
Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

GEOMETRY-ADAPTIVE PHYSICS-INFORMED NEURAL
SOLVER FOR PARAMETRIC PARTIAL DIFFERENTIAL E-
QUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Partial differential equations (PDEs) are notoriously difficult to solve, and tradi-
tional numerical approximation schemes have high computational costs. Recently,
hybrid neural-numerical solvers have been developed to ride on the modern trend
of fully end-to-end learning systems. Typical approaches can be divided into
physics-informed neural networks (PINNs), which approximately satisfy a given
set of PDEs by constraining neural networks, and neural solvers, which learn
solutions by training data. However, these solvers cannot fulfil the properties of the
generic solver for real-world simulations, which should be fast, stable, accurate,
no training data, multi-scale and multi-physics, resolution invariance, geometric
adaptation. In this work, we build a geometry-adaptive physics-informed neural
solver (GeoPINS) that satisfies these properties, combining the advantages of no
training data in PINNs, as well as fast, accurate and resolution-invariant architec-
tures offered by Fourier neural operators (FNO). In particular, to adapt to complex
and irregular geometries that exist in the real world, we reformulate PINNs in
geometry-adaptive space by taking full advantage of coordinate transformations
and the efficiency of numerical methods (including pseudo-spectral and high-order
finite difference methods) in solving the spatial gradient. In order to overcome
observed issues of conventional PINNs when solving challenging PDEs (such
as high-frequency, multi-physics), we rewrite FNO as an efficient visual mixer
to construct spatial-temporal representations and validate our approach on many
popular PDEs on both regular and irregular domains, demonstrating fast, stable,
and accurate performance, as well as resolution-invariant, geometry-adaptive prop-
erties for real-world simulations. In addition, GeoPINS achieves superior accuracy
compared to previous solvers at different zero-shot super-resolution settings.

1 INTRODUCTION

Solving partial differential equations (PDEs) is of huge importance for real-world simulations (e.g.,
flood modelling, weather forecasting, or astronomical simulations). Yet in many practical scenarios
with complex boundary conditions, such as the Navier-Stokes equations for fluid flow Gal-Chen &
Somerville (1975) and shallow water equations for flood inundation modelling Bates et al. (2010), it is
not feasible to find analytical solutions. Due to the lack of analytical solutions, their finite-dimensional
approximation is resorted to based on traditional numerical approaches, e.g., finite difference (FD),
finite volume (FV), finite element (FE), and pseudo-spectral (PS) methods, which have been developed
and advanced in the last decades. However, for real-world simulations, traditional numerical solvers
often require a large computational effort, especially for complex systems and may not even be
feasible for real-time applications Ming et al. (2020). In addition, traditional methods (e.g. FD) are
highly dependent on the resolution: coarse grids are fast but low accurate; fine grids are accurate
but slow. For example, a global flood solver based on FD has a resolution of up to 1 km, but this
requires a dramatic increase in computational resources Zhou et al. (2021). A ”good” PDE solver for
real-world simulations should satisfy the following basic conditions: i) Fast and accurate. Stable
and accurate approximation schemes can be obtained with minimal computational overhead; ii)
Resolution-invariant. The solver can efficiently represent dynamic processes at different spatial
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Figure 1: 1-D convection equations on regular domain (first row): Train on a spatial-temporary reso-
lution 32×100 directly infer on a spatial-temporary resolution 256×100; 2-D steady incompressible
Navier-Stokes equations on irregular domain (second row): Train on a spatial resolution 25 × 39
directly infer on a spatial resolution 49× 77. Analytical solution and computational fluid dynamics
(CFD) represent ground truth. The comparison between regular PINN based on fully-connected NNs
(third column) and GeoPINS (fourth column).

and temporal resolutions; iii) Geometry-adaptive. The solver can be adapted to general scientific
problems that exist in the real world, where the geometry is often complex and irregular.

Motivated by this, there has been a recent interest in developing machine learning (ML) approaches
to find solutions for the underlying PDEs (and/or work in tandem with numerical solutions). Recently,
deep neural networks (DNNs) have been demonstrated to be promising for solving PDEs or fluid
dynamics systems Cai et al. (2022); Karniadakis et al. (2021); Lu et al. (2021). A recent work involves
physics-informed neural networks (PINNs) Raissi et al. (2019) by approximating solution functions
and neural operators Anandkumar et al. (2020); Li et al. (2020); Brandstetter et al. (2022); Li et al.
(2022) by learning solution operators. Currently in NN-based ML methods, PINNs are mainly defined
in a pointwise way. Despite their noticeable empirical success, they may fail to solve challenging
PDEs when the solution exhibits high-frequency components Krishnapriyan et al. (2021); Wang
et al. (2021b); Fuks & Tchelepi (2020). For example, as reported in Fig. 1, one can clearly see that
conventional PINN is unable to learn the solution of 1-D convection equations on a regular domain
with convection coefficient equal to 30. Furthermore, according to the regular PINN’s solution of
2-D steady incompressible Navier-Stokes equations in Fig. 1, the fully-connected networks struggle
to learn multiphysics (conservation of energy, momentum and mass) simultaneously. Furthermore,
FNO is a resolution-invariant (zero-shot super-resolution) operator not only in the spatial domain but
also in the temporal domain, because the Fourier representation space Rdr does not depend on the
spatiotemporal resolution of the physical domain Ω. Moreover, due to the fast Fourier transformation
(FFT), FNO is a fast architecture that allows to obtain accurate results for PDEs. However, FNO
carries out supervised learning on a given dataset, which is infeasible for real-world simulation.
Importantly, due to the existence of the convolution operation, FNO is only able to deal with problems
defined on regular (rectangular) domains with uniform grids. For complex and irregular geometries,
FNO is no longer valid.

