CAD and SNLI seed examples
of the same size. We observe that as the number
of perturbation types increases, models generalize
better to OOD data despite fixed training data size.
The result highlights the importance of collecting a
diverse set of counterfactual examples, even if each
perturbation type is present in a small amount.

A natural question to ask here is: If we continue
to collect more counterfactual data, does it cover
more perturbation types and hence lead to better
OOD generalization? Thus we investigate the im-
pact of training data size next.®

The results in Figure 2 when all perturbation types are
included indicate that CAD performs better than the SNLI
baseline. This is not in contradiction with the results found in
Huang et al. (2020), since our models are trained on only a
subset of CAD. This further motivates the study of how CAD
data size affects generalization.
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Figure 4: F1 score on the OOD set (MultiRC)
for models trained on increasing amounts of QA
CAD. CAD performs comparable to the baseline
in the low data regime, but surprisingly performs
worse with increasing dataset sizes, probably due
to overfitting to a few perturbation types.

Role of Dataset Size. To better understand the
role dataset size plays in OOD generalization, we
plot the learning curve on SNLI CAD in Figure 3,
where we gradually increase the amount of CAD
for training. The baseline model is trained on SNLI
seed examples of the same size, and all models are
evaluated on MNLI (as the OOD dataset). We also
conduct a similar experiment on BoolQ in Figure 4,
where a subset of MultiRC (Khashabi et al., 2018)
is used as the OOD dataset following Khashabi
et al. (2020). Since the test set is unbalanced, we
report F1 scores instead of accuracy in this case.
For SNLI, CAD is beneficial for OOD general-
ization only in low data settings (< 2000 examples).
As the amount of data increases, the comparable
SNLI baseline performs better and surpasses the
performance of CAD. Similarly for BoolQ, we ob-
serve that CAD is comparable to the baseline in the
low data setting (~ 1000 examples). Surprisingly,
more CAD for BoolQ leads to worse OOD perfor-
mance. We suspect this is due to overfitting to the
specific perturbation types present in BoolQ CAD.
Intuitively, as we increase the amount of data,
the diversity of robust features covered by the seed
examples also increases. On the other hand, the
benefit of CAD is restricted to the perturbed robust
features. The plateaued performance of CAD (in
the case of NLI) shows that the diversity of pertur-
bations may not increase with the data size as fast
as we would like, calling for better crowdsourcing
protocols to elicit diverse edits from workers.

Role of Pretraining. Tu et al. (2020) show that
larger pretrained models generalize better from mi-
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Figure 5: Fraction of entailment/neutral/contradiction examples in the SNLI seed set and CAD where (a) negation
words are present in the hypothesis; (b) word overlap bias is observed. We observe that the distribution is more
skewed in CAD compared to the seed examples (towards contradiction for the negation bias ((a)) and towards

entailment for the word overlap bias ((b))

nority examples. Therefore, in our case we would
expect CAD to have limited benefit on larger pre-
trained models since they can already leverage
the diverse (but scarce) robust features revealed
by SNLI examples. We compare the results of
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) trained on SNLI CAD in Table 4.
For the RoOBERTa model (pretrained on more data),
CAD no longer improves over the SNLI baseline,
suggesting that current CAD datasets may not have
much better coverage of robust features than what
stronger pretrained models can already learn from
benchmarks like SNLI.

4 CAD Exacerbates Existing Spurious
Correlation

An artifact of underdiverse perturbations is the
newly introduced spurious correlations. As an
example, in the extreme case where all entail-
ment examples are flipped to non-entailment by the
negation operation in Table 1, the model would
learn to exclusively rely on the existence of nega-
tion words to make predictions, which is clearly
undesirable. In this section, we study the impact
of CAD on two known spurious correlations in
NLI benchmarks: word overlap bias (McCoy et al.,
2019) and negation bias (Gururangan et al., 2018b).

