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Abstract

Less than 35% of recyclable waste is being actually recycled in the US [1], which1

leads to increased soil and sea pollution and is one of the major concerns of2

environmental researchers as well as the common public. At the heart of the3

problem is the inefficiencies of the waste sorting process (separating paper, plastic,4

metal, glass, etc.) due to the extremely complex and cluttered nature of the5

waste stream. Automated waste detection strategies have a great potential to6

enable more efficient, reliable and safer waste sorting practices, but the literature7

lacks comprehensive datasets and methodology for the industrial waste sorting8

solutions. In this paper, we take a step towards computer-aided waste detection9

and present the first in-the-wild industrial-grade waste detection and segmentation10

dataset, ZeroWaste. This dataset contains over 1800 fully segmented video11

frames collected from a real waste sorting plant along with waste material labels12

for training and evaluation of the segmentation methods, as well as over 600013

unlabeled frames that can be further used for semi-supervised and self-supervised14

learning techniques. ZeroWaste also provides frames of the conveyor belt15

before and after the sorting process, comprising a novel setup that can be used16

for weakly-supervised segmentation. We present baselines for fully-, semi- and17

weakly-supervised segmentation methods. Our experimental results demonstrate18

that state-of-the-art segmentation methods struggle to correctly detect and classify19

target objects which suggests the challenging nature of our proposed in-the-wild20

dataset. We believe that ZeroWaste will catalyze research in object detection and21

semantic segmentation in extreme clutter as well as applications in the recycling22

domain. Our project page can be found at http://ai.bu.edu/zerowaste/.23

1 Introduction24

As the world population grows and gets increasingly urbanized, waste production is estimated to25

reach 2.6 billion tonnes a year in 2030, an increase from its current level of around 2.1 billion tonnes26

[5]. Efficient recycling strategies are critical to reduce the devastating environmental effects of rising27

waste production. Materials Recovery Facilities (MRFs) are at the center of the recycling process.28

These facilities are where the collected recyclable waste is sorted into separate bales of plastic, paper,29

metal and glass. The accuracy of the sorting directly determines the quality of the recycled material;30

for high-quality, commercially viable recycling, the contamination levels (anything but the desired31

material) need to be less than a few percent of the bale. Even though the MRFs utilize a large32

number of machinery alongside manual labor [6], the extremely cluttered nature of the waste stream33

makes automated waste detection (i.e. detection of waste objects that should be removed from the34

conveyor belt) very challenging to achieve, and the recycling rates as well as the profit margins stay at35

undesirably low levels (e.g. less than 35% of the recyclable waste actually got recycled in the United36

States in 2018 [1]). Another crucial aspect of manual waste sorting is the safety of the workers that37

risk their lives daily picking up unsanitary objects (e.g. medical needles).38
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Figure 1: Left: examples of the existing waste detection and classification datasets (top to bottom): Trash
Annotation in Context (TACO) [2], Labeled Waste in the Wild [3], Portland State University Recycling [4]
datasets. Right: footage of the waste sorting process at a real Materials Recovery Facilities (MRF). The domain
shift between the simplified datasets with solid background and little to no clutter and the real images of the
conveyor belt from the MRF makes it impossible to use models trained on these datasets for automated detection
on real waste processing plants. In this paper, we propose a new ZeroWaste dataset collected from a real
waste sorting plant. Our dataset includes a set of densely annotated frames for training and evaluation of the
detection and segmentation models, as well as a large number of unlabeled frames for semi- and self-supervised
learning methods. We also include frames of the conveyor belt before and after manual collection of foreground
objects to facilitate research on weakly supervised detection and segmentation. Please see Figure 2 for the
illustration of our ZeroWaste dataset.