Bearing these concerns in mind, aiming to construct a “good” PDE solver for real-world simulations
without using any labeled data, we propose a geometry-adaptive physics-informed neural solver
(GeoPINS), that overcomes the shortcomings of both PINNs and neural operators. Compared to
PINNs, GeoPINS has a better spatial-temporal representation space, so, GeoPINS converges faster
and more accurately. It achieves geometry adaptation and resolution invariance when solving PDEs.
Our contributions can be summarized as follows: (1) We propose the GeoPINS, that combines
the advantages of leveraging PINNs to overcome the need for training data and leveraging neural
operators. Notably, GeoPINS can train on a lower spatio-temporal resolution and directly infer
at higher resolution, as shown in Fig. 1, which provides an effective way to refine solutions of
PDEs over large areas. (2) GeoPINS is a dynamic geometry-adaptive solver, which can adapt to
complex and irregular geometries that exist in the real world. Geometry-adaptive physics-constrained
(GeoPC) loss is constructed by reformulating PINNs in geometry-adaptive space. Different spatial-
temporal gradients (including gradients on the computational domain and gradients of coordinate
transformations) can be solved by a proposed numerical scheme with high precision and high speed.
(3) We demonstrate FNO is an effective spatial-temporal model to resolve issues of conventional
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PINNs when solving challenging PDEs (such as high-frequency, multiphysics). Importantly, we find
FNO is an effective vision mixer. Furthermore, we analyze that Fourier feature embeddings by FNO
can make networks more suitable for modeling PDEs’ systems in low dimensions. The details are
provided in §C in Appendix. (4) We evaluate our method by solving the 1-D Convection equation and
1-D Burgers’ equation on regular domains, 2-D incompressible Navier-Stokes equation on irregular
domains, and 2-D Shallow water equation on the surface of sphere. Experiments show that GeoPINS
is fast, stable, and accurate while retaining excellent resolution-invariant (zero-shot super-resolution),
geometry-adaptive properties for real-world simulations. Additionally, GeoPINS achieves higher
accuracy compared to previous solvers under different zero-shot super-resolution setting.

2 GEOMETRY-ADAPTIVE PHYSICS-INFORMED NEURAL SOLVER
2.1 OVERVIEW

The Geometry-adaptive physics-informed neural solver (GeoPINS) is built with input channels I
composed of coordinates x, time domain t and available initial condition ut0 of the physical domain
Ωg . As shown in Fig. 2, the input is first lifted to a higher dimensional representation v0 by multi-layer
perceptrons (MLP). Then several FNO layers defined in Li et al. (2020) (K0,K1,...,Kl) are applied to
extract efficient spatial-temporal representations vl, where kernel function Kφ: Rd×d → Rdr×dr is a
neural network parameterized by φ. d represents the dimensionality of discretization in the domain
Ω. Notably, different from FNO layers in Li et al. (2020), different dimensions of representation
space dr in different FNO layers are used to adapt different PDE problems with lower computational
parameters. The outputs û(t) (e.g. velocity or pressure) in computational domain Ωr is obtained by
applying MLP projection on vl. The forward process can be formulated as,

vl = (Kl ◦ σl ◦ · · · ◦ σ1 ◦K0) ◦MLP (I), û(t)‖x∈Ωr = MLP (vl). (1)
Here û(x, t)‖x∈Ωr and û(x, t)‖x∈Ωg are equal at corresponding nodes. The neural solver is trained
with a proposed GeoPC loss constructed by reformulating PINNs in geometry-adaptive space, which
is described in detail below.

Figure 2: The full architecture of Geometry-adaptive physics-informed neural solver.
2.2 REFORMULATING PINNS IN GEOMETRY-ADAPTIVE SPACE

Given the geometry-adaptive physical domains Ωg = [x, y] and computational domains Ωr = [η, ξ],
the transformation G between coordinates of the geometry-adaptive physical domain (Ωg) and regular
computational domain (Ωr) can be defined as,

x = G(η, ξ), y = G(η, ξ). (2)
To enable physics-constrained learning in the geometry-adaptive space, the original PDEs defined in
the physical domain has to be recast as the form in computational domain. Specifically, the first and
second derivatives in Ωg are transformed into Ωr as,
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With these modified derivative terms, the GeoPC loss is defined as,
LGeoPC = min

θ
‖Ldata ‖Ωg

+ λ‖LPDE‖Ωg

Ldata = ‖LIC‖Ωg + ‖LBC‖Ωg

LPDE = f
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∂û

∂t
, . . . , ϑ

)
, x ∈ Ωg, t ∈ [0, T ],

(4)
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where λ is a regularization parameter that controls the emphasis on residuals of PDE. Ldata (including
LIC /LBC) measure the mismatch between the NN prediction and the initial/boundary conditions in
Eq. 11, and LPDE is a constraint on the residual of the PDE system. θ denotes the NN parameters.

