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ABSTRACT

The Nguni languages have over 20 million home language speakers in South
Africa. There has been considerable growth in datasets for Nguni languages, but
no analysis of performance of NLP models for these languages has been reported
across all languages and tasks. In this paper we study pretrained language models
for the 4 Nguni languages - isiXhosa, isiZulu, isiNdebele, and Siswati. We com-
pile all publicly available datasets for natural language understanding and genera-
tion, spanning 6 tasks and 11 datasets. This benchmark, which we call NGLUEni,
is the first centralised evaluation suite for the Nguni languages, allowing us to
systematically evaluate the Nguni-language capabilities of PLMs. Besides eval-
uating existing PLMs, we develop new PLMs for the Nguni languages through
multilingual adaptive finetuning. Our models, Nguni-XLMR and Nguni-ByT5,
outperform their base models and large-scale adapted models, showing that per-
formance gains are obtainable through limited language group-based adaptation.
We also perform experiments on cross-lingual transfer and machine translation.
Our models achieve notable cross-lingual transfer improvements in the lower re-
sourced Nguni languages (isiNdebele and Siswati). To facilitate future use of
NGLUEni as a standardised evaluation suite for the Nguni languages, we create a
web portal to access the collection of datasets and publicly release our models.

1 INTRODUCTION

Figure 1: We adapt XLM-R for Nguni languages and
plot proportional performance gains over Afro-XLMR
and XLM-R averaged across the Nguni languages.

Multilingual pretrained language mod-
els (PLMs) have revolutionised NLP
for low-resource languages. It en-
ables cross-lingual transfer from high-
resource languages, as demonstrated by
models like mBERT (Devlin et al.,
2019), XLM-R (Conneau et al., 2020),
mT5 (Xue et al., 2021), and ByT5 (Xue
et al., 2022). Models are now pre-
trained on over 100 languages, reflect-
ing a trend towards increasingly multi-
lingual PLMs. While this has undoubt-
edly benefited low-resource languages,
it also has certain shortcomings.

A major limitation is the lack of proper
multilingual evaluation. Recent works might train PLMs for over 100 languages, but they do not
perform downstream evaluation for all these languages because many lack sufficient datasets. As a
result, the true low-resource language capabilities of multilingual PLMs are unknown.
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Task Dataset xh zu nr ss Size

Natural language understanding (NLU)

NER MasakhaNER ✓ ✓ 5783
SADiLaR NER ✓ ✓ ✓ ✓ 6520

POS tagging MasakhaPOS ✓ ✓ 753
NLAPOST ✓ ✓ ✓ ✓ 2717

Classification
MasakhaNEWS ✓ 1032
ANTC ✓ 2961
NCHLT Genre ✓ ✓ ✓ ✓ 1919

Phrase chunk NCHLT PC ✓ ✓ ✓ ✓ 848

Natural language generation (NLG)

Data-to-text T2X ✓ 3859

Headline MasakhaNEWS ✓ 1032
generation Vuk’uzenzele ✓ ✓ ✓ ✓ 149

Table 1: The NGLUEni evaluation suite language
coverage and average training size per language.

Another limitation of scaling PLMs to more
languages is that it sacrifices greater gains on
individual languages for gains across more lan-
guages. While models like XLM-R and ByT5
achieve impressive results across many lan-
guages, PLMs focused on smaller groups of
languages can outperform more multilingual
models (Alabi et al., 2022; Dabre et al., 2022;
Ebrahimi et al., 2022). The strategy of increas-
ing multilinguality is not optimal if we are fo-
cused on improving performance for specific
low-resource languages.

In this work we address these limitations of
multilingual PLMs for the Nguni languages of
South Africa - isiXhosa (xh), isiZulu (zu), isiN-
debele (nr), and Siswati (ss). They are a related
group of languages with a combined 23.4 mil-
lion L1 speakers (Eberhard et al., 2019) (see Ta-
ble 7 for language statistics), comprising over
43% of the population of South Africa. They
are linguistically distinct in that they have highly agglutinative morphologies, which can hurt cross-
lingual transfer from other languages (Wang et al., 2021; Ács, 2019). While isiXhosa and isiZulu
have increasingly more datasets available, isiNdebele and Siswati remain extremely low-resourced.
This paper is the first systematic investigation into multilingual PLMs for Nguni languages. Our
contributions span benchmark compilation, modeling and evaluation.

