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ABSTRACT

Continuous monitoring with an ever-increasing number of sensors has become
ubiquitous across many application domains. Acquired data are typically high-
dimensional and difficult to interpret, but they are also hypothesized to lie on a low-
dimensional manifold. Dimensionality reduction techniques have, therefore, been
sought for. Recently, expressive non-linear deep learning (DL) models have gained
popularity over more conventional methods like Principle Component Analysis
(PCA) and Self-Organizing Maps (SOMs). However, the resulting latent space of a
DL model often remains difficult to interpret. In this work we propose SOM-CPC,
a model that jointly optimizes Contrastive Predictive Coding and a SOM to find
an organized 2D manifold, while preserving higher-dimensional information. We
address a largely unexplored and challenging set of scenarios comprising high-
rate time series, and show on both synthetic and real-life data (medical sleep
data and audio recordings) that SOM-CPC outperforms both DL-based feature
extraction, followed by PCA, K-means or a SOM, and strong deep-SOM baselines
that jointly optimize a DL model and a SOM. SOM-CPC has great potential to
expose latent patterns in high-rate data streams and may therefore contribute to a
better understanding of many different processes and systems.

1 INTRODUCTION

The improvement and abundance of sensor technology has led to large amounts of high-dimensional,
information-rich continuous data streams. However, gaining actionable insights from these data is
challenging due to their low interpretability. The main objective of this study is, therefore, to develop
an algorithm for acquiring a structured and interpretable representation of (high-rate) time series.
We define such an interpretable representation as one that has the ability to be informative and to
facilitate exploration of the underlying structure (Lipton, 2018).

According to the manifold hypothesis, high-dimensional real-world data lies on a low-dimensional
manifold, comprising disentangled latent factors of variation. The area of unsupervised representation
learning is concerned with models that learn this manifold from a set of training data, without the
bias of human annotations. Dimensionality reduction techniques like Principle Component Analysis
(PCA), possibly in combination with clustering methods like K-means clustering, have conventionally
been used for this purpose. Acquiring an interpretable representation with PCA requires omitting
many principle components in order to achieve an interpretable number of components. This, however,
may discard important information that can not linearly be projected on these few dimensions. A
Self-Organizing Map (Kohonen, 1990), on the other hand, is an extension of K-means clustering that
creates a low-dimensional interpretable visualization, while still representing the data in multiple
dimensions. However, SOMs typically act on features, which need to be selected heuristically and
may, therefore, strongly depend on the use case and/or data modality.

Deep learning (DL) models have become popular alternatives for non-linear dimensionality reduction
that can be applied directly on raw data. Such models have been combined with joint clustering
objectives in the latent space (Xie et al., 2016; Yang et al., 2017; Madiraju, 2018; Lee & Schaar,
2020). These methods, however, do typically not create a (visually) interpretable representation,
and sometimes make use of label information during training (Lee & Schaar, 2020). To enhance
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interpretability, latent space representations of DL models are often visualized using a t-distributed
stochastic neighbor embedding (t-SNE) (Hinton & Roweis, 2002). Albeit its frequent use, t-SNE
does not allow a direct deployment on unseen data as it does not learn a reusable mapping between
the multi-dimensional and the low-dimensional space.

To acquire visually interpretable data representations from raw data, without assuming that data must
live in two or three dimensions only, non-linear DL encoders have been combined with SOMs (Ferles
et al., 2018; Pesteie et al., 2018; Fortuin et al., 2019; Forest et al., 2019; Manduchi et al., 2021; Forest
et al., 2021). In the resulting joint training strategy of these deep-SOM models, the SOM objective
can be seen as a regularizer on the encoding procedure, as it promotes a cluster-friendly feature
space. Most of these models have focused on autoencoders as feature extractors. However, similar to
Mrabah et al. (2020), we hypothesize that their reconstruction objective may hamper the clustering or
structured representation learning objective: while within-cluster similarities should remain preserved
for latent clustering, reconstruction demands a preservation of all factors of similarity. Moreover,
in the context of time series representation learning, other self-supervised models - that take the
temporal nature of the data into account during training - might be more suitable.

Contrastive self-supervised learning approaches have quickly become popular thanks to their superior
representation learning performance in many domains (see Le-Khac et al. (2020) for a review). While
many of these models rely on data augmentations during training in order to construct pairs of
similar data points, Contrastive Predictive Coding (CPC) (Oord et al., 2019) leverages the temporal
dimension for this purposes, making it a natural choice for self-supervised representation learning of
time series. In CPC, the temporal dimension not only serves as a pretext task, but simultaneously
enforces latent smoothness over time. The contributions of this work are as follows:

• We propose a new model in the deep-SOM family: SOM-CPC, which is suitable for learning
structured and interpretable 2D representations of (high-rate) time series by encoding
subsequent data windows to a topologically ordered set of quantization vectors.

• Using regression and classification probing tasks, we show that SOM-CPC preserves more
information in its 2D representation than CPC that is followed by PCA, and a linear classifier
or K-means, or directly encoding CPC’s latent space to two dimensions. SOM-CPC’s joint
optimization, moreover, facilitates a smooth temporal trajectory through 2D space.

• We show that SOM-CPC quantitatively and qualitatively outperforms deep-SOM models
with a reconstruction objective in terms of both clustering and topological ordering. It,
moreover, requires less auxiliary loss functions (and associated hyperparameter tuning)
thanks to its natural tendency to incorporate temporal smoothness. Lastly, SOM-CPC’s
training behavior shows that the SOM clustering objective better aligns with the CPC
objective than with a reconstruction loss.

2 PRELIMINARIES

2.1 KOHONEN SELF-ORGANIZING MAPS

Kohonen’s Self-Organizing Map (SOM) (Kohonen, 1990) is an algorithm to find a visually
interpretable topological data representation. It has been found useful to reveal intricate patterns and
structure in a plethora of applications. The algorithm’s output, the low-dimensional visualization,
is often referred to as a SOM as well. We choose to use a use a 2D visualization to enhance
interpretability.

We define a set of data points Z , and quantized counterparts qΦ(z) ∈ Φ for z ∈ Z . The set
Φ : {ϕ1, . . . , ϕk} is a trainable quantization codebook containing k vectors or prototypes ϕi ∈
RF , 1 ≤ i ≤ k. The jth prototype ϕ(n)i=j = qΦ(z) is the ‘winning vector’ for data point z, at iteration
n of the training procedure. The learned codebook vectors are placed on a pre-defined 2D grid by
assigning an xy-coordinate to each vector at initialization. Note that this creates a 2D representation,
while each data point z still lives in RF , with F ≫ 2. This is conceptually different than the way
in which PCA achieves dimensionality reduction to 2D, where all information in the 3rd and higher
principle components is strictly omitted. During training of a SOM, each ϕi is updated as follows
(Kohonen, 1990), with z ∈ Z:

ϕ
(n+1)
i = ϕ
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ϕ
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where η(n) is a time-decreasing learning rate. Topological neighborhood structure is promoted via a
neighbourhood kernel S that weighs nodes inversely proportional to their distance with the winning
node. A Gaussian kernel is often used which weighs node i according to:

Si
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i=j

)
= exp

(
−

d
(n)
j,i

2(σ(n))2

)
, with (2)

d
(n)
j,i = ||P{ϕ(n)i=j},P{ϕ(n)i }||22 and σ(n) = σ(0) exp(−n/λ), (3)

where P projects a codebook vector to its corresponding coordinate on the grid, σ(0) denotes the
initial standard deviation, and λ the decay factor. Setting λ = −nmax/ log(σ

(nmax)/σ(0)) sweeps σ
between σ(0) and σnmax in nmax steps. The dependence of Si on the distance dj,i, implies a weighing
of 1 for the winning node (i.e. distance equals zero), and lower than 1 for neighbour nodes. Note
that other neighbourhood structures have been proposed as well, for example using the four closest
neighbours on the grid, which results in a kernel with a plus-shape (Fortuin et al., 2019).

2.2 DEEP-SOM MODELS

All deep-SOM research has focused on combining autoencoders (Ferles et al., 2018; Pesteie
et al., 2018; Fortuin et al., 2019; Forest et al., 2019; Manduchi et al., 2021; Forest
et al., 2021) with a SOM. These models can broadly be summarized as a vector-quantized
(VQ) VAE (van den Oord et al., 2017), with a topological organization of the vectors
in the quantization codebook: the SOM. The models are trained end-to-end using error
backpropagation of both a reconstruction task loss Ltask and a loss Ltopo that encourages topological
ordering in the SOM. In general, a deep-SOM training objective takes the following form:

Ldeep-SOM = Ltask + αLtopo, (4) with Ltopo(z
(n)) = EZ

[ k∑
i=1

Si
(
ϕ
(n)
i=j

)
||z(n) − ϕ

(n)
i ||22

]
. (5)

Hyperparameter α controls the trade-off. The topological loss thus replaces the original update rule
of the SOM algorithm (see eq. (1)). The features z ∈ Z are jointly optimized, and thus also depend
on n now. To prevent clutter we will, however, omit the (n)-superscript in the following.

