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Abstract

Neuro-Symbolic Artificial Intelligence (NeSy AI) has emerged as a promising direction
for integrating neural learning with symbolic reasoning. Typically, in the probabilistic
variant of such systems, a neural network first extracts a set of symbols from sub-symbolic
input, which are then used by a symbolic component to reason in a probabilistic manner
towards answering a query. In this work, we address the problem of formally verifying the
robustness of such NeSy probabilistic reasoning systems, therefore paving the way for their
safe deployment in critical domains. We analyze the complexity of solving this problem
exactly, and show that a decision version of the core computation is NPPP- complete. In
the face of this result, we propose the first approach for approximate, relaxation-based
verification of probabilistic NeSy systems. We demonstrate experimentally on a standard
NeSy benchmark that the proposed method scales exponentially better than solver-based
solutions and apply our technique to a real-world autonomous driving domain, where we
verify a safety property under large input dimensionalities.

1. Introduction

Neuro-Symbolic Artificial Intelligence (NeSy AI) (Hitzler and Sarker, 2022; Marra et al.,
2024) aims to combine the strengths of neural-based learning with those of symbolic rea-
soning. Such techniques have gained popularity, as they have been shown to improve the
generalization capacity and interpretability of neural networks (NNs) by seamlessly combin-
ing deep learning with domain knowledge. We focus on probabilistic NeSy approaches that
compositionally combine perception with reasoning: first, a NN extracts symbols from sub-
symbolic input, which are then processed by a symbolic reasoning component. They rely on
formal probabilistic semantics to handle uncertainty in a principled fashion (Marra et al.,
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2024), and are for this reason adopted by several state-of-the-art NeSy systems (Manhaeve
et al., 2018; Winters et al., 2022; De Smet et al., 2024).

In order to deploy such systems in mission-critical applications, it is often necessary to
have formal guarantees of their reliable performance. In this work, we address the challenge
of verifying the robustness of probabilistic NeSy systems, i.e., verifying the property that
input perturbations do not affect the reasoning output. Techniques for NN verification
are valuable to that end, since they can derive robustness guarantees for purely neural
systems. In particular, relaxation-based techniques (Ehlers, 2017a; Xu et al., 2020) can
scalably compute bounds for the NN outputs, with respect to input perturbations, which
can then be used to assess robustness. Our work is focused on extending such techniques
to the NeSy case by propagating these bounds through the probabilistic reasoning layer of
a NeSy architecture. As such, we can then provide robustness guarantees for the entire
system.

Our contributions are as follows: (a) we study the complexity of solving the probabilistic
NeSy verification task exactly and show that a decision version of the core computation in-
volved is NPPP- complete; (b) In the face of this result, we propose an approximate solution,
extending relaxation-based NN verification techniques to the NeSy setting. We show how to
compile the entire NeSy system into a single computational graph, which encapsulates both
the neural and the symbolic components and is amenable to verification by off-the-shelf,
state-of-the-art formal NN verifiers; (c) We validate our theoretical results on a standard
NeSy benchmark domain, by empirically demonstrating that our proposed approach scales
exponentially better than exact, solver-based solutions. Moreover, we show that our method
is applicable to real-world problems involving high-dimensional input and challenging net-
work sizes. We do so by applying our technique to an autonomous driving dataset, where
we verify the robustness of a safety property, on top of a neural system consisting of an
object detection network and an action selector network. The code is available online1.

2. Background

2.1. Probabilistic NeSy Systems

A common aim of probabilistic NeSy AI is to combine perception with probabilistic logical
reasoning. We provide a brief overview of the operation of such a system based on Marconato
et al. (2024). Given input x ∈ Rn, the system utilizes a NN, as well as symbolic knowledge
K, to infer an output y ∈ {0, 1}m. In particular, the system computes pθ(y |x; K), where
θ refers to the trainable parameters of the NN. This is achieved in a two-step process.
First, the system extracts a set of k latent concepts c ∈ {0, 1}k, through the use of a
parameterized neural model pθ(c |x). These latent concept predictions are then used as
input to a reasoning layer, in conjunction with knowledge K, to infer p(y | c; K).