We compile NGLUEni, a benchmark for Nguni languages. It covers natural language understanding
(NLU) and generation (NLG). For NLU we collect publicly available datasets, covering 4 tasks
across 8 datasets. The situation is more challenging for NLG. Besides machine translation (MT)
the only dataset for Nguni NLG is T2X (Meyer & Buys, 2024), an isiXhosa data-to-text dataset.
To expand NLG we repurpose news article datasets (Lastrucci et al., 2023; Adelani et al., 2023) for
the task of headline generation, which provides a starting point for evaluating Nguni text generation
models. The full NGLUEni benchmark is summarised in Table 1.

Beyond facilitating standardized evaluation, the other aim of this work is to develop PLMs tailored
specifically for the Nguni languages. For this we turn to multilingual adaptive finetuning (Alabi
et al., 2022), wherein existing PLMs are subjected to continued training on a Nguni-only corpus.
For NLU we adapt XLM-R-large to produce Nguni-XLMR-large, which improves average perfor-
mance across the 4 Nguni languages for all NLU tasks (as shown in Figure 1). It achieves gains of
up to 5.2 F1% on text classification. For NLG we adapt ByT5-large to produce Nguni-ByT5-large,
which improves performance on isiXhosa data-to-text and headline generation. It outperforms its
baselines across 7 automatic metrics, with BLEU gains of 2.0 on data-to-text. We perform addi-
tional experiments on zero-shot cross-lingual transfer and MT. Our Nguni-adapted models achieve
particularly large gains in cross-lingual transfer to isiNdebele and Siswati.

Adapting PLMs for the Nguni languages improves performance on a diverse set of tasks. This is
achieved by continued training on only the 4 Nguni languages, which is more efficient than pretrain-
ing from scratch or multilingual adaptive finetuning on a larger set of languages. In summary, our
contributions are as follows:

• We compile NGLUEni, an evaluation suite spanning NLU and NLG tasks for evaluating
the Nguni-language capabilities of PLMs. The NGLUEni datasets can be accessed through
a centralised repository: https://github.com/francois-meyer/nglueni.

• We adapt Nguni-XLMR1 and Nguni-ByT52, which improve Nguni-language perfor-
mance. We publicly release these adapted models on Hugging Face.

• We evaluate our models, their base PLMs, and existing adaptation-based baselines on
NGLUEni, cross-lingual experiments, and machine translation.

1https://huggingface.co/nict-astrec-att/nguni-xlmr-large
2https://huggingface.co/nict-astrec-att/nguni-byt5-large
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2 RELATED WORK

Nguni benchmarks Several Nguni NLU datasets exist, but only a few have been used to evaluate
PLMs (and only for isiXhosa and isiZulu). Masakhane3 has produced African language datasets
for NER (Adelani et al., 2022c), POS tagging (Dione et al., 2023), and news classification (Adelani
et al., 2023). These datasets cover up to 20 African languages, including isiXhosa and/or isiZulu.
The respective papers also benchmark many existing multilingual PLMs on the datasets. Likewise,
Alabi et al. (2022) evaluate several PLMs on their ANTC dataset, a news topic classification task for
5 African languages including isiZulu. On ANTC and the Masakhane datasets, Afro-XLMR (Alabi
et al., 2022) generally emerges as the strongest multilingual PLM overall.

Multilingual PLMs A few massively multilingual PLMs (more than 100 languages) include isiX-
hosa or isiZulu in their pretraining. Among encoder-only PLMs, XLM-R (Conneau et al., 2020)
includes isiXhosa. Among encoder-decoder PLMs, mT5 (Xue et al., 2021) and ByT5 (Xue et al.,
2022) include isiXhosa and isiZulu. None of these works evaluate on any of the Nguni languages.

PLMs for African languages AfroLM (Dossou et al., 2022) is trained from scratch with active
learning on 23 African languages, including isiXhosa and isiZulu. Afro-XLMR (Alabi et al., 2022)
adapt XLM-R for 17 African languages, including isiXhosa and isiZulu. They achieve this through
multilingual adaptive finetuning, which amounts to taking model checkpoints and continuing their
pretraining on a corpus of selected languages.

Adelani et al. (2022a) use the same approach for encoder-decoder PLMs, where adaptation amounts
to continued span denoising training. They adapt mT5 and ByT5 for 17 African languages, including
isiXhosa and isiZulu, to produce respectively AfriMT5 and AfriByT5. Their work is focused on MT
(including isiZulu←→ English), so they do not evaluate these models on any other NLG tasks. In the
MT experiments, they find that multilingual adaptation improves performance and that AfriByT5
outperforms AfriMT5.