Fortuin et al. (2019) propose the SOM-VAE model. As opposed to VQ-VAE, SOM-VAE
has two decoders, as it also decodes the continuous latents. Topological organization of the
codebook vectors is enforced by using a plus-shaped neighbourhood kernel, which affects the
codebook vectors of the direct neighbours of the winning node (i.e. up, down, left, and
right on the grid). The encoder parameters are, however, unaffected by the quantization
error of these neighbour nodes. To facilitate the latter, the topological loss was split in a
commitment loss (committing the winning codebook vector to z and vice versa) and a SOM loss
(pulling the codebook vectors of the neighbours to z): Ltopo = Lcommitment +

β
αLSOM. Formally:

Lcommitment = EZ

[
||z − ϕi||22

]
, (6) and LSOM = EZ

[ k∑
i=1,i ̸=j

Si
(
ϕi=j

)
|| sg[z]− ϕi=j ||22

]
, (7)

with sg[·] a gradient blocker that impedes gradient updates to the encoder. Note that for 0 < β/α < 1,
the proposed neighbourhood plus-kernel is a coarse approximation of the Gaussian kernel. The
sum of the reconstruction losses Lrecon,cont and Lrecon,disc from the continuous and discrete decoder,
respectively, yield the total task loss Ltask, which is combined with the topological loss to create the
training objective of the SOM-VAE model.

SOM-VAE-prob (Fortuin et al., 2019) and (T)-DPSOM (Manduchi et al., 2021) are extensions of
SOM-VAE. SOM-VAE-prob enforces smoothness over time by adding a transition loss (multiplied by
γ) to optimize a first-order Markov model to learn the node transition probabilities, and a smoothness
loss (multiplied by τ in there work, we will use ζ here) to minimize the quantization error of highly
probable transitions. DPSOM is a probabilistic model, based on a variational autoencoder with a
non-degenerate approximate posterior (Kingma & Welling, 2013) with soft cluster assignment and
a cluster assignment hardening (CAH) loss (Xie et al., 2016). T-DPSOM additionally incorporates
a temporal smoothness loss, and an LSTM, which aims to predict the future latent space. This
latter functionality is similar to the future-prediction task that is already naturally embedded in the
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Figure 1: Architectures of different deep-SOM models including the gradient paths in green. a) SOM-VAE
(Fortuin et al., 2019) b) DESOM (Forest et al., 2021) c) SOM-CPC (ours). The two decoders in the SOM-VAE
model are independent and have their own trainable parameters, while the visualized encoders in the SOM-
CPC model are all the same (i.e. parameters are shared). The gψ block in the SOM-CPC model indicates an
autoregressive component (e.g. a GRU), and Z ′

p refers to a set of drawn negative embeddings.

CPC objective that we propose as a task loss (see section 3.2). The probabilistic additions in the
(T-)DPSOM model, with respect to SOM-VAE, are orthogonal to the developments in this work.

Forest et al. (2021) propose Deep embedded SOM (DESOM). Compared to SOM-VAE, the decoder
on the discrete space is omitted (therewith also Lrecon,disc), gradients from LSOM to the encoder are not
being blocked (i.e. sg[·] is removed from eq. (7)), and the topological loss Ltopo is given by eq. (2), i.e.
with a Gaussian neighbourhood function with decaying variance. In a short work, Forest et al. (2019)
speculate about adding an LSTM in the latent space to train a SOM on sequential data, and refer to
this model as LSTM-DESOM. Figure 1a-b visualizes the SOM-VAE and DESOM architecture.

3 SOM-CPC

3.1 MOTIVATION

In this work, we propose the SOM-CPC model, a representation learning model that learns to
map windows of time series data to a structured 2D grid. The model jointly optimizes a temporal
contrastive learning objective to extract features, and a topological loss that organizes the SOM space.

In order to learn features that are both suitable for SOM organization and accurately reflect the data,
the model should ideally invert the original data generating process (which is in general unknown and
implicit). Assuming that this generative process has been highly non-linear, feature learning can be
formulated as a non-linear independent component analysis (ICA) problem, which has proven to be
non-identifiable (Hyvärinen & Pajunen, 1999). However, recent advances showed that the problem
becomes identifiable under the assumed presence of an auxiliary variable (Hyvärinen et al., 2018).
Such an auxiliary variable (e.g. a temporal component) is not present in plain autoencoders, but the
contrastive learning paradigm was shown to conform to this assumption (Hyvärinen et al., 2018;
Zimmermann et al., 2021). This theory is in line with the hypothesis stated by Mrabah et al. (2020)
that a reconstruction objective may hamper clustering performance in the latent space.

3.2 ALGORITHMIC DETAILS

We introduce X = {. . . ,x(t),x(t+ 1), . . .}, a set of non-overlapping data windows x(t) ∈ Rch×T ,
with ch the number of channels, and T the number of samples in the window. For brevity we omit
the time index when possible. An encoder, parameterized by θ, maps each data window x to a
latent representation z = fθ(x) ∈ RF , with F the number of features. The set Z includes the
embeddings of all windows in X . A causal auto-regressive (AR) module gψ parameterized by ψ, e.g.
a gated-recurrent unit (GRU), subsequently aggregates the current and L previous embeddings, to
generate a (current) context vector c(t) ∈ RF . Given this context, the pretext task in our SOM-CPC
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model aims to minimize the prediction error for P future (or ‘positive’) embeddings z(t+ p), for
p ∈ {1, . . . , P}, compared to this error for N ‘negative’ embeddings. These negatives may be
sampled across the dataset, or within the same time-series, and are on the fly encoded to their latent
representation during training. The task objective, being the InfoNCE loss (Oord et al., 2019), is
defined as:

Ltask := LInfoNCE =
1

P

P∑
p=1

Lp, with Lp = −E
X

[
log

exp
(
z(t+ p)Wpc(t)

)
∑

z′∈Z′
p∪{z(t+p)} exp

(
z′Wpc(t)

)], (8)

with Z ′
p ⊂ Z a set of embeddings of drawn negative samples (|Z ′

p| = N ), and Wp ∈ RF×F a
trainable mapping between the current context vector and the pth future embedding.

The context vector is not only used to predict future embeddings, it is also the input to the SOM
module that selects the winning node. The SOM is optimized using the topological loss Ltopo, as
defined in eq. (5), with a Gaussian neighbourhood kernel S , as defined in eq. (2). Depending on the
use case, it was found to not always be necessary, or even beneficial (due to higher risk of overfitting),
to use an AR module gψ to aggregate causal context into the current embedding. If the AR module
is not used, the future predictions are made directly from the current (continuous) latent space z(t)
instead of c(t). Likewise, z(t) rather than c(t) is being quantized by the SOM module. Depending
on the presence of this AR module, both Ltopo and Ltask are thus computed on either z(t) or c(t).

All model elements are optimized jointly, with the training objective being: LSOM-CPC = Ltask +
αLtopo, which adheres to the general objective of a deep-SOM model as formulated in eq. (4). Figure
1c provides an overview of the SOM-CPC model, and its gradient paths in green. The initial standard
deviation σ(0) of the Gaussian kernel (from eq. (2)) was set to half the squared-root of the number of
SOM nodes k. Given the square topology of the SOM grid, this setting of σ0 ensures that the full
grid is captured by the neighbourhood kernel at the start of training. Algorithm 1 in appendix A.1
provides pseudocode of the full SOM-CPC algorithm.

3.3 PERFORMANCE EVALUATION

Forest et al. (2020) provide a taxology of SOM metrics that distinguishes external vs internal and
topological vs clustering metrics. External metrics are related to labels (which are not used during
unsupervised training), while internal metrics do not depend on such information. Topological metrics
assess the topological ordering (i.e. neighbourhood relations) of the SOM, while clustering metrics
are more related to, for example, pureness of nodes.

To evaluate clustering performance, linked to external labels, we leverage purity and the normalized
mutual information (NMI). The latter corrects for a high number of clusters (i.e. nodes), which could
easily lead to high pureness, but leaves the NMI more conservative.

Even though scoring high on external metrics is not the main goal of a representation learning model
like SOM-CPC, we do report it as it provides an indication of how well information was preserved.
To compute regression/classification performance, we first ‘color’ (or label) each node with the most
occurring (for discrete labels) or median (for continuous labels) label from the training set. The test
set predictions are then converted from node indices to label predictions by using these colorings.
Regression performance is expressed as the average squared regression error with the target: SEtarget.
Classification performance is reported with Cohen’s kappa (Cohen, 1960), a commonly used metric
that corrects for correctness by chance.

Topographic performance is measured using the (internal) topographic error (TE) (Kiviluoto, 1996),
which reports the fraction of windows (between 0 and 1) for which the winning and second-best
winning node are not neighbours in the SOM (lower is better). Finally, to measure whether a time
series conveys a smooth trajectory through SOM space, we measure the average Euclidean distance
(denoted ℓ2,smooth) between all subsequent windows in each time series. The lower this value, the
less frequently large jumps in the 2D map occur. Note that in extreme cases where many windows
collapsed to the same node, both the TE and the average ℓ2,smooth metric are artificially pushed
down. We can thus only interpret these metrics in conjunction with earlier-mentioned clustering and
classification metrics.
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Table 1: Mean and one std. dev. across all test set series of synthetic data. Results for varying values of α, γ,
and ζ can be found in table 3 (appendix A.3.2). SOM-CPC clearly outperforms all baselines. Models below the
dashed line are ablations. Regression plots and SOMs of models with a * are visualized in fig. 2a-c.