The setting is straightforward to extend to multiple NNs. In that case, the ith network
from a set E would predict piθ(c

i |x), with
⋃

i∈E ci = c. Consider the running example of
Figure 1, where two NNs accept the same image as input and output two disjoint sets of
latent concepts. These are then combined to form the input to the reasoning layer in order
to output the target y.

1. https://github.com/EVENFLOW-project-EU/nesy-veri
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Figure 1: A motivating example for probabilistic NeSy verification. In this autonomous
driving example we want to verify two logical constraints ϕ on top of two neural
networks accepting the same dashcam image as input. The symbolic constraints
are compiled into a tractable representation containing only addition, subtraction,
and multiplication. During inference, this is used to reason over the NN outputs
and calculate the probability that the constraints are satisfied. For verification,
we exploit this structure to scalably compute how perturbations in the input
affect the probabilistic output of the whole (NNs + reasoning) NeSy system.

2.2. Knowledge Compilation

Probabilistic reasoning in NeSy systems is often performed via reduction to Weighted Model
Counting (WMC), which we briefly review next. Consider a propositional logical formula
ϕ over variables v. Let p be a probability vector over v, with pi denoting the probability of
the ith variable, vi, being true. The WMC of formula ϕ under p is then defined as:

WMC(ϕ,p) =
∑
ω|=ϕ

∏
i∈ω

pi
∏
i/∈ω

1− pi. (1)

In essence, the WMC is the sum of the probability of all worlds ω that are models of
ϕ. A widely-used approach for solving the WMC problem is knowledge compilation (KC)
(Darwiche and Marquis, 2002; Chavira and Darwiche, 2008). The formula ϕ is first compiled
into a tractable representation, which is used at inference time to compute a large number of
queries - in our case, instances of the WMC problem - in polynomial time. KC techniques
push most of the computational effort to the “off-line” compilation phase, resulting in
computationally cheap “on-line” query answering, a concept termed amortized inference.

The representations obtained via KC are computational graphs, in which the literals,
i.e., logical variables and their negations, are found only on leaves of the graph. The nodes
are only logical AND and OR operations, and the root represents the query. To perform
WMC, the boolean circuit is replaced by an arithmetic one, by replacing the AND nodes of
the graph with multiplication, the OR nodes with addition, and the negation of literals with
subtraction (1− x). Appendix A presents the application of KC on the running example.
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2.3. Verification of Neural Networks

NN Robustness. Verifying the robustness of NN classifiers amounts to proving that the
network’s correct predictions remain unchanged if the input is perturbed within a given
range ϵ (Wong et al., 2018). NN verification methods reason over infinitely-many inputs
to derive formal certificates for the robustness condition. For a given network f , this is
formalized as follows: for all inputs x, such that f(x) is a correct prediction, and for all x′,
such that ∥x− x′∥ ≤ ϵ, it holds that f(x) = f(x′). Checking if the robustness condition
holds can be achieved by reasoning over the relations between the un-normalized predictions
(logits) at the NN’s output layer. In particular, if for any x′ in an ϵ-ball of x, it holds that
ytrue − yi > 0, for all yi ̸= ytrue, then the network is robust for ϵ (Gowal et al., 2018). Here
ytrue is the logit corresponding to the correct class and yi are the logits corresponding to all
other labels. This condition can be checked by computing the minimum differences of the
predictions for all points in the ϵ-ball. If that minimum is positive, the robustness condition
is satisfied. However, finding that minimum is NP-hard (Katz et al., 2017).

Solver-Based Verification. Early verification approaches include Mixed Integer Linear
Programming (MILP) (Lomuscio and Maganti, 2017; Tjeng et al., 2019; Henriksen and
Lomuscio, 2020) and Satisfiability Modulo Theories (SMT) (Ehlers, 2017b; Katz et al.,
2017). MILP approaches encode the verification problem as an optimization task over
linear constraints, which can be solved by off-the-shelf MILP-solvers. SMT-based verifiers
translate the NN operations and the verification query into an SMT formula and use SMT
solvers to check for satisfiability. Although these methods provide exact verification results,
they do not scale to large, deep networks, due to their high computational complexity.