3 DATA

We collect publicly available data for training and evaluating Nguni PLMs. Some of the datasets
require cleaning and splitting into train/valid/test sets. We also preprocess news article datasets to
use them for headline generation.

3.1 ADAPTATION CORPUS

To adapt PLMs we continue their language model training on a Nguni-only corpus, optimising
their original pretraining objective. We create a Nguni corpus of 260,950,000 tokens by combining
publicly available monolingual corpora for all 4 languages. The sizes of the respective monolingual
corpora are shown in the last row of Table 7, which also highlights that our adapted models are the
first to be trained on isiNdebele and Siswati.

For isiXhosa and isiZulu we use data from the mC4 corpus (Xue et al., 2021). These corpora are web
crawled, so while their large sizes are beneficial to training, it comes with the cost of lower quality
data (Kreutzer et al., 2022). For isiNdebele and Siswati we include their NCHLT Text corpora
(Eiselen & Puttkammer, 2014), which consist of South African government documents, articles
covering various domains, and prose.

Table 7 highlights the imbalance in data availability among the Nguni languages, with isiXhosa and
isiZulu having much larger corpora than isiNdebele and Siswati. To alleviate this we upsample data
from isiNdebele and Siswati using the same multinomial sampling distribution used to train XLM-R
(Conneau et al., 2020) with α = 0.3.

3https://www.masakhane.io/
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3.2 NATURAL LANGUAGE UNDERSTANDING (NLU) EVALUATION

Our NLU benchmark spans 4 tasks and 8 datasets. Some datasets cover only isiXhosa or isiZulu,
but for each task we have at least one dataset covering all 4 languages, enabling cross-lingual experi-
ments. The SADiLaR and NCHLT datasets are publicly available as raw annotated datasets (not sep-
arated into training and evaluation sets), so we split these into train/valid/test sets (80%/10%/10%).

Named entity recognition (NER) Masakha-NER (Adelani et al., 2022c) covers 20 African lan-
guages including isiXhosa and isiZulu. The annotated text is extracted from newspaper articles.
SADiLaR NER (Eiselen, 2016a) contains annotated government domain text for 10 South African
languages, including all 4 Nguni languages.

Part-of-speech (POS) tagging MasakhaPOS (Dione et al., 2023) covers 20 African languages
including isiXhosa and isiZulu, for which it contains tagged news articles. NLAPOST is part of a
collection of annotated government text in all 4 Nguni languages (Gaustad & Puttkammer, 2022)
and was used for a shared task on Nguni POS tagging (Pannach et al., 2022).

Text classification MasakhaNEWS (Adelani et al., 2023) and ANTC (Alabi et al., 2022) are news
topic classification datasets for respectively 16 and 5 African languages. MasakhaNEWS includes
isiXhosa and ANTC includes isiZulu, in each case labelling news articles into one of 5 possible
categories (e.g. sports, politics). NCHLT Genre (Snyman et al., 2011) is a collection of government
articles in 10 South African languages. For all 4 Nguni languages each article is labelled as one of
3 categories (non-fiction neutral, non-fiction subjective, or non-fiction objective).

Phrase chunking Phrase chunking (Abney, 1992) assigns words to non-recursive multi-word seg-
ments of major syntactic categories (e.g. noun phrase, verb phrase). It is an intermediary between
POS and syntax trees. NCHLT Phrase Chunking (Eiselen, 2016b) is a dataset of phrase-annotated
government text for 10 South African languages, including all 4 Nguni languages.

3.3 NATURAL LANGUAGE GENERATION (NLG) EVALUATION

The options for evaluating Nguni NLG are limited to data-to-text. To improve the situation we adapt
2 datasets for the task of headline generation. Additionally, we finetune models for MT.

Data-to-text T2X (Meyer & Buys, 2024) is an isiXhosa data-to-text dataset. It contains triples of
(subject, relation, object) mapped to descriptive text in isiXhosa e.g. (France, currency, Euro) →
“Imali yaseFransi yi-Euro” (“The currency of France is the Euro”). It was constructed by translating
a subset of the English WebNLG dataset (Gardent et al., 2017). It is the only existing text generation
task dataset for a Nguni language.