Model α S LSOM sg[·] SEtarget ℓ2,smooth TE

CPC + linear classifier - - - 2.62±2.37 - -
CPC + K-means - - - 1.09±.62 - -
CPC (F = 2) + linear classifier - - - 25.01±42.94 - -
CPC (F = 2) + K-means - - - .76±1.31 - -
CPC + PCA + linear classifier - - - 42.81±58.12 - -
CPC + PCA + K-means - - - 4.42±9.01 - -

* SOM-VAE .1 Plus ✓ 8.02±4.58 2.41±.68 .28±.070
SOM-VAE 1e-3 Gaussian ✓ 11.60±25.43 1.92±.34 .056±.023
SOM-VAE-prob .1 Plus ✓ 20.10±48.80 3.15±.73 .63±.050

* DESOM .1 Gaussian ✗ 10.77±10.85 2.20±.44 .061±.019
* SOM-CPC (ours) 1e-4 Gaussian ✗ .72±.1.08 1.37±.37 .022±.011

A
bl

at
io

ns SOM-CPC 1e-2 Gaussian ✓ .47±.48 .99±.24 .069±.040
SOM-CPC 1e-4 Plus ✗ 1.71±1.15 2.46±0.51 .30±0.062
SOM-CPC 1e-2 Plus ✓ 1.16±.61 1.85±.26 .12±.037
CPC + SOM (disjoint) - Gaussian - .84±1.14 1.47±.50 .028±.014
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Figure 2: SOMs and regression plots for SOM-VAE (a), DESOM (b) and SOM-CPC (c). Both DESOM and
SOM-CPC show a gradual change of frequency over the grid, but the regression error SEtarget is lower for
SOM-CPC, which can also be seen from the regression plot, where the predicted window frequencies are plotted
against the target frequencies (i.e. training set median label) for the node on which the window was mapped. d)
Task loss versus the topological loss for SOM-VAE (with Gaussian neighbourhood), DESOM and SOM-CPC
(both with and without sg[·]). The different curves display various values of α, for which the DESOM model
seems most sensitive. The SOM-CPC models follow a smooth optimization curve, minimizing both the task and
topological loss, while these losses seem to be more conflicting in SOM-VAE and DESOM training.

4 EXPERIMENTS

We compare SOM-CPC to several other 2D representation learning methods. First, deep-SOM models
with a reconstruction task loss (i.e. SOM-VAE, SOM-VAE-prob, and (GRU-)DESOM). Second,
vanilla CPC with a multi-dimensional latent space (F ≫ 2) (Oord et al., 2019), followed by PCA for
additional dimensionality reduction to 2D. Third, CPC with a 2D latent space (F = 2). For the latter
two CPC-based models, linear and non-linear read-out is, respectively, tested using a linear neural
classifier, and K-means clustering with the same number of clusters as the number of nodes used in
SOM-CPC. High-dimensional vanilla CPC (F ≫ 2) without additional dimensionality reduction
is, moreover, tested as well as it sets a baseline for the amount of information that can be preserved
given the encoder architecture, while not providing an interpretable 2D representation. The same
encoder architecture is used for all models that are compared in a single application domain, and all
models are run with the same seed for randomization. Details on model architectures and training
settings for the different applications can be found in appendix A.3.1, A.4.2, and A.5.1.

4.1 SYNTHETIC DATA

Data generation: A synthetic dataset was created, consisting of sinusoids with an initial frequency
sampled from a uniform distribution between 20 and 40 Hz. The frequency of the signals was altered
over time according to a random walk process with a step size of 0.1 Hz. As such, at each time
step (i.e. sample), the signal’s frequency either increased with 0.1 Hz (with probability pup = 0.1),
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Figure 3: Progression of SOM training (nodes are indicated in black) in the SOM-CPC model, using either a
Gaussian (top) or plus neighbourhood (bottom) kernel. The PCA projection of the test set latent space is plotted
behind the nodes. It can clearly be seen that the Gaussian kernel enforces a more strict organization of SOM
nodes, where nodes are non-uniformly quantizing the latent space, placing more nodes at higher density areas.

decreased with 0.1 Hz (pdown = 0.1), or remained constant (pc = 0.8). In case the random walk
crossed either 1 or 60 Hz, the probabilities were (temporarily) altered to [pup, pc, pdown] = [0.5, 0.5, 0]
or [pup, pc, pdown] = [0.0, 0.5, 0.5], respectively. All series were finally corrupted with an additive
white Gaussian noise vector ϵ ∼ N (0, 0.01). Formally, each generated signal took the form:
x[n] = sin

(
2π f [n−1]+∆f

fs
n
)
+ ϵ, with f [n = 0] ∼ U [20, 40], ∆f ∼ Categorical([pup, pc, pdown]),

and fs = 128 Hz the sampling frequency. A total of 200 of such time-series, each of 5 minutes, were
generated, and labels were defined per 1-second window by taking the median frequency. The set
was randomly divided into a training (n = 100), validation (n = 50), and test split (n = 50).

Results: Table 1 shows that SOM-CPC outperforms all deep-SOM baselines on all metrics. Figure 6
in appendix A.3.2 shows the PCA projections of the (continuous) latent spaces of the three deep-SOM
models indicated with a ∗ in table 1. It reveals that the latent space disentanglement of the SOM-CPC
model is much better than that of the SOM-VAE and DESOM models. Figure 2a-c displays the
resulting SOMs (colored with the median test set labels) for the same three models. Uncolored nodes
in the SOM were not assigned in the test set. Interestingly, although the SOM for the DESOM and
SOM-CPC model look similar, the SEtarget is higher for the DESOM model, which can also be seen
from the regression plots below the SOMs.

The addition of two temporal losses in the SOM-VAE-prob model, as compared to SOM-VAE, did
deteriorate the given metrics, even though a range of values for multipliers α, γ and ζ was tested (see
table 3 in appendix A.3.2 for the full sweep). The deterioration of the results can be explained by the
difficulty of finding the correct scaling factors for these additional losses. Note that the SOM-CPC
model automatically incorporates smoothness over time thanks to the nature of the CPC task loss,
therewith preventing additional hyperparameter tuning.

Additionally, we study the optimization behavior of SOM-VAE, DESOM, and SOM-CPC by plotting
the progression of the task versus the topological loss during training (see fig. 2d). To make a fair
comparison, we plot the SOM-VAE models that are trained with a Gaussian neighbourhood kernel.
Different curves in the graphs indicate runs with varying values for α, and the line color’s gradient
denotes the training iteration. The SOM-CPC graphs include the models run with and without
gradient detachment of LSOM to the encoder. It can be seen that both losses jointly minimize in
SOM-CPC training, while there is a counteracting effect visible for SOM-VAE, and a high influence
of the value of α for DESOM training.

Comparing to non-deep-SOM baselines, it can be seen from table 1 that CPC (with F = 2), and
CPC followed by PCA, resulted in a much higher regression error SEtarget than SOM-CPC when
using linear read-out. Non-linear K-means clustering improved performance for both cases, but only
for CPC with F = 2, performance nearly reached SOM-CPC performance. Later we will see that
optimizing CPC with F = 2 can hamper optimization for more intricate data spaces (see section 4.3).
Interestingly, regression performance of SOM-CPC was found to be even slightly better than that of
the vanilla multi-dimensional CPC model (with F = 128), both for linear classification and K-means.
This could be explained by the additional regularization that the SOM provides in SOM-CPC training.
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We perform several ablation experiments on SOM-CPC, which are reported below the dashed
line in table 1. Blocking the gradients of the neighbour nodes with respect to the encoder during
training (LSOM sg[·] column) slightly improved the regression error and temporal smoothness, but
decreased the topographic error. Looking at the models with various values for α (reported in table 3,
appendix A.3.2), the effect of gradient blocking can be considered small and ambiguous when
considering different metrics. Disjoint training (CPC + SOM) resulted in a less smooth trajectory
over time through the 2D SOM space, seen from the higher ℓ2,smooth. Using a plus neighbourhood
kernel instead of a Gaussian kernel decreased performance on all three metrics. The increase in TE, is
well explainable by the fact that a plus kernel takes into account fewer neighbours (at least at the start
of training) and therefore has more difficulty to find a good topological mapping. Figure 3 shows the
development of the SOM node spread (projected on top of a PCA projection of the continuous test
set latents), during training for SOM-CPC with the two type of kernels. It can indeed be seen that the
Gaussian kernel enforces a more strict topological organization. Interestingly, the kernel does not
only influence the codebook vectors, but also seems to influence the organization of the latent space,
seen from the differently-shaped PCA projections in the background.

4.2 SLEEP

We analyse SOM-CPC on subset 3 of the Montreal Archive of Sleep Studies (MASS) database
(O’Reilly et al., 2014), consisting of whole-night polysomnography recordings, for which every
30-second window is labelled with a sleep stage label from {N1, N2, N3, REM, Wake}. The 62
recordings (from 62 unique subjects) were randomly split into a training (n = 48), validation (n = 8)
and hold-out test set (n = 7). Details on the data preprocessing can be found in appendix A.4.1.

CPC + PCA + K-means SOM-CPC

REM

Wake

N3

N2

N1

Time in night

Figure 4: Deep sleep N3 is isolated from
light sleep N1, Wake and REM sleep with a
cluster of medium-deep sleep N2.

