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ABSTRACT

Brain–computer interfaces increasingly rely on retinotopic mapping and visual
decoding to reconstruct perceptual experiences from brain activity. High spatial
and temporal resolution, coupled with a strong signal-to-noise ratio (SNR), has
made 7-Tesla (7T) blood-oxygenation-level-dependent (BOLD) functional mag-
netic resonance imaging (fMRI) an invaluable tool for understanding how the
brain processes visual stimuli. However, the limited availability of 7T MRI sys-
tems means that most research relies on 3-Tesla (3T) scans, which offer lower
spatial and temporal resolution and SNR. This naturally raises the question: Can
we enhance the spatiotemporal resolution and SNR of 3T BOLD fMRI data to
approximate 7T quality? In this study, we propose a novel framework that aligns
7T and 3T fMRI data from different subjects and datasets in a shared parametric
domain. We then apply an unpaired Brain Disk Schrödinger Bridge (BDSB) dif-
fusion model to enhance the spatiotemporal resolution and SNR of the 3T data.
Our approach addresses the challenge of limited 7T data by improving the 3T
scan quality. We demonstrate its effectiveness by testing it on three distinct public
fMRI retinotopy datasets (one 7T, one 3T, and one paired 3T/7T), as well as syn-
thetic data. The results show that our method significantly improves the SNR and
goodness-of-fit of the population receptive field (pRF) Kay et al. (2013) retino-
topic decoding in the enhanced 3T data, making it comparable to 7T quality. The
codes will be available at Github.

1 INTRODUCTION

Brain–computer interfaces (BCIs) increasingly rely on retinotopic mapping and visual decoding to
reconstruct perceptual experiences from brain activity Miyawaki et al. (2008); Du et al. (2022);
Sorger & Goebel (2020). Recent studies have demonstrated the feasibility of using retinotopic map-
ping for BCI control paradigms Chen et al. (2018) and decoding visually imagined content from the
visual cortex for communication-oriented BCIs van den Boom et al. (2019). High-resolution func-
tional MRI (fMRI) is central to these efforts, as it provides non-invasive access to the fine-grained
organization of the visual cortex Dumoulin & Wandell (2008); Wandell & Winawer (2015).

Beyond BCI applications, researchers have long sought to unravel the mechanisms of visual encod-
ing and decoding through blood-oxygenation-level-dependent (BOLD) signals measured by fMRI.
Computational models often analyze voxel-wise time series, from phase-dependent models Engel
et al. (1994); DeYoe et al. (1996) used to measure eccentricity, to the widely adopted population re-
ceptive field (pRF) framework Dumoulin & Wandell (2008); Kay et al. (2013), and more recent deep
learning approaches Thielen et al. (2019). These methods enable delineation of retinotopic maps: a
topology-preserving representation of the visual field on the cortical surface Wandell et al. (2007);
Xiong et al. (2023). Although its existence has been known for over a century Ribeiro et al. (2024),
only recent advances in fMRI have made it possible to map visual areas non-invasively Dumoulin
et al. (2003), with growing clinical utility in glaucoma Duncan et al. (2007), Alzheimer’s disease
Brewer & Barton (2014) and BCIs.

A major challenge in retinotopic mapping is the limited availability of high-quality fMRI scans.
Although datasets such as the Human Connectome Project (HCP) Uğurbil et al. (2013); Van Essen
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et al. (2013) and the Natural Scenes Dataset (NSD) Allen et al. (2022) use 7-Tesla (7T) fMRI with
relatively high resolution and high signal-to-noise ratio (SNR) imaging, their enhanced resolution
is not concentrated in the occipital lobe, where retinotopic maps are studied primarily. Still, these
scanners provide superior resolution and SNR when compared to more widely available 3-Tesla (3T)
machines which were used to generate similar datasets for more general tasks Chang et al. (2019);
Horikawa & Kamitani (2017); Gong et al. (2023); Kay et al. (2020). These resources enable investi-
gations of unparalleled scale, resolution, and SNR, empowering researchers to better understand the
intricate relationship between visual input and fMRI signals.

Access to high-quality 7T fMRI data would significantly benefit retinotopic mapping and related
tasks. For example, standard atlases Wang et al. (2015); Glasser et al. (2016b) used to identify brain
areas are often averages in many subjects and are constrained by the resolution of their underlying
data. Low resolution can also pose an obstacle to pRF modeling of the time series at each cortical
vertex, since the formation of these time series from raw fMRI often involves some spatial smooth-
ing Glasser et al. (2016a). Retinotopic mapping obtained from such pRF modeling may lead to
topological violations which disagree with knowledge of cortical physiology and must be corrected
before further vision related decoding tasks Tu et al. (2021); Xiong et al. (2023).

With the success of deep learning models in computer vision, researchers have extended these tech-
niques to medical imaging. Generative Adversarial Networks (GANs) Goodfellow et al. (2020) and
their variants Armanious et al. (2019); Phan et al. (2023); Zhu et al. (2023), as well as conditional
diffusion models Ho et al. (2020); Song et al. (2020); Sasaki et al. (2021); Konz et al. (2024); Dong
et al. (2024); Kim et al. (2023); Korotin et al. (2023); Chen et al. (2024a), have shown promising
results. However, many of these methods rely on paired data or struggle with unpaired domain align-
ment, limiting their applicability to certain medical imaging tasks. On the other hand, despite their
broad application across various modalities, including fundus imaging Dong et al. (2024); Shen
et al. (2020), MRI-CT Li et al. (2020); Zhu et al. (2024); Cui et al. (2024); Huang et al. (2024);
Zhang et al. (2024), and fMRI for natural image reconstruction Fang et al. (2020); Ren et al. (2021);
Takagi & Nishimoto (2023); Chen et al. (2023; 2024b); Scotti et al. (2024); Wen et al. (2018); Gong
et al. (2024), there has been limited focus on enhancing fMRI signals to improve SNR, retinotopic
mapping or other neural decoding tasks. This gap highlights the need for methods that specifically
target the enhancement of fMRI signals and downstream neural decoding analyses.

To address these limitations, we propose a framework that improves 3T fMRI analyses using un-
supervised learning. We map 3D brain surfaces into a shared parametric domain via conformal
mapping and apply an unpaired Brain Disk Schrödinger Bridge (BDSB) model to enhance 3T fMRI
signals. The resulting fMRI signals preserve cortical structural integrity while approximating the
quality and distribution of high-resolution 7T scans, overcoming challenges from short-duration and
low-resolution 3T fMRI experiments. Our key contributions are: (a) A robust fMRI enhancement
pipeline with BDSB model, applied directly to raw fMRI data across different subjects and datasets.
(b) To our knowledge, it’s the first approach to improve fMRI SNR and retinotopic map quality
using unpaired learning across public datasets. (c) We validate our framework on both real and syn-
thetic experiments, demonstrating its capability to produce high-quality fMRI scans and improve
downstream visual-related neural decoding tasks such as retinotopic mapping and pRF analysis.

2 METHODOLOGY

2.1 DATASETS AND EXPERIMENTAL DESIGNS

Fig. 1 shows our pipeline. We start with three datasets: the 7T Natural Scenes Dataset (NSD) Allen
et al. (2022), the 3T Natural Object Dataset