Headline generation Generating headlines based on articles can be framed as a sequence-to-
sequence summarisation task (Rush et al., 2015). Many existing datasets for Nguni languages con-
tain news articles, so we leverage this to create headline generation datasets. The MasakhaNEWS
data (Adelani et al., 2023) contains separate columns for article text and headline, which we extract
to form text-headline pairs for an isiXhosa headline generation task.

Vuk’uzenzele (Lastrucci et al., 2023) contains government news articles in all 4 Nguni languages.
We automatically extract article-headline pairs and manually remove erroneously processed exam-
ples. The datasets are too small for finetuning (around 150 examples per language), so we only
use them to evaluate models finetuned on MasakhaNEWS headline generation. MasakhaNEWS
and Vuk’uzenzele cover different domains and languages, so this tests cross-domain and zero-shot
cross-lingual performance.

Machine translation (MT) In the absence of more NLG datasets, MT presents additional oppor-
tunities to evaluate Nguni text generation capabilities. We use 2 multilingual MT datasets: transla-
tion from English to Nguni languages with the Autshumato dataset (McKellar & Puttkammer, 2020)
and translation between Nguni languages with WMT22 (Adelani et al., 2022b).
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4 MODELS

We follow the multilingual adaptive finetuning of Alabi et al. (2022), who adapt PLMs for 17 African
languages. Our approach is narrower in linguistic scope, focusing on the Nguni languages. Since
they are related, we expect a high degree of cross-lingual transfer during adaptation. This could
especially benefit the lower resourced languages of isiNdebele and Siswati.

We perform experiments for our Nguni-PLMs, their original unadapted PLMs, as well as variants
that have been adapted for a larger set of African languages. This allows us to compare PLMs at
various stages: (1) no adaptation, (2) adapted for a diverse set of African languages, and (3) adapted
for the Nguni languages.

4.1 NLU

4.1.1 BASELINES

XLM-R (Conneau et al., 2020) scales cross-lingual masked language modelling (MLM) to 100
languages including isiXhosa. We adapt XLM-R-large and use the original model as a baseline.
We also use Afro-XLMR-large (Alabi et al., 2022) as a baseline, which adapts XLM-R-large for 17
African languages including isiXhosa and isiZulu.

4.1.2 NGUNI-XLMR-LARGE

We adapt XLM-R-large for the Nguni languages through continued MLM training. Nguni-XLMR-
large expands the multilingual knowledge of XLM-R-large to cover all the Nguni languages. In the
original XLM-R training, isiXhosa made up a very small proportion of the multilingual corpus. Our
Nguni adaptation corpus contains a much greater proportion of isiXhosa and exposes the model to
isiZulu, isiNdebele, and Siswati for the first time.

4.2 NLG

4.2.1 BASELINES

ByT5 (Xue et al., 2022) is a text-to-text PLM for 101 languages, including isiXhosa and isiZulu.
It is trained with the span denoising objective of mT5 (Xue et al., 2021), but text is processed as
sequence of UTF-8 bytes instead of subwords. We chose to adapt ByT5 because it has been shown
to comfortably outperform subword-based NLG models on low-resource languages (Edman et al.,
2023; Adelani et al., 2022a). We also evaluate Afri-ByT5-base (Adelani et al., 2022a) as a baseline,
which adapts ByT5-base for 17 African languages including isiXhosa and isiZulu.

4.2.2 NGUNI-BYT5-LARGE

We adapt ByT5-large for the Nguni languages through continued span denoising training. ByT5
includes isiXhosa and isiZulu in its training data, but they make up very small proportions of its
multilingual corpus. Nguni-ByT5-large builds on the isiXhosa and isiZulu knowledge of ByT5-
large and is the first text-to-text multilingual PLM trained on isiNdebele and Siswati data.

5 EXPERIMENTAL SETUP

We use Huggingface Transformers (Wolf et al., 2020) to adapt XLM-R-large and ByT5-large.
Nguni-XLMR-large is adapted for 600k training steps with a learning rate of 5e-5, no warmup
steps, and a batch size of 80. Nguni-ByT5-large is adapted for 10k training steps with a learning
rate of 1e-4, 5k warmup steps, and batch size of 1024. Validation performance plateaued after the
reported number of training steps. Our training is distributed across across 8 Tesla V100 GPUs.