Table 5 in appendix A.4.3 shows that SOM-CPC again
clearly outperformed SOM-VAE and DESOM on all
metrics. Whether or not the gradients of the SOM loss
were stopped towards the encoder did not greatly influence
SOM-CPC performance. Topological ordering, measured
by TE, and temporal smoothness (ℓ2,smooth) deteriorated
when changing the Gaussian kernel to a plus kernel, or
training high-dimensional CPC and SOM disjointly. SOM-
CPC’s classification performance was higher than that of
CPC with F = 2, and CPC followed by PCA.

Figure 4 shows the test set PCA projection of the latent space of CPC (F = 128), with the K-means
nodes as black stars (left), and the SOM (right) trained by the SOM-CPC model (nodes are colored
with the most-occurring label in the test set). Both visualizations show similar clustering patterns:
deep sleep N3 is isolated from lighter forms of sleep (i.e. N1, Wake and REM sleep) by a thick cluster
of medium-deep sleep N2. However, the higher performance of SOM-CPC (see table 5) indicates
that more information is preserved in the 2D space resulting from the SOM-CPC model. The size
of the nodes in the SOM map of SOM-CPC indicates the average time in the night of windows on
that node. A difference is visible in node sizes within the Wake, N2 and N3 clusters, suggesting a
possible existence of different sub-categories of sleep within the pre-defined sleep stages.

4.3 AUDIO

For the audio experiments, we use a subset of the publicly available LibriSpeech dataset (Panayotov
et al., 2015). The dataset contains multiple minute-long English voice recordings of 251 different
speakers, sampled at 16 KHz. We used the publicly available train-test split, as provided by Oord
et al. (2019), and created an additional validation set by randomly selecting 25% of the training
set. Recordings of the ten speakers with the longest recording time were selected to alleviate
computational burden. This resulted in a total of 150.9, 54.6, and 46.5 minutes in the training,
validation, respectively test set. The full model and training details can be found in appendix A.5.1.

Table 7 in appendix A.5.2 shows the results of SOM-CPC (which includes a GRU for this dataset),
compared to different variants of the DESOM model. SOM-CPC outperforms all DESOM variants
by a wide margin and for all choices of the α parameter. The difference in performance between
DESOM and SOM-CPC is also visible in fig. 5. SOM-CPC has clustered the SOM nodes belonging
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to the same speaker, and seems to group male and female speakers (denoted with the node’s shape),
while these effects are not present in the SOM of the GRU-DESOM model. Minimizing the InfoNCE
training objective of CPC with F = 2 was found challenging for this dataset, which resulted in
non-competitive performance of the linear classifier and K-means clustering trained on the resulted
2D latent space. Using PCA for dimensionality reduction of the high-dimemnsional CPC latent space
(with F = 512) performed better, but still inferior to SOM-CPC.

Speaker idGRU-DESOM SOM-CPC

Figure 5: SOM-CPC is able to better cluster
different speakers than GRU-DESOM. Stars
denote women and dots are men.

The SOM of the SOM-CPC model (fig. 5-right) reveals
two separate clusters both for speaker 2 (green) and 3 (red).
The LibriSpeech corpus contains multiple recordings from
each speaker, grouped by (book) chapters from which the
speaker was reading. Interestingly, additional analyses
revealed that the red and green sub-clusters represented
recordings belonging to different chapters: 99.99% of
the test-set windows mapped to the upper red sub-cluster
belong to the same chapter, while 99.97% of the windows
in the lower red sub-cluster belong to another chapter read
by this speaker. Similarly, 100.0% of the test set windows
in the right green sub-cluster belong to two chapters read by speaker 2, while 98.91% of the windows
in the left green sub-cluster belong to another chapter. An auditory inspection revealed that the room
acoustics of the recordings belonging to the chapters in different clusters were different, causing
changes in the signals which the SOM-CPC model has picked upon. This division between recordings
of the same speaker is not visible in the 2D PCA projection of the CPC (with F = 128) features, as
seen from fig. 8 in appendix A.5.2.

5 DISCUSSION

We proposed a new member of the deep-SOM family: SOM-CPC, suitable for interpretable 2D
representation learning of high-rate data streams. Earlier proposed deep-SOM models mainly used
reconstruction objectives. In general, SOM-CPC outperformed these models with a wide gap on a
variety of metrics. Moreover, it implicitly enforces temporal smoothness, while autoencoder-based
models require additional losses and hyperparameter tuning to achieve this. SOM-CPC’s task loss
was found to align better with the topological SOM objective than a reconstruction loss, as already
hypothesized by Mrabah et al. (2020). While for some applications CPC could succesfully be trained
with a 2D latent space directly, optimization was found to be hampered in case of more intricate
data spaces. Compared to vanilla CPC with a multi-dimensional latent space, SOM-CPC enables
pattern recognition and knowledge discovery. The SOM objective did not hamper CPC optimization.
Even better, in the synthetic setup it had a regularizing effect, resulting in lower regression error than
vanilla CPC. The use of a Gaussian neighbourhood kernel, as opposed to a plus kernel, was found
to improve the topological ordering in the SOM. No decisive conclusions could be made regarding
gradient blocking from the SOM loss towards the encoder parameters. Allowing these gradients to
flow did not hurt performance, so for coding simplicity, we would advice to not detach the SOM loss.

Setting an appropriate stopping criterion for self-supervised (SSL) models is debatable. In the SSL
literature models with the best test set performance are sometimes reported (He et al., 2019; Fortuin
et al., 2019). This is, however, questionable as it may artificially boost reported performance. As such,
we created a validation set to apply early stopping in all experiments. Another challenge arises when
dealing with aggregated loss functions, since not all losses may smoothly decay and the weighted
summation of losses may result in a different optimal epoch than the sub-losses separately. Besides,
classification performance (often used as a proxy for information preservation) does not necessarily
align with SOM performance or information preservation (see fig. 7 in appendix A.4.3).

We believe that SOM-CPC will facilitate knowledge discovery in real-life time series and opens up
new research directions for representation learning of time series. Directions include investigation
to whether additions like the soft-cluster assignment, cluster hardening loss or a Gaussian latent
prior - which have shown to improve the SOM-VAE model (Manduchi et al., 2021) - improve
SOM-CPC performance as well. Moreover, the CPC objective assumes slowly (or non-changing) data
characteristics within the time frame in which positive samples are drawn. A multi-modal variational
future prediction could possibly improve performance for data that do not meet this assumption.
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REPRODUCIBILITY STATEMENT

All code used to train and evaluate the models as presented in this paper can be found at https:
//anonymous.4open.science/r/SOM-CPC. The details regarding model architectures and
training settings for each of the application domains are also presented in appendix A.3.1, A.4.2, and
A.5.1. Pseudocode of the proposed SOM-CPC algorithm is given in algorithm 1 in appendix A.1.
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A EXPERIMENTAL DETAILS

This appendix contains all information for full reproducability of the experiments. Domain-
independent details on SOM-CPC and its evaluation are provided in appendix A.1, while benchmark
implementations are discussed in appendix A.2. Domain-specific settings for the synthetic, sleep and
audio experiments are discussed in sections A.3, A.4, and A.5, respectively.

A.1 GENERAL DETAILS

Algorithm 1 provides pseudocode of SOM-CPC, when considering the presence of an AR module. For
reproducibility, the full code base can be found at https://anonymous.4open.science/
r/SOM-CPC.

Algorithm 1 SOM-CPC
Input: Dataset X , model comprising fθ , gψ , {Wp}Pp=1, number of past windows L, # positive samples P ,

# negative samples N , # SOM nodes k, Gaussian neighbourhood function S with σ(nmax), nmax, loss trade-off
parameter α.

Output: A trained SOM: topologically ordered codebook Φ that represents data X in 2D.
- Initialize the Gaussian kernel according to eq. (2) with: σ(0) = 1

2

√
k and λ = −nmax/ log(σ

(nmax)/σ(0))
for n in nmax do

- Sample a sequence of datapoints: [x(t− L), . . . , x(t)] ∼ X
- Define P positive samples: {x(t+ p)}Pp=1

- Sample P ×N negative samples X ′ ⊂ X , with |X ′| = P ×N
- Encode

- data sequence: c(t) = gψ
(
fθ
(
[x(t− L), . . . , x(t)]

))
- positive samples: {z(t+ p)}Pp=1 = fθ

(
{x(t+ p)}Pp=1

)
- negative samples: Z ′ = fθ

(
X ′)

- Predict future: ẑ(t+ p) = Wpc(t), with 1 ≤ p ≤ P
- Quantize: ϕi=j = SOMΦ

(
c(t)

)
- Update σ(n) according to eq. (3)
- Compute Ltopo

(
c(t)

)
and LinfoNCE according to eq. (5) and eq. (8)

- Update trainable parameters ∝ αLtopo and LinfoNCE
end for

Several metrics were used to quantify SOM performance, as explained in section 3.3. The purity
implementation is taken from the Github implementation of Fortuin et al. (2019), while NMI was
computed using the sklearn library (Pedregosa et al., 2011). The topographic error implementation
comes from the SOMperf python library (Forest et al., 2020). Finally, the ℓ2,smooth distance is
computed using the norm function in the linalg library of numpy.