Relaxation-Based Verification. As the verification problem is NP-hard (Katz et al.,
2017), incomplete techniques that do not reason over an exact formulation of the verification
problem, but rather an over-approximating relaxation, are used for efficiency. A salient
method that is commonly used is Interval Bound Propagation (IBP), a technique which uses
interval arithmetic (Sunaga, 1958) to propagate the input bounds through all the layers of
a NN (Gowal et al., 2018). As a non-exact approach to verification, it is not theoretically
guaranteed to solve a problem. However, the approach is sound, in that if the lower bound
is shown to be positive the network is robust. Therefore, once the bounds of the output
layer are obtained, an instance is safe if the lower bound of the logit corresponding to the
correct class is greater than the upper bounds of the rest of the logits, since this ensures a
correct prediction, even in the worst case.

3. Probabilistic Neuro-Symbolic Robustness Verification

3.1. Problem Statement

We now formally define the aim of relaxation-based techniques in the context of NeSy
reasoning systems. Given a NeSy system, as defined in Section 2.1, our aim is to compute:[

min
x′

p(yi |x′), max
x′

p(yi |x′)

]
∀x′ s.t. ||x′ − x|| ≤ ϵ (2)
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for all yi in y. That is, we wish to calculate the minimum and maximum value of each
probabilistic output of the NeSy system, under input perturbations of size ϵ. As described
in Section 2.3, it is then possible to use these bounds to assess the robustness of an instance.

Consider the NeSy system of Figure 1. The neural part comprises two NNs: (1) an
object detector predicting whether a red traffic light or a car is in front of the autonomous
vehicle (AV), and (2) an action selector, which outputs whether to accelerate or brake the
AV. The symbolic part is the conjunction of two constraints, as described in Appendix A.
Given an input image x, the system computes y , the probability that the constraints are
satisfied. An instance is robust if minx′p(y |x′) > T , with threshold T ∈ [0, 1]. This denotes
that for all inputs in an ϵ-ball of x the probability of the constraints being satisfied is always
greater than T . Throughout the rest of the paper we consider the case where T = 0.5.

3.2. Exact Solution Complexity

Let us now assume that via techniques described in Section 2.3 we have obtained bounds in
the form of a probability range for each output of the NN. Solving Equation 2 involves prop-
agating these bounds through the symbolic component, in order to obtain maxima/minima
on the reasoning output y. We now analyze the complexity of performing this computation
exactly. To do so, we introduce a decision problem, E-WMC (“exists” WMC). Contrary
to the functional problem, which seeks the maximum/minimum WMC for a given set of
variable bounds, E-WMC instead asks “is there a probability assignment within the given
variable bounds, such that the WMC is at least T, for some given threshold T”? Formally:

Definition 1 (E-WMC) Given a Boolean formula ϕ(v) over variables v = (v1, . . . , vk),
probability intervals Ii = [li, ui] ⊆ [0, 1] for each variable vi, and a threshold T ∈ [0, 1], is
there a probability vector w ∈ I1 × . . .× Ik such that WMC(ϕ,w) ≥ T?

Importantly, the computation involved in solving Equation 2 is at least as difficult as
E-WMC, since (1) obtaining the maximum WMC value via Equation 2 allows to directly
answer threshold queries of E-WMC, and further (2) E-WMC only involves the maximiza-
tion subproblem of Equation 2.

Proposition 2 (Complexity of E-WMC) E-WMC is NPPP- complete.
Proof For membership, we notice that the circuits comprising the symbolic component
represent multi-linear polynomials of the input variables (Choi et al., 2020). As all input
variables of the polynomial are defined in a closed interval, the extrema lie on the vertices
of the domain (Laneve et al., 2010), i.e. each variable is assigned either its lower or upper
bound, not something in between. This yields a combinatorial search space of 2n possible
assignments. Checking if WMC(ϕ,w) ≥ T for each assignment can be solved via a #P-query
(Chavira and Darwiche, 2008). Thus, we need to search in a combinatorial space in which
each guess is linear in the size of the input (the NP-part) with a call to a #P-oracle at each
step, which establishes that E-WMC is in NP#P. From (Monniaux, 2022) NP#P = NPPP.