Two types of gradients in GeoPC loss, including gradients on regular computational domain (e.g. ∂
∂η ,

∂
∂ξ ) and gradients of coordinate transformations (e.g. ∂η∂x ,

∂η
∂y ,

∂ξ
∂x ,

∂ξ
∂y ), need to be solved efficiently.

The most general way in PINNs Raissi et al. (2019); Jin et al. (2021) to compute the exact gradient
is to use the auto-differentiation library of neural networks (autograd). The autograd method is a
pointwise operation, which is general and exact. However, it is usually slow and memory-consuming
on the space domain. The gradient solving based on numerical methods are significantly more
effective than autograd, since the number of neural operator parameters is usually much greater than
the grid size. Thus, FFT pseudo-spectral (FFT PS) numerical methods Boyd (2001) and high-order
finite difference (FD) numerical methods Li et al. (1995) are utilized to calculate spatial gradients of
periodic and non-periodic domains, respectively, which is shown in the upper right corner of Fig. 2.
The high-order FD methods are used to calculate temporal gradients. Notably, the detailed derivation
and explanation of gradients on computational domain and gradients of coordinate transformations
are presented in §A and §B in Appendix, respectively.

3 NUMERICAL EXPERIMENTS

In this section, we conduct empirical experiments to examine the efficacy of the proposed GeoPINS
by solving the 1-D Convection equation and 1-D Burgers’ equation on regular domains, 2-D incom-
pressible Navier-Stokes equation on irregular domains, and 2-D Shallow water equation on the surface
of sphere. Importantly, the detailed implementation details are shown in §D in Appendix. State-of-the-
art solvers based on PINNs are considered as benchmarks, including regular PINNs Krishnapriyan
et al. (2021), Physics-informed geometry-adaptive convolutional neural networks (PhyGeoNet) Gao
et al. (2021a), PINO Li et al. (2021), and PINN-DeepONet Wang et al. (2021b).
3.1 PDES ON REGULAR DOMAIN

We first consider a 1-D convection problem to verify the proposed GeoPINS, which is a common
hyperbolic wave equation. The detail forms, implementation, results and visualization of GeoPINS
can be found in §E.1 in Appendix. Second, in order to compare with various advanced neural-based
solvers Li et al. (2020; 2021); Wang et al. (2021b), the 1-D Burgers equation on regular domain is
utilized. The 1-D Burgers equation is a non-linear PDE with periodic boundary conditions. The
implementation detail, results and analysis are included in §E.2 in Appendix. Through a large number
of experiments on regular geometries, it has been demonstrated that GeoPINS can achieve significant
performance improvement compared with other advanced neural-based solvers.
3.2 PDES ON IRREGULAR DOMAIN

We consider the 2-d steady incompressible Navier-Stokes equations on irregular river (§E.3 in
Appendix) and the shallow water equation on the sphere in latitudelongitude coordinates (§E.4 in
Appendix). Results on the Navier-Stokes equation in §E.3 show that GeoPINS provides a favorable
opportunity for fast and refined-resolution solutions of large-scale PDEs through the geometry-
adaptive and resolution-invariant properties Results on the geostrophic flow test case in §E.4 show
that GeoPINS is a prominent (fast and accurate) dynamic geometry-adaptive solver for global
dynamics simulation.

4 CONCLUSION

We have observed that regular PINNs and neural operators have fundamental limitiations for solving
PDEs in real-world simulations. Thus, a generic solver, GeoPINS, is proposed with excellent
resolution-invariant (zero-shot super-resolution), geometry-adaptive properties. GeoPINS achieves
superior accuracy compared to PINNs-based solvers on many popular PDEs relevant to real-world
problems. A shortcoming of our current work is inaccuracies of solving gradients for coarse meshes
by finite differences. Hence, we should look in the future towards learned gradients that allow an
efficient and accurate computation.
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A GRADIENTS ON THE COMPUTATIONAL DOMAIN.

The principal advantage of FFT PS methods is the great accuracy of the resulting discretization
scheme for a given number of nodes, which is the limit of finite-difference methods of increasing
orders Fornberg (1987). In addition, the saving of computational resources is another advantage for
FFT PS methods. Applying the PS method amounts to performing a periodic discrete convolution,
requiring two fast Fourier transforms. Specifically, a FFT of the predictions (velocity, pressure, depth
and others) F(û) in computational domain is firstly used to compute the discrete Fourier space. Then,
the solution of gradients can be obtained in the Fourier space. Finally, the inverse FFT F−1 is utilized
to construct the full solution in computational domain. Thus,

∂û

∂η
= F−1 (ikηF(û)) ,

∂2û

∂η2
= F−1

(
−k2

ηF(û)
)
, kη =

2πwη
Lη

∂û

∂ξ
= F−1 (ikξF(û)) ,

∂2û

∂ξ2
= F−1

(
−k2

ξF(û)
)
, kξ =

2πwξ
Lξ

wη = {−Nη/2,−Nη/2 + 1, . . . , Nη/2− 1} wξ = {−Nξ/2,−Nξ/2 + 1, . . . , Nξ/2− 1},

(5)

where kη and kξ represent η-direction wave-numbers and ξ-direction wave-numbers, respectively.
The spatial grid size of the computational domain is Nη × Nξ. Lη and Lξ are spatial lengths of
η-direction and ξ-direction, respectively. Importantly, if rapidly-oscillating PDE functions with
relatively few grid points are solved (e.g. Convection equation with spatial size 32× 32), an effect
known as aliasing will be observed Boyd (2001). Aliasing means that wavenumbers of magnitude
greater than kη/2 or kξ/2 are incorrectly represented as lower wavenumbers. A 2/3 filter Hou & Li
(2007) is used to avoid aliasing instability. Filtering means removing the mode that leads to aliasing,
which can be done by damping the high wavenumbers when computing the gridents.