Section 3.3 already shortly elucidated upon the way in which Cohen’s kappa and SEtarget were
computed. For both metrics, each SOM node was labeled/colored with the most-occuring (in case of
Cohen’s kappa) or median (in case of SEtarget) label in the training set. Note that it can be questioned
whether this node labelling should be done on a training or validation set, or directly on the test set for
which performance is reported. In earlier times when more conventional clustering approaches (e.g.
K-means) were used, a training/validation/test split was typically not made. As a result, clustering
was directly performed on the one and only (test) set, that was also used to label the clusters/nodes.
Moving towards deep learning based approaches where more hyperparameters need to be set and
overfitting can become a larger problem, we found it necessary to report in this work on a test set
that was not used for labelling the nodes and/or setting hyperparameters. It should thus be taken into
account, that direct comparison to results in other deep-clustering works may need a critical eye to
see whether similar procedures were used or not.

A.2 BENCHMARKS AND ABLATIONS

To benchmark our implementation of the SOM-VAE model (and the very similar DESOM model), we
replicated the results on MNIST. MNIST was not used for further experimentation with SOM-CPC
in the main body of this paper since this work focuses on high-rate time series. Using k = 16 SOM
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nodes, Fortuin et al. (2019) report purity = 0.731 ± 0.004 and NMI = 0.594 ± 0.004 in table 1,
and purity = 0.721± 0.006 and NMI = 0.587± 0.003 in table S1. All numbers are averages and
standard errors over 10 runs.

Settings that were not provided in the paper, were taken from the hard-coded settings that we found
in the provided code base. Instead of splitting the standard MNIST training set in a training and
test split, as done by Fortuin et al. (2019), we used the available train/test split that comes with
the standard MNIST dataloader from Pytorch. From the first ten runs, one run fully collapsed and
resulted in extremely poor performance. Considering this run as an outlier, we run an 11th run and
here report the average and standard errors of the 10 non-collapsed runs: purity = 0.705± 0.002 and
NMI = 0.584± 0.001. Our performance does reasonably well match the reported performance by
Fortuin et al. (2019), given the fact that a different test set of MNIST was used for our experiments.

To restrict the search space of hyperparameters in the SOM-VAE(-prob) model, which has multiple
loss multipliers, we fixed some of the these multipliers for further experiments in this paper. Multiplier
β scales the SOM loss that sums the quantization error of the four neighbour nodes in the plus kernel.
It is, therefore, expected to be at least 4 times larger than the commitment loss, which only reflects
the quantization error of the winning node. Choosing β = α/4 would imply that the weighing of
the summed quantization error of the four neighbours is equal to the weighing of this error for the
winning node. To give the winning node a slightly higher importance, we set β = α/5 = 0.2α.
The authors of SOM-VAE (Fortuin et al., 2019) used, instead, a search strategy to find the optimal
setting. Their code base1 shows that the SOM loss was multiplied with 0.9, while α = 1. Taking
into account that their implementation of the commitment loss averaged the quantization error of
the four neighbour nodes, while we summed the contribution, their effective setting was thus set to
β = 0.9

4 α = 0.225α, which is close to what we used in our experiments.

We compared SOM-CPC also against vanilla CPC training followed by a linear classifier or K-
means clustering, while freezing the encoder parameters. The supervised linear classifier took in
all experiments the form of one fully-connected layer, including biases, that was followed by a
log-softmax activation for the sleep and audio cases. It was trained using the mean squared error for
the synthetic data set, and cross-entropy loss for sleep and audio experiments. K-means clustering
was run from the sklearn library, with the default settings. The number of clusters was chosen to be
equal to the number of nodes in the SOM-CPC models against which the performance was compared.
Also the disjointly-trained SOM had exactly the same settings as the SOM in the SOM-CPC models
with which it was compared.

Several ablation are performed on the SOM-CPC model. We test the effect of propagating gradients
of LSOM to the encoder parameters, the difference between using a Gaussian neighbourhoood kernel
versus a plus kernel, and the effect of jointly training CPC and the SOM. Moreover, the effect of
certain settings that are typically used in the CPC objective are investigated. CPC’s InfoNCE objective
for one window p, given in eq. (8), can as follows be generalized to a more general contrastive learning
objective:

Lp = −E
X

[
log

exp
(
sim(za,zp)/τ

)
∑

z′∈Z′
p∪{zp} exp

(
sim(za,z′

p)/τ
)], (9)

where za is the latent space of the current (or anchor) window, sim(·) a similarity metric, and the
other symbols are equivalent to eq. (8). CPC typically uses τ = 1, and the dot product as the similarity
metric. However, other related contrastive learning objectives, e.g. in SimCLR (Chen et al., 2020),
use a temperature value that is often set to 0.07 (Chen et al., 2020; Woo et al., 2022), and a cosine
similarity instead of the (unnormalized) dot product. As such, we add ablations where we set τ at 1
or 0.07, and use either the dot-product or the cosine similarity as the similarity metric.

A.3 SYNTHETIC EXPERIMENTS

A.3.1 TRAINING DETAILS

Table 2 summarizes the encoder and decoder architectures used in this experiment. The output
size column in the table uses channels-first notation. The SOM-VAE and DESOM models were

1https://github.com/ratschlab/SOM-VAE/blob/master/som_vae/somvae_train.
py, line 79.
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Table 2: Model details for the synthetic data experiments in section 4.1.
Layer type Output size Channels Activation Kernel size Strides Dilation Padding

Encoder for SOM-CPC and CPC
Conv1D bs ×16 × 128 16 Leaky ReLU (0.01) 9 1 1 same
MaxPool1D bs ×16 × 32 - - 4 4 - -
Dropout (0.1) bs ×16 × 32 - - - - - -
Conv1D bs ×32 × 32 32 Leaky ReLU (0.01) 7 1 1 same
MaxPool1D bs ×32 × 8 - - 4 4 - -
Dropout (0.1) bs ×32 × 8 - - - - - -
Conv1D bs ×64 × 8 64 Leaky ReLU (0.01) 3 1 1 same
MaxPool1D bs ×64 × 2 - - 4 4 - -
Dropout (0.1) bs ×64 × 2 - - - - - -
Conv1D bs ×128 × 2 128 Leaky ReLU (0.01) 3 1 1 same
MaxPool1D bs ×128 × 1 - - 2 2 - -

Encoder for SOM-VAE and DESOM
Conv1D bs ×16 × 128 16 Leaky ReLU (0.01) 9 1 1 same
MaxPool1D bs ×16 × 32 - - 4 4 - -
Dropout (0.1) bs ×16 × 32 - - - - - -
Conv1D bs ×32 × 32 32 Leaky ReLU (0.01) 7 1 1 same
MaxPool1D bs ×32 × 8 - - 4 4 - -
Dropout (0.1) bs ×32 × 8 - - - - - -
Conv1D bs ×64 × 8 64 Leaky ReLU (0.01) 3 1 1 same
Flatten bs ×512 - - - - - -
Fully Connected bs ×128 128 Leaky ReLU (0.01) - - - -

Decoder for SOM-VAE and DESOM
Fully Connected bs ×512 512 Leaky ReLU (0.01) - - - -
Unflatten bs ×64 × 8 - - - - - -
Conv1D bs ×32 × 8 32 Leaky ReLU (0.01) 3 1 1 same
ConvTranspose1D bs ×32 × 32 32 None 4 4 1 0

Conv1D bs ×16 × 32 16 Leaky ReLU (0.01) 7 1 1 same
ConvTranspose1D bs ×16 × 128 16 None 4 4 1 0

Conv1D bs ×1 × 128 1 Tanh 9 1 1 same

found to benefit from a convolutional part of the encoder that did not fully reduce the temporal
dimension to size 1. As such, the last convolutional layer of the SOM-CPC encoder was changed for
a fully connected layer preceded by a flattening operation for the autoencoder-based models. The
SOM-CPC and CPC model are run without an AR module, to make the fairest comparison to the
SOM-VAE(prob) and DESOM models, which also do not incorporate such a component.

For SOM-CPC, P = 3 future predictions (i.e. positive samples) were used, and N = 3 negative
samples were drawn for each positive sample. The latter were drawn randomly from the entire training
set. The standard deviation of the Gaussian neighbourhood kernel was exponentially decayed until
σ(nmax) = 2. Choosing a lower value at the end of training induced instable optimization behavior.

All models (including the benchmarks) were trained using the Adam optimizer (Kingma & Ba, 2014),
with a learning rate of 0.001 and a batch size of 128. Each model was trained for maximally 1000
epochs. The best model was selected based on the lowest task loss on the validation set, being Lrecon
for SOM-VAE and DESOM and LInfoNCE for SOM-CPC and CPC. We did not use the full training
objective Ldeep-SOM as model selection criterion, as both the commitment and SOM loss showed to
be low initially (possibly due to low values of the random initialization of the model), while both
increased and reached a steady-state later in training. The linear classifier and the disjointly-trained
SOM on the CPC embeddings were trained until convergence, for maximally 1000 epochs.