To show hardness (see Appendix B for a full proof), we reduce E-MAJSAT (Littman
et al., 1998), the SAT-oriented complete problem for NPPP, to E-WMC. Specifically, we
show that given any formula ϕ we can find a threshold T and a set of probability intervals
I for the variables of ϕ, such that E-MAJSAT(ϕ) ⇐⇒ E-WMC(ϕ, I, T ).
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3.3. Relaxation-Based Approach

The hardness of exact bound computation through the compiled symbolic component mo-
tivates the use of relaxation-based techniques. We now show how these can be extended to
the NeSy setting in order to provide a scalable solution to Equation 2.

In the NeSy systems of Section 2.1, the outputs of the NN are fed as input to the
arithmetic circuit. Due to this compositionality and the algebraic nature of the circuits,
a NeSy system can be seen as an end-to-end differentiable computational graph. Such a
graph can be constructed as a single module within a machine learning library, such as
Pytorch, and subsequently exported as an Open Neural Network Exchange (ONNX) graph
(developers, 2021). Appendix C depicts the ONNX representation of the NeSy system of
the running example, shown as an end-to-end algebraic graph.

ONNX is the standard input format for NN verifiers (Brix et al., 2024), including both
solver-based verification tools, such as Marabou (Katz et al., 2019), and relaxation-based
ones, such as auto LiRPA (Xu et al., 2020) and VeriNet (Henriksen and Lomuscio, 2020).
Thus, by exporting a NeSy system to this format, it is possible to utilize state-of-the-
art tools to perform verification in an almost “out-of-the-box” fashion. While our pro-
posed framework is, in principle, compatible with all the aforementioned tools, we focus
on relaxation-based verifiers, in order to showcase scalable probabilistic NeSy verification.
Such verifiers allow us to perturb the input and compute bounds directly on the output of
the NeSy system, that is, without computing intermediate bounds on the NN outputs.

4. Experimental Evaluation

In this section we empirically evaluate the effectiveness and applicability of our approach.
We assess the scalability of the proposed method via a synthetic task based on MNIST
addition, a standard benchmark from the NeSy literature (Manhaeve et al., 2018). Further,
we apply our approach to a real-world autonomous driving dataset and verify a safety
driving property on top of two 6-layer convolutional NNs. In this case, the scalability of
our technique allows us to handle high-dimensional input and larger networks, which are
typical of real-world applications. All experiments are run on a machine with 128 AMD
EPYC 7543 32-Core processors (3.7GHz) and 400GB of RAM.

4.1. Multi-Digit MNIST Addition

In this experiment we evaluate the scalability of our approach as the complexity of the
symbolic component increases. Specifically, we explore how the approximate nature of
our method enhances scalability, while also considering the corresponding trade-off in the
quality of verification results. To this end, we compare the following approaches:

1. End-to-End relaxation-based verification
(
E2E-R

)
An implementation of our method in auto LiRPA , a state-of-the-art relaxation-based
verification tool. The input to auto LiRPA is the NeSy system under verification,
which is translated internally into an ONNX graph. The verification method used is
IBP, as implemented in auto LiRPA .

2. Hybrid verification
(
R+SLV

)
A hybrid approach consisting of relaxation-based verification for the neural part of
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the NeSy system and solver-based bound propagation through the symbolic part. The
former is implemented in auto LiRPA using IBP. The latter is achieved by transforming
the circuit into a polynomial (see Section 3.2), and solving a constrained optimization
problem with the Gurobi solver. The purpose of comparing to this baseline is to
assess the trade-off between scalability and quality of results, when using exact vs
approximate bound propagation through the symbolic component.

3. Solver-based verification
(
Marabou

)
Exact verification using Marabou, a state-of-the-art SMT-based verification tool, also
used as a backend by most NeSy verification works in the literature (Xie et al., 2022;
Daggitt et al., 2024). Marabou is unable to run on the full NeSy architecture, as
the current implementation2 does not support several operators, such as Softmax and
tensor indexing. To obtain an indication of Marabou’s performance, we use it to verify
only the neural part of the NeSy system, a subtask of NeSy verification. Specifically,
we verify the robustness of the CNN performing MNIST digit recognition.