However, FFT PS methods are restricted to computation in rectangular domains with periodic
boundary conditions. On the contrary, some PS solutions are designed for non-periodic boundary
conditions. For example, the non-periodic boundary (e.g. no-slip wall condition) can be handled
by Chebyshev PS methods Farcy & de Roquefort (1988). However, a non-uniform collocation grid
(e.g. cosine function) needs to be built for Chebyshev polynomials, which makes FD-based gradient
computation of coordinate transformations unstable and introduces construction problems of the
differential scheme. Therefore, a four-order difference scheme is constructed to obtain stable and
accurate gradients on the computational domain with a non-periodic boundary. Specifically, the first
derivatives are approximated by four-order central differences,

∂û

∂η
≈ −ûη+2,ξ + 8ûη+1,ξ − 8ûη−1,ξ + ûη−2,ξ

12δη
+O

(
(δη)4

)
∂û

∂ξ
≈ −ûη,ξ+2 + 8ûη,ξ+1 − 8ûη,ξ−1 + ûη,ξ−2

12δξ
+O

(
(δξ)

4
)
,

(6)

where δη and δξ are spatial steps of η-direction and ξ-direction, respectively. The four-order difference
can be expressed by an convolution filter in the algorithm. For the boundary, third-order one-sided
differences (i.e., upwind/downwind) are applied to stabilize the difference scheme.
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B GRADIENTS OF COORDINATE TRANSFORMATIONS.

The gradient solutions of coordinate transformations G : Ωr 7→ Ωg can be divided into two cases.
Firstly, when analytical forms of G are available, gradients of coordinate transformations can be
solved exactly. For example, in terms of solving the Convection equation and Burgers’ equation in
regular rectangular grid (Ωr = Ωg), gradients of coordinate transformations are expressed as,[

∂η
∂x

∂η
∂y

∂ξ
∂x

∂ξ
∂y

]
=

[
1 0
0 1

]
(7)

For solving the shallow water equation on the surface of a sphere Bihlo & Popovych (2022);
Gilliland (1981), given the Spherical domains Ωg = [θ, φ] (θ=colatitude,φ=longitude) and Cartesian
computational domains Ωr = [η, ξ], gradients of G are expressed as (a is the radius of the earth),[

∂η
∂θ

∂η
∂φ

∂ξ
∂θ

∂ξ
∂φ

]
=

[
a cos θ cosφ −a sin θ sinφ
a cos θ sinφ a sin θ cosφ

]
. (8)

Secondly, in most cases, analytical forms of G are not available, which have to be approximated
numerically (e.g. solving incompressible Navier-Stokes equations on an irregular domain). Inspired
by Gao et al. (2021a), elliptic coordinate transformation is utilized in this case. For example, G can
be obtained by solving a diffusion equation, considering the one-to-one mapping boundary condition.
Formulated as,

α
∂2x

∂η2
− 2β

∂2x

∂η∂ξ
+ γ

∂2x

∂ξ2
= 0, α

∂2y

∂η2
− 2β

∂2y

∂η∂ξ
+ γ

∂2y

∂ξ2
= 0

α =

(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

, γ =

(
∂x

∂η

)2

+

(
∂y

∂η

)2

, β =
∂x

∂η

∂x

∂ξ
+
∂y

∂η

∂y

∂ξ

Boundary : G(η, ξ) = ∂Ωig for ∀η, ξ ∈ ∂Ωir, i = 1, · · · , 4.

(9)

By solving Eq. 9 based on four-order difference numerically (Eq. 6), the Jacobian ∂y
∂η ,

∂y
∂ξ ,

∂x
∂η and

∂x
∂ξ of G can be obtained. Then, the Jacobian matrix (J = ∂x

∂η
∂y
∂ξ −

∂x
∂ξ

∂y
∂η ) is applied to modify Eq. 3

(such as first derivatives) as,
∂

∂x
= J−1

[(
∂

∂η

)(
∂y

∂ξ

)
−
(
∂

∂ξ

)(
∂y

∂η

)]
∂

∂y
= J−1

[(
∂

∂ξ

)(
∂x

∂η

)
−
(
∂

∂η

)(
∂x

∂ξ

)]
.

(10)

The derivation of second derivatives is presented as follows.

The derivatives of reference domains Ωr = [η, ξ] with respect to geometry-adaptive physical domains
Ωg = [x, y] can be expressed as,

∂η

∂x
=

1

J

∂y

∂ξ

∂ξ

∂x
= − 1

J

∂y

∂η

∂η

∂y
= − 1

J

∂x

∂ξ

∂ξ

∂y
=

1

J

∂x

∂η
,

(11)

where the Jacobian matrix J = ∂x
∂η

∂y
∂ξ −

∂x
∂ξ

∂y
∂η .