Negation bias. We take examples where there is
a presence of a negation word (i.e. "no", "not",
"n’t") in the hypothesis, and plot the fraction of
examples in each class in both the seed and the
corresponding CAD examples in Figure 5a. As
expected, contradiction is the majority class in the

seed group, but surprisingly, including CAD ampli-

MNLI subset

63.263 33
55.604.24

Stress Test

57.51463
49.581.47

SNLI Seed
CAD

Table 5: Accuracy of models on challenge examples
in the stress test and MNLI, where non-contradiction
examples contain a negation word in the hypothesis.
Models trained on CAD perform worse on both sets,
implying that they exacerbate the negation bias.

fies the fraction of contradiction examples! As a re-
sult, training on CAD leads to worse performance
on challenge sets that counter the negation bias
compared to training on seed examples of the same
size. Specifically, we test on the ‘negation’ part of
the Stress Tests (Naik et al., 2018)” and challenge
examples in the combined MNLI development set
which contain negation words in the hypothesis but
are not contradictions. Table 5 shows that models
trained on CAD perform worse on both test sets,
implying that they rely more on the negation bias.

Word-overlap bias. Similarly, in Figure 5b, we
show that CAD amplifies the fraction of entail-
ment examples among those with high word over-
lap (i.e. more than 90% of words in the hypoth-
esis are present in the premise). Models trained
on SNLI and CAD both perform poorly (< 10%
accuracy) on the non-entailment subset of HANS
challenge set (McCoy et al., 2019), which exploits
the word overlap bias.

Takeaway. This section reveals that in the pro-
cess of creating CAD, we may inadvertently exacer-

"Synthetic examples where the phrase “and false is not
true” is appended to the hypothesis of MNLI examples.



bate existing spurious correlations. The fundamen-
tal challenge here is that perturbations of the robust
features are only observed through word change in
the sentence—it is hard to surface the underlying
causal variables without introducing (additional)
artifacts to the sentence form.

5 Related Work

Label-Preserving Data Augmentation. A com-
mon strategy to build more robust models is to
augment existing datasets with examples similar to
those from the target distribution. Min et al. (2020)
improve accuracy on HANS challenge set(McCoy
et al., 2019) by augmenting syntactically-rich ex-
amples. Jia and Liang (2016); Andreas (2020) re-
combine examples to achieve better compositional
generalization. There has also been a recent body
of work using task-agnostic data augmentation by
paraphrasing (Wei and Zou, 2019), back-translation
(Sennrich et al., 2016) and masked language mod-
els (Ng et al., 2020). The main difference between
these works and CAD, is that the edits in these
works are label-preserving whereas they are label-
flipping in CAD—the former prevents models from
being over-sensitive and the latter alleviate under-
sensitivity to perturbations.

Label-Changing Data Augmentation. Lu et al.
(2020); Zmigrod et al. (2019) use rule-based CAD
to mitigate gender stereotypes. Gardner et al.
(2020) build similar contrast sets using expert edits
for evaluation. In contrast, Kaushik et al. (2020)
crowdsource minimal edits. Recently, Teney et al.
(2020) also use CAD along with additional auxil-
iary training objectives and demonstrate improved
OOD generalization.

Kaushik et al. (2021) analyze a similar toy model
(linear Gaussian model) demonstrating the bene-
fits of CAD, and showed that noising the edited
spans hurts performance more than other spans.
Our analysis complements theirs by showing that
while spans identified by CAD are useful, a lack of
diversity in these spans limit the effectiveness of
CAD, thus better coverage of robust features could
potentially lead to better OOD generalization.

Robust Learning Algorithms. Another direc-
tion of work has explored learning more robust
models without using additional augmented data.
These methods essentially rely on learning debi-
ased representations—Wang et al. (2018b) create a
biased classifier and project its representation out

of the model’s representation. Along similar lines,
Belinkov et al. (2019) remove hypothesis-only bias
in NLI models by adversarial training. He et al.
(2019) and Clark et al. (2019b) correct the condi-
tional distribution given a biased model. Utama
et al. (2020) build on this to remove ‘unknown’
biases, assuming that a weak model learns a biased
representations. More recently, Veitch et al. (2021)
use ideas from causality to learn invariant predic-
tors from counterfactual examples. The main differ-
ence between these methods and CAD, is that the
former generally requires some prior knowledge
of what spurious correlations models learn (e.g.
by constructing a biased model or weak model),
whereas CAD is a more general human-in-the-loop
method that leverages humans’ knowledge of ro-
bust features.

