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Abstract

Humanoid robots have shown success in locomotion and
manipulation. Despite these basic abilities, humanoids are
still required to quickly understand human instructions and
react based on human interaction signals to become valu-
able assistants in human daily life. Unfortunately, most ex-
isting works only focus on multi-stage interactions, treat-
ing each task separately, and neglecting real-time feed-
back. In this work, we aim to empower humanoid robots
with real-time reaction abilities to achieve various tasks,
allowing human to interrupt robots at any time, and mak-
ing robots respond to humans immediately. To support
such abilities, we propose a general humanoid-human-
object interaction framework, named RHINO, i.e., Real-
time Humanoid-human Interaction and Object manipula-
tion. RHINO provides a unified view of human intent pre-
diction, interactive motion, instruction-based manipulation,
and safety concerns, over multiple human signal modalities.
RHINO is a hierarchical learning framework that enables
humanoids to acquire interaction skills from human-human-
object demonstration and teleoperation data, while gener-
alizing across diverse human appearances. In particular,
it decouples the interaction process into two levels: 1) a
high-level planner inferring human intents from real-time
human behaviors, and 2) a low-level controller achieving
expressive interaction behaviors and object manipulation
skills based on the predicted intents. We evaluate our frame-
work with human studies and quantitative experiments on a
real humanoid robot and demonstrate its effectiveness and
robustness in various scenarios.
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1. Introduction

Humanoid robots are increasingly being explored to per-
form tasks in diverse environments [4, 17, 19]. Their
human-like morphology provides a potential for acting
with human-like dexterity, making them ideal for general-
purpose daily-life human assistants. Considering how we as
humans react to our friends, a practically helpful humanoid
assistant should possess three fundamental capabilities: 1)
skill proficiency, equipped with diverse and essential skills
to achieve various tasks; 2) intent recognition, capable of
discerning human intents, from either motion or language;
and 3) instant feedback, able to respond in real-time with
feasible actions.

Nonetheless, most studies on human-robot interaction
only focus on only one or two of these aspects. For instance,
a significant body of work on human-robot interaction fo-
cuses on object handover [32, 34], or interactive motion
generation [7, 21, 22, 25, 29], lacking the ability to switch
between different tasks in real-time. Some others focus on
recognizing human intents [12—14, 24, 31], which simplify
the diversity of reaction and treat the interaction as an al-
ternated two-stage process. The robot cannot be interrupted
once a task is in progress, and further human commands can
only be executed after the completion of the robot’s current
task. Many recent works have attempted to combine the
ability of general foundation models to enable robots to un-
derstand the complexity of human interactions [33, 38], but
they often suffer from high latency and are not suitable for
real-time interaction tasks. These limitations hinder robots
from rapid interventions and robust, multi-step interactions
in human-centered tasks. Therefore, a framework that mas-
ters human-robot interaction with real-time intent recogni-
tion and various skills is urgently needed to tackle the above
challenges.

To achieve this goal, we propose RHINO, a hierar-
chical learning framework for Reactive Humanoid-human
INteraction and Object Manipulation. RHINO decouples
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Figure 1. RHINO has the capabilities of real-time interaction on diverse tasks. (a) RHINO enables real-time humanoid-human-object
interaction, allowing seamless task interruption and dynamic switching during operation. (b) The system demonstrates diverse capabilities,
including waving, cheering, stamping, object pickup, handovers, and more.

the interaction process into two levels. High-level planner
infers human intents from real-time human behaviors and
plans to execute the corresponding skills. Low-level con-
troller achieves reactive motion behaviors and object ma-
nipulation skills based on high-level signals. The high-
level planner updates at high frequency, and the low-level
controller is designed to be interruptible, enabling it to re-
act to high-level commands at any time. The design of
RHINO aims to ensure the scalability and robustness of
the framework. To ensure scalability, we design a pipeline
to learn interactions from human-object-human demonstra-
tions, which can be easily extended to different tasks and
scenarios. To ensure robustness across diverse human ap-
pearances, our approach decouples the human-centered in-
teraction ability from the object-centered manipulation abil-

ity and designs different input modalities for each. We im-

plement RHINO on a real humanoid robot and demonstrate

its effectiveness and robustness in various scenarios (see

Figure 1) with human studies and quantitative experiments.

