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ABSTRACT

We present an empirical study of cycle consistency in image-text mappings. We
observe growing cycle consistency across a wide range of image-to-text and text-
to-image models, i.e., images and text are becoming increasingly interchange-
able in their representations. First, we investigate the factors driving this trend
and identify that scaling language models and employing high-quality dataset re-
captioning enhance cycle consistency. Next, we analyze the types of images and
texts that are exchangeable, and find that cycle consistency strongly correlates
with various desired properties such as reduced text hallucination, better descrip-
tions, and improved compositionality and prompt-following in images. Lastly,
we examine various sources of variance in cycle consistency demonstrating that
text-to-image models are sensitive to specific prompt styles.

1 INTRODUCTION
Image<->text mapping

ImagesText

“A male ring-necked 
pheasant stands in a 
field of tall grass.”

“A row of red and 
black motor scooters 
parked on the side of 

the road.”

“Several motor 
scooters parked 
in a row on the 

side of a street.”

Figure 1: Bidirectional image $ text mappings.
Image-text mappings are able to exchange text descrip-
tions into images and vice versa. We analyze how close
cycle reconstruction is to the original data.

How would you convey the visual look of your
hometown to a friend? One approach would
be to share a set of photos, showing differ-
ent architectural elements and city scenes. An-
other would be to give a verbal description:
“The roofs are made of half-cylinder terra cotta
tiles, layered one on top of the other.” Both
approaches convey visual information, even
though the latter is in the format of text. To
wit, visual information can be communicated
either by images – the preferred format of the
computer vision scientist – or by language – the
currency of NLP. The same is true in the other
direction: information expressed via language
can be visualized in an image or infographic
that conveys some of the same meaning. In-
creasingly, multimodal models are blurring the
lines between these two representational for-
mats (e.g., Liu et al., 2024b; Gemini, 2023), and there is interest in both the computer vision and
NLP communities in forging links between the two modalities, so that we can apply tools from NLP
to problems in vision (e.g., Surı́s et al., 2023), and vice versa (e.g., Hu et al., 2024).

This leads us to ask: are pixels and words fundamentally exchangeable formats, or are there limits
to how effectively text can represent images, and in how well images can convey the meaning in
text? We address this question by studying the degree to which images can be translated into text
without losing information, and, vice versa, how faithfully can text be represented via an image.
We quantify this by looking in particular at the cycle consistency of image-text mappings. A cycle-
consistent image mapping is one in which translating from an image to a text description, and back,
results in the original image. Symmetrically, a cycle-consistent text mapping translates a starting
text into an image, and back into text which matches the original input. While cycle consistency is
a desirable emergent property for image-text mappings, it also gives us insights about 1) what kinds
of images and text lead to successful exchanges of information and 2) the models which generated
these images and text. Furthermore, recent models have begun to incorporate cycle consistency at
training time Betker et al. (2023); Esser et al. (2024); Sharifzadeh et al. (2024); Li et al. (2024b).
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Input Image Reconstructed Image Input Image Reconstructed Image

 [0.232] The image depicts a large, historic square with a prominent 
obelisk in the center. The obelisk is tall and cylindrical, made of stone, 
and topped with a statue. The sky above is partly cloudy with patches 
of blue, suggesting a partly sunny day. Surrounding the obelisk are 
several buildings with distinct architectural styles. On the left side…

 [0.262] The image depicts a street scene in an urban environment, likely 
in a city. The foreground is dominated by a vibrant purple flowering 
plant with long, slender stems and clusters of small, purple flowers. 
The plant is in sharp focus, with its vibrant purple blossoms standing out 
against the blurred background. The background features a busy street 
scene with several pedestrians and vehicles…

 [0.347] The image depicts a narrow, cobblestone street leading towards 
a stone wall on the right side and a building on the left side. The street 
is flanked by a large, lush green tree on the left, which stands out 
prominently against the clear blue sky. The building on the left appears 
to be a residential or commercial structure with a flat roof and a few 
antennas on top…

 [0.181] The image depicts a beautifully crafted latte art coffee cup placed 
on a saucer. The cup and saucer are adorned with intricate blue floral 
patterns, giving them a classic and elegant appearance. The latte art on the 
coffee is a leaf design, crafted with precision, featuring a swirl of white 
foam on top of a rich, creamy brown coffee. The background is dark…

 [0.208] The image depicts a bustling urban street scene at night, likely 
in a busy commercial area. The street is lined with various shops and 
restaurants, each adorned with bright, colorful signage in both English 
and Japanese. The most prominent sign in the image is the iconic red 
and yellow McDonald's logo, indicating the presence of a McDonald's 
restaurant. Adjacent to it…

 [0.282] The image depicts a vibrant cityscape at night, showcasing a 
bustling urban environment illuminated by numerous lights. The 
foreground features a dense cluster of buildings, including residential 
and commercial structures, with varying heights and architectural 
styles. The streets are filled with bright lights, indicating active 
businesses and possibly nightlife. A prominent highway runs 
horizontally across the middle of the image, with streaks of light…

Figure 2: Examples of image cycle consistency using different image-to-text, text-to-image combinations. No
models have been trained jointly, but still produce cycle consistent outputs. Each image pair shows the input
real image, the output generated image. The text description used to generate the output image is shown below
the image pair along with DreamSim(#) reconstruction in brackets.

Generated Image
Input text: A young girl in a pink jacket and polka dot scarf 
crouches in a field of tall grass, holding a small plant, 
surrounded by lush greenery and possibly a small body of water 
in the background.

Reconstructed text [0.850]: The image depicts a young girl 
crouching in a field of tall green grass near a body of water. She 
is wearing a pink jacket, blue jeans, and purple shoes. The girl 
has short, dark hair and is holding a small plant or clump of 
grass in her hands, examining it closely. She is also wearing a 
black scarf with white polka dots around her neck

Input text: A panda bear sits on a damaged wall, holding a 
plant, with a hole nearby. The panda's face and paw are visible, 
and the image includes a sidewalk and a lower wall section.

Reconstructed text [0.840]: The image depicts a panda bear 
sitting on a wall. The panda bear is holding a green plant in its 
paws, and it appears to be sitting on a crack in the wall. The wall 
is painted in a light color, possibly beige or light brown, and 
there is a noticeable hole in the wall where the panda is 
perched…

Input text: A scenic view of Venice, Italy, with buildings along 
the canal and a small boat sailing on the water. The buildings 
have an architectural style common in Venice, and there is a 
large teal-colored dome on top of one of the buildings. The sky is 
a rich blue with no clouds.

Reconstructed text [0.858]: The image depicts a picturesque 
scene of a canal in Venice, Italy. The canal is flanked on both 
sides by historic buildings, showcasing the city's iconic 
architecture. The water is a serene, turquoise color, reflecting 
the clear blue sky above. A small boat, possibly a gondola, is 
seen moving along the canal, leaving a gentle wake behind it

Input text: A gazebo sits on a grassy hill surrounded by a 
brown fence, with trees in the background displaying various 
colors of fall foliage. The sky is overcast, and fog rolls in, 
obscuring the distance.

Reconstructed text [0.829]: The image captures a serene scene 
of a gazebo perched on a hill, enveloped by a foggy atmosphere. 
The gazebo, with its brown roof and black railing, stands out 
against the vibrant colors of the surrounding trees. These trees, 
adorned in hues of orange, yellow, and green, hint at the season 
being autumn. The hill on which the gazebo is located…

Generated ImageInput and Reconstructed Text Input and Reconstructed Text

Figure 3: Examples of text cycle consistency from different model combinations. Models still exhibit a degree
of cycle consistency despite being trained independently. Each example shows the generated image on the left
for the input text on the right, followed by the reconstructed text below. SBERT similarity (") between the input
and output text is reported in brackets. Highlighted phrases in the descriptions are for better comparison.