Recent advances in object classification and segmentation provide a great potential to make the39

recycling process more efficient, more profitable and safer for the workers. Accurate waste clas-40

sification and detection algorithms have a potential to enable new sorting machinery (e.g. waste41

sorting robots), improve the performance of existing machinery (e.g. optical sorters [6]), and allow42

automatic quality control of the MRFs’ output. Unfortunately, the research community is lacking the43

gold-standard in-the-wild datasets to train and evaluate the classification and segmentation algorithms44

for industrial waste sorting. While several companies do development on this subject (e.g. [7, 8, 9]),45

they keep their dataset private, and the few existing open-source datasets [10, 4, 3, 2] are very limited46

in data amount and/or generated in uncluttered environments, not representing the complexity of the47

domain (see Figure 1). In this paper, we propose a first large-scale in-the-wild waste detection dataset48

ZeroWaste that is specifically designed for the industrial waste detection. ZeroWaste is a dataset49

that is fundamentally different from the popular detection and segmentation benchmarks: high level50

of clutter, visual diversity of the foreground and background objects that are often severely deformed,51

as well as a fine-grained difference between the object classes (e.g. brown paper vs. cardboard, soft52

vs. rigid plastic) – all these aspects pose a unique challenge for the automated vision. We envision53

that our open-access dataset will enable computer vision and robotics communities to develop more54

robust and data-efficient algorithms for object detection, robotic grasping and other related problems.55

Our contributions can be summarized as follows:56

1. We propose the first fully-annotated ZeroWaste-f dataset specifically designed for industrial57

waste object detection. The proposed ZeroWaste-f dataset contains video frames from a real58

MRF conveyor belt densely annotated with instance segmentation and proposes a challenging59

real-life computer vision problem of detecting highly deformable objects in severely cluttered60

scenes. In addition to the fully annotated frames from ZeroWaste-f set, we include the61

unlabeled ZeroWaste-s set for semi-supervised learning.62

2. We introduce a novel before-after data collection setup and propose the ZeroWaste-w dataset63

for binary classification of frames before and after the collection of target objects. This binary64
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Figure 2: Examples of images (left) and the corresponding polygon annotation (right) of the proposed
ZeroWaste dataset. At the end of this conveyor belt, only paper objects must remain. Therefore, we annotated
the objects of four material types that should be removed from the conveyor belt as foreground: soft plastic,
rigid plastic, cardboard and metal. The background includes the conveyor belt and paper objects. Severe clutter
and occlusions, high variability of the foreground object shapes and textures, as well as severe deformations
of objects usually not present in other segmentation datasets, make this domain very challenging for object
detection. More examples of our annotated data can be found in Section B.3 of the Appendix (best viewed in
color).

classification setup allows much cheaper data annotation and allows further development of65

weakly supervised segmentation and detection methods.66

3. We implement the fully-supervised detection and segmentation baselines for the ZeroWaste-67

f dataset and semi- and weakly-supervised baselines for ZeroWaste-s and ZeroWaste-68

w datasets. Our experimental results show that popular detection and segmentation methods69

struggle to generalize to our proposed data, which indicates a challenging nature of our in-the-wild70

dataset and suggests that more robust and data-efficient methods must be developed to solve the71

waste detection problem.72

2 Related Work73

Detection and Segmentation Datasets Many datasets for image segmentation have been proposed74

with the goal of densely recognizing general objects and “stuff” in image scenes like street view [11,75

12, 13], natural scenes [14, 15, 16, 17, 18], and indoor spaces [19, 20, 21]. Yet, few of them have76

been designed for the more challenging vision task required in automated waste recycling, aiming to77

densely identify and segment deformable recyclable materials, many of which look very similar to78

each other, from a highly cluttered background [6]. Several related datasets have been proposed that79

contain only image-level labels. For example, Portland State University Recycling [4] consists of80

11500 labeled images of five common recyclable types: box-board, glass bottles, soda cans, crushed81

soda cans and plastic bottles. Similarly, Stanford TrashNet [10] presents 400 images containing a82

single waste object from six predefined classes. Though beneficial for image-level classification83

in well-defined conditions, images of in these two datasets have very simple background and do84

not apply to waste object localization. To enable localization tasks, Labeled Waste in the Wild [3]85

annotated bounding boxes for objects of 20 classes in 1002 food tray photos. Annotation in Context86

(TACO) [2] went one step further by densely annotating 60 litter objects from 1500 images. Yet87

TACO contains deliberately collected outdoor scenes with one or a few foreground objects that are88

rarely occluded, which makes it less practical for materials recovery scenarios. In contrast, our89