Although this work only focuses on the upper body of a hu-

manoid, it has the potential to be extended to whole-body

interaction with a unified humanoid controller.
Our main contributions are in the following aspects:

* We introduce the first real-time humanoid interaction
framework capable of learning from human demonstra-
tions, enabling dynamic task-switching and immediate re-
sponses to human instructions.

* We design a pipeline with two key innovations: 1) decou-
pling human-centered interaction from object-centered
manipulation for robustness to diverse human appear-
ances, and 2) learning directly from human-human
demonstrations, which enables low-cost scaling to new
tasks.

* We implement and validate RHINO on the Unitree H1
humanoid robot and demonstrate its effectiveness and ro-

bustness in 2 scenarios with over 20 tasks, and open-
source the code and datasets to facilitate future research.

2. Related Works

Recent progress in building a human assistant robot can be
divided into three categories: 1) human intent prediction, 2)
basic skills, and 3) unified interaction framework. Table 1
compares RHINO and representative related works.

2.1. Human Intent Prediction

Humanoid robots need to estimate the human physical and
mental states to provide appropriate assistance [35]. More
specifically, many signals can be used to infer human in-
tents, such as whole-body motion [34, 40], forces [4],
gaze [12, 31], and language [33]. Object information in
the environment also plays an important role in predicting
human intent [14, 24] by combining it with human motion.
In most works on human intent recognition, the robot first
predicts the human intent and then executes the task. This
two-stage design neglects the real-time reaction ability of
the robot. Our work aims to react to human signals in real
time, with interruptible downstream skills.

2.2. Robot SKkills

Interactive motion synthesis. In human-robot interaction
(HRI), learning to generate interactive and expressive mo-
tions, such as shaking hands and waving, are fundamental
skills. Recent works [21, 39] collect multi-human motion
data, capturing real-time interaction and reaction between
humans. The human-like morphology of humanoid robots
provides a unique opportunity to learn natural motion from
retargeted human motion data [15]. Human motion data
can be collected from motion capture systems or network
videos. Compared to collecting robot motion data, it has a



Table 1. Comparison of RHINO with Prior Works in Human-Robot Interaction. Selected representative works are shown for each category

to ensure clarity.

Representative Work Category Data Source Manipulation Interaction
Ability Ability
EgoPAT3Dv2 [14]; HOI4ABOT [24] Intent Prediction Collected Images X X
InterGen [21] Motion Synthesis Human-human Interaction X v
Co-GAIL [36]; HandoverSim [9] Sim-based Interaction Simulation v (specific task)
OpenVLA [20]; SayCan [5] Vision-Language Models Internet-scale Images and v (text-only)
Text; Teleoperation
RHINO (Ours) Humanoid-Object-Human Human-Human Interaction; v v
Interaction Teleoperation

lower cost and higher scalability. Based on this, studies en-
code social scenes [25], simulate reactions [22], or deploy
interaction models on robots [29].

Simulation-based Interaction. For tasks with clear goals
in interaction, such as handover [9] and collaboration
tasks [36], the interaction process can be formulated as a
reinforcement learning (RL) problem with a simulation en-
vironment. These simulation-based interaction methods can
combine manipulation and interaction abilites, but suffer
from the sim-to-real gap and can not generalize to general
interaction tasks without clear goals, such as waving and
shaking hands.