A.3.2 EXTENDED RESULTS

Table 3 extends table 1 with additional sweeps of hyperparameters α, γ, and ζ, and ablations with
different settings of the temperature value τ and the used similarity metric. Compared to SOM-VAE,
SOM-VAE-prob is expected to show more smooth trajectories over time, captured in the ℓ2,smooth
distance metric, thanks to the additional transition and smoothness loss (multiplied by γ and ζ,
respectively). It can be seen that tuning these hyperparameters is a complex process, and a sweep
did not result in one SOM-VAE-prob run that performed better than the best SOM-VAE model. In
contrary, the addition of the extra losses possibly interfered with the optimization process, and only
very delicate settings of γ and ζ might improve model performance eventually. A sweep over the
topological loss multiplier α, revealed a low sensitivity of SOM-CPC to this value. It can be seen that
changing the temperature value and/or the similarity metric did not significantly alter the performance
consistently on all reported metrics.
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Table 3: This is the extended version of table 1 on the synthetic data results, including a sweep of hyperparameters
α, γ and ζ. Bold values indicate the best performance per column (excluding the upper bound of the vanilla
CPC model, which does not result in a 2D representation). The models indicated with a ∗ were used to depict
trained SOMs in fig. 2 and PCA projections in fig. 6.

Model α S LSOM sg[·] SEtarget ℓ2,smooth TE

CPC + linear classifier - - - 2.62±2.37 - -
CPC + K-means - - - 1.09±.62 - -
CPC (F = 2) + linear classifier - - - 25.01±42.94 - -
CPC (F = 2) + K-means - - - .76±1.31 - -
CPC + PCA + linear classifier - - - 42.81±58.12 - -
CPC + PCA + K-means - - - 4.42±9.01 - -
SOM-VAE 1e-3 Plus ✓ 11.59±13.69 2.60±.46 .38±.042

1e-2 Plus ✓ 14.57±44.10 2.98±.84 .38±.052
* .1 Plus ✓ 8.02±4.58 2.41±.68 .28±.070

1 Plus ✓ 13.43±3.66 2.75±.45 .33±.048
SOM-VAE 1e-5 Gaussian ✓ 11.12±17.05 1.93±.29 .069±.029

1e-4 Gaussian ✓ 1.52±26.61 1.95±.36 .075±.028
1e-3 Gaussian ✓ 11.60±25.43 1.92±.34 .056±.023
1e-2 Gaussian ✓ 18.13±48.66 2.03±.42 .086±.030

SOM-VAE-prob (γ = 5e-5, ζ = 1e-3) 1e-3 Plus ✓ 21.26±55.00 3.78±.52 .93±.042
(γ = 4e-5, ζ = 1e-3) 1e-3 Plus ✓ 21.30±37.37 4.23±.57 .88±.051
(γ = 3.3e-5, ζ = 1e-3) 1e-3 Plus ✓ 22.52±48.97 3.81±.51 .98±.015
(γ = 5e-4, ζ = 1e-2) 1e-2 Plus ✓ 14.65±19.58 3.70±.51 .86±.083
(γ = 4e-4, ζ = 1e-2) 1e-2 Plus ✓ 27.25±72.82 3.54±.67 .94±.022
(γ = 3.3e-4, ζ = 1e-2) 1e-2 Plus ✓ 21.62±38.78 3.71±.76 .97±.014
(γ = 5e-5, ζ = 1e-2) .1 Plus ✓ 26.82±68.84 3.23±.80 .68±.067
(γ = 4e-5, ζ = 1e-2) .1 Plus ✓ 22.34±64.92 3.11±.73 .74±.072
(γ = 3.3e-5, ζ = 1e-2) .1 Plus ✓ 2.10±48.80 3.15±.73 .63±.050
(γ = 5e-4, ζ = .1) .1 Plus ✓ 4.85±75.96 3.06±.55 .84±.050
(γ = 4e-4, ζ = .1) .1 Plus ✓ 29.96±46.96 2.81±.34 .82±.13
(γ = 3.3e-4, ζ = .1) .1 Plus ✓ 3.96±56.94 3.95±.83 .85±.11

DESOM 1e-5 Gaussian ✗ 14.00±3.10 1.99±.36 .13±.069
1e-4 Gaussian ✗ 19.09±44.04 1.95±.28 .11±.046
1e-3 Gaussian ✗ 12.58±27.10 1.92±.31 .077±.033
1e-2 Gaussian ✗ 13.66±44.71 1.89±.33 .065±.028

* .1 Gaussian ✗ 10.77±10.85 2.20±.44 .061±.019
1 Gaussian ✗ 22.86±55.71 2.26±.43 .092±.034

SOM-CPC (ours) 1e-5 Gaussian ✗ .95±2.40 1.24±.31 .048±.020
* 1e-4 Gaussian ✗ .72±1.08 1.37±.37 .022±.011

1e-3 Gaussian ✗ .81±.75 1.06±.28 .028±.012
1e-2 Gaussian ✗ .62±.71 1.08±.28 .059±.035

.1 Gaussian ✗ 1.90±4.07 1.18±.30 .039±.016
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1e-5 Gaussian ✓ .64±.71 1.04±.26 .039±.020
1e-4 Gaussian ✓ .68±.67 1.19±.43 .057±.033
1e-3 Gaussian ✓ .75±1.02 1.12±.32 .059±.027
1e-2 Gaussian ✓ .47±.48 .99±.24 .069±.040

.1 Gaussian ✓ .89±1.50 1.16±.32 .069±.031
1e-4 Plus ✗ 1.71±1.15 2.46±0.51 .30±0.062
1e-2 Plus ✓ 1.16±.61 1.85±.26 .12±.037

SOM-CPC (τ = 0.07, sim = cosine sim.) 1e-4 Gaussian ✗ 1.47±2.60 1.15±.34 .014±.015
SOM-CPC (τ = 1, sim = cosine sim.) 1e-4 Gaussian ✗ 2.26±4.91 .96±.13 .063±.020
SOM-CPC (τ = 0.07, sim = dot prod.) 1e-4 Gaussian ✗ 1.22±4.08 1.15±.37 .066±.046
CPC + SOM (disjoint) - Gaussian - .84±1.14 1.47±.50 .028±.014

[Hz]
SOM-VAE DESOM SOM-CPC

Figure 6: PCA projections of the continuous latent spaces of the full test set for the SOM-VAE, DESOM, and
SOM-CPC models of which the SOMs were visualized in fig. 2. Disentanglement of the signal frequencies is
much better in the SOM-CPC model.

Figure 6 shows PCA projections of the latent space of the SOM-VAE, DESOM, and SOM-CPC
models that are indicated with a * in tables 1 and 3, and for which the SOMs were visualized in fig. 2.
Disentanglement of the signal frequencies is much better for the SOM-CPC model, providing an
explanation for the better (i.e. lower) SEtarget of this model, as compared to SOM-VAE and DESOM.
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A.4 SLEEP EXPERIMENTS

A.4.1 DATA PROCESSING

For the experiments on sleep data, we used subset 3 of the publicly available Montreal
Archive of Sleep Studies (MASS) database (O’Reilly et al., 2014), consisting of 62 whole-night
polysomnography recordings. Each recording contains, among others, electroencephalography (EEG),
chin electromyography (EMG), and electrooculography (EOG) data. We refer the reader to O’Reilly
et al. (2014) for more details regarding this dataset. We selected the channels that are typically used in
clinical practice, comprising three EEG channels (F4, C4, O2), the two EOG channels, and one chin
EMG derivation, and downsampled the data to 128 Hz. Sleep stage labels that follow the guidelines
of the American Academy of Sleep Medicine (AASM) Berry et al. (2012) (being wakefulness (Wake),
rapid-eye movement (REM) sleep, or non-REM1 till non-REM3 (N1, N2, N3)) were available for
every non-overlapping 30-second window, the common label resolution in clinical practice.

Some processing had already been done by the distributors of the MASS dataset (O’Reilly et al.,
2014). The 60 Hz powerline interference was, however, not fully suppressed, and we wanted to down
sample each signal to 128 Hz to reduce computational complexity. As such, before downsampling,
all derivations were additionally filtered with a zero-phase (i.e. two-directional) 5th order Butterworth
band-pass filter (0.3 − 59 Hz), followed by another zero-phase 5th order Butterworth notch filter
(59− 61 Hz). Channels were normalized within-patient and per channel, yielding mean subtraction,
followed by normalization such that amplitudes of 95% of the samples were mapped between -1
and +1. The 62 recordings (numbered 1 − 64, with number 43 and 49 missing) were split into a
training set including patients 1− 48 (n = 47), a validation set including patients 50− 57 (n = 8),
and hold-out test set that included patients 58− 64 (n = 7).

A.4.2 TRAINING DETAILS

Dimensionality reduction of polysomnography data was done by encoding all selected channels in
each non-overlapping 30-second window using standard convolutional encoder. Table 4 summarizes
the used encoder and decoder (for SOM-VAE and DESOM) architectures. The latent space for
decoding in the SOM-VAE and DESOM benchmark models was not fully reduced to a 1D vector to
enhance training. Nevertheless, the last adaptive average pooling layer that was used in the encoder of
SOM-CPC, was applied in the bottleneck of SOM-VAE and DESOM before SOM quantization took
place. As a result the feature vectors in all models were of size F = 128. The decoder architecture
(see table 4) was used both for the continuous and discrete decoding in the SOM-VAE model (without
weight tying). No AR-component was used in the SOM-CPC model to make a fair comparison to the
SOM-VAE and DESOM model that also did not include such a component.

For the SOM-CPC model, P = 3 future predictions (i.e. positive samples) were used, and N = 3
negative samples were drawn for each positive sample. The latter were drawn from the same subject
as the positive sample. The σ of the Gaussian neighbourhood kernel was exponentially annealed to
σ(nmax) = 0.5 during training.