5.1 NLU

We finetune models on the NLU datasets listed in Section 3.2, using finetuning scripts from previous
works where available (Adelani et al., 2022c; Dione et al., 2023; Adelani et al., 2023; Alabi et al.,
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Task Dataset lang XLM-R-large Afro-XLMR-large Nguni-XLMR-large

NER

MasakhaNER xh 88.1 89.9 90.4±0.004

zu 86.7 90.6 91.8±0.006

SADiLaR NER

xh 74.8±0.7 76.3±0.9 77.3±0.5

zu 73.6±0.3 74.1±0.6 74.3±0.4

nr 78.6±0.2 79.4±0.4 79.1±0.7

ss 71.8±0.6 72.8±0.4 74.1±0.7

POS

MasakhanePOS xh 88.1 88.7 88.3±0.1

zu 89.4 90.1 90.1±0.1

NLAPOST

xh 97.1±0.1 97.8±0.1 97.9±0.1

zu 92.5±0.2 92.9±0.2 93.3±0.1

nr 90.3±0.1 90.5±0.1 90.6±0.2

ss 90.9±0.3 91.0±0.1 91.6±0.3

Classification

MasakhaNEWS xh 89.2 97.3 98.2±0.5

ANTC zu 78.7 81.6±1.4 86.8±0.6

NCHLT Genre

xh 89.1±0.9 89.0±1.0 88.8±0.6

zu 82.8±1.4 84.9±1.2 86.5±1.7

nr 96.4±2.6 94.9±0.6 95.2±0.6

ss 96.3±1.4 96.7±0.8 96.0±0.6

Phrase chunking NCHLT PC

xh 88.2±0.6 90.1±0.7 91.0±0.4

zu 87.8±0.7 90.2±0.1 90.5±0.3

nr 56.0±1.2 59.5±1.0 58.4±1.0

ss 83.4±0.3 84.3±0.4 84.8±0.3

Table 2: NLU test performance averaged across 5 runs. We include standard deviation for finetuning
run ourselves but omit it for results taken from existing papers (since it was not reported). For NER,
classification, and phrase chunking we report weighted F1, while for POS we report accuracy.

2022) and adapting these for datasets that have not previously been used for finetuning (SADiLaR
NER, NLAPOST, NHCLT Genre & PC). We report test set results averaged across 5 finetuning runs.
Our NLU finetuning hyperparameters are specified in Appendix B.1.

Cross-lingual experiments To evaluate zero-shot cross-lingual transfer we use the 4 datasets that
cover all 4 Nguni languages (SADiLaR NER, NLAPOST, NCHLT Genre, NCHLT PC). For each
task we finetune models on the isiXhosa training sets and evaluate them on the test sets of the other
languages. We chose to evaluate transfer from isiXhosa to the other languages, since this is the
most realistic real-world use case. IsiXhosa is featured in datasets more often than the other Nguni
languages, so being able to apply models trained on isiXhosa to other languages would be valuable.

5.2 NLG

Our NLG finetuning hyperparameters are specified in Appendix B.2. We are the first to use
MasakhaNEWS (Adelani et al., 2023) for headline generation. It is much harder than T2X be-
cause of the less structured nature of the task and the smaller training set, so we run a grid search
across several hyperparameter combinations to find optimal finetuning settings.

Cross-lingual experiments The Vuk’uzenzele (Lastrucci et al., 2023) datasets are too small to
split intro train/test sets so instead of using them for finetuning and evaluation, we use the full
datasets as evaluation sets. We evaluate our final MasakhaNEWS headline generation model.
MasakhaNEWS covers only isiXhosa, while Vuk’uzenzele covers all 4 Nguni languages. There-
fore we present the results on Vuk’uzenzele as cross-domain and cross-lingual experiments. It tests
the ability of our models to generalise their headline generation capabilities to the previously unseen
domain of Vuk’uzenzele (government news articles). With the isiZulu, isiNdebele, and Siswati parts
of Vuk’uzenzele, it also tests cross-lingual transfer from isiXhosa.
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Task Dataset lang XLM-R-large Afro-XLMR-large Nguni-XLMR-large