Object manipulation. The ability to manipulate objects is
another fundamental skill for a humanoid assistant robot,
which requires more precise control of the robot’s end-
effector. Limited by the dexterity of the robot, espe-
cially the degree of freedom of our humanoid robot’s arm
and hand, imitating learning from real-world teleoperation
data [11, 23, 27] is a more practical way to ensure success,
compared to learning from human data [30, 37, 43]. Our
work learns manipulation skills based on the teleoperation
data.

2.3. Unified Interaction Framework

Recent works have attempted to leverage the capacity of
general foundation models, such as vison-language mod-
els (VLMs), to enable robots to understand human intent
in the format of text-based instructions [5, 20, 33]. How-
ever, such interaction is often high-latency and not suitable
for real-time environments, limiting the potential for imme-
diate response and natural interaction. Asfour et al. [6] de-
signed rules of the real-time human-robot interaction, which
is hard to scale up. Cardenas-Perez et al. [8] tries to learn
an end-to-end model with 5 different tasks. Limited by the
sample efficiency, this end-to-end paradigm makes it diffi-
cult to scale to more tasks.

Our framework decouples the interaction process and
enables each module to model the interaction with differ-
ent observation modalities, which is more robust and scal-
able. We also deploy the framework on a real robot and
demonstrate its effectiveness and robustness in more than

20 tasks.

3. Problem Formulation

In this work, we consider the interaction as a leader-
follower formulation [35], where the human is the leader
and the humanoid robot is the follower. At ¢ time, the leader
shows an intent I; € 7 to ask the follower to perform a skill
K; € K. T is a predefined set of human intents and /C is
the predefined set of skills. Each skill is a basic ability to
complete one simple task, such as picking up a can, brush-
ing a plate, or stamping a file, and the mapping function
f :Z — K from intent to skill is a one-to-one mapping.

There are three types of skills that correspond to the
leader’s intents: interactive motion skills, manipulation
skills and idle. The interactive motion skills require the
robot to perform expressive and diverse behavior, and the
manipulation skills require the robot to interact with objects
in the environment precisely. When the human leader does
not show any intent, the robot will be in an idle state and
maintain its joints in a default state.

Each skill K has a start condition s € P and an end
transition e € P. The start condition shows the required
hand occupancy of each hand to start the skill. For example,
the skill to cheer with the leader requires the humanoid to
hold a can of drink in the right hand. The end transition de-
termines the change of hand occupancy after finishing this
skill successfully. For example, for the skill of picking up
a can, the start condition and end transition are [empty,
empty] and [empty, can] respectively. A compre-
hensive description of all skills is shown in Section D.

4. RHINO Framework

The observation of the humanoid robot includes the envi-
ronment state and the human behavior. To enhance the ro-
bustness of human appearances and enable scaling up, our
framework decomposes the interaction policy into human-
centered and object-centered modules. As Figure 2 (a),
we first collect two types of data: human-object-human in-
teraction data and teleoperation data. The human-object-
human interaction data is used to train the human-centered
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Figure 2. Overview of RHINO framework. (a) Training pipeline. Reactive planner and expressive motion modules are trained on
human-human data, while the manipulation module is trained on teleoperation data. RHINO extracts human skeleton motion from the
image to enhance the generalization of human appearances. (b) Hierarchical framework structure. High-level planner predicts intent and
plans skills, while low-level skill follows the high-level signal and generates motor commands. (c) Workflow of the reactive planner. For
the example shown, if the intent is cheering when the robot holds a sponge, the planner selects: place sponge — pick can — cheer.

modules, i.e., reactive planner and interactive motion skills,
while the teleoperation data is used to train the object-
centered modules, i.e,. manipulation skills. The input of
human-centered modules is non-image structured data, such
as human skeleton motion, and the input of object-centered
modules is cropped images of robot-object interaction. Em-
pirical evidence in Section 5 proves that the decoupling de-
sign makes RHINO more robust and efficient than a single
end-to-end model.