The second derivatives in Ωg are transformed into Ωr as,

∂2

∂x2
=
∂η

∂x

∂η

∂x

∂2

∂η2
+
∂η

∂x

∂ξ

∂x

∂2

∂η∂ξ
+
∂ξ

∂x

∂ξ

∂x

∂2

∂ξ2
+

[
∂ξ

∂x

∂

∂ξ

(
∂η

∂x

)
+
∂η

∂x

∂

∂η

(
∂η

∂x

)]
∂

∂η

∂2

∂y2
=
∂η

∂y

∂η

∂y

∂2

∂η2
+
∂η

∂y

∂ξ

∂y

∂2

∂η∂ξ
+
∂ξ

∂y

∂ξ

∂y

∂2

∂ξ2
+

[
∂ξ

∂y

∂

∂ξ

(
∂η

∂y

)
+
∂η

∂y

∂

∂η

(
∂η

∂y

)]
∂

∂η
.

(12)
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Based on Eq. 11 and Eq. 12, the second derivatives are calculated as,

∂2

∂x2
= J−2

[
∂y

∂ξ

∂y

∂ξ

∂2

∂η2
− ∂y

∂ξ

∂y

∂η

∂2

∂η∂ξ
+
∂y

∂η

∂y

∂η

∂2

∂ξ2
+

[
−∂y
∂η

∂

∂ξ

(
∂y

∂ξ

)
+
∂y

∂ξ

∂

∂η

(
∂y

∂ξ

)]
∂

∂η

]
∂2

∂y2
= J−2

[
∂x

∂ξ

∂x

∂ξ

∂2

∂η2
− ∂x

∂ξ

∂x

∂η

∂2

∂η∂ξ
+
∂x

∂η

∂x

∂η

∂2

∂ξ2
+

[
−∂x
∂η

∂

∂ξ

(
∂x

∂ξ

)
+
∂x

∂ξ

∂

∂η

(
∂x

∂ξ

)]
∂

∂η

]
.

(13)

C SPATIAL-TEMPORAL MODEL

FNO is an effective spatial-temporal model to resolve the issues of PINNs (toy examples are shown
in Fig. 1). The discrete FNO is defined by replacing the kernel function in Li et al. (2020) with,

(K(φ)vt) (x) = F−1 (Rφ · (Fvt)) (x) ∀x ∈ Ω, (14)

where F and F−1 represent the FFT and inverse FFT, respectively. Rφ is a parametric function
Rd×Rdr → Rdr ×Rdr that maps to the values of the appropriate Fourier modes k. Two perspectives
are given to theoretically analyze the effectiveness of FNO.

Fourier feature embeddings. FNO may enable faster convergence to high-frequency components
of PDEs. Conventional FCNN in PINNs can yield a significantly lower convergence rate for high
frequency components of PDEs Wang et al. (2021a); Ronen et al. (2019). However, compared with
FCNN, Fourier feature embeddings by FFT in Eq. 14 can make networks better suited for modeling
PDEs’ systems in low dimensions, thereby overcoming the high-frequency failure problems of PINNs,
which can be demonstrated by neural tangent kernel theory Tancik et al. (2020); Jacot et al. (2018).

FNO is an effective vision mixer. Vision transformers (ViT) have recently shown promise in
producing rich contextual representations for spatial-temporal tasks Guibas et al. (2021); Dosovitskiy
et al. (2020); Yu et al. (2021); Gao et al. (2021b). The general architecture of ViT Dosovitskiy et al.
(2020) is a line of models with a stack of vision mixers, which include token mixing→ channel
mixing→ token mixing. Mixer components can be various attention-based operations Dosovitskiy
et al. (2020), spatial MLP Tolstikhin et al. (2021), pooling operation Yu et al. (2021), and others. A
key component for the effectiveness of transformers is attributed to proper mixing of tokens.

The FNO in Eq. 14 is a member of vision mixers. Specifically, the FNO can be decomposed into token
mixing→ channel mixing→ token mixing. Firstly, the FFT Fvt can be considered the token mixing.
Then, the matrix multiplication Rφ performs mixing on channel. Finally, the inverse FFT F−1 is
a token mixing layer. Detailed process is shown in Fig. 2. Thus, FNO has superior spatiotemporal
expressiveness and generalization for challenging PDEs.

D IMPLEMENTATION DETAILS.

Four FNO layers are stacked with different Fourier modes k = {12, 12, 9, 9}, channel combinations
of the representation space dr = {16, 24, 24, 32, 32} and GeLU activation for all cases. A layer
normalization is used after the FNO layer. We use Adam optimizer Kingma & Ba (2014) with an
initial learning rate of 0.001. The hyperparameter λ=1 in GeoPC loss for all cases. L2 relative error
between the predicted solutions and the analytical/computational fluid dynamics (CFD) solutions is
regarded as evaluation measure. For all cases, we run models at least five times with different preset
random seeds, and average the relative errors. All the computation is carried on a single Nvidia RTX
3090 GPU with 24GB memory.

E EXPERIMENTS

E.1 CONVECTION EQUATION

We first consider a 1-D convection problem to verify the proposed GeoPINS. It takes the form,
∂u

∂t
+ β

∂u

∂x
= 0, x ∈ [0, 2π], t ∈ [0, T ]

u(x, 0) = h(x),
(15)
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Table 1: Results of Convection equations. A→B represents training on a spatial resolution with A
and directly evaluating on a spatial resolution with B. The values in bold are the best.