All models were trained with the Adam optimizer (Kingma & Ba, 2014), with a learning rate of 1e-4
and a batch size of 128. Each model was trained for maximally 500 epochs, and the best model was
selected based on the lowest Lrecon (for SOM-VAE and DESOM) or LInfoNCE (for SOM-CPC and
CPC) on the validation set.

A.4.3 EXTENDED RESULTS

Table 5 shows the quantitative results on sleep data, comparing SOM-CPC against deep-SOM models
(SOM-VAE and DESOM) and disjoint training of CPC, followed by either a supervised linear
classifier, K-means or a SOM. Discussion of the main results in this table can be found in section 4.2.
The ablation experiments in which the value of τ and/or the similarity metric was altered show that
classification and clustering performance slightly dropped when using the cosine similarity with
a temperature value of 1, while the topographic organization slightly improved (i.e. lower TE).
These effects vanished when using a temperature of τ = 0.07. Both runs showed worse temporal
smoothness (i.e. higher ℓ2,smooth). As expected, only changing the temperature value to 0.07 did
almost not affect results, suggesting that the linear projector heads were able to adjust for this scaling
factor.
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Table 4: Model details for the sleep experiments in section 4.2.
Layer type Output size Channels Activation Kernel size Strides Dilation Padding

Encoder for SOM-CPC and CPC
Conv1D bs ×16 × 128 16 Leaky ReLU (0.01) 15 1 1 0
MaxPool1D bs ×16 × 32 - - 5 5 - -
Dropout (0.1) bs ×16 × 32 - - - - - -
Conv1D bs ×32 × 32 32 Leaky ReLU (0.01) 9 1 1 0
MaxPool1D bs ×32 × 8 - - 5 5 - -
Dropout (0.1) bs ×32 × 8 - - - - - -
Conv1D bs ×64 × 8 64 Leaky ReLU (0.01) 5 1 1 0
MaxPool1D bs ×64 × 2 - - 5 5 - -
Dropout (0.1) bs ×64 × 2 - - - - - -
Conv1D bs ×128 × 2 128 Leaky ReLU (0.01) 3 1 1 0
AdaptiveAvgPool1D bs ×128 × 1 - - - - - -

Encoder for SOM-VAE and DESOM
Conv1D bs ×16 × 128 16 Leaky ReLU (0.01) 15 1 1 (18, 17)
MaxPool1D bs ×16 × 32 - - 5 5 - -
Dropout (0.1) bs ×16 × 32 - - - - - -
Conv1D bs ×32 × 32 32 Leaky ReLU (0.01) 9 1 1 0
MaxPool1D bs ×32 × 8 - - 5 5 - -
Dropout (0.1) bs ×32 × 8 - - - - - -
Conv1D bs ×64 × 8 64 Leaky ReLU (0.01) 5 1 1 0
MaxPool1D bs ×64 × 2 - - 5 5 - -
Dropout (0.1) bs ×64 × 2 - - - - - -
Conv1D bs ×128 × 2 128 Leaky ReLU (0.01) 3 1 1 0

Decoder for SOM-VAE and DESOM
Conv1D bs ×64 × 2 64 Leaky ReLU (0.01) 3 1 1 0
ConvTranspose1D bs ×64 × 2 64 None 5 5 1 0
Conv1D bs ×32 × 2 32 Leaky ReLU (0.01) 5 1 1 0
ConvTranspose1D bs ×32 × 2 32 None 5 5 1 0
Conv1D bs ×16 × 2 16 Leaky ReLU (0.01) 9 1 1 0
ConvTranspose1D bs ×16 × 2 16 None 5 5 1 0
Conv1D bs ×6 × 2 6 None 15 1 1 0

We also tested the performance when using the SimCLR (Chen et al., 2020) objective for the task loss,
instead of the CPC objective. SimCLR is also a contrastive learning framework, but instead of drawing
positive samples from the future latent space, these samples are created by applying augmentations on
the anchor window. Inspired by Um et al. (2017) we used the following augmentations: independent
and identically distributed Gaussian noise N (0, 0.05) was added (called jitter in their implementation),
each channel was scaled with a value drawn from N (0, 0.1), windows were split in 4 sub-windows
of minimal 2 seconds and randomly permuted, and lastly time series were both time warped and
magnitude warped. The latter two augmentations make use of smooth curves that smoothly vary the
positions of time stamps or magnitude values, respectively.

Besides the difference on how to create positive samples, the originally proposed SimCLR model has
some other slight differences with respect to the CPC model:

• The SimCLR loss uses the cosine similarity, while CPC uses the (unnormalized) dot product
as the similarity metric (see eq. (9)).

• SimCLR uses an additional temperature τ in its loss function (see eq. (9)), for which the
value is often set to 0.07 (Chen et al., 2020; Woo et al., 2022). CPC does not incorporate
such a temperature, which effectively means that it uses a value of 1.

• SimCLR uses a non-linear MLP projection head, while CPC uses linear projection heads.

• SimCLR uses negative samples from within the batch, while this is not specified in the CPC
paper. This specified design choice makes SimCLR typically very sensitive to the batch size.

• SimCLR was not proposed to include an auto-regressive component, and can not
straightforwardly be extended to do so, while CPC can be implemented with or without such
a module.

For the most fair comparison, the procedure for drawing negative samples in SimCLR is done
equivalently as for SOM-CPC, i.e. within the recording, instead of within the batch. However,
in the SOM-SimCLR model (i.e. the joint training of SOM with SimCLR), each drawn negative
sample is added to the set of negative samples both in its raw form, and with a random augmentation,
which effectively doubles the number of negative samples. Table 3 reports the performance of the
baseline SOM-SimCLR model (i.e. with settings τ = 0.07 and the cosine similarity), and variants
using a temperature value of 1 and/or the dot product as the similarity metric. All settings regarding
training procedure and the SOM were set equivalently as in the SOM-CPC training. Table 5 shows
that SOM-SimCLR results for τ = 0.07 are better than those with τ = 1, which is in line with
findings from Chen et al. (2020); Woo et al. (2022). However, even with τ = 0.07, performance of
SOM-SimCLR is lower on all metrics compared to the SOM-CPC model with the same value for
α. The higher ℓ2,smooth metric of SOM-SimCLR indicates on average larger jumps over the SOM
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Table 5: Test set performance of various models trained on sleep recordings. SOMs of models with a * are
visualized in fig. 4. Bold values indicate the best performance per column (excluding the upper bound of the
vanilla CPC model, which does not result in a 2D representation).

Model α S LSOM sg[·] Purity NMI Cohen’s kappa ℓ2,smooth TE

CPC + linear classifier - - - - - .68±.10 - -
CPC + K-means - - - .79 .29 .61±.11 - -
CPC (F = 2) + linear classifier - - - - - .52±.10 - -
CPC (F = 2) + K-means - - - .74 .24 .55±.090 - -
CPC + PCA + linear classifier - - - - - .54±.086 - -

* CPC + PCA + K-means - - - .77 .26 .57±.082 - -
SOM-VAE 1e-3 Plus ✓ .71 .23 .51±.04 2.36±.26 .24±.031

1e-2 Plus ✓ .71 .23 .51±.04 2.67±.17 .30±.037
.1 Plus ✓ .72 .23 .52±.03 2.60±.34 .28±.042
1 Plus ✓ .71 .23 .53±.03 3.08±.32 .31±.054

DESOM 1e-6 Gaussian ✗ .70 .27 .53±.05 2.14±.32 .095±.020
1e-5 Gaussian ✗ .70 .23 .50±.04 2.10±.26 .11±.028
1e-4 Gaussian ✗ .71 .22 .51±.04 2.35±.24 .17±.035
1e-3 Gaussian ✗ .71 .22 .51±.05 2.40±.16 .22±.0085
1e-2 Gaussian ✗ .71 .22 .50±.04 2.30±.26 .23±.021

SOM-SimCLR (τ = 0.07) 1e-3 Gaussian ✗ .73 .23 .53±.13 2.21±.35 .29±.026
SOM-SimCLR (τ = 1) 1e-3 Gaussian ✗ .70 .20 .48±.16 1.87±.30 .50±.068
SOM-CPC (ours) 1e-5 Gaussian ✗ .78 .27 .59±.11 1.03±.11 .041±.014

1e-4 Gaussian ✗ .78 .27 .61±.10 1.01±.10 .062±.018
* 1e-3 Gaussian ✗ .78 .27 .61±.12 1.02±.09 .032±.0096

1e-2 Gaussian ✗ .79 .28 .60±.11 1.08±.11 .19±.042
.1 Gaussian ✗ .79 .28 .65±.07 1.09±.09 .19±.04
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1e-3 Gaussian ✓ .78 .27 .62±.10 1.02±.12 .067±.025
1e-2 Gaussian ✓ .78 .27 .60±.10 1.07±.09 .17±.04

.1 Gaussian ✓ .78 .27 .62±.10 1.06±.11 .084±.020
1 Gaussian ✓ .78 .27 .59±.12 1.04±.12 .079±.019

1e-3 Plus ✗ .79 .28 .61±.11 1.35±.24 .26±.079
1e-3 Plus ✓ .79 .28 .60±.10 1.38±.28 .27±.080

SOM-CPC (τ = 0.07, sim = cosine sim.) 1e-3 Gaussian ✗ .78 .27 .60±.12 1.36±.13 .070±.023
SOM-CPC (τ = 1, sim = cosine sim.) 1e-3 Gaussian ✗ .73 .27 .58±.11 1.43±.15 .025±.0094
SOM-CPC (τ = 0.07, sim = dot prod.) 1e-3 Gaussian ✗ .79 .28 .62±.10 1.06±.11 .059±.020
CPC + SOM (disjoint) - Gaussian - .79 .28 .62±.11 1.21±.11 .52±.042
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Figure 7: Training curves of SOM-CPC (the model indicated with a * in table 5) for both the training and
validation set. The green dashed line indicates the epoch of the used model, i.e. the one with the lowest validation
InfoNCE loss. It can be seen that the epoch with the best clustering and classification performance does not
necessarily align with the epoch that has the lowest loss commitment and/or SOM loss.

map through time, which might be caused by the fact that the SimCLR task objective does not
incorporate temporal information, while InfoNCE does exploit this. Training time of SOM-SimCLR
was, moverover, considerably longer than SOM-CPC with the same settings due to the additional
augmentations that need to be computed for every data window and its negative samples.