As Figure 2 (b), the high-level planner predicts the
leader’s intent I from the real-time observation and selects a
sequence of skills. It sends start or cancel signals to the low-
level controller based on human intention changes or finish
signals received from the low-level controller (e.g., starting
cheers after pick can is finished). The low-level controller,
composed of motion and manipulation skill modules, gen-
erates joint positions based on the leader’s intent and the
robot’s current state. Finally, the safety supervisor moni-
tors the joint positions and stops the robot if a human is too
close to it. Figure 3 illustrates the network structure of all
submodules.

4.1. Data Collection

Human-object-human interaction data. To learn the in-
teraction between humans and robots, we first collect a
dataset of human-object-human interaction [4 1], where two
people perform a series of daily interaction tasks with vari-
ous objects. In comparison to human-robot interaction data,
human-object-human interaction data can be collected with-
out a real robot, which is cheaper to collect and easier to

scale to more skills in various of scenarios. The dataset is
recorded with a simple motion capture system, and a stereo
RGB-D camera in the first-person view of the follower. Mo-
tion data is retargeted to the humanoid robot and used by
imitation learning algorithms to construct the reactive mo-
tion skills. See Sec. B and Sec. C for more details.
Teleoperation data. Manipulation skills, such as picking
up a cup, require more precise control of the robot’s end-
effector. To ensure the success of those skills, we col-
lect demonstrations with a teleoperation system [10], where
the human’s motion is captured with a VR device, and the
robot’s joint positions are set by retargeting the human’s
motion.

4.2. Reactive Planner

The reactive planner is designed to infer the leader’s intent,
I, from real-time observations and plan a skill sequence by
finding the shortest path in the task graph. The intent pre-
dictor of the planner is a Transformer model, which predicts
the leader’s intent at a 30 Hz frequency. The input to mod-
els is structured features without images, including human
body postures, the human’s hand and head positions, and
the nearest object to the hands, as well as the robot’s hand
occupancy p.

Long-horizon task planning. When the current occupancy
is not satisfied with the start condition of a skill p; # sk,
the skill is not able to start. In this case, the reactive planner
first generates a sequence of skills to satisfy the requirement
sk, then executes the skill K = f(I;) asked by the leader,
as shown in Figure 2 (3). We build a directed graph of occu-
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Figure 3. Network architecture of RHINO modules

pancy transitions to find the sequence. The node n € P is
the hand occupant, and the edge e € 7T is skills. The short-
est path from the current occupancy p; to the start condition
Sk, is the skill list to achieve p; = sk.

For stability, the reactive planner plans to execute skill
K = f(I), only if it consistently predicts an intent I for n,.
time steps. After a skill is initiated, the motion skill persists
until a change in human intent occurs, while the manipula-
tion skill persists until the execution is judged successful or
exceeds a time limit. When a skill is complete, the robot
returns to the idle state.

Real-time Interaction. To enable low-latency interaction,
the application of most skills can be interrupted by another
skill when a different human intent persists for & steps.
The motion skills can be easily undone by returning to an
idle pose, whereas the interruption of manipulation skills is
more complicated, as it requires reversing the object’s state.
We use a corresponding reverse skill to interrupt each inter-
ruptible manipulation skill. For example, the skill of placing
the can is a reversal of the skill of picking the can. We show
the task graphs and transitions between skills in Section F.

4.3. Interactive Motion Skills

In human-robot interactions, a primary goal is to produce
smooth, consistent motions while offering robust, real-time
feedback regarding human behavior. To accomplish this, we
employ a multi-body motion diffusion model [21] to gener-
ate low-level interactive motion skills.

Different from multi-person motion generation, the hu-
manoid and human are heterogeneous and asymmetric in
the humanoid-human interaction. We represent the human
motion m; as a 6D rotation vector for each joint, and the hu-
manoid motion m? as the target of humanoid robot joint po-
sitions. Both motions are simplified to arm and hand joints.
We also add hand occupancy p; and human intent I; as input
to the model, to ensure the robot’s motion is consistent with
the human’s intent. Our model predicts the future motion
of the humanoid robot m7, .., 1, based on the history of
human motion m;_ ., and humanoid motion m?_s.,. The
model predicts 10 future frames of humanoid motion with
a 3 Hz frequency, which generates 30 frames of motion in
one second.