NER SADiLaR NER
zu 30.3±0.5 32.4±0.2 32.6±0.6

nr 31.0±0.7 36.3±0.7 37.0±0.8

ss 31.4±0.9 37.3±1.6 41.1±1.1

POS NLAPOST
zu 87.1±0.3 88.5±0.2 88.6±0.1

nr 77.6±0.3 79.8±0.2 79.9±0.2

ss 70.7±0.3 83.7±0.5 87.4±0.2

Classification NCHLT Genre
zu 67.0±5.9 70.4±2.7 66.0±6.1

nr 45.7±17.2 80.3±8.2 80.9±7.7

ss 69.2±16.2 86.9±6.5 88.8±2.6

Phrase chunking NCHLT PC
zu 63.4±0.7 65.5±0.3 66.4±0.6

nr 35.6±0.5 38.2±0.4 39.0±0.5

ss 61.5±0.8 68.0±0.6 68.9±0.8

Table 3: Zero-shot cross-lingual NLU test performance after finetuning on isiXhosa and evaluating
on isiZulu, isiNdebele, and Siswati. Results are averaged across 5 runs (± standard deviation). For
NER, classification, and phrase chunking we report weighted F1, while for POS we report accuracy.

Figure 2: Improvements in zero-shot cross-lingual transfer (xh→ zu, nr, ss) after adaptation. Figure
(a) compares improvement of Afro-XLMR-large and Nguni-XLMR-large over XLM-R-large, aver-
aged over the 4 tasks in Table 3. Figure (b) shows how chrF++ changes for Vuk’uzenzele headline
generation after adapting ByT5-base to Afri-ByT5-base and ByT5-large to Nguni-ByT5-large.

MT experiments As an additional text generation task we finetune our NLG models on MT. We
finetune each model twice - on multilingual translation from English to (isiZulu, isiNdebele, Siswati)
and in all directions between (isiXhosa, isiZulu, Siswati).

6 RESULTS

We report the results of our finetuning experiments in Tables 2-6 and plot the improvements obtained
through adaptation in Figures 1 and 2.

6.1 NLU

Table 2 reports all NLU results. In most instances Nguni-XLMR outperforms Afro-XLMR,
which in turn outperforms XLM-R. This holds with average task scores over all Nguni languages,
as shown in Figure 1. Nguni-XLMR does well on NER, outperforming both baselines in all instances
except one. POS tagging sees smaller gains, with XLM-R already achieving accuracies that outper-
form the best NLAPOST2021 models (Pannach et al., 2022). Classification results vary between
datasets. Nguni-XLMR achieves its largest gains on MasakhaneNEWS and ANTC (it outperforms
Afro-XLMR by 5.2 percentage points on ANTC). The NCHLT Genre classification datasets are con-
siderably easier, so XLM-R is competitive. Phrase chunking sees the largest average performance
gain of any task, suggesting again that harder tasks (phrase chunking is somewhere between POS
tagging and syntactic parsing) stand to benefit more from adaptation.

Afro-XLMR outperforms XLM-R across all 4 Nguni languages, even though it is only adapted for
isiXhosa and isiZulu. However, the fact that Nguni-XLMR outperforms Afro-XLMR shows that

7



AfricaNLP workshop at ICLR2024

Dataset lang Model chrF++ chrF BLEU NIST MET ROU CID

T2X xh

ByT5-base 46.17 51.16 17.62 4.32 22.60 35.69 1.21
Afri-ByT5-base 51.95 56.67 22.56 5.21 26.11 44.67 1.64
ByT5-large 44.16 48.87 15.95 4.08 21.92 34.25 1.13
Nguni-ByT5-large 52.96 57.71 24.56 5.34 26.61 45.09 1.71

xh

ByT5-base 20.65 25.49 1.89 0.87 4.63 9.09 0.29
Masakha– Afri-ByT5-base 20.21 24.87 1.41 1.02 4.77 9.94 0.31
NEWS ByT5-large 19.36 24.23 1.41 0.83 3.98 8.14 0.26

Nguni-ByT5-large 21.91 26.93 2.06 1.06 5.25 10.74 0.36

Table 4: Test performance on isiXhosa NLG tasks (T2X data-to-text and MasakhaNEWS headline
generation), measured across different automatic metrics.

Cross– lang ByT5-base Afri-ByT5-base ByT5-large Nguni-ByT5-large

lingual domain BLEU chrF BLEU chrF BLEU chrF BLEU chrF

✗ ✓ xh 0.58 23.54 0.35 22.62 0.95 24.74 0.68 24.31
✓ ✓ zu 0.58 24.03 0.56 23.76 0.33 25.52 0.79 23.95
✓ ✓ nr 0.32 20.91 0.51 20.54 0.49 21.54 0.51 21.77
✓ ✓ ss 0.66 22.88 0.59 23.70 0.77 22.77 0.34 24.85

Table 5: Zero-shot headline generation test performance after finetuning on isiXhosa Masakhane-
NEWS and evaluating on Vuk’uzenzele in all 4 Nguni languages.

there is substantial negative interference (Wang et al., 2020) from the other languages in the Afro-
XLMR adaptation corpus. Nguni-XLMR achieves cross-lingual transfer between the Nguni
languages without interference from additional languages.