We make the following findings. First, we experiment with combining off-the-shelf text-to-image
and image-to-text models to create both image and text cycles. We find that current models are
fairly cycle-consistent semantically, but still distant from pixel to pixel (as seen in Figures 2 and
3). Furthermore, we observe an increasing correlation between cycle consistency and model per-
formance. We analyze several key advancements contributing to this trend: language model scale,
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higher resolutions, and training data with densely captioned images. Secondly, we observe that
cycle-consistent captions are descriptive, exhibit reduced object hallucination and omission, and
dense in length. Cycle-consistent images demonstrate better prompt-following and improved com-
positionality across different categories. Because image-text mappings are not one-to-one, we com-
pare sources of variance in these mappings, including forms of sampling and prompt style choices,
and their effect on cycle consistency.

2 PRELIMINARIES

We examine to what degree current models display cycle-consistent properties. Similar to how au-
toencoders calculate error between original inputs and decoded outputs to evaluate performance, we
measure both how well are images reconstructed through text and how well are text descriptions
preserved by images. We use I to denote a set of real images, and T to denote a set of text descrip-
tions. Given an image-to-text model F and a text-to-image model G, they exhibit cycle consistency
if G(F (i)) ⇡ i for all i 2 I and F (G(t)) ⇡ t for all t 2 T . We measure image cycle consistency
and text cycle consistency by computing the following reconstruction losses respectively:

Limg = Ei2I [dimg(G(F (i)), i)], (1)
Ltext = Et2T [dtext(F (G(t)), t)]. (2)

We measure the distance between image i and reconstructed image G(F (i)) with the DreamSim (Fu
et al., 2023b) image distance metric dimg. We find that DreamSim cycle consistency best correlates
with text descriptiveness and aligns with human perception of image distance. Similarly, we use
SBERT (Reimers & Gurevych, 2019) to measure similarity between input and reconstructed text.
See Appendix C.1 for ablations on measuring cycle consistency.

3 WHAT FACTORS ARE DRIVING CYCLE CONSISTENCY?

In this section, we analyze the driving factors for cycle consistency. We evaluate image and text
cycle consistency for 13 image-to-text models and 5 text-to-image models (i.e., 130 cycle-consistent
mappings). These models were trained with varying datasets, architecture, and scale, and were
selected based on public availability and disclosure of details. See Appendix A for a complete list
of models and summary of differences.

We use Densely Captioned Images (DCI) dataset (Urbanek et al., 2024), which features high-
resolution images annotated with dense captions, compared to other datasets (e.g., 480×640 pixels,
13.54 tokens for MSCOCO (Lin et al., 2014)). Due to limited prompt length of text-to-image mod-
els, we use sDCI which summarizes DCI captions to fit 77 tokens (1500×2250 pixels, 49.21 tokens).
We sample 1K examples from the train split. We report the average cycle consistency for each text-
to-image model, computed across 13 image-to-text models and 3 random seeds. We follow the same
procedure with image-to-text models. Image and text cycle consistency calculations for all possible
model combinations are shown in Figures 14, 15. Figure 16 provides a baseline comparison.

3.1 CYCLE CONSISTENCY IMPROVES WITH LLM SCALE

An image-to-text model consists of a vision encoder, a projector, and a large language model (LLM).
Scaling the vision transformer (ViT) for the vision encoder is reported to enhance performance (Li
et al., 2023b), yet a simple MLP projection remains the dominant approach (Liu et al., 2023b;a;
OpenGVLab, 2024; Li et al., 2024a). As no model offers open-sourced weights with varying vision
encoder scales while keeping other parameters fixed, we focus our analysis on ablating the LLM
size. Figure 4 demonstrates that scaling the LLM enhances both image and text cycle consistency
across all image-to-text model families. Figure 5 highlights the effect of LLM size on image cycle
consistency, comparing the InternVL2 model family trained on the same architecture and dataset but
with varying LLM scales. We observe that scaling the LLM improves caption descriptiveness, e.g.,
InternVL2-40B is the only model capable of accurately describing both the color and the presence
of a corner turret. In contrast, models with smaller LLMs fail to capture such fine-grained details,
leading to reduced image cycle consistency.
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Figure 4: Scaling the language model improves cycle consistency. Across all image-to-text model families,
both image and text cycle consistency consistently improve with the scaling of large language models (LLMs).

Input Image InternVL2-2B InternVL2-8B InternVL2-26B InternVL2-40B

[0.3948] The image depicts 
a quaint street scene in what 
appears to be a European 
city. The focal point of the 
image is a building with a 
distinctive architectural 
style, characterized by its 
yellow and beige facade. 
The building has a central 
section with a large, arched 
window and a decorative 
cornice, topped with a small 
dome and a spire. The roof 
is adorned with

[0.3648] The image depicts a 
street scene in what appears 
to be a European city, 
characterized by a blend of 
historical and modern 
elements. The focal point of 
the image is a multi-story 
building with a distinctive 
architectural style. The 
building has a yellow facade 
with decorative elements, 
including ornate window 
frames and a small dome-like 
structure on the roof. The 
roof features a small, pointed 
tower with

[0.3248] The image depicts a 
street scene in what appears 
to be a European city, 
characterized by a blend of 
historical and modern 
elements. The focal point of 
the image is a prominent 
building with a distinctive 
architectural style. This 
building is a three-story 
structure with a yellowish 
facade, featuring ornate 
detailing and a mix of 
architectural elements that 
suggest a blend of Baroque 
and Renaissance influences.

[0.2841] The image depicts a 
street scene featuring a 
distinctive building with a 
blend of architectural styles. 
The building is primarily 
painted in a light beige color 
with decorative elements in a 
darker shade, possibly brown 
or gold. It has a prominent 
corner turret with a conical 
roof and a small spire on top, 
adding an ornate touch to the 
structure. The facade includes 
arched windows

Figure 5: How LLM scale affects image cycle consistency. Left to right: input image followed by four image
reconstructions using synthetic captions from image-to-text models with different LLM size. Each caption is
preceded by the respective DreamSim(#) reconstruction score in brackets. Despite being trained on the same
dataset and architecture, scaling the LLM improves caption descriptiveness. For instance, only InternVL2-40B
successfully captures both the color and the presence of a corner turret, whereas models with smaller LLMs
lack fine-grained detail, resulting in poorer image cycle consistency.

3.2 RE-CAPTIONED DATASET QUALITY

Current image-to-text models are predominantly trained on re-captioned datasets where real images
are annotated with detailed descriptions generated by large language models (e.g., GPT-4) or vision-
language models (e.g., GPT-4V). Similarly, recent works demonstrate that training text-to-image
models with descriptive captions generated by high-quality captioning models significantly enhances
their prompt-following ability (Betker et al., 2023; Esser et al., 2024). As most text-to-image models
do not disclose information on training data, our analysis primarily focuses on image-to-text models
and their re-captioned datasets. Ideally, the analysis would involve the same model trained with
and without re-captioned datasets, or with datasets of varying quality; however, such open-sourced
weights are not available. Consequently, we compare different models of similar sizes. To limit the
number of uncontrollable variables, we compare models with similar number of parameters. Note
that other factors, such as architecture, pre-trained backbones, and model training still differ between
the models.