4.4. Manipulation Skills

Manipulation skills require precise control of the robot’s
end-effector, which is difficult to achieve with the retargeted
human motion data. As a result, we train an independent
Action Chunking Transformer (ACT) [42] model for each
low-level manipulation skill, which inference at a real-time
frequency of 30Hz. The models are trained on tele-operated
demonstrations manually segmented and labeled as atomic
manipulation skills such as picking, placing, and cheering.
Robust and safe manipulation. We crop input images to
the robot-object interaction area, removing the human body
and retaining only hand information, which helps the model
focus on the manipulation skills and be robust to human
appearance and behavior changes. We also collect in-skill
interruption data, where the robot pauses or withdraws its
current movement if it collides with the human or the target
object is unreachable. Such data enables the robot to exhibit
safe behavior and adapt to changes in human behavior or the
environment.

Learning terminal conditions. In our multi-skill interac-
tive framework, the model must recognize when a current
skill is completed in order to send finish signals back to the
high-level planner to move on to the next skill. To imple-
ment this, each manipulation policy predicts an additional
0/1 success signal, an indicator of whether the skill is com-
pleted, in addition to the joint positions. We add an extra
cross-entropy loss to train the 0/1 classification.

4.5. Safety Supervisor

The safety supervisor guarantees safe human-robot interac-
tion by monitoring the distances between the robot and hu-
man hands. When human hands are too close to the robot,
all joints of the robot are paused to prevent potential harm.
Detailed implementation can be found in Section F.

5. Experiment

In experiments, we first demonstrate the necessity of our
modular design in Sec. 5.1, comparing it to a simple end-
to-end design alternative. The quantitative and human study
results show RHINO can scale on various tasks and gener-
alize to changes in human appearances.

To further demonstrate the scalability, we evaluate its



performance in two different scenarios: a dining waiter sce-
nario and an office assistant scenario, also called Scene 1
and Scene 2. The details of the skills in each scenario are
shown in Section D. In each scene, the robot should react
to the human with its arms, hands, and active head. The
results show that all modules in RHINO perform well in
the skills. The supplementary video shows demonstration
results in two scenarios.

We use Unitree H1 humanoid robot as our real-world
experiment platform. Detailed information regarding the
setup and deployment of the experiment, including the hard-
ware design, motion and object detection, and our motion
capture system, can be found in Section C.

5.1. Framework Performance

1) Framework Structure

We compare RHINO to end-to-end (E2E) ACT base-
lines [10, 42], with uncropped input images to capture full
human motion and environment states, following [8]. Base-
lines are trained on 1, 3, 5, and 7 skills using 100 slices
per skill in a simple scene. We also train improved ver-
sions with additional interruption data (E2E-I). However,
while as many as n? combinations of skills are theoretically
needed, we only include 20% for fair comparison, result-
ing in a rather low performance. In deployment, we test
the E2E model in the in-distribution (I.D.) scene in which
human clothing and object arrangement are the same as the
training datasets, and the out-of-distribution (0.0.D.) scene
where these conditions vary. Figure 5 shows the difference
between L.D. and O.0.D. scenes.

The average success rates of each setting are shown in
Figure 4. RHINO outperforms the E2E baselines in all set-
tings, thanks to better prediction of human intent and ro-
bustness to O.0.D. data. The high dimensionality and noise
of the image input cripple the robustness of the end-to-end
policies, leading to more failures under the O.O.D. settings.
More detailed results are shown in Section G.