Zero-shot cross-lingual Table 3 shows the results of our zero-shot cross-lingual NLU experi-
ments. Nguni-XLMR achieves the best scores in all instances except one, demonstrating effective
cross-lingual transfer capabilities on all NLU tasks. To compare transfer capabilities across the 3
target languages, we plot the relative improvement of Afro-XLMR and Nguni-XLMR over XLM-R
averaged over all tasks in Figure 2(a).

The adapted models greatly improve transfer to isiNdebele and Siswati, with Nguni-XLMR
improving zero-shot test scores in both languages by more than 20%. Nguni-XLMR sees larger
gains than Afro-XLMR, which can be attributed to the inclusion of isiNdebele and Siswati in its
adaptation corpus. The inclusion of (albeit small) amounts of text from these languages proves
better at inducing cross-lingual transfer than the more multilingual adaptation of Afro-XLMR, which
covers more languages but excludes isiNdebele and Siswati.

6.2 NLG

Table 4 reports isiXhosa NLG results. On both tasks Nguni-ByT5-large outperforms all baselines
across all 7 metrics. On T2X the gains are substantial, with gains of by 2.0 BLEU points over
the second best baseline. MasakhaneNEWS headline generation is a more challenging task than
T2X, so the metrics are much lower. In this case the character-based chrF and chrF++ are more
informative than BLEU, because they measure subword-level overlap which is more relevant for
the agglutinative Nguni languages. Nguni-ByT5-large outperforms all baselines on these metrics
and achieves chrF++ scores comparable to the scores of state-of-the-art MT for certain low-resource
African languages (Team et al., 2022).

The base variant of ByT5 outperforms the large variant on both tasks. We performed separate hyper-
parameter tuning for all models, so we do not believe this to be due to suboptimal hyperparameters.
It is possible that the large models are overfitting to the small training sets. Comparing Afri-ByT5-
base and Nguni-ByT5-large to their base PLMs, we fine that the Nguni-only adaptation leads to
greater increases in performance (proportionally and in absolute terms). Nguni-ByT5-large might
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Afri-ByT5 Nguni-ByT5
Train/Test langs ByT5-base -base ByT5-large -large

BLEU chrF BLEU chrF BLEU chrF BLEU chrF

Autshumato
en→zu 8.79 44.96 9.90 45.89 10.51 47.03 10.55 47.63
en→ss 9.15 49.36 9.50 50.00 9.95 50.64 9.92 50.72
en→nr 8.94 48.01 9.25 48.71 10.00 50.04 10.41 50.21
xh→zu 12.59 49.68 12.65 49.64 13.34 50.30 13.43 50.31
zu→xh 11.50 49.29 11.64 49.39 11.90 49.58 12.00 49.60

WMT/ xh→ss 8.25 44.64 8.49 44.85 8.75 45.55 9.01 45.73
FLORES ss→xh 9.40 44.82 9.21 44.49 9.63 45.24 9.42 45.35

zu→ss 9.30 47.60 9.48 47.54 9.37 47.87 9.50 47.91
ss→zu 11.23 48.01 11.47 47.86 11.76 48.45 11.77 48.45

Table 6: MT test set performance of PLMs after finetuning for multilingual MT. Underline indicates
best scores, while bold indicates scores with differences from the best that are not statistically sig-
nificant (based on paired bootstrap resampling testing with p-value 0.05).

be more inefficient than Afri-ByT5-base in terms of model size, but it requires a smaller adaptation
corpus to achieve superior performance.

Zero-shot cross-domain/cross-lingual Table 5 evaluates our MasakhaneNEWS isiXhosa head-
line generation models on Vuk’uzenzele. As for MasakhaneNEWS, the metrics are quite low. How-
ever, given the lack of existing NLG datasets for the Nguni languages, these results should be viewed
as a first step towards assessing cross-lingual Nguni text generation.