Methods Mode Parameters β=20 β=30 β=40
32→256 64→256 128→256 256→256 32→256 64→256 128→256 256→256 32→256 64→256 128→256 256→256

Regular PINN (a 4-layer fully-connected NN) 30701 1.6667 1.7081 1.5183 1.1276 1.7325 1.9008 1.5630 1.0372 1.5085 1.8210 1.0184 1.0993
Regular PINN (a 8-layer fully-connected NN) 1124401 1.2277 1.4874 0.9537 1.3654 0.9569 1.4404 1.3859 1.0723 1.4620 1.1529 1.1012 1.2013

GeoPINS with FD 1141091 0.3128 0.0974 0.0271 0.0770 0.4323 0.1308 0.0332 0.1077 0.5553 0.1660 0.0524 0.2310
GeoPINS with FFT PS 1141091 0.0622 0.0381 0.0304 0.0225 0.1608 0.1211 0.1035 0.0952 0.4668 0.4436 0.4296 0.4215

Figure 3: 1-D convection equations on regular domain (β=20): Train on a low spatial-temporary
resolution (first column) directly infer on a spatial-temporary resolution 256× 100 by GeoPINS with
FD (second column) and GeoPINS with FFT PS (third column).

Figure 4: 1-D convection equations on regular domain (β=30): Train on a low spatial-temporary
resolution (first column) directly infer on a spatial-temporary resolution 256× 100 by GeoPINS with
FD (second column) and GeoPINS with FFT PS (third column).
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Figure 5: 1-D convection equations on regular domain (β=40): Train on a low spatial-temporary
resolution (first column) directly infer on a spatial-temporary resolution 256× 100 by GeoPINS with
FD (second column) and GeoPINS with FFT PS (third column).

with periodic boundary conditions u(0, t) = u(2π, t). Where β is the convection coefficient and h(x)
is the initial condition. h(x) = sin(x) in our experiments. An analytical solution of this problem is
used to verify the prediction of neural-based solvers,

uanalytical (x, t) = F−1
(
F(h(x))e−iβkt

)
, (16)

where k denotes frequency in the Fourier domain. The GeoPC loss is defined by combining Eq. 15
and Eq. 7,

LGeoPC = min
θ
‖û(x, 0)− u(x, 0)‖+ ‖û(0, t)− û(2π, t)‖+ λ‖∂û

∂t
+ β

∂û

∂x

2

‖, x ∈ [0, 2π], t ∈ [0, T ].

(17)
We use batch size = 1. Adam optimizer is utilized with the learning rate 0.001 that decays by half
every 50 epochs. 20000 epochs in total. Each epoch has only one iteration step. The input channel is
set to 3, including coordinate x, time t, and initial condition u0.

The results of our experiments are shown in Table 1. As shown in Table 1, GeoPINS with FD or
FFT PS results in a much more accurate solution than the regular PINN. With GeoPINS, the relative
error is almost two orders of magnitude lower under different zero-shot super-resolution settings.
Furthermore, the error is almost invariant for GeoPINS with different resolutions. Compared with
GeoPINS with FD, GeoPINS with FFT PS is generally better performing for this problem with
periodic boundary, especially for extreme zero-shot super-resolution (training on spatial-temporary
resolution 32 × 100 and directly inferring on 256 × 100). However, GeoPINS with FD is more
robust for solving complex and non-symmetric convection equations (e.g. β=40). Visualize results
of different convection coefficients (β=20,30,40) are shown in Fig. 3, Fig. 4, and Fig. 5. Based on
these visualize results, it has been demonstrated that GeoPINS can do zero-shot super-resolution in
the spatial domain, and the results are accuracy (similar with analytical solutions) under different
convection coefficients.

E.2 BURGERS’ EQUATION.

The 1-D Burgers equation is formulated as,

∂u

∂t
+
∂
(
u2/2

)
∂x

= ν
∂2u

∂x2
, x ∈ (0, 1), t ∈ (0, 1]

u(x, 0) = u0(x), x ∈ (0, 1),

(18)
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where u0 ∈ L2
per ((0, 1);R) is the initial condition and ν = 0.01 is the viscosity coefficient.

The GeoPC loss can be obtained by combing Burgers equation and gradients of coordinate transfor-
mations in regular rectangular grid,

LGeoPC = min
θ
‖û(x, 0)− u(x, 0)‖+ ‖û(0, t)− û(1, t)‖

+ λ‖∂û
∂t

+
∂
(
û2/2

)
∂x

− ν ∂
2û

∂x2
‖, x ∈ (0, 1), t ∈ (0, 1].

(19)

In order to compare with benchmarks Wang et al. (2021b); Li et al. (2021), we use the same problem
setting and training data with PINO Li et al. (2021). Specifically, batch size = 20. 800 instances
are used as training data and 200 instances are considered as testing data. We use Adam optimizer
with the learning rate 0.001 that decays by half every epoch. 500 epochs in total. The input channel
includes coordinate x, time t, and initial condition u(x, 0).