Table 1 demonstrates that the quality of the re-captioned dataset (e.g., dataset re-captioned by GPT-
4V, LLaVA1.6-34B) aligns with improved image cycle consistency. Models trained on such datasets
often exhibit better consistency than those trained on larger datasets annotated by less-performant
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Re-captioned Dataset Cycle Consistency
Model Size Re-captioning Model Image (#) Text (")

BLIP2-6.7B 244M BLIP 0.5936 0.5215
LLaVA1.5-7B 23K GPT-4⇤ 0.5022 0.6290
LLaVA1.6-7B 112K GPT-4V 0.4833 0.6173
LLaVA-OV-7B 3.5M LLaVA1.6-34B 0.4742 0.6259

Table 1: Re-captioned dataset quality and cycle consistency. The quality of the re-captioned dataset (i.e.,
generated by a high-performing model) aligns with improved image cycle consistency. Models trained on
such datasets often exhibit better consistency than those trained on larger datasets annotated by less-performant
models. In contrast, text cycle consistency shows little difference between the LLaVA models due to limited de-
scriptiveness of the input text (sDCI), resulting in diminishing improvements for longer, more detailed captions,
such as those reconstructed by LLaVA1.6 and LLaVA-OV. Image cycle consistency is measured by DreamSim
(lower is better), and text cycle consistency by SBERT (higher is better).

Figure 6: Cycle consistency correlates with better prompt-following images. We measure cycle consistency
(averaged across all image-to-text models) as a function of prompt-following quality in generated images. We
observe a strong correlations for both kinds of cycle consistency and prompt-following quality in images.

models (e.g., BLIP). Our findings align with existing literature (Li et al., 2024a) that highlights
“quality over quantity” for training multimodal models. On the other hand, text cycle consistency
shows little difference between the LLaVA models, as the input text from sDCI often lacks fine-
grained detail (evidenced in Figure 16) compared to longer and more descriptive synthetic captions,
such as those produced by LLaVA1.6 and LLaVA-OV. We believe higher-quality human annotations
and text-to-image models with longer context would enhance the analysis of text cycle consistency.
Note that for LLaVA1.5, GPT-4 (i.e., language model) is prompted with captions and bounding
boxes to generate detailed captions. We exclude InternVL2 from this analysis as information re-
garding its pre-training dataset is not disclosed.

4 PROPERTIES OF CYCLE-CONSISTENT IMAGES AND TEXTS

In this section, we explore the quality of cycle-consistent texts and images with respect to various
properties. We find more descriptive and less-hallucinated captions and better prompt-following
images generally align with higher cycle consistency.

4.1 COMPOSITIONALITY AND PROMPT-FOLLOWING IN IMAGES

We investigate how cycle consistency varies with compositionality and prompt-following in text-
to-image generation. We measure these qualities on two benchmarks: T2I-Compbench (Huang
et al., 2023), which focuses on image compositionality, and Drawbench which includes a variety of
categories for general text-to-image synthesis (Saharia et al., 2022).
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Figure 7: Cycle consistency strongly correlates with descriptiveness in text. While both cycles exhibit a
strong correlation, we observe a better alignment between text cycle consistency and descriptiveness in the
generated captions.

LLaVA OV-7BInput Image

 [0.527] a statue of a 
man

InternVL2-40B

 [0.356] The image depicts a 
statue of a historical figure 
standing prominently in front 
of a building. The statue is 
made of dark material, likely 
bronze, and portrays a man 
dressed in formal attire from a 
bygone era. The figure is 
wearing a long coat with a cape 
draped over one shoulder, a 
waistcoat, and trousers, and is 
holding a rolled document in 
one hand….

LLaVA 1.6-34B

 [0.426] The image features a 
statue of a man in a suit, 
standing on a pedestal. The 
statue is positioned in front of 
a building, which has a 
window on the side. The man 
appears to be wearing a tie, 
adding to the formality of his 
attire. The statue is the main 
focus of the scene, and it is 
likely a tribute to an…

LLaVA 1.5-13B

 [0.311] The image captures a 
striking black statue of 
Friedrich August II, the King 
of Saxony, standing tall on a 
pedestal in front of a beige 
building. The statue, which is 
the focal point of the image, is 
positioned in the center, 
drawing the viewer's attention. 
The pedestal, also black, bears 
a gold inscription that reads 
"FRIEDRICH AUGUST II 
KOEN…

BLIP2-Flan-T5

 [0.422] The image captures a 
moment in front of a large, 
ornate building. Dominating 
the scene is a statue of a man, 
standing tall on a pedestal. The 
statue is crafted from black 
stone, adding a sense of 
grandeur and permanence to the 
scene. The man is depicted in a 
military uniform, complete 
with a hat and a sword, 
suggesting a figure of authority 
or…

Figure 8: Text descriptiveness and cycle consistency. From left to right: Original photograph, and generated
image reconstructions made by different captions under each image with the DreamSim (#) reconstruction in
brackets. As captions include more specific and correct visual details, the reconstruction quality increases. All
images are generated with SD3 from the same random seed.

For T2I-Compbench, we evaluate on color, shape, texture, and spatial fine-grained categories. Sim-
ilarly to Section 3 we calculate cycle consistency for text-to-image models by averaging across all
13 image-to-text models. Figure 6 plots image and text cycle consistency against text-to-image per-
formance for all 5 text-to-image models. Cycle consistency highly correlates with text-to-image
generation quality. Intuitively, images which are more faithful to visual details represented in text
preserve more information and therefore facilitate better image and text reconstructions. Ablations
for measuring cycle consistency are discussed in Appendix C.1.

4.2 TEXT DESCRIPTIVENESS

Similarly to Section 4.1, we analyze the relationship between the descriptiveness of captions and cy-
cle consistency. Typically, image captions are evaluated using the CIDEr score on the COCO Karpa-
thy split (Karpathy & Fei-Fei, 2015). This dataset covers a limited distribution of images annotated
with short captions which poses a challenge in evaluating modern image-to-text models which gener-
ate long, descriptive captions. Inspired by recent text-to-image benchmarks (Huang et al., 2023; Sa-
haria et al., 2022), we instead conduct visual question answering without the image component, i.e.,
“VQA without V”. Given a VQA dataset {v, q, a}Ni=1, an image-to-text model F , we first generate
synthetic text F (v) for images in the VQA dataset. Then we prompt a large language model (LLM)
to answer the question based on the generated caption. This allows us to measure whether synthetic
text accurately describes fine-grained details of the image, as the LLM must answer a diverse range
of questions based solely on the description. We use Meta-Llama-3.1-8B-Instruct (Dubey
et al., 2024) as the LLM evaluator in all experiments. Exact prompts are detailed in Appendix A.3.
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Figure 10: Cycle consistency strongly correlates with reduced hallucination in text. We observe that both
cycles strongly correlates with reduced hallucination in text, with image cycle consistency being more promi-
nent.

To assess how informative synthetic text is across fine-grained attributes (e.g., counting, position),
we perform “VQA without V” on three VQA benchmarks: SEEDBench (Li et al., 2023a), MME (Fu
et al., 2023a), and MMStar (Chen et al., 2024a). As we evaluate how well synthetic text describes
images, we focus on questions from the “perception” categories across all datasets. Cycle consis-
tency is calculated as in Section 3.

Input Image Reconstructed Image

 [0.294] a large golden statue

 [0.274] Anemone, Clownfish

Figure 9: Short text captions can
yield high image cycle consistency
despite lack of detail. Strong bias
between certain images and text cap-
tions leads to easy reconstructions.

Figure 7 compares image-to-text model captioning performance
scores against image and text cycle consistency scores (averaged
across all text-to-image models). This demonstrates a strong cor-
relation between both image and text cycle consistency and cap-
tioning performance. Generally, more informative captions lead
to better image reconstructions through text, and also better re-
covery of input text details such as in Figure 8. For a discussion
of ablations measuring cycle consistency see Appendix C.1.