Adaptation does not help for isiXhosa and isiZulu, as ByT5-large is the best model for these lan-
guages. However, for languages not covered by base models (isiNdebele and Siswati), adaptation
does improve transfer. Nguni-ByT5-large outperforms all baselines on these languages. Figure 2(b)
shows the proportional gains obtained by adapted models over their respective base models. The
results are similar to the NLU results in Figure 2(a), except that NLG transfer to isiZulu actually de-
grades after adaptation, perhaps because some of the transfer capabilities that emerge from greater
multilinguality is lost. Nguni-ByT5-large improves cross-lingual transfer to isiNdebele and Siswati
(especially the latter), more so than Afri-ByT5-base. This reiterates the findings from our cross-
lingual NLU experiments, which showed that Nguni-only adaptation leads to better cross-lingual
transfer to the lower resourced Nguni languages than larger scale adaptation.

Multilingual MT Table 6 contains MT results for 2 finetuned checkpoints per NLG model. One
is finetuned to translate in all 3 directions listed for Autshumato, while another is finetuned in those
listed for WMT22/FLORES. We perform paired bootstrap resampling (Koehn, 2004) to test for
statistical significance. Nguni-ByT5-large obtains the best evaluation scores for most translation di-
rections, although in all but 2 instances its improvements are not statistically significant over ByT5-
large. However, the gains achieved by Nguni-ByT5-large across all languages does indicate greater
consistency in its translation capabilities. Afri-ByT5-base mostly improves over ByT5-base, but the
large variants comfortably outperform both.

7 CONCLUSION

This paper is the first comprehensive study of PLMs for Nguni languages. It provides a detailed
overview of the prevailing landscape in datasets and modelling. Overall the state of affairs regarding
PLMs for Nguni languages has improved markedly in recent years. Nevertheless, there remains
a large gap between the capabilities of PLMs in the Nguni languages, compared to high-resource
languages. Nguni-XLMR and Nguni-ByT5 show that this can be partially addressed through simple
techniques like multilingual adaptive finetuning. Furthermore, we hope that our NGLUEni bench-
mark is used by future researchers to standardise evaluation for Nguni PLMs. This could facilitate a
more accurate assessment of the true Nguni-language capabilities of PLMs, a subject that presents
considerable challenges in the existing literature.
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A PLM SIZES Language xh zu nr ss

Speaker statistics

L1 8m 12m 2.3m 1.1m
L2 22m 16m 2.4m 1.4m

Pretraining corpus size (tokens)

XLM-R 13m 0 0 0
ByT5 60m 200m 0 0

Adaptation corpus size (tokens)

Afro-XLMR 60m 200m 0 0
Afri-ByT5 60m 200m 0 0

Nguni-XLMR/ByT5 60m 200m 450k 500k

Table 7: Language speaker statistics and per-language
corpus sizes for different PLMs.

Nguni-XLMR-large directly adapts XLM-
R-large, so it shares its model size (355M
parameters - 24 layers, hidden size 1024,
feed-forward hidden size 4096, 16 heads)
and its 250k subword vocabulary con-
structed with ULM Kudo (2018).

Nguni-ByT5-large has the same parame-
ter size as ByT5-large (1.23B - 36 en-
coder layers, 12 decoder layers, hidden
size 1536, feed-forward hidden size 3840,
16 heads) and the same vocabulary of 256
possible byte values.

B FINETUNING DETAILS

B.1 NLU

We finetune all our models with the AdamW optimizer (Loshchilov & Hutter, 2019) for 20 epochs
using a learning rate of 5e-5 (except classification, where we used a learning rate of 2e-5), and no
warmup steps. We initially used a batch size of 32 across all tasks, but this led to unstable training
in some unbalanced datasets (the model would classify all examples as the majority class). In cases
where this was observed, we used a larger batch size (128) for stabler training.

B.2 NLG

We finetune NLG models on T2X until validation loss increases, which is before 5 epochs for all
models. We use the Adafactor optimizer (Shazeer & Stern, 2018) with a learning rate of 1e-4, no
warmup, and a batch size of 4.

For MasakhaNEWS (Adelani et al., 2023) headline generation we finetune models with Adafactor
and no warmup, with a grid search across learning rates {1e-2, 1e-3, 1e-4} and batch sizes {2, 4, 8}.
Validation performance peaks at a learning rate of 1e-3 and a batch size of 2.

For our MT experiments we follow the hyperparameters of Adelani et al. (2022a), using a learning
rate of 1e-5, linear decay, no warmup steps, a batch size of 16, and train for 3 epochs of the training
corpus. Each source sentence is concatenated with a prefix describing the translation direction e.g.
“Translate English to Xhosa” during training and testing.
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