Compared to other PDE-constrained operators, GeoPINS is more expressive and thereby achieves
better accuracy. Specifically, PINN-DeepONet achieves 0.0138 Wang et al. (2021b). PINO achieves
0.0037 Li et al. (2021). Our GeoPINS with FD achieves 0.0040 and GeoPINS with FFT PS achieves
0.0036. Thus, GeoPINS with FFT PS shows significantly improved performance in PDEs with
periodic domains.

E.3 NAVIER-STOKES EQUATION.

Figure 6: The physical domain (upper left) and reference domain (lower left) for 2-D Navier-Stokes
equations. Velocity (the first row) and pressure (the second row) contours of CFD benchmakrk,
Regular PINN, PhyGeoNet, and GeoPINS. All methods are fully trained at ν = 0.01.

Table 2: Results of 2-D incompressible Navier-Stokes equations. The values in bold are the best. It
is demonstrated that GeoPINS has excellent geometry-adaptive and resolution-invariant properties.

Methods 25×39→ 49×77 49×77→ 49×77
Training time per epoch Velocity Pressure Training time per epoch Velocity Pressure

Regular PINN 0.0313 0.2864 0.6866 0.1571 0.2375 0.6326
PhyGeoNet 0.0615 0.2391 0.6551 0.0640 0.0858 0.3400
GeoPINS 0.0648 0.0993 0.3681 0.0669 0.0611 0.2769

We consider the 2-d steady incompressible Navier-Stokes equations,

∇ · v = 0, (v · ∇)v = −∇p+∇ · (ν∇v) (20)

where v, p represent the velocity vector and pressure, respectively. ν is fluid viscosity. The fluid flow
is solved on a geometry-adaptive physical domain Ωg, as shown in top left of Fig. 6. Similar with
Gao et al. (2021a), the no-slip wall boundary condition is used on the left and right boundaries, the
boundary condition of inlet (green) is given by v = [0, 1]. The boundary condition of outlet (blue) is
set as symmetrical boundary and p = 0. The computational domain Ωr is a rectangular grid with step
= 0.01 (bottom left in Fig. 6).
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The GeoPC loss can be obtained by combing Eq. 20 and Eq. 10,

LGeoPC = min
θ
‖Lboundary ‖Ωg

+ λ‖∇ · v̂ + (v̂ · ∇)v̂ +∇p̂−∇ · (ν∇v̂)‖Ωg (21)

In terms of implementation details of Navier-Stokes equation, batch size = 1, total epochs = 20000.
We use Adam optimizer with the learning rate 0.001 that decays by half every epoch. To evaluate
the learning performance, the ground truth (same with PhyGeoNet Gao et al. (2021a)) is generated
by finite volume (FV)-based numerical simulations. The FV simulations are performed on an
open-source FV platform, OpenFOAM Jasak et al. (2007). The input channel is set to 2, including
x-component coordinate and y-component coordinate.

The visual results of our experiments are shown in Fig. 6, where the CFD results are used as a
benchmark. The regular PINN fails to accurately predict the velocity and pressure distributions,
which shows the flaws of PINNs in multiphysics problems. Both the PhyGeoNet and GeoPINS with
FD can capture the flow pattern. However, discrepancies are observed in the velocity outlet region
and in the high-pressure region in the left and right corners. The GeoPINS prediction result is more
accurate and agrees with the CFD benchmark very well. The relative errors for velocity and pressure
are listed in Table 2, GeoPINS achieves robust and best performances under different zero-shot super-
resolution settings. Contrary to the failure of PhyGeoNet in the setting 25×39→ 49×77, GeoPINS
retains the resolution-invariant properties under similar training time as PhyGeoNet. In addition,
training time is shorter at lower resolutions. Thus, GeoPINS provides a favorable opportunity
for fast and refined-resolution solutions of large-scale PDEs through the geometry-adaptive and
resolution-invariant properties.

E.4 SHALLOW WATER EQUATION.

Table 3: Quantitative analysis for the nonlinear zonal geostrophic flow test case using GeoPINS with
FD and GeoPINS with FFT PS. Reported are the relative errors on the final time t = 5 days.

Methods Velocity Height
GeoPINS with FD 0.3770 0.0812

GeoPINS with FFT PS 0.3540 0.0769

The shallow water equation is often solved on a sphere in global atmosphere or ocean models. The
shallow-water equations on the sphere in latitudelongitude coordinates [θ, φ] are,

∂u

∂t
+

u

a cosφ

∂u

∂θ
+
v

a

∂u

∂φ
−
(
f +

u

a
tanφ

)
v +

g

a cosφ

∂h

∂θ
= 0

∂v

∂t
+

u

a cosφ

∂v

∂θ
+
v

a

∂v

∂φ
+
(
f +

u

a
tanφ

)
u+

g

a

∂h

∂φ
= 0

∂h∗

∂t
+

u

a cosφ

∂h∗

∂θ
+
v

a

∂h∗

∂φ
+

h∗

a cosφ

(
∂u

∂θ
+
∂v cosφ

∂φ

)
= 0,

(22)

where u and v are the θcomponents and φcomponents of velocity vectors, respectively. h = h∗ + hb
is the total water height, with hb being the height of bottom topography. f is the Coriolis parameter.