In addition, the E2E framework struggles to scale, with
performance dropping as the number of skills increases. In
contrast, RHINO maintains stable performance and scales
easily—supporting up to 16 skills in our experiments—with
minimal effort required to add more via modular training.
2) Human Study

To further evaluate RHINO’s effectiveness and robust-
ness in a real-world deployment, we conducted a user study
with a total of 21 participants. Participants interacted with
each system and ranked them based on general performance
and seven detailed abilities. Participants were encouraged
to wear personalized clothing to evaluate generalization
(see Fig. 6). Detailed settings about the human study can
be found in G.5.

RHINO was ranked best overall by 81.0% of partici-
pants and outperformed both baselines across all metrics,

Success Rates vs. Number of Skills
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Figure 4. Model success rates with different numbers of skills.
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Figure 5. .D./O.0.D. scene examples (camera view).

Figure 6. Appearances of participants in the human study.

as shown in Fig. 7. We find RHINO generalizes well to hu-
man appearances while E2E struggles with multi-task exe-
cution and unseen appearances. For example, E2E is likely
to keep waving or be confused when picking and placing
objects with unseen human appearances. In the supplemen-
tary video, we show RHINO can even generalize to interact
with a humanoid robot.

5.2. Performance of Sub-Modules

To demonstrate scalability, we deploy RHINO across 20
tasks in two scenes, evaluating sub-module performance.
See the supplementary video for examples and Section G
for more details.

Human intent prediction. We assess our human intent
prediction module using mAP scores, with an 80%-20%
train-valid split and additional human-robot interaction data
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Figure 7. Results of the human study. Left: Overall ranking distribution across the three systems. Right: Percentage of participants who

ranked each system first on individual metrics.

Table 2. Performance of the interaction planner.

| mAP +

Table 3. Performance of motion generation.

‘ Inference
Method Validation Data Test Data Frequency 1
Scene 1 Scene2 | Scene 1 Scene 2

Qwen2 - - 0.213 0.167 30 Hz
Finetuned Qwen2 | 0.284 0.322 0.228 0.159 30 Hz

ChatGPT-40-mini - 0.573 0.564 ~ 0.46 Hz
Ours 0.982 1.0 0.787 0.643 30 Hz
Ours w/o HD 0.999 0.925 0.729 0.587 30 Hz

Method ‘ FID| JPE(mm)/ Diversity MDModality
Real | - - 3.74 £0.05 -
Zero Velocity | 43.22+0.01  84.82 £0.01  2.85+0.09 -
InterGen 22.95+2.28 173.05+8.39 3.52+0.19  0.18 £0.02
Ours 10.67 £0.01  48.79 £0.00  3.68 £0.06  0.02 +0.00
Ours w/o Diff. | 38.50 £0.01 142.85+0.02 2.91 £0.04 -
Ours w/o HM | 17.34 £0.05  60.52 £0.04  3.59 £0.08  0.06 +0.01

as the test set. As is shown in Table 2, our model out-
performs all baselines despite a performance drop in de-
ployment. The performance drop in the ablation baseline
(Ours w/o HD), which excludes object information, high-
lights the critical role of hand details in intent recognition.
The VLMs, Qwen2-VL-2B-Instruct, underperform even af-
ter fine-tuning, probably due to a relatively small amount of
training data. GPT-4o0-mini achieves good results but suf-
fers from slow inference, delaying robot responses.

Motion generation. We evaluate our motion generation
module against four baselines on six interaction motions.
Baselines include a zero-velocity baseline, InterGen [21],
and two ablations: without diffusion (w/o Diff.) and with-
out human motion input (w/o HM). See Section G for de-
tails. As is shown in Table 3, RHINO achieves the best
FID, JPE, and diversity scores, demonstrating high motion
quality and variability. Removing diffusion or human mo-
tion input both degrade FID and JPE, highlighting the im-
portance of conditioning on human motion in generating
high-quality reactions.