Dataset. We use a synthetic task, where we can controllably increase the size of the
symbolic component, while keeping the neural part constant. In particular, we create
a variant of multi-digit MNIST addition (Manhaeve et al., 2018), where each instance
consists of multiple MNIST digit images, and is labelled by the sum of all digits. We can
then control the number of MNIST digits per sample, e.g. for 3-digit addition, an instance
would be

( (
, ,

)
, 13

)
. We construct the verification dataset from the 10K samples of

the MNIST test set, using each image only once. Thus, for a given #digits the verification
set contains 10K/#digits test instances.

Experimental setting. The CNN3 recognizes single MNIST digits. It is trained in a
supervised fashion on the MNIST train dataset (60K images) and achieves a test accuracy
of 98%. The symbolic part consists of the rules of multi-digit addition. It accepts the CNN
predictions for the input images and computes a probability for each sum. As the number
of summands increases, so does the size of the reasoning circuit, since there are more ways
to construct a given sum (e.g. consider the ways in which 2 and 5 digits can sum to 17).
We vary the number of digits and the size of the perturbation added to the input images.
We consider five values for #digits: {2, 3, 4, 5, 6} and three values for the perturbation
size ϵ: {10−2, 10−3, 10−4}, resulting in 15 distinct experiments. For each experiment, i.e.,
combination of #digits and ϵ values, we use a timeout of 72 hours. E2E-R runs on a single
thread, while the Gurobi solver in R+SLV dynamically allocates up to 1024 threads.

Scalability. Figure 2 presents a scalability comparison between the methods. The figure
illustrates the time required to verify the robustness of the NeSy system for a single sample,
averaged across the test dataset. All experiments terminate within the timeout limit, with
the exception of two configurations for R+SLV. For ⟨ϵ = 10−2,#digits = 5, 6⟩, R+SLV
was not able to verify any instance within the timeout (which is why the lines for ϵ = 10−2

stop at 4 digits). For ⟨ϵ = 10−3,#digits = 6⟩, R+SLV verifies less than 5% of the examples
within the timeout. The reported values in Figure 2 are the average runtime for this subset.

2. https://github.com/NeuralNetworkVerification/Marabou
3. The CNN comprises 2 convolutional layers with max pooling, 2 linear layers, and a softmax activation.
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As Figure 2 illustrates, E2E-R scales exponentially better than R+SLV – note that
runtimes are in log-scale. This is due to the computational complexity of exact bound
propagation through the probabilistic reasoning component, as shown in Section 3.2. In
verifying the robustness of the CNN only, Marabou’s runtime is 314 seconds per sample,
averaged across 100 MNIST test images. It is thus several orders of magnitude slower than
our approach, in performing a subtask of NeSy verification.
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Figure 2: Comparison of verification runtime as the
number of summand digits increases. We re-
port the time required to verify the NeSy sys-
tem on a single sample, averaged across the
MNIST test dataset, and repeat the experi-
ment for 3 values of the perturbation size.

This indicative performance aligns
with theoretical (Zhang et al.,
2018) and empirical (Brix et al.,
2024) evidence on the poor scal-
ability of SMT-based approaches.
Our results suggest that this trade-
off between completeness and scal-
ability is favourable in the NeSy
setting, which may involve multi-
ple NNs and complex reasoning.

Quality of verification results.
We next investigate how the com-
plexity of the logic affects the qual-
ity of the verification results. In
Table 1 we report: (a) the tight-
ness of the output bounds, in the
form of lower/upper bound inter-
vals for the probability of the cor-
rect sum for each sample, averaged
across the test set; (b) the robust-
ness of the NeSy system, defined
as the the number of robust samples divided by the total samples in the test set.

Table 1: Comparison of performance as the number of summand digits increases, ϵ = 0.001.
We report one metric for bound tightness and one metric for robustness. Metrics
for 6 digits are omitted since the full experiment exceeds the timeout.