6 Conclusion and Future Directions

In this work, we first analyzed CAD theoretically
using a linear model and showed that models do not
generalize to unperturbed robust features. We then
empirically demonstrated this issue in two CAD
datasets, where models do not generalize well to un-
seen perturbation types. We also showed that CAD
amplifies existing spurious correlations, pointing
out another concern. Given these results, a natural
question is: How can we fix these problems and
make CAD more useful for OOD generalization?
We discuss a few directions which we think could
be helpful:

* We can use generative models (Raffel et al.,
2020; Lewis et al., 2019) to generate diverse
minimal perturbations and then crowdsource
labels for them (Wu et al., 2021). We can
improve the diversity of the generations by
masking different spans in the text to be in-
filled, thus covering more robust features.

* An alternative to improving the crowdsourc-
ing procedure, is to devise better learning al-
gorithms which mitigate the issues pointed in
this work. For example, given that we know
the models do not always generalize well to
unperturbed features, we can regularize the
model to limit the reliance on the perturbed
features.

We hope that this analysis spurs future work on
CAD, making them more useful for OOD general-
ization.
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A Proof for the Linear Model

Proof for Proposition 1. In this section, we give the proof for the toy example, where we show that
O(Wine) > (W) if ||r2|| > ||ps|| assuming all variables have unit variance and ||| = 1 (i.e. the model
trained on incomplete edits has higher error than model trained on unaugmented data).

Given the definition in (8), we get (denote Cov(x, z) by M):

() = Epp [(w£v33 — wa)z]
= Epp [()f 2r — p" (M) 2)?]
= Epnplp) zra) g+ " (M) 22" M7 = 20 ™ M ] (13)

Note that. E,..p [a::):T] =M,E,..p [:):r:):ﬂ =Tand E,.p [acrxT] =11 ,urusT]. Plugging this into
the previous equation and simplifying we get:

w) = [lparl® = [y s @l * = DIM (14)

Since M is a block matrix, we can write its inverse as :

vl o | =)™ (= pepd ) e (15)
—(I = pspiF prpiD) st (= popd )™

Note that I here refers to the identity matrix of compatible size (i.e. either d, or ds; dimensional).
Plugging this in (14) and simplifying gives us:

() = || l|® = pE (L = (s P e 7 (1= [|ps))?) —
il (1 — [ P s D) s (20 e |1 = 1) (1 = | |?)

Since we have assumed that ||x,-|| = 1, we get:

0(w) =1 — pF (I = [ sl Ppepsd ) (1 = [ 2s]|?) (16)

Now note that (I — ||ps||>pt-it-) is a rank-one perturbation of the identity matrix, and hence we can
use the Sherman-Morrison formula to simplify:

(I = (sl e )™ = T + af| s P prpsy (17)

where @ > 0 is a constant. Simplifying using this further, we get:

00) = 1 — pl (I + ol s P per il ) e (1 — | s ||?)
1= (|l + eell sl Pl e 1) (X = [ls]1?)
=1— (L4 aflpsl*)( = |lus]?)

= aflpsl* + (1 — a) || s ? (18)

For the incomplete edits, we have Wi, = [2;11 tr1, 0] giving us:

g(winc) — EmN'D [(wljrzvx - wljr:cx)Q]
= Eonp [(1122r2)°]
=E;p [/'LZQJ;TZCLE;,U/TQ]

= || r2|? (19)
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Test Set Size (NLI) Size (QA)

lexical 406 314
resemantic 640 332
negation 80 268
quantifier 206 80
insert 376 118
delete 250 -

Table 6: Size of the tests sets corresponding to the different perturbation types for both NLI and QA. For QA, the
number of examples in delete were extremely small and hence we do not use that perturbation type for QA.