ZeroWaste was collected from the front lines of a waste sorting plant where the collected objects90
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are frequently severely deformed and occluded, which makes both detection and segmentation a91

significantly more challenging and practical task.92

Detection and Segmentation Methods Image segmentation is an essential component in robotic93

systems like automated waste sorters [6], as it partitions images into multiple regions or objects94

suitable for grasping. Image segmentation can be formulated as a task that classifies each pixel into95

a set of labels [22]. Recent semantic segmentation models [23, 24, 25, 26] have achieved state-of-96

the-art performance for recognizing general object/stuff classes from natural scene images. Instance97

segmentation [27, 28, 29, 30] works by further consider instance identity for objects. Representative98

frameworks like MaskRCNN [31] effectively detect objects in images and simultaneously generate99

high-quality masks, which enables efficient interaction between robots and target objects. Yet due to100

their data-hungry nature, these methods rely on large volumes of annotated data for training, which101

can be challenging and expensive, especially in specialized application scenarios [32]. Recycling102

annotation in particular requires expert labelers and is thus even more costly. Semi-supervised103

segmentation methods have been proposed to address such limitations by jointly learning from104

both annotated and unannotated images [33, 34, 35, 36, 37, 38]. Weakly-supervised segmentation105

methods exploit annotations that are even easier to obtain, e.g. image-level tags [39, 40, 41]. These106

methods typically utilize class activation maps (CAM) [42] to select the most discriminative regions,107

which are later used as pixel-level supervision for segmentation networks [43, 44, 45]. All these108

advanced segmentation models are trained on general-purpose data, and applying them to waste109

sorting scenarios presents challenges like domain shift. To study the effectiveness of existing models110

and enable further improvement for the waste sorting task, we test our proposed ZeroWaste with111

previous state-of-the-art methods and report their performance as baselines.112

3 ZeroWaste Dataset113

In this section, we describe our ZeroWaste-f dataset for fully supervised detection and evaluation,114

unlabeled ZeroWaste-s data for semi-supervised learning and ZeroWaste-w dataset of images115

before and after the removal of target objects for weakly supervised detection. The datasets are116

licensed under the Creative Commons Attribution-NonCommercial 4.0 International License [46].117

The MRF at which the data was collected agreed to release the data for any non-commercial purposes118

and decided to remain unacknowledged.119

Data Collecion and Pre-processing The data was collected from a high-quality paper conveyor120

of a single stream recycling facility in Massachusetts. The sorting operation on this conveyor aims to121

keep high quality paper and consider anything else as contaminants including non-paper items (e.g.122

metal, plastic, brown paper, cardboard, boxboard). We collected data during the regular operation123

of the MRF using two compact recording installations at the start and end of the conveyor belt (see124

Fig. 3, right), that is, footage is captured simultaneously both at the unsorted and sorted sections of125

the same conveyor. The recording apparatus is designed to fit the constraints of the facility: In order126

not to disrupt the MRF operation and be able to work in confined spaces available near the conveyor127

the recording platform needs to be compact, non-intrusive (to the workers), and portable (easy to128

move, battery-powered). Note that the cameras are not directly mounted on the conveyor but to a129

stand-alone platform, to reduce vibrations transmitted to the cameras. Additional considerations are130

made (see Figure 3, center): (1) Damping pads are installed to counter the ground vibrations of the131

heavy machinery and reduce vibrations on the camera even further; (2) Weighted bases lower the132

center of mass to keep the apparatus stable.133

We used the GoPro Hero 7 for RGB footage, and we additionally collected the the near-infrared134

(NIR) footage simultaneously with the RGB footage using the MAPIR Survey3W NIR camera for the135

future work (specifically, it captures at a wavelength of 850 nm). The cameras in their encasings meet136

both the portability and ruggedness requirements. To maintain consistent lighting, two LitraTorch 2.0137

portable lamps are installed with a light diffuser. This softens the light and spreads it more evenly in138

the scene. Both cameras were installed at around 100 cm above the conveyor, and the light sources at139

around 80 cm. Sequences of twelve videos of total length of 95 minutes and 14 seconds with FPS140

120 and size 1920 × 1080 were collected and processed. The preprocessing of the collected data141

involved the following steps:142
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Figure 3: The footage recording setup is designed to fit the constraints of the facility environment. Left:
The specific cameras and lamps used. Center: Assembly of each recording apparatus. Right: Layout of the
recording setup in the recycling environment.

ground truthimage

Figure 4: Left: example of an image from ZeroWaste-f dataset. Right: the corresponding ground truth
instance segmentation. Expert training and common sense knowledge are required to distinguish between the
cardboard object on the left (red circle) and the brown paper on the right (blue circle), as they are visually very
similar but differ in thickness and rigidity (best viewed in color).