Sometimes less is more. Although generally descriptive cap-
tions exhibit better cycle consistency, we observe examples of
high cycle consistency using short, undescriptive captions. Such
instances are not uncommon, and mainly occur when the input
image displays a very typical scene. In Figure 9 (Top Row), im-
ages of large golden statues are often taken by people at ground
level looking up at the statue. Perhaps such images are “com-
mon” enough that a few keywords are sufficient to fully describe
the scene. See Appendix Figure 22 for more examples.

4.3 OBJECT HALLUCINATION IN TEXT

To investigate object hallucination in the generated text, we utilize the POPE benchmark (Li et al.,
2023c), using their annotated COCO dataset. POPE constructs a set of triples consisting of an image,
multiple questions and their answers hx, {q(oi), ai}li=1i, where x is the image, q(oi) is a question
probing object oi based on a template “Is there a/an <object> in the image?”, oi is the i-th object
to be probed, and ai is the answer to the question (“Yes” or “No”), and l denotes the number of
questions per image. While POPE focuses on evaluating hallucination at the model level, our goal
is to measure hallucination in the generated text.

To achieve this, we perform the VQA without V analysis on POPE. Specifically, for a given LLM
M , we evaluate M(f(x), q(oi)) = ai, which measures how many questions can be answered based
on the generated caption. This contrasts with evaluating f(x, q(oi)) = ai, which measures how
accurately an image-to-text model f can answer questions directly. The experimental setup is iden-
tical to that described in Section 4.2. Figure 10, 11 demonstrates that cycle consistency strongly
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Input Image Reconstructed Image

[DreamSim 0.38] [POPE 100]  
a man in a green shirt and black shorts is playing tennis on a blue 
court. he is holding a tennis racket and appears to be in the middle 
of a swing.

[DreamSim 0.41] [POPE 83.3]  
three wine glasses are filled with red wine and placed on a table. the 
glasses are arranged in a row, with one glass on the left, another in 
the middle, and the third on the right. the table setting also includes 
a cup and a bowl, creating a cozy and inviting atmosphere for a meal 
or gathering.

Input Image Reconstructed Image

Figure 11: Reduced object hallucination (POPE ") correlates with better cycle consistency (DreamSim #).

correlates with texts with reduced hallucination. Notably, we observe that image cycle consistency
shows a stronger correlation with reduced hallucination.

4.4 TEXT DENSITY

Figure 12: Image cycle consistency vs. caption
density. We measure cycle consistency across
captions for the same image summarized into
varying lengths. Reconstruction scores increase
with more descriptive captions, with reduced ben-
efit after about 30 words. Error bars show stan-
dard deviation across 10 different random seeds.

Given that more informative captions correlate with
more cycle consistent images as seen in Section 4.2,
we now study how densely information should be
packed into a caption - i.e., to get the best image re-
construction, what is the ideal caption length? To
properly control both the level of detail and length
of captions, we use summarized captions for im-
ages in the Densely Captioned Images dataset (Ur-
banek et al., 2024) created by Huh et al. (2024).
In this dataset, each image is accompanied by cap-
tions of different lengths: 5, 10, 20, 30, and 50 word
summaries. but all describe the same scene. Us-
ing the summarized versions of the same image cap-
tion, we use text-to-image models to generate im-
ages over 10 different random seeds and then report
the mean DreamSim distance between the generated
images and the original image described by the cap-
tions. Figure 12 plots the relationship between cap-
tion density and image reconstruction. Similarly to
Section 4.2, we find that increasing the amount of
granularity of captions improves reconstruction er-
ror for all text-to-image models, although with high
variance. Furthermore, for models SD1.5, SDXL,
and SDXL-Turbo image reconstruction sees insignificant benefit beyond 30 tokens, whereas SD3
and FLUX-Time continue to show improvement (the former reports using descriptive synthetic
captions at train time (Esser et al., 2024)). Figure 13 provides examples of summary captions and
their corresponding synthetic images.

5 VARIANCE IN CYCLE CONSISTENCY

In the previous sections, we mainly observe cycle consistency by greedy sampling from image-to-
text models and averaging over three random seeds for text-to-image models. In this section, we
observe how stochasticity can affect cycle consistency. Text-to-image and image-to-text models can
exhibit stochastic behavior due to factors such as random seed initialization, temperature sampling,
and differences in prompt wording. While random seed and temperature sampling are only relevant
to one mapping direction, prompt style applies to both. Different prompt styles for text-to-image
generation come from changing the text while maintaining the meaning of the text. One such ex-
ample is editing word choice and syntax. For image-to-text models, different input prompts can be
used to query the model about different things and request different kind of text descriptions. These

8
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 [0.633] Man 
walks to KFC 

restaurant.

 [0.528] Man and 
woman walking to 

KFC with bright blue 
sky and red umbrella.

 [0.405] A man and woman 
walk towards a KFC 
restaurant, flanked by a pizza 
place and a black car, under a 
bright blue sky with white 
clouds and a red umbrella.

 [0.457] A man and woman walk 
towards a KFC restaurant with a 
red umbrella, surrounded by a 
bright blue sky with white clouds, 
and a black vehicle parked next
to a pizza restaurant with a large 
picture of a pizza on the window.

 [0.383] A man and woman 
walk towards a KFC restaurant 
with a bright blue sky and 
white clouds, surrounded by a 
grey brick driveway, a black 
vehicle, and a pizza restaurant 
with a red sign and a large 
window with a pizza decal.

5 Word Summary 10 Word Summary 20 Word Summary 30 Word Summary 50 Word SummaryInput Image

 [0.625] White 
ice cream with 

coconut 
umbrellas.

 [0.552] Coconut-
topped ice cream 

cups with umbrellas 
on a colorful stand.

 [0.544] Coconuts with 
umbrellas on ice cream 
cups, baskets with fruit, and 
signs with prices on a 
colorful vendor stand.

 [0.367] A colorful vendor 
stand with four cups of white 
ice cream topped with sliced 
coconuts and umbrellas, 
surrounded by baskets of 
fruit and signs listing food 
items and prices.

 [0.474] A colorful vendor stand 
displays white ice cream cups 
with umbrellas on top, 
surrounded by baskets of fruit, 
including avocados, mangos, 
and apples, with signs listing 
prices in multiple languages.

Figure 13: Effect of caption density on image cycle consistency. From the left to right: Original photograph,
and synthetic reconstructions made by different summarized versions of the same caption. Under each synthetic
image is the DreamSim reconstruction followed by the summary caption. Generally as the captions become
longer and more descriptive, they better match the original image.

Source of Variance Image Cycle Consistency Text Cycle Consistency
Text-to-image Models

Random seed 0.0415 0.0634
Caption style 0.0709 0.0719

Image-to-text Models
Temperature sampling 0.0642 0.0588
Prompt style 0.0371 0.0427

Table 2: Sources of variance in cycle consistency. We compare how random seed, prompt style, and temper-
ature sampling affect variance in cycle consistency. For each source of variance we report the average standard
deviation using DreamSim and SBERT for image and text cycle consistency respectively.

sources of variability can lead to different results with identical inputs. In this section, we analyze
the extent to which each factor causes variance in cycle consistency.

For each factor, we generate N = 10 variations and calculate the average standard deviation using
DreamSim for image cycle consistency and SBERT for text cycle consistency. For temperature sam-
pling, we set the temperature to 0.7. For text-to-image models, we modify prompt style by using
Meta-Llama-3.1-8B-Instruct (Dubey et al., 2024) to rewrite a given prompt while main-
taining its original meaning and number of words. The choice of prompts for the models is included
in the Appendix A.1. We use the DCI dataset and sample 100 examples with N = 10 variations
each across 60 model combinations, resulting in variance calculations over 6,000 examples. Note
that we excluded BLIP2 models from measuring prompt style variance as they are not instruction-
tuned and often produce captions of less than 3 words, making it challenging to change the style
without changing its meaning.