Verification
Metric

#MNIST digits
Method 2 3 4 5

R+SLV
Lower/Upper Bound 0.871− 0.981 0.815− 0.972 0.764− 0.962 0.731− 0.928

Robustness (%) 90.60 86.17 81.33 78.31

E2E-R
Lower/Upper Bound 0.871− 0.982 0.815− 0.974 0.763− 0.965 0.716− 0.958

Robustness (%) 90.60 86.11 81.21 76.67

As expected, R+SLV outputs strictly tighter bounds than E2E-R for all configurations.
We further observe that the quality of the bounds obtained by E2E-R degrades as the
size of the reasoning circuits increases. This is also expected, since errors compound and
accumulate over the larger end-to-end graph. However, the differences between R+SLV
and E2E-R are minimal, especially in terms of robustness.
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4.2. Autonomous Driving

In this experiment we apply our proposed approach to a real-world dataset from the au-
tonomous driving domain. The purpose of the experiment is to assess the robustness of a
neural autonomous driving system with respect to the safety and common-sense properties
of Figure 1, i.e., to evaluate whether input perturbations cause the neural systems to violate
the constraints that they previously satisfied.

Dataset. To that end, we use the ROad event Awareness Dataset with logical Require-
ments (ROAD-R) (Giunchiglia et al., 2023). It consists of 22 videos of dashcam footage
from the point of view of an autonomous vehicle (AV), and is annotated at frame-level with
bounding boxes. Each bounding box represents an agent (e.g. a pedestrian) performing an
action (e.g. moving towards the AV) at a specific location (e.g. right pavement).

Experimental Setting. We focus on a subset of the dataset that is relevant to the
symbolic constraints of Figure 1. Consequently, we select a subset of frames which adhere
to these constraints. Specifically, either the AV is moving forward, there is no red traffic light
in the frame, and no car stopped in front of the AV, or the AV is stopped, and there is either
a red traffic light or a car stopped in front. We sample the videos every 2 seconds to obtain
a dataset of 3143 examples. Each example contains a 3× 240× 320 image, and four binary
labels: red light, car in front, stop, move forward. The neural part of the system comprises
two 6-layer CNNs4, responsible for object detection and action selection respectively. The
two networks are trained in a supervised fashion using an 80/20 train/test split over the
selected frames. The object detection and action selection networks achieve accuracies of
97.2% and 96.3% on the respective test sets. We perturb the test input images using five
values of perturbation size ϵ: {10−5, 5 · 10−5, 10−4, 5 · 10−4, 10−3}.

Table 2: Autonomous driving experiment results, indicating robustness and verification
runtime for five values of the ϵ-perturbation.

Metric
Epsilon

1e-5 5e-5 1e-4 5e-4 1e-3

Robustness (%) 96.82% 92.68% 82.64% 6.21% 0.00%
Runtime per Sample (s) 0.091 0.092 0.091 0.092 0.092

Table 2 presents the results. We report robustness, the fraction of robust instances over
the total number of instances in the test set, and verification runtime for E2E-R. Since this
task consists of a small arithmetic circuit and a significantly larger neural component, it is
the latter that predominantly affects both the computational overhead and the accumulated
errors of bound propagation. Therefore, E2E-R and R+SLV, which differ only in the
symbolic component, provide nearly identical results that are omitted. As expected, robust
accuracy falls as the perturbation size increases. Regarding the verification runtime, this
experiment reinforces our results from Section 4.1, by demonstrating that the runtime of
our approach remains largely unaffected by changes in the value of the perturbation size ϵ.

4. The CNNs have 4 convolutional layers with max pooling and 2 linear ones. The object detection network
has a sigmoid activation at the output, while the action selection network has a softmax.
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5. Related Work

Verifying properties on top of hybrid systems combining neural and symbolic components
remains largely under-explored, with few related verification approaches existing in the lit-
erature. Akintunde et al. (2020) address the problem of verifying properties associated
with the temporal dynamics of multi-agent systems. The agents of the system combine a
neural perception module with a symbolic one, encoding action selection mechanisms via
traditional control logic. The verification queries are specified in alternating-time temporal
logic, and the corresponding verification problem is cast as a mixed-integer linear program-
ming (MILP) instance, delegated to a custom, Gurobi-based verification tool. Xie et al.
(2022) seek to verify symbolic properties on top of a neural system. The authors introduce
a property specification language based on Hoare logic, which allows for trained NNs, along
with the property under verification, to be compiled into a satisfiability modulo theories
(SMT) problem. This is then delegated to Marabou, a state-of-the-art SMT-based verifica-
tion tool. Daggitt et al. (2024) follow a similar approach, in order to verify NeSy programs,
i.e., programs containing both neural networks and symbolic code. The authors introduce
a property specification language, which allows for NN training and the specification of ver-
ification queries. A custom tool then compiles the NNs, the program, and the verification
query into an SMT problem, which is again delegated to Marabou.