Importantly, it is essential to non-dimensionalize the shallow water equation before training GeoPIN-
S Kissas et al. (2020); Bihlo & Popovych (2022). Thus, we rewrite 2-D nonlinear shallow water
equations as the non-dimensional system,

∂û

∂t
+

û

cos φ̂

∂û

∂θ̂
+ v̂

∂û

∂φ̂
− (f̂ + û tan φ̂)v̂ +

c

cos φ̂

∂ĥ

∂θ̂
= 0

∂v̂

∂t
+

û

cos φ̂

∂v̂

∂θ̂
+ v̂

∂v̂

∂φ̂
+ (f̂ + û tan φ̂)û+ c

∂ĥ

∂φ̂
= 0

∂ĥ∗

∂t
+

û

cos φ̂

∂ĥ∗

∂θ̂
+ v̂

∂ĥ∗

∂φ̂
+

ĥ∗

cos φ̂

(
∂û

∂θ̂
+
∂(v̂ cos φ̂)

∂φ̂

)
= 0,

(23)

where c = 1 is an arbitrary non-dimensional constant for global nonlinear zonal geostrophic flow. the
re-scaled variables t = T t̂, θ̂ = θ, φ̂ = φ, û = u

U , v̂ = v
U , ĥ

∗ = h∗

H , ĥ = h
H , and f̂ = Tf . T , U , and
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Figure 7: Results of GeoPINS with FD for 2-D Shallow water equation on the sphere in latitudelon-
gitude coordinates. The first row is the exact solution for day 0 (reference). The second to seventh
rows are solutions of GeoPINS with FD from day 0 to day 5.
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Figure 8: Results of GeoPINS with FFT PS for 2-D Shallow water equation on on the sphere in
latitudelongitude coordinates. The first row is the exact solution for day 0 (reference). The second to
seventh rows are solutions of GeoPINS with FFT PS from day 0 to day 5.
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H are characteristic scales of large-scale atmospheric phenomena. Specifically,

L = a[m] = 6371220 m, T = 1[day] = 86400[s], U = L/T
[
m · s−1

]
, H = c

L2

T 2g
[m].

(24)
Global geostrophic flow is the only test case for which an exact solution is known. In order to fully
verify the validity of GeoPINS in dynamic geometry-adaptive domains, we follow Williamson et al.
(1992), the initial condition for this test case is,

u = u0 cosφ, v = 0

gh = gh0 −
(
aωu0 +

u2
0

2

)
sin2 φ,

(25)

where u0 = 2πa/12 m· days −1 and gh0 = 2.94 ·104 m2 ·s−2. The Coriolis parameter f = 2ω sinφ.
The angular velocity of Earths rotation ω = 2π

86400

[
s−1
]
. This test is to be run for 5 days. Thus,

we consider dynamic spherical coordinates Ωg = [t, θ̂, φ̂] = [0, 5] × [−π, π] × [−π/2, π/2] as
the physical domain and Cartesian coordinates Ωr = [t, x, y] = [0, 5] × [0, 500] × [0, 500] as the
computational domain. dt× dx× dy = 1× 2π/500× π/500. The GeoPC loss can be obtained by
combing Eq. 23 and Eq. 25,

LGeoPC = min
θ
‖LInitial ‖Ωg

+ λ ‖Lnon-dimensional shallow water equation‖Ωg
. (26)

The boundary conditions on the sphere is enforced as hard constraint by a coordinate-transform
layer Bihlo & Popovych (2022). In terms of GeoPINS with FD and GeoPINS with FFT PS, batch
size = 1, total epochs = 15000. We use Adam optimizer with the learning rate 0.001 that decays by
half every 50 epochs. The Fourier modes k = {4, 4, 4, 4} in time dimension due to the limitation of
the tensor size in time dimension. The input channel is set to 3, including non-dimensional latitude
coordinate θ̂, non-dimensional longitude coordinate φ̂, and non-dimensional time t. It is notice that
predictions (û, v̂, ĥ∗) of GeoPINS need to be restored to the physical scale.

Visualization results of GeoPINS with FD and GeoPINS with FFT PS are shown in Fig. 7 and Fig. 8,
respectively. According to comparisons between GeoPINS prediction results and reference results on
day 0 in Fig. 7 and Fig. 8, GeoPINS can accurately predict the velocity and water height. It is also
demonstrated that GeoPINS is an effective and stable dynamic geometry-adaptive solver for global
dynamics simulation based on the 5-day simulation results. To quantitatively evaluate the validity of
GeoPINS, we follow Bihlo & Popovych (2022); Williamson et al. (1992) in the choice of relative
error measures at time t (RE2(t)), which are the L2-error being weighted by the cosine of latitudes.
Formulated as,

RE2(t) =

(∑N
i=1

(
ĥm
(
t, θi, φi

)
− h

(
t, θi, θi

))2

cosφi
)1/2

(∑N
i=1 h (t, θi, φi)

2
cosφi

)1/2
, (27)

where N = Nlon × Nlat = 500 × 500 denotes the total number of grid points being used for the
error. ĥm and h represent prediction results of GeoPINS and exact solutions of the nonlinear zonal
geostrophic flow test case Williamson et al. (1992), respectively. The relative errors of GeoPINS
with FD and GeoPINS with FFT PS on the final time t = 5 days are presented in Table 3. The results
confirm that GeoPINS is an accurate dynamic solver for global dynamics simulation. In addition,
compared with GeoPINS with FD, GeoPINS with FFT PS is generally better performing for solving
shallow water equation on the sphere.
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