Table 2 demonstrates that image-to-text models exhibit higher variance due to temperature sam-
pling but remain relatively robust to changes in prompt style. In contrast, text-to-image models are
significantly more sensitive to prompt style than random seed sampling. This suggests that cur-
rent text-to-image models are biased towards specific prompt styles, as evidenced by DALL-E 3
internally rewriting prompts before processing them (Betker et al., 2023).

6 RELATED WORK

Large multimodal models are rapidly improving, particularly in vision and language. Image-to-text
models are capable of producing comprehensive image descriptions (Gemini, 2023; OpenAI) by
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scaling the language model (Liu et al., 2023b;a) and training on semantically-rich synthetic cap-
tions (Li et al., 2022; 2023b; Sharifzadeh et al., 2024; Liu et al., 2023b;a).

Concurrently, text-to-image models can generate images that follow a wide range of prompts (Podell
et al., 2023; Sauer et al., 2023; Esser et al., 2024; BlackForestLabs). Recent works (Betker et al.,
2023; Brooks et al., 2024) further enhance the prompt-following ability by learning a descriptive
image captioner and generating pseudo image-text pairs. The models trained on this dataset are
capable of generating images faithful to long, descriptive captions.

While several works implicitly encourage image-text cycle consistency during sampling, recent
work (Li et al., 2024b) explicitly enforces cycle consistency by leveraging unpaired image and text
data, ensuring alignment between the original samples and their cycle-generated counterparts. De-
spite large image-text models becoming increasingly cycle-consistent, this property has been sur-
prisingly little studied. In this work, we provide an in-depth analysis of cycle-consistent properties
across a wide range of off-the-shelf image-to-text and text-to-image models.

7 CONCLUSION

This paper studies cycle consistency in current image-text mappings. We find that existing image-
to-text and text-to-image models achieve a certain level of cycle consistency, even without explicit
training for it. We observe that image-to-text models with larger LLMs trained on high-quality
re-captioned data are associated with higher cycle consistency. Moreover, we show that cycle con-
sistency improves with the quality of synthetic text and image generations. Generated images that
follow the compositionality and details provided by the input text model tend to be more cycle-
consistent, and similarly for more detailed, informative, and accurate captions. Lastly, we highlight
stochastic factors that may affect cycle consistency, and find that prompt style for text-to-image
models contributes the most variance to cycle consistency.
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A MODEL DETAILS

We use 13 different image-to-text models and 5 text-to-image models to study cycle consistency.
Models are chosen based on public availability and disclosure of details such as architecture, scale,
training dataset and method etc. We use the following models for image-to-text mappings: BLIP-
2.7B, BLIP-6.7B, BLIP-2-Flan T5-XXL Li et al. (2023b), LLaVA 1.5-7B, LLaVA 1.5-13B Liu et al.
(2023a), LLaVA OneVision-Qwen2-0.5B, LLaVA OneVision-Qwen2-7B Li et al. (2024a), LLaVA
1.6 Mistral-7B, LLaVA 1.6-34B Liu et al. (2024a), InternVL2-2B, InternVL2-8B, InternVL2-26B,
and InternVL2-40B Chen et al. (2023; 2024b). Table 5 provides a summary of model differences in
terms of scale and architecture.

We use the following models for text-image mappings: Stable Diffusion 1.5 (Rombach et al., 2022),
Stable Diffusion XL (Podell et al., 2023), Stable Diffusion XL Turbo (Sauer et al., 2023), Stable Dif-
fusion 3 (Esser et al., 2024), and FLUX (Timestep-distilled) (BlackForestLabs). Tables 6 provides
a summary of model differences.

A.1 HYPERPARAMETERS FOR IMAGE-TO-TEXT MODELS

To ensure that all image-to-text models can produce image descriptions to the best of their ability,
we use the prompt recommended by the model distributor, as shown in Table 3. We use greedy
search for all experiments (except for temperature sampling in Section 5), and 77 maximum tokens,
i.e., maximum prompt length supported by text-to-image models.

Model Prompt

BLIP2 “this is a picture of”
LLaVA1.5 “Write a detailed description of the given image.”
LLaVA1.6 “Write a detailed description of the given image.”
LLaVA-OV “Write a detailed description of the given image.”
InternVL2 “Please describe the image in detail.”

Table 3: Prompts used for generating image descriptions for image-to-text models.

A.2 HYPERPARAMETERS FOR TEXT-TO-IMAGE MODELS

To ensure that all text-to-image models can produce outputs to the best of their ability, for each
model we use the settings recommended by the model distributor. Hyperparameters for each model
are reported in Table 4. We use random seeds 0, 123, and 324229 in our experiments.

Model Resolution Steps Guidance Scale

SD1.5 512 50 7.5
SDXL-Turbo 512 4 0
SDXL 1024 50 7.5
SD3 1024 50 7.5
FLUX-Time 1024 4 0

Table 4: Hyperparameters for text-to-image models.

A.3 VQA WITHOUT V

We use the following prompt for the LLM judge in the VQA without V experiment in Section 4.2:

You will be given an image description and a question. Your role is to answer the question based
on the image description. Image description: [caption]. Question: [question] where we replace
“[caption]” with F (v) and “[question]” with q.

To generate the image description, we use the prompt “Write a caption for this image.” for all
image-to-text models.
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Model # Params Vision Encoder Projector LLM

BLIP2-2.7B 3.8B EVA-CLIP ViT-g (1.1B) QFormer OPT (2.7B)
BLIP2-6.7B 7.8B EVA-CLIP ViT-g (1.1B) QFormer OPT (6.7B)
LLaVA1.5-7B 7.1B CLIP ViT-L (304M) MLP Vicuna-1.5 (7B)
LLaVA1.5-13B 13.4B CLIP ViT-L (304M) MLP Vicuna-1.5 (13B)
LLaVA1.6-7B 7.6B CLIP ViT-L (304M) MLP Mistral (7B)
LLaVA1.6-34B 34.8B CLIP ViT-L (304M) MLP Nous-Hermes-2-Yi (34B)
InternVL2-2B 2.5B InternViT (304M) MLP InternML (2.2B)
InternVL2-8B 8.1B InternViT (304M) MLP InternML (7.7B)
InternVL2-26B 25.5B InternViT (5.5B) MLP InternML (19.9B)
InternVL2-40B 40B InternViT (5.5B) MLP InternML (34.4B)
LLaVA-OV-0.5B 0.9B SigLIP ViT-L/14 (307M) MLP Qwen-2 (0.5B)
LLaVA-OV-7B 8B SigLIP ViT-L/14 (307M) MLP Qwen-2 (7B)

Table 5: Summary of image-to-text models on model architecture and scale.

Model # Params Image Generator Context Dim. Text Encoder Dataset Re-captioning

SD1.5 983M UNet (860M) 768 CLIP ViT-L 7
SDXL 3.5B UNet (2.6B) 2048 CLIP ViT-L & OpenCLIP ViT-G (817M) 7
SDXL-Turbo 3.5B UNet (2.6B) 2048 CLIP ViT-L & OpenCLIP ViT-G (817M) 7
FLUX-Time 12B MMDiT 2816 CLIP ViT-L & T5 XXL -
SD3 2B MMDiT 4096 CLIP ViT-L & OpenCLIP ViT-G & T5 XXL 50% real 50% CogVLM captions

Table 6: Summary of text-to-image models on model architecture and scale.