1. Rotation and cropping. The frames were rotated so that the conveyor belt is parallel to the143

frame borders and cropped to remove the regions outside the conveyor belt. We ensured that any144

personal information or identifiable footage of the workers at the conveyor belt was excluded145

from our data.146

2. Optical distortion. We removed the distortion [47] using the OpenCV [48] library to compensate147

for the fish-eye effect caused by the proximity of the cameras to the conveyor belt.148

3. Deblurring. We used the SRN-Deblur [49] method to remove motion blur resulting from the149

fast-moving conveyor belt. According to our visual inspection, SRN-Deblur achieves satisfactory150

deblurring and does not introduce the undesired artifacts that usually appear when classical151

deconvolution-based methods are used.152

4. Subsampling. We sampled every tenth frame from the video to avoid redundancy.153

The illustration of the original frames shot at the beginning of the conveyor belt and the corresponding154

preprocessing results can be found on Figure 8 in Section B.3 of the Appendix.155

Densely Annotated ZeroWaste-f and Unlabeled ZeroWaste-s Datasets The fully anno-156

tated ZeroWaste-f dataset consists of 1874 frames sampled from the processed videos and the157

corresponding ground truth polygon segmentation. We used the open-source CVAT [50] annotation158

toolkit to manually collect the polygon annotations of objects of four material types: cardboard, soft159

plastic, rigid plastic and metal. We chose this set of class labels following the MRF’s guidelines160

for the workers to collect cardboard, plastic and metal into separate bins, as well as the fact that161

grasping of rigid and non-rigid objects might require the use of fundamentally different kinds of162

robotic systems. The polygon annotation was performed according to the following set of rules:163
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Split #Images Carboard Soft Plastic Rigid Plastic Metal #Objects
Train 1245 4038 1550 460 114 6162

Validation 312 795 310 195 24 1324
Test 317 1216 466 242 53 1977

Unlabeled 6212 - - - - -
Total 8086 6049 2326 897 191 9463

Table 1: Statistics of the training, validation and test splits of our ZeroWaste-f dataset w.r.t. the number of
labeled objects, and the additional unlabeled ZeroWaste-s set of images for semi-supervised learning.

1. Objects of four material types were annotated as foreground: cardboard (including parcel pack-164

ages, boxboard such as cereal boxes and other carton food packaging), soft plastic (e.g. plastic165

bags, wraps), rigid plastic (e.g. food containers, plastic bottles) and metal (e.g. metal cans). Paper166

objects were treated as background.167

2. The entire object must be within the corresponding polygon.168

3. If an object is partially occluded and separate parts are visible, we annotated them as separate169

objects.170

Each annotated video frame was validated by an independent reviewer to pass the standards above171

(see Figure 2). Both the annotation and the review process were performed by the students and172

researchers with a computer science background specifically trained to perform the annotation.173

We did not delegate the annotation to the crowd-sourcing platforms, such as Amazon Mechanical174

Turk [51], due to the complexity of the domain that requires expert knowledge to be able to detect175

and correctly classify the foreground objects (see the illustration on Figure 4). The estimated average176

cost of the annotation and review is about 12.5 minutes per frame. The dataset was split into training,177

validation and test splits and stored in the widely used MS COCO [18] format for object detection and178

segmentation using the open-source Voxel51 toolkit [52]. Please refer to Table 1 for more details about179

the class-wise statistics of all splits. In addition to the fully annotated ZeroWaste-f examples,180

we provide 6212 unlabeled images that can be used to refine the detection using semi-supervised or181

self-supervised learning methods. We refer to this unlabeled set of images as ZeroWaste-s data182

later on in this paper.183

ZeroWaste-w Dataset for Binary Classification We leverage the videos taken of the con-184

veyor belt before and after the removal of the foreground objects to create a weakly-supervised185