Train Data Alltypes lexical insert resemantic quantifier negation delete

SNLI seed 67.84084  75.16032  74.94, 5 76.770.74 74.3602: 69.25, 09 65.765.34

SNLI seed (subsamples) 64.87102 75.061‘89 71.382,30 73.841‘60 69.123‘17 66.752,37 63.602‘44
lexical 70.44|4()7 81.810,99 74.04] 04 74»931.]6 72»421.58 68.752_|6 67.043.0()
insert 66.00141 71.08253 78.981,53 71.741‘53 68.150‘83 57.754,54 68.802‘71
resemantic 70.8016s 7723535  76.591.12 75.401 44 70.771.04 67.25205  70.40; 54

Table 7: Results for the different perturbation types in NLI with multiple subsamples of the dataset. ( denotes
aligned test sets). We observe that there is variance across different subsamples, but the majority of the trends
reported in Section 3.3 still hold true.

Now, if [|s|| < [lper2ll, then [|us] < 1 (since [|urz]| < ||l = 1). Thus, ||u|* I?

() < sl < llr2l|* = €(tdine).

< ||psl®, giving

O]

B Additional Experiments & Results
Here, we report more details on the experiments as well as present some additional results.

B.1 Experiment Details

For NLI, models are trained for a maximum of 10 epochs, and for QA all models are trained for a
maximum of 5 epochs (convergence is faster due to the larger dataset size). The best model is selected by
performance on a held-out development set, that includes examples from the same perturbation type as in
the training data.

B.2 Dataset Details

The size of the training datasets and how they are constructed are described in Section 3.2. Here, we give
more details on the size of the various test sets used in the experiments. The size of the CAD datasets
for the different perturbation types are given Table 6 for both NLI and QA. Note that all test sets contain
paired counterfactual examples, i.e. the seed examples and their perturbations belonging to that specific
perturbation type.

B.3 Accounting for small dataset sizes

The experiments in Section 3.2 were run for 5 different random initializations, and we report the mean
and standard deviation across the random seeds. For completeness, we also report results when using
different subsamples of the SNLI dataset. Table 7 shows the mean and standard deviation across 5 different
subsamples, along with the rest of the results which were presented in Section 3.3. We observe that even
though there is variance in results across the different subsamples, majority of the trends reported in 3.3
are consistent across the different subsamples — CAD performs well on aligned test sets, but does not
necessarily generalize to unaligned test sets.

To account for the small dataset sizes, we also ran an experiment using the NLI CAD dataset analogous
to the QA setup—using a larger number of SNLI examples (7000) and replace a small percentage of them
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Train Data Alltypes lexical insert resemantic quantifier negation delete

SNLI seed 71.410‘40 79.901‘00 78.080,49 79.841,17 75.921,17 77.252,42 70.880,63
lexical 73.100s56¢  83.54001  77.28064 80.81¢47 7572086 78.00,60  70.72; 46
insert 72.91054 80.390‘88 78-930.66 80.560,7() 76.890,34 77-252.66 71.432,40

resemantic 73.440_33 81.230_64 77.970.51 81.060,49 76.601,42 75.752_03 73.841,25

Table 8: Results for the different perturbation types in NLI with larger dataset sizes, with 10% of the data being
the perturbations ( denotes aligned test sets).

(10%) with perturbations of the corresponding perturbation type. We ensure that the original examples
from which the perturbations were generated are also present in the dataset. Thus, all experiments will
have much larger dataset sizes than before (7000 vs 1400), while still using counterfactual examples
generated only by one specific perturbation type. The results for this experiment are reported in Table 8.
We observe that CAD still performs best on aligned test sets but only marginally — this happens since
a large fraction of the dataset (90%) is similar across all experiments. Although CAD performs worse
on unaligned test sets than the aligned test sets, it does not necessarily perform worse than the SNLI
baseline — this happens since the larger number of seed examples will implicitly regularize the model
from overfitting to that specific perturbation type.
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