These aforementioned approaches differ substantially from our proposed method, since
they cannot verify probabilistic logical reasoning systems. This is because they utilize
formalisms of limited expressive power (logics of limited expressive power in (Akintunde
et al., 2020; Xie et al., 2022) and a functional language in (Daggitt et al., 2024)), and
which lack a formal probabilistic semantics. In contrast, our method is agnostic to the
choice of knowledge representation framework, and can verify the robustness of any NeSy
system which represents symbolic knowledge as an algebraic computational graph. For
example, the proposed method supports the full expressive power of logic programming
under probabilistic semantics by compiling logic programs into arithmetic circuits via KC,
as is typically the case with state-of-the-art probabilistic NeSy systems (Manhaeve et al.,
2018; Yang et al., 2023). Furthermore, all existing approaches are based on solver-based
verification techniques, which translate the verification query into an SMT (Xie et al., 2022;
Daggitt et al., 2024) or a MILP problem (Akintunde et al., 2020). While such approaches
are sound and complete, they suffer from serious scalability issues, which often renders them
impractical.

6. Conclusion

We presented a scalable technique for verifying the robustness of probabilistic neuro-symbolic
reasoning systems. Our method combines relaxation-based techniques from the NN verifica-
tion domain with knowledge compilation, in order to assess the effects of input perturbations
on the probabilistic logical output of the system. We motivated our approach via a the-
oretical analysis, and demonstrated its efficacy via experimental evaluation on synthetic
and real-world data. Future work includes extending our method to more sophisticated NN
verification techniques, such as (Reverse) Symbolic Interval Propagation (Gehr et al., 2018;
Wang et al., 2021), and certified training techniques (Müller et al., 2023; Palma et al., 2024)
towards increasing the estimated robustness of the system.
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Appendix A. Knowledge Compilation Example

Consider the constraints ϕ from the autonomous driving example of Figure 1:

red light ∨ car in front =⇒ brake

accelerate ⇐⇒ ¬brake

These dictate that (1) if there is a red light or a car in front of the AV, then the AV should
brake, and (2) that accelerating and braking should be mutually exclusive and exhaustive,
i.e., only one should take place at any given time. Figure 3(a) presents the compiled form
of these constraints as a boolean circuit, namely a Sentential Decision Diagram (SDD)
(Darwiche, 2011).

accelerate

(1 - car_in_front) (1 - red_light)

×

× brake 

+

0.3

0.2 0.4

0.70.024

0.724

accelerate

¬ car_in_front ¬ red_light

AND

AND brake 

OR

(a)

accelerate

(1 - car_in_front) (1 - red_light)

×

× brake 

+

0.3

0.2 0.4

0.70.024

0.724

accelerate

¬ car_in_front ¬ red_light

AND

AND brake 

OR

(b)

Figure 3: (a) A Sentential Decision Diagram (SDD) as an example of a computational graph
obtained via knowledge compilation and (b) the corresponding arithmetic circuit
(AC) derived from the SDD during inference by replacing the AND/OR nodes
with multiplication/addition. The SDD has been minimized for conciseness.

By replacing the AND nodes of the graph with multiplication, the OR nodes with
addition, and the negation of literals with subtraction (1 − x) (the NAT semiring (Maene
and De Raedt, 2025)), one obtains an arithmetic circuit (AC), shown in Figure 3(b). The
resulting structure can compute the WMC of ϕ simply by plugging in the literal probabilities
at the leaves and traversing the circuit bottom-up. Indeed, one can check that assuming
the probabilities:

p(accelerate) = 0.3, p(red light) = 0.6

p(brake) = 0.7, p(car in front) = 0.8

this computation correctly calculates the probability of ϕ by summing the probability of its
5 different models.
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Appendix B. Hardness of E-WMC

Proposition 3 E-WMC is NPPP-hard.

Proof We give a reduction from E-MAJSAT (Littman et al., 1998), the SAT-oriented
complete problem for NPPP, to E-WMC.