ZeroWaste-w dataset. This dataset contains 1202 frames with the foreground objects (before186

class) and 1208 frames without the foreground objects (after class). One advantage of such a setup is187

that it is relatively cheap to acquire the ground truth labels (only an image-level inspection is required188

to ensure there are no false negatives in the after class subset). The ZeroWaste-w dataset is189

specifically collected to be used in the weakly-supervised setup and is meant to provide an alternative190

and more data-efficient solution to the problem. The ground truth instance segmentation is available191

for all images of the before class as it overlaps with the ZeroWaste-f dataset. Please see Figure 5192

for an illustration of the ZeroWaste-w examples.193

4 Experiments194

In this section, we provide baseline results for our proposed ZeroWaste dataset. We perform195

fully supervised instance and semantic segmentation on ZeroWaste-f using the most widely196

used Mask R-CNN [31] and DeepLabV3+ [53] respectively. We also perform fully- and semi-197

supervised semantic segmentation on ZeroWaste-s using the CCT [33] method, and report the198

initial segmentation quality of CAMs produced by a classifier trained on ZeroWaste-w dataset as199

a weakly-supervised baseline. The implementation of our experiments and the detailed description of200

the experimental setup are available at https://github.com/dbash/zerowaste.201

4.1 Object Detection202

Experiments with COCO-pretrained Networks It has been shown that pretraining the model203

on a large-scale dataset, such as MS COCO [18], improves generalization and helps to prevent204

severe overfitting in case when the target dataset is relatively small [54, 55, 56]. Therefore, in our205
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before sorting after sorting

Figure 5: We installed two stationary cameras above the conveyor belt: one at the beginning of the line and
another one at the end. At this particular conveyor belt, workers are asked to remove objects of any material
other than paper, such as cardboard, plastic and metal. Therefore, the footage collected from the beginning of
the line contains the “foreground" objects that need to be removed, and the frames from the end of the conveyor
belt are supposed to only contain the “background" paper objects. We used this setup as a foundation of our
ZeroWaste-w dataset.

first experiments, we used the initialized the model with weights learned on COCO and further206

finetuned it with our ZeroWaste-f dataset. We used a standard implementation of the popular207

Mask R-CNN with ResNet-50 [57] backbone provided in the popular Detectron2 [58] library in208

all of the experiments. The model was finetuned for 40000 iterations on the training set of our209

ZeroWaste-f dataset on a single Geforce GTX 1080 GPU with batch size 8. To compensate for210

a relatively small number examples in the training set and to avoid overfitting, we leveraged heavy211

data augmentation, including random rotation and cropping, adjustment of brightness and hue, etc.212

We report the experimental results in Table 2 (COCO→ ZeroWaste section). A more detailed213

description of the results can be found in Section B.1 of Appendix.214

Experiments with TACO-pretrained Mask RCNN In the next set of experiments, we utilize the215

TACO dataset for waste detection in the outdoor scenes distributed under Attribution 4.0 International216

(CC BY 4.0) license. We trained Mask R-CNN for 40000 epochs on the modified TACO dataset217

with the material-based labels (cardboard, soft plastic, rigid plastic, metal and other) initialized with218

weights from MS COCO. We then finetuned the model on the training set of ZeroWaste-f data219

and report the results in Table B.1 (TACO→ ZeroWaste section).220

Results The experimental results with Mask RCNN indicate severe overfitting to the training data,221

hence the model fails to generalize to the unseen examples. The model pretrained on the TACO222

dataset performs poorly on both TACO and ZeroWaste-f datasets, which shows that, despite its223

remarkable efficiency on the large-scale datasets with natural scenes, such as MS COCO or Pascal224

VOC [59], Mask RCNN cannot generalize to our relatively small, extremely cluttered data with very225

diverse deformable objects. Recalling the history of success with other complex segmentation and226

detection datasets (e.g. from mIoU 57% in 2015 [60] to 84% in 2020 [61] on CityScapes [11], or227

from 51.6% in 2014 [62] to 90% in 2020 [63] on PASCAL VOC 2012 [59]), and knowing that the228

task can be solved by humans with a little training, we believe that the computer vision community229

will eventually come up with efficient methods for this challenging task.230

4.2 Semantic Segmentation231

Fully supervised experiments We used the state-of-the-art DeeplabV3+ model as a fully-supervised232

semantic segmentation baseline for our dataset. DeeplabV3+ is an efficient segmentation model233

that combines the atrous convolutions to extract the features in multiple scales, and an encoder-234
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TACO→ ZeroWaste COCO→ ZeroWaste
AP AP50 AP75 AP AP50 AP75