Objects manipulation. = We compare our manipulation
module with human teleoperation in Table 4. RHINO
matches or surpasses human performance on simpler tasks
(e.g., can, tissue), likely due to training on successful
demonstrations only. Performance slightly drops on fine-
grained tasks (e.g., cap, stamp) due to hardware limits such
as insufficient DoFs and lack of haptic sensing. The module
is slightly slower than humans due to conservative progress
prediction and the robot’s safe posture initialization. To
test robustness, we evaluate the effect of in-skill interrup-

tion data during training. As shown in Table 5, with extra
20% interruption data, the success rate in handling interrup-
tions (e.g., withdrawing from picking a can when a human
interferes) reaches 85%.

6. Limitations

6.1. Analysis of System Failure

As a framework of multiple modules, the failure of the sys-
tem could be caused by various reasons.

Error and limitation of sensors. Most of the perception
of our implementation of RHINO is based on one RGB-
D camera. However, the estimation of 3D position often
shifts with time and is missing when the estimated object is
occluded by other objects or the robot arms. The cumulative
error of the sensors leads to a misunderstanding of human
intent and incorrect judgment by the safety supervisor.
Stability of hardware. The zero position of the robot arm
may have shifted in a small range, which leads to incor-
rect proprioception. Also, the robot’s electronics age over
time, which causes errors that require precise control of the
robot’s end-effector.

Failure of Model Generalization. Due to the limited data
collection, the model may fail to generalize to extreme out-
of-distribution scenarios, although we mitigate this issue by
cropping the image to the region of interest for manipula-
tion skills and using extracted information rather than raw
images for human intent prediction. Some unseen human
clothing or unexpected object arrangement may lead to the
failure of the manipulation. Also, non-standard sitting pos-



Table 4. Performance of manipulation across objects. Table 5. Performance of manipulation with different

ratios of interruption data.

Metrics Scene 1 Scene 2
Can  Plate Sponge Tissue | Cap Book Stamp Lamp Ratio of data Place Plate
cop s . Pick Can  Stamp the Paper

Succ. Rate .00 096  0.90 095 | 093 095 093  1.00 with interruption to Stack

Avg. Time 9.41 2959  23.69 9.43 16.14 10.81 15.17  5.06 1% 0.00 0.00 0.00
Succ. Rate (Human) | 097 098 099 091 | 091 093 092 096 10% 0.05 0.15 0.30
Ave. Ti ) 20% 0.85 0.60 0.90

g. Time (Human) | 1042 2577 17.04 954 | 1898 1021 11.84 3.53

ture or body shape can also have an impact on the prediction
of human posture and intent, which leads to a misunder-
standing of human intent. Fortunately, human leaders can
intervene to correct the robot’s behavior in RHINO, which
helps prevent a complete breakdown of the system.

6.2. System Limitations

Despite promising results, several limitations remain.
Firstly, while RHINO is designed to be scalable, the cur-
rent implementation is constrained by the availability of
high-quality training data. The generalization of the system
across a broader range of tasks and environments is still a
challenge, as it heavily relies on human demonstrations and
teleoperation data, which is time-consuming to collect. Fu-
ture work will focus on utilizing existing datasets and sim-
ulation environments to improve the scalability and gener-
alization of the framework.

Additionally, the current implementation of RHINO is
limited to the upper body at a fixed workspace, but a hu-
manoid assistant should have locomotion and navigation
abilities in a dynamic environment, and react with whole-
body behaviors. Future work should integrate a whole-body
controller to extend the framework to whole-body interac-
tion for humanoid robots, and more general tasks with vary-
ing levels of human intervention.

7. Conclusion

We propose RHINO, a hierarchical framework that enables
humanoid robots to perform real-time, adaptive humanoid-
human-object interactions. By decoupling high-level plan-
ning and low-level control, RHINO supports fast intent
recognition, task interruption, and a wide range of skills
from manipulation to expressive motions. Deployed on a
real robot, it demonstrates strong flexibility, safety, and re-
sponsiveness in dynamic environments—marking a step to-
ward autonomous, human-integrated humanoid systems for
daily assistance, disaster response, and industrial tasks.
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