B CYCLE CONSISTENCY FOR ALL MODEL COMBINATIONS

We report cycle reconstruction scores across all different model combinations (13 image-to-text
models ⇥ 5 text to image models) for both text and image cycles. Figures 14 and 15 display
heatmaps of scores for image and text cycle consistency respectively.

Figure 14: Image cycle consistency on DCI dataset. We report the average score across 3 random seeds.

C ABLATIONS ON MEASURING CYCLE CONSISTENCY

C.1 METRICS

For image cycle consistency, we measure DreamSim (Fu et al., 2023b), LPIPS (Zhang et al., 2018),
CLIP (Radford et al., 2021), and MSE between input and reconstructed images. Correspondingly,
we measure the distance between input text and reconstructed text with various text similarity met-
rics: BertScore (Zhang et al., 2019), BartScore (Yuan et al., 2021), SBERT (Reimers & Gurevych,
2019), and CLIP (Radford et al., 2021). For CLIP, we measure the cosine similarity between features
from the CLIP text encoder. Image-text alignment is measuring using CLIP and ImageReward Xu
et al. (2024).
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Figure 15: Text cycle consistency on DCI dataset. We report the average score across 3 random seeds.

Figure 16: Human text and real image as baselines. We compare human text as a baseline to synthetic
captions generated by image-to-text models, and real image as a baseline to synthetic images generated by
text-to-image models. We detail why real image performs worse in Figure 17.

Similarly to Figure 7, we investigate correlation between cycle consistency and captioning/text-to-
image generation quality by ablating different similarity metrics. Tables 7, 8 report the Pearson
correlation coefficient between cycle consistency and captioning or image generation performance
respectively for different reconstruction metrics. Perceptual similarity metrics, i.e., DreamSim and
LPIPS, align best with captioning performance, followed by CLIP and MSE. We additionally com-
pare image-text similarity metrics and find that image reconstruction scores are more predictive of
image captioning performance. For MSCOCO images and captions, we also report compare cy-
cle consistency computed with various metrics and POPE in Table 9. Again, DreamSim has the
strongest correlation.

C.2 MODEL ABLATIONS FOR MEASURING CYCLE CONSISTENCY

In this paper, cycle consistency calculations for image-to-text models are averaged across all 5 text-
to-image models. Another option would be to choose a text-to-image model to fix, and then use this
one fixed model to calculate cycle consistency for all image-to-text models. This section investigates
the how this choice of fixed model (or averaging across all fixed models) affects cycle consistency
correlations in Figure 7.

We report the Pearson correlation coefficient per model. As shown in Figure xxx, the correlation is
consistently strong for most models (R2 > 0.65), except for BLIP2-2.7B and LLaVA-OV-0.5B
with lower coefficients of 0.349 and 0.241, respectively. We attribute the low correlation to their
use of small-scale, less-performant language models (OPT-2.7B, Qwen2-0.5B) as pre-trained
backbones which may cause poorer text reconstruction.

D DOWNSTREAM PERFORMANCE
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Input Text Reconstructed Text
A group of diverse tents are set up on 
the ground, surrounded by people, 
cars, and buildings. Orange cones 
and logs are scattered on the sidewalk 
and ground. The buildings in the 
background are a mix of gray, brown, 
and trees, with a palm tree on the left. 
The tents include a red, white, and 
neon green tent tops.

Real Image

Synthetic Image
[SBERT 0.833] The image depicts an outdoor 
scene where several tents are set up on what 
appears to be a paved area, possibly a parking 
lot or a similar open space. The tents are of 
various colors, including red, white, and 
green, and are arranged in a somewhat 
orderly fashion. The tents are pitched on the 
ground, and some are supported by wooden 
logs placed

[SBERT 0.683] The image depicts a bustling 
outdoor event taking place in a park-like setting. 
The scene is lively and vibrant, with numerous 
colorful tents and canopies set up in the 
foreground, indicating a festival or market. The 
tents are of various colors, including red, green, 
blue, and white, and are arranged in a somewhat 
organized manner, suggesting different stalls or 
booths for

A group of diverse tents are set up on 
the ground, surrounded by people, 
cars, and buildings. Orange cones 
and logs are scattered on the sidewalk 
and ground. The buildings in the 
background are a mix of gray, brown, 
and trees, with a palm tree on the left. 
The tents include a red, white, and 
neon green tent tops.

Input Text Reconstructed Text

Figure 17: Why do synthetic images achieve better text cycle consistency compared to real images? We
visualize text cycle consistency from a real image vs. synthetic image. Compared to real images containing
more complex detail, synthetic images only generate details described in the input text which occupy larger
areas of the generated image. Therefore, such details are easier to reconstruct for the image-to-text model,
resulting in better text reconstruction.

Image Cycle Consistency Image-Text Similarity
Dataset DreamSim LPIPS CLIP MSE CLIP Image Reward
MME 0.705 0.475 0.806 0.247 0.748 0.427
SEEDBench 0.728 0.794 0.621 0.431 0.587 0.067
MMStar 0.640 0.599 0.544 0.477 0.617 0.228
Average 0.833 0.820 0.788 0.692 0.831 0.265

Table 7: Pearson correlation coefficient between similarity metrics and captioning performance. Per-
ceptual similarity metrics, such as DreamSim and LPIPS, are the best predictors of captioning performance,
followed by CLIP and MSE. DreamSim reconstruction generally shows a higher correlation than both image-
text similarity metrics.

Text Cycle Consistency Text-Image Similarity
Dataset BARTScore BERTScore CLIP SBERT CLIP Image Reward
T2I-CompBench 0.940 0.795 0.966 0.992 0.720 0.961
DrawBench 0.945 0.894 0.832 0.861 0.465 0.814
Average 0.954 0.825 0.952 0.979 0.675 0.944

Table 8: Pearson correlation coefficient between similarity metrics and text-to-image performance. Over-
all, text cycle consistency strongly correlates with text-to-image quality across all metrics. SBERT shows the
highest correlation, followed by BARTScore and CLIP, all of which outperform image-text similarity metrics.

Figure 19: Main Pairwise Distance Between
Different Random seeds generated from dif-
ferent caption lengths.

Section 4.2, discusses how captioning performance mea-
sured by VQA without V is strongly associated with both
image and text cycle consistency. Now, we examine if the
same correlation holds for model VQA and downstream
performance. For image-to-text models, we examine the
relationship between cycle consistency and VQA perfor-
mance in the table below for both images and text. Note
that this is an evaluation of model performance, while
VQA without V evaluates the quality of the text gener-
ated by the model.

For VQA performance, we use reported scores on bench-
marks MMBench Liu et al. (2023c) and MME Fu et al.
(2023a). MME is split into perception and cognition
categories. Cycle consistency is computed on the sDCI
dataset and averaged across five different text-to-image models with 3 different random seeds. Fig-
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Metric Accuracy Precision Recall F1 Score
Image Cycle Consistency

DreamSim 79.10 99.32 58.66 73.76
LPIPS 77.47 99.29 55.33 71.06
CLIP 77.99 99.18 56.44 71.94
MSE 74.64 99.07 49.74 66.23

Image-text Similarity
CLIP 78.04 99.30 56.49 72.01
Image Reward 75.92 99.13 52.30 68.48

Table 9: Top-1 hallucination and descriptiveness on MSCOCO. For a given image and a set of corresponding
captions, we select the top-1 caption based on each metric. We observe that DreamSim cycle consistency favors
captions with less hallucination and better descriptiveness compared to other metrics. Higher precision indicates
reduced hallucination, while higher recall reflects increased descriptiveness.