Train 39.11 54.77 44.58 62.55 81.59 71.59
Validation 15.86 28.83 16.37 14.99 23.62 16.09

Test 14.55 25.9 14.81 14.79 25.94 14.82

Table 2: Instance segmentation results of Mask R-CNN pretrained on TACO dataset (left) and MS COCO
dataset (right).The model pretrained on MS COCO overfits to the training split, while pretraining on TACO
dataset significantly reduces overfitting but does not yield a significant improvement in detection accuracy on
the validation and test sets. Please refer to Tables 6 in the Appendix for class-wise results.

decoder paradigm to gradually sharpen the object boundary using the intermediate features. As in the235

detection experiments, we used a standard implementation of DeeplabV3+ from Detectron2 library.236

We used the model with ResNet-101 backbone with three 3 × 3 convolutions instead of the first237

7 × 7 convolution that was pretrained on Cityscapes dataset [11]. We froze the first three stages238

of the backbone (convolution and two first residual block groups) and finetuned the model on the239

training set of ZeroWaste-f for 10000 iterations with starting learning rate 0.01 and batch size 40240

on a single GPU RTX A6000 which took approximately 14 hours. As in the previous experiments,241

we augmented the data extensively to prevent overfitting. The results of our experiments on all242

ZeroWaste-f splits can be found on the Table 3.243

Semi-supervised experiments For a semi-supervised segmentation baseline, we used an official244

implementation of Cross-Consistency Training CCT [33] method. CCT uses a shared encoder and245

several auxiliary decoders each of which performs various augmentations, such as spatial dropout,246

random noise, cutout of object regions etc. , and a cross-entropy-based loss to force the unlabeled247

predictions to be consistent across all decoders. Since CCT uses a different backbone architecture248

from DeeplabV3+, we first trained CCT on the labeled ZeroWaste-f data only for comparison249

with the semi-supervised setting. We used the same default hyperparameters reported in the paper250

for both supervised and semi-supervised experiments (the exact configuration can be found in our251

project). We report the mean Intersection over Union (mIoU) as well as mean pixel accuracy for both252

setups in Table 3, and more details can be found in Section B.2 of the Appendix.253

Weakly-supervised baseline As a baseline for weakly-supervised segmentation, we trained a binary254

classifier on the before and after collection frames of the ZeroWaste-w dataset. We used a standard255

Pytorch [64] implementation of ResNet50 [57] pretrained on ImageNet [65] for our classifier, and256

trained it for 5 epochs with learning rate 5× 10−4 using the binary cross-entropy loss. The resulting257

classifier obtained over 98% accuracy on the test set. We then used RISE [66], a black-box saliency258

generating technique, to extract the class activation maps (CAMs). RISE masks the input image with259

a set of random binary masks and returns the linear combination of the resulting CAMs weighted with260

the corresponding masks. The maps generated by RISE are then normalized and thresholded with261

0.621 that results in highest mIoU on the training set. For comparison, we computed the mean pixel262

accuracy and mIoU on randomly generated masks with the probability of each pixel belonging to the263

foreground class equal to the average fraction of the foreground pixels in the ZeroWaste-w dataset264

14.9% and report these results in Table 3. The visualization of the resulting CAMs can be found in265

Figure 9 in Section B.3 of the Appendix.266

Results Experimental results in Table 3 indicate that our ZeroWaste dataset proposes a challenging267

semantic segmentation task with an unusual for the standard segmentation datasets level of clutter,268

diversity of the foreground objects and, at the same time, their visual similarity with the background269

objects (all methods often tend to mistake the paper objects for cardboard and vice versa, and have270

a hard time distinguishing between soft and rigid plastic objects). The semi-supervised learning271

results indicate that the unlabeled examples from the ZeroWaste-s subset do not significantly help272

CCT improve the overall segmentation quality. As seen from the class-wise segmentation results273

on Table 8 in Section B.2 of Appendix, additional training of CCT with unlabeled data results in274

higher segmentation accuracy of the most frequent classes (e.g. cardboard and background), but275

degrades the performance on the objects of the rare classes (e.g. metal). Additionally, the binary276

classification results show that a simple CAM-based approach with cheap ZeroWaste-w data277

provides meaningful localization cues that can be further used for weakly- and semi-supervised278

segmentation.279
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Supervision Train Validation Test
mIoU Pixel Acc. mIoU Pixel Acc. mIoU Pixel Acc.