Definition 4 (E-MAJSAT) Given a Boolean formula ϕ(x,y) over variables x ∪ y,
where x = (x1, . . . , xn) and y = (y1, . . . , ym), is there an assignment x ∈ {0, 1}n such
that the majority of assignments to y ∈ {0, 1}m satisfy ϕ(x,y)? We denote the restric-
tion of ϕ to an assignment x as ϕ|x. Further, we denote as #ϕ|x the number of satisfying
assignment of y, such that ϕ|x(y) = true. Formally, E-MAJSAT is given by:

∃x ∈ {0, 1}n : #ϕ|x ≥ 2m

2

We show that there exists a threshold T ∗ and a set of probability intervals I∗ such that
E-MAJSAT(ϕ) ⇐⇒ E-WMC(ϕ, I∗, T ∗). Specifically, consider the construction:

T ∗ =
1

2
, I∗i =

{
[0, 1] vi ∈ x

[1/2, 1/2] vi ∈ y

Thus, we allow variables in x to assume any weight, while we set the weights of all variables
in y to 1/2. Consider now a weight assignment to x (for example p(x1) = 0.7, p(x2) = 0.6),
which induces a distribution p(x). We then have:

WMC(ϕ, p) =
∑

x ∈ {0,1}n
p(x) · 1

2m
·#ϕ|x (3)

That is, rather than calculating the WMC by summing the probability over all models of ϕ,
we instead sum over sets of worlds, corresponding to each partial truth assignment {0, 1}n
to the variables x. The probability of each such set is the product of (1) the probability of
x under this assignment (as dictated by p(x)), (2) the probability of y (which is always m
variables of weight 1/2), and (3) the number of worlds in this subset that are models of ϕ.

(=⇒) If E-MAJSAT(ϕ) is true then E-WMC(ϕ, I∗, T ∗) is also true. Let the solution of
E-MAJSAT be x∗. Consider now a weight assignment to x equal to p(x = x) = 1[x = x∗].
That is, assign to each variable xi ∈ x a probability equal to the truth value of xi in x∗.
Further, set the weight of all variables yi ∈ y to 1/2. In this case, the sum of Equation 3
will reduce to a single term, the one corresponding to x = x∗. By construction, p(x) = 1
for this term, and p(x) = 0 for all other terms. It then follows immediately that:

WMC(ϕ, p) =
1

2m
·#ϕ|x∗ ≥ 1

2m
· 2

m

2
=

1

2

since E-MAJSAT(ϕ) is true by assumption. Hence, there exists a weight vector w∗ within
I∗ such that WMC(ϕ,w∗) ≥ 1/2, and so E-WMC(ϕ, I∗, T ∗) is true.
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(⇐=) If E-WMC(ϕ, I∗, T ∗) is true then E-MAJSAT(ϕ) is also true. We prove this by
contradiction. Assume that E-MAJSAT(ϕ) is false, that is, ∀x : #ϕ|x < 2m/2. Then:

WMC(ϕ, p) =
∑
x

p(x) · 1

2m
·#ϕ|x <

∑
x

p(x) · 1
2

<
1

2

∑
x

p(x) <
1

2
.

By assumption, E-WMC(ϕ, I∗, T ∗) is true and so WMC(ϕ, p) ≥ 1/2, and we have reached
a contradiction. Thus: ∃x : #ϕ|x ≥ 2m/2 making E-MAJSAT(ϕ) true.
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Appendix C. NeSy ONNX Representation

2×3×240×320

tensor

Split

Conv

MaxPool

Relu

Reshape

Gemm

Sigmoid

Conv

MaxPool

Relu

Reshape

Gemm

Softmax

Concat

Squeeze

Gather

Gather

Sub

Gather

Sub

Mul Mul

Add

Mul Gather

Add

46

Figure 4: Unified ONNX representation of the NeSy system of the running example. The
input image is processed by the two NNs (left branch is action selection, right
branch is object detection) and then through the arithmetic circuit. The NNs are
stripped down to one convolutional layer (Conv + MaxPool + ReLU) and one
dense layer (Reshape + Gemm + Softmax/Sigmoid) for conciseness. The opera-
tors in the circuit, besides Add, Sub, and Mul, are created by Python operations,
such as tensor indexing and concatenation.
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