Fixed I2T Model ICC R2 TCC R2

BLIP2-2.7B 0.836 0.349
BLIP2-6.7B 0.834 0.657
BLIP2-FlanT5-XXL 0.879 0.871
LLaVA1.5-7B 0.915 0.966
LLaVA1.5-13B 0.916 0.964
LLaVAOV-0.5B 0.932 0.201
LLaVAOV-7B 0.954 0.910
LLaVA1.6-7B 0.942 0.963
LLaVA1.6-34B 0.953 0.952
InternVL2-2B 0.904 0.935
InternVL2-8B 0.903 0.904
InternVL2-26B 0.880 0.879
InternVL2-40B 0.902 0.913
All Models 0.902 0.950

Fixed T2I Model ICC R2 TCC R2

SD1.5 0.741 0.875
SDXL 0.759 0.845
SDXL-Turbo 0.731 0.879
SD3 0.790 0.870
FLUX-Time 0.794 0.861
All Models 0.766 0.864

Table 10: Pearson correlation coefficients between text-to-image performance and image cycle consistency
(ICC) and text cycle consistency (TCC) for different fixed image-to-text models (Left) and different fixed
text-to-image models (Right). Correlations are generally strong except when fixing BLIP2-2.7B or LLaVAOV-
0.5B to calculate text cycle consistency. Higher R2 value indicates stronger correlation.

ures 18 shows plots of image and text cycle consistency vs VQA performance on each benchmark,
with points representing different image-to-text models.

We find that image cycle consistency best correlates with VQA performance on MMBench and
MME (cognition), with weaker association for other benchmarks. This may be somewhat surprising
because MME (perception) in the VQA without V setting has a strong correlation with cycle con-
sistency. Text cycle consistency did not have as strong as a correlation across all VQA benchmarks.
It is important to note that VQA scores examine if the model can answer diverse questions about an
image, while VQA without V examines if the text caption can answer diverse questions about the
image. While these two evaluations are somewhat related, the difference between these tasks could
account for the difference in correlation.

E DIVERGENCE IN GENERATED IMAGES

We use the DCI summarized captions dataset Huh et al. (2024) Urbanek et al. (2024) detailed in
Section 4.4 to compare the diversity of synthetic images generated from text based on the caption
density use to create them. For each image in the summarized DCI dataset, there are summary
captions of different length. For each image, we generate generate 10 different images using random
seed sampling for every summary length. We then calculate the mean-pairwise distance between all
of the 10 generated images from the same summary caption. For each text-to-image model, we plot

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 18: Cycle consistency vs. Model Downstream Performance (VQA): Top Row (Left to Right): Image
cycle consistency association with VQA scores on MMBench, MME (Perception), and MME (cognition).
Bottom Row (Left to Right): Text cycle consistency association with VQA scores on MMBench, MME
(Perception), and MME (cognition).

the mean-pairwise distance vs. the caption length seen in Figure 19. Considering all models, there
is mixed consensus on how caption length affects generated image diversity.

F ADDITIONAL RESULTS

We show additional “plug and play” examples of image and text cycle consistency in Figures 20 21
respectively. Figure 22 provides more examples of increased text details hurting image reconstruc-
tion scores.

G FAILURE CASES

We provide examples of failure cases of cycle consistency in Figures 23 and 24. Failures include:
synthetic images with artifacts or implausible generations but little effect on captions, descriptions
of non-existent objects, endpoint model failures (i.e. the intermediate image or text representation is
reasonable but the endpoint model creates inaccuracies which affect reconstruction). Many of these
mistakes can be attributed to model error and usually affect text cycle consistency much more than
image, mainly because images generated from incorrect captions often have lower cycle consistency,
whereas image-to-text models do not always notice inaccuracies in synthetic images.
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Input Image

 [0.490] The image depicts a 
picturesque scene featuring a large, 
ornate building with a distinctive 
architectural style. The building is 
characterized by its light-colored 
façade, which appears to be made of 
stone or stucco, and is adorned with 
intricate detailing. The structure has a 
prominent, pointed roof with a steep, 
conical shape, topped with a weather 
vane…

InternVL2-26B → SD1.5

 [0.614] a building with a fountain in 
front of it

BLIP2-flan-T5 → SDXL-Turbo LLaVA1.6-34b → FLUX-Time

 [0.365] The image captures a serene 
scene of a large, ornate building with a 
distinctive triangular roof. The 
building, painted in a light beige color, 
stands majestically against the 
backdrop of a clear blue sky. The roof, 
a striking white, is adorned with a 
black clock face, adding a touch of 
elegance to the structure. In front of 
the building,…

 [0.425] The image captures the 
grandeur of the Leopold Castle in 
Hungary, a landmark known for its 
distinctive architecture. The castle, 
painted in a light pink hue, stands 
majestically against the backdrop of a 
clear blue sky. Its white roof contrasts 
sharply with the pink walls, adding to 
its charm. The castle's most striking 
feature is its conical roof, which is 
topped with…

LLaVA OV-7B → SDXL LLaVA 1.5-13B → SD3

 [0.561] The image features a large, 
ornate vase with a statue of a woman 
and a child on top of it. The vase is 
placed in front of a beautiful building 
with a clock tower, which appears to 
be a church. The building has a clock 
on its side, and the vase is positioned 
in front of it, creating a striking visual 
contrast. In…

 [0.688] The image depicts a 
traditional Japanese architectural 
structure, likely a temple or shrine, 
characterized by its distinct and 
intricate design elements. The focal 
point of the image is a large, open 
gateway or torii gate, which is a 
common feature in Shinto shrines and 
Buddhist temples in Japan. The torii 
gate is made of wood and features a 
rich, dark brown color, with…

InternVL2-26B → SD1.5

 [0.528] an asian style gate with 
wooden doors

BLIP2-flan-T5 → SDXL-Turbo LLaVA1.6-34b → FLUX-Time

 [0.549] The image captures a serene 
scene of a traditional Japanese garden. 
Dominating the foreground is a 
wooden gate, its structure adorned 
with intricate carvings that add a touch 
of elegance. The gate is flanked by 
two wooden doors, each featuring a 
series of small black circles, a 
common design element in Japanese 
architecture. The gate and doors are 
set against a backdrop of a…

 [0.601] The image captures the serene 
beauty of the Fushimi Inari-taisha 
shrine in Kyoto, Japan. The viewer's 
perspective is from the entrance of a 
wooden gate, known as a torii, which 
is a common entrance to or within a 
Shinto shrine. This particular gate is 
flanked by two large wooden doors, 
each adorned with intricate carvings of 
dragons and phoenix…

LLaVA OV-7B → SDXL LLaVA 1.5-13B → SD3

 [0.503] The image features a beautiful 
stone archway with a cobblestone path 
leading through it. The archway is 
adorned with bamboo trees, creating a 
serene and picturesque atmosphere. 
The pathway is lined with numerous 
bamboo trees on both sides, creating a 
sense of depth and a natural 
environment. In the background, there 
are…

Figure 20: Examples of image cycle consistency using different image-to-text, text-to-image combinations.
The model combination used to generate the caption ! image is shown at the top of the image. DreamSim(#)
distance between reconstructed images and the original are reported in brackets in front of the text captions.

A waterfall in a green 
body of water, surrounded 
by white stone statues and 
lush vegetation, including 
yellow-green willow tree 
leaves, light green leaves, 
and fluffy green tree 
foliage. The sky is blue 
with a few white clouds.