Random none 7.2 74.7 7.2 75.3 8.4 71.8
CAM weak 15.7 43.9 16.3 47.5 18.6 43.2

CCT semi semi 61.2 97.4 29.40 83.3 30.0 83.6
CCT full 65.38 97.9 29.80 83.4 29.20 81.2

DeeplabV3+ full 88.5 98.19 40.16 91.23 39.06 88.47

Table 3: Results of CAMs produced by RISE [66] with a binary classifier trained on ZeroWaste-w before
and after frames, CCT [33] trained only using the ZeroWaste-f , CCT trained with ZeroWaste-f and
ZeroWaste-s , and DeepLabV3+ [53] on our ZeroWaste-f dataset. Results indicate that 1) severe
overfitting occurs in the supervised scenario; 2) unlabeled ZeroWaste-s images do not significantly improve
the segmentation quality of CCT and 3) the binary classifier trained on ZeroWaste-w provides plausible
localization guidance that that can serve as cues for weakly-supervised segmentation. Please refer to Tables 7
and 8 for class-wise segmentation results and Figure 7 in the Appendix for confusion matrices on all splits.

5 Impact and Limitations of ZeroWaste280

Machine Learning Research ZeroWaste provides a gold standard for the evaluation of different281

waste sorting methods. It will catalyze research in the areas of fully, semi, and weakly supervised282

segmentation, data-efficient learning and domain adaptation. Our dataset provides a real-world283

application that is significantly more challenging than the previously used benchmarks for these tasks.284

Robotics Research This dataset will enable the development of robotic manipulation algorithms for285

waste sorting. It will facilitate research in object picking algorithms that can work with extremely286

cluttered scenes using realistic segmentation polygons. Integrating high-level reasoning about object287

classes and properties (e.g. hard/soft materials) to the picking algorithm will provide novel research288

avenues and can significantly boost the picking accuracy.289

Limitations and Future Directions Despite the fact that ZeroWaste is to the date the largest290

public dataset for waste detection and segmentation, it is still smaller than the standard large-scale291

benchmarks due to the fact that the annotation process for this domain is very expensive. For this292

reason, state-of-the-art detection and segmentation methods tend to overfit to the training data and293

therefore do not generalize well to the unseen examples. As future work, we plan to increase the294

diversity of our dataset by using synthetic-to-real domain adaptation and other data augmentation295

techniques. Another important future direction is to utilize visual signals of other modalities, e.g.296

near infrared footage that can be especially useful for distinguishing different material types.297

Societal Impact This paper is a part of a collaboration project that investigates the implications of298

deploying new AI and Robotics algorithms to MRFs [67]. We believe that human-robot collaboration299

is essential for more efficient computer-aided recycling, quality control of the sorting process, as well300

as in establishing safer work conditions for the MRF workers (e.g. by detecting dangerous waste items,301

such as sharp or explosive objects). This dataset can potentially be used to develop fully-automated302

MRFs with waste sorting robots, which may compromise the financial security of the MRF workers.303

However, after consulting with experts, we found that such fully-automated solutions would be far304

from sufficient to meet the contamination levels required in recycling, especially considering the305

complex, cluttered and varying nature of the waste stream. Given that only a small portion of the306

recyclable waste is currently getting recycled, achieving an efficient human-robot collaboration has a307

potential to solve the pressing problem of water and soil pollution.308

6 Conclusion309

This work introduces the largest public dataset for waste detection. ZeroWaste is designed310

as a benchmark for training and evaluation of fully, weakly, and semi-supervised detection and311

segmentation methods, and can be directly used for a broader category of tasks including transfer312

learning, domain adaptation and label-efficient learning. We provide baseline results for the most313

popular fully, weakly, semi-supervised, and transfer learning techniques. Our results show that314

current state-of-the-art detection and segmentation methods cannot efficiently handle this complex315

in-the-wild domain. We anticipate that our dataset will motivate the computer vision community to316

develop more data-efficient methods applicable to a wider range of real-world problems.317
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