Figure 7 shows training curves of the training and validation set for the SOM-CPC model that is
indicated with a * in table 5. The green line indicates the epoch with the lowest InfoNCE validation
loss. These graphs show that the performance of InfoNCE, the commitment and SOM loss, and
classification metrics do not necessarily align, making it dependent on your final goal with the
SOM-CPC model what is the most appropriate stopping-criterion.
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A.5 AUDIO EXPERIMENTS

A.5.1 TRAINING DETAILS

Audio streams were encoded in windows of 0.01 seconds (=160 samples). For CPC, GRU-DESOM,
and SOM-CPC the contextual information of L = 127 previous windows was aggregated using a
GRU, equivalent as proposed by Oord et al. (2019). The InfoNCE objective for (SOM-)CPC was
computed on top of the last context vector of the GRU. To test different settings for the GRU-desom
model, we distinguished GRU-DESOM that decodes only the last window, given the last context
vector, and GRU-DESOM that decodes the full sequence of 128 windows from the respective context
vectors.

Table 6 provides the model details of the encoder, and the decoder for the DESOM benchmarks. The
reconstruction loss of the DESOM model was found to be hampered in its optimization when using
the encoder architecture, as adopted for the SOM-CPC model. As such, the downsampling factor
of the encoder was reduced for the DESOM model to enable minimization of the task loss during
training.

Table 6: Model details for the audio experiments in section 4.3.

.

Layer type Output size Channels Activation Kernel size Strides Dilation Padding

Encoder for SOM-CPC and CPC
Conv1D bs × 512 × 32 512 ReLU 10 5 1 3

Conv1D bs × 512 × 8 512 ReLU 8 4 1 2

Conv1D bs × 512 × 4 512 ReLU 4 2 1 1

Conv1D bs × 512 × 2 512 ReLU 4 2 1 1

Conv1D bs × 512 512 ReLU 4 2 1 1

GRU bs × 512 512 - - - - -
Encoder for SOM-VAE and DESOM

Conv1D bs × 512 × 32 512 ReLU 10 5 1 3

Conv1D bs × 512 × 8 512 ReLU 8 4 1 2

Conv1D bs × 512 × 4 512 ReLU 4 2 1 1

Conv1D bs × 512 × 2 512 ReLU 4 2 1 1

Conv1D bs × 512 × 2 512 ReLU 4 1 1 same
Flatten bs ×1024 - - - - - -
GRU bs ×1024 1024 - - - - -

Decoder for SOM-VAE and DESOM
Unflatten bs × 512 × 2 - - - - - -
Conv1D bs × 512 × 2 512 ReLU 4 1 1 same
ConvTranspose1D bs × 512 × 4 512 ReLU 4 2 1 1

ConvTranspose1D bs × 512 × 8 512 ReLU 4 2 1 1

ConvTranspose1D bs × 512 × 32 512 ReLU 8 4 1 2

ConvTranspose1D bs × 1 × 160 512 ReLU 10 5 1 3 (+ output pad = 1)

For training of SOM-CPC, we followed the settings from Oord et al. (2019) and set P = 12. The
number of negative samples was set to N = 10, which were drawn randomly from the entire training
set. All deep-SOM models were trained for maximally 3000 epochs, using the Adam optimizer
Kingma & Ba (2014) with a learning rate of 1e-4 and a batch size of 8. One epoch was defined as a
push through of one sequence of 128 windows (or 1 window for DESOM) from each recording. The
best model was selected based on the lowest validation task loss.

The supervised linear classifier and disjoint SOM training on top of the frozen CPC embeddings were
trained with a batch size of 128, and a learning rate of 1e-4 and 1e-2, respectively. Both models were
stopped upon convergence of the validation loss (which was after 200 and 250 epochs, respectively).

A.5.2 EXTENDED RESULTS

Quantitative results of the audio experiments can be found in table 7. For this application, Cohen’s
kappa is computed as the average over all data windows in the test set, which is different from the
synthetic and sleep case, where it was computed as the average and one standard deviation across
recordings. In these audio experiments, all windows from one recording contain the same speaker id
label. Computing Cohen’s kappa per-recording, i.e. with having the same label for all windows in
that recording, is therefore inappropriate as the computation can not correct for correctness by chance.
Table 7 show that SOM-CPC clearly outperformed all variants of the (GRU-)DESOM model, and
feature extraction using CPC, followed by PCA and linear or non-linear classification.

Ablations with respect to the temperature τ and the similarity metric in the loss function indicated,
similarly as in the sleep case, that simply changing the temperature value did hardly affect SOM-CPC
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performance. However, changing the similarity metric to be the cosine similarity caused a drop in
clustering and classification performance, only when using a temperature value of 1. This result
overlaps with the experimental findings in the sleep case (see appendix A.4.3), and suggests that a
low temperature value - which was found beneficial in the SimCLR objective (Chen et al., 2020; Woo
et al., 2022) - does not equivalently improve SOM-CPC performance.

Figure 8 compares the test set projection on the 2D PCA space, created on the CPC features (with
F = 128), to the SOM from the SOM-CPC model that is denoted with a ∗ in table 7 (and also
visualized in fig. 5-right).

Table 7: Test set performance of various models trained on audio recordings. SOMs of models with a * are
visualized in fig. 5. Bold values indicate the best performance per column (excluding the upper bound of the
vanilla CPC model, which does not result in a 2D representation).

Model α S LSOM sg[·] Purity NMI Cohen’s kappa TE

CPC + linear classifier - - - - - 1.00 -
CPC + K-means - - - 1.00 .60 1.00 -
CPC (F = 2) + linear classifier - - - - - .00 -
CPC (F = 2) + K-means - - - .13 .013 .025
CPC + PCA + linear classifier - - - - - .86 -
CPC + PCA + K-means - - - .89 .54 . .88
DESOM 1e-5 Gaussian ✗ .18 .03 .06 .14±.035

1e-4 Gaussian ✗ .23 .08 .11 .34±.045
1e-3 Gaussian ✗ .31 .13 .20 .68±.050
1e-2 Gaussian ✗ .13 -.00 .00 1.0±.00

GRU-DESOM (reconstructing last window) 1e-5 Gaussian ✗ .19 .04 .08 .13±.028
1e-4 Gaussian ✗ .26 .09 .15 .20±.036
1e-3 Gaussian ✗ .31 .13 .21 .42±.078
1e-2 Gaussian ✗ .32 .14 .22 .46±.057

GRU-DESOM (reconstructing full sequence) 1e-5 Gaussian ✗ .19 .05 .08 .34±.048
1e-4 Gaussian ✗ .30 .12 .20 .59±.072

* 1e-3 Gaussian ✗ .33 .14 .22 .78±.048
1e-2 Gaussian ✗ .29 .12 .19 .57±.069

SOM-CPC (ours) 1e-5 Gaussian ✗ .99 .73 .99 .14±.081
1e-4 Gaussian ✗ 1.00 .63 1.00 .24±.12

* 1e-3 Gaussian ✗ 1.00 .61 1.00 .33±.098
1e-2 Gaussian ✗ 1.00 .61 .99 .33±.099

A
bl
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1e-3 Gaussian ✓ 1.00 .61 .99 .28±.087
1e-2 Gaussian ✓ 1.00 .61 .99 .35±0.10

.1 Gaussian ✓ 1.00 .61 1.00 .35±.095
1 Gaussian ✓ 1.00 .61 1.00 .38±.11

SOM-CPC (τ = 0.07, sim = cosine sim.) 1e-3 Gaussian ✗ .99 .61 .99 .42±0.12
SOM-CPC (τ = 1, sim = cosine sim.) 1e-3 Gaussian ✗ .88 .55 .86 .17±.063
SOM-CPC (τ = 0.07, sim = dot prod.) 1e-3 Gaussian ✗ 1.00 .61 .99 .38±.098
CPC + SOM (disjoint) - Gaussian - 1.00 .62 1.00 .28±.11

Speaker idSOM-CPCCPC + PCA

Figure 8: Projecting the test set on the 2D PCA space shows no division of the green and the red clusters in two
sub-clusters, something that is visible in the SOM of the SOM-CPC model. These sub-clusters were found to
relate to recordings that were made with different room acoustics.
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