 [0.666] The image depicts a serene 
and picturesque natural scene 
featuring a waterfall. The waterfall is 
the central focus, cascading down 
from a height into a clear, emerald-
green pool below. The water appears 
to be flowing smoothly, creating a 
misty spray as it hits the surface of the 
pool. The waterfall is surrounded by 
lush greenery, with a variety…

SD1.5 → InternVL2-26B

 [0.848] a waterfall with statues and 
green trees

SDXL-Turbo → BLIP2-Flan-T5 SD3 → LLaVA1.6-34B

 [0.473] The image captures a serene 
scene of a garden. Dominating the 
center of the image is a tranquil pond, 
its surface a vibrant green. The pond is 
adorned with two white statues, one 
on each side, adding a touch of 
elegance to the scene. On the left side 
of the pond, a statue of a seated 
Buddha exudes a sense of peace

 [0.751] The image captures a serene 
scene of a waterfall cascading into a 
green pond. The waterfall, located 
centrally in the image, is surrounded 
by lush trees and bushes, creating a 
sense of tranquility. The pond, filled 
with green water, is encircled by white 
statues of people, adding an element 
of intrigue to the scene. Above, the 
sky is a clear blue, dotted…

SDXL → LLaVA OV-7B FLUX-Time → LLaVA 1.5-13B

 [0.579] The image features a beautiful 
garden with a waterfall and a pond. 
There are several statues of angels and 
other figures scattered throughout the 
garden, adding to its charm. A woman 
is sitting on a bench near the 
waterfal l , enjoying the serene 
atmosphere. In addition to the 
woman, there are two other people 
in the scene, one standing near the…

A restaurant interior with 
a c o l o r f u l fl o w e r 
arrangement on a table, a 
buffet tray of appetizers 
on skewers (including 
cherry tomatoes and 
cantaloupe) surrounded 
by green lettuce, and 
tables of diners enjoying a 
meal in the background. 
The ceiling has white 
lights illuminating the 
border and small circular 
lights throughout.

 [0.643] The image depicts a vibrant 
and colorful dining area, likely within 
a restaurant or a banquet hall. The 
focal point of the image is a long 
dining table adorned with an array of 
colorful table settings. The table is 
covered with a white tablecloth and is 
set with various dishes, plates, and 
cutlery, suggesting a prepared meal or 
a buffet setup. The table

SD1.5 → InternVL2-26B

 [0.599] a restaurant with a large 
green hanging plant

SDXL-Turbo → BLIP2-Flan-T5 SD3 → LLaVA1.6-34B

 [0.777] The image captures a lively 
scene in a restaurant. The main focus 
is a large dining table, adorned with a 
tray of appetizers. The tray is a vibrant 
display of skewers, each threaded 
with a variety of fruits and vegetables. 
The skewers are arranged in a circular 
pattern, creating a visually appealing 
centerpiece. The table is set with red 
chairs, adding

 [0.715] The image captures a lively 
scene in a restaurant, where a long 
table draped in a pristine white 
tablecloth takes center stage. The table 
is meticulously set with gleaming 
silverware, polished glasses, and 
neatly arranged plates, ready for a 
feast. A large, vibrant centerpiece 
commands attention. It's a cascade of 
fresh fruits and vegetables, their colors 
popping against the white backdrop. 
Cherry…

SDXL → LLaVA OV-7B FLUX-Time → LLaVA 1.5-13B

 [0.654] The image features a large 
dining room with a long table filled 
with various food items. The table is 
adorned with a large bowl of fruit, 
including apples and oranges, as well 
as a vase of flowers. There are also 
several cakes placed on the table, 
adding to the assortment of food. The 
dining room is filled with

Figure 21: Examples of text cycle consistency from various model combinations. The model combination
used to generate the image ! text caption is shown at the top of each example’s image. To make comparing
the text easier, we highlight relevant phrases in the input and reconstructed descriptions.
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Input Image

 [0.489] Large building 
with trees and signs.

 [0.673] A large shopping 
center building with a light 
green roof, featuring multiple 
window displays, flags, and a 
glass and metal awning, 
surrounded by trees and 
people walking around it.

5 Word Summary 30 Word Summary

 [0.349] People on cliff 
overlooking green 
mountain.

 [0.480] A group of people 
stand on a cliff overlooking 
a huge green and brown 
mountain, surrounded by 
shrubs and dry grass, with a 
misty sky above.

Figure 22: Examples where increasing the caption detail does decreases image cycle consistency.

Input Image SDXL-Turbo [0.496] FLUX-Time [0.392]

The image depicts a bustling urban street scene, likely in a busy city center. The street 
is filled with numerous pedestrians, many of whom are wearing face masks, suggesting 
a concern for health and safety, possibly due to a pandemic. The people are crossing 
the street at a pedestrian crossing marked with yellow lines. The crowd includes a mix 
of adults and children, with some pushing strollers Generated Image

Input text:A sleek, silver skyscraper stands prominently in a cityscape, surrounded by trees 
and water. Its curved design and pointed top make it stand out, and its many windows and 
horizontal lines indicate multiple floors. A clear blue sky serves as the backdrop, with a slight 
gradient towards the horizon. Other buildings can be seen in the distance. (Daytime)

InternVL2-40B [0.797]: The image depicts a tall, modern 
skyscraper with a sleek, cylindrical design, standing prominently 
against a clear blue sky. The building has a reflective metallic 
exterior, giving it a shiny, mirror-like appearance. The structure 
tapers slightly towards the top, culminating in a sharp, pointed 
spire. The skyscraper is surrounded by a body of water in the…
LLaVA 1.6-34B [0.551]: The image captures the iconic Petronas 
Twin Towers, a renowned landmark in Kuala Lumpur, Malaysia. 
The towers, constructed from steel and glass, stand tall against the 
backdrop of a clear blue sky. The perspective of the image is from 
a low angle, looking up at the towers, emphasizing their height and 
grandeur. The towers are connected by a skybridge…

Figure 23: Endpoint model failure cases. Left: Example of lower image cycle consistency measured with
DreamSim(#). Given the same synthetic text generated for an input image, the reconstructed image quality
can be very different between models due to errors or discrepancies. Right: Example of text reconstructions
measured with SBERT(") due varying image-to-text model quality. While the synthetic image generated from
the text seems reasonable, InternVL2-8B interprets the image correctly while the text from LLaVA 1.6-34B
contains several errors leading to poor text cycle consistency.
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LLaVA 1.5-13B [0.579]: The image features a beautiful garden with a waterfall and 
a pond. There are several statues of angels and other figures scattered throughout the 
garden, adding to its charm. A woman is sitting on a bench near the waterfall, 
enjoying the serene atmosphere. In addition to the woman, there are two other 
people in the scene, one standing near the…
InternVL2-2B [0.756]: The image depicts a serene and picturesque garden scene 
featuring a waterfall and several statues. The garden is lush and verdant, with a 
variety of greenery and plants surrounding the waterfall. The waterfall is a central 
feature, cascading down a rocky ledge into a pool below. The water appears to be a 
vibrant green, suggesting it might be a natural

Input text: A waterfall in a green body of water, surrounded by white stone statues and lush vegetation, 
including yellow-green willow tree leaves, light green leaves, and fluffy green tree foliage. The sky is blue with 
a few white clouds.

Generated Image

Generated Image

Input text: A red-roofed, yellow-white building stands in the background, with a balcony and rectangular 
windows. In the foreground, a tree and grassy area with a small fence are visible, along with a black car parked 
in a space, its doors open and a man nearby. The sky is light blue with white clouds.

BLIP2-FlanT5-XXL [0.628]: a yellow building with a red roof

LLaVA 1.6-34B [0.521]: The image features a black car parked in front of a hotel, 
with a man standing outside the vehicle. The car is parked in a parking space, and 
the man appears to be either getting out of the car or walking towards it. The hotel is a 
two-story building with a red roof, and there are several windows visible on both 
floors.

Figure 24: Failure cases for text cycle consistency. Text reconstruction is often affected by image captioning
errors (top), and hallucinations and failures of the metric to address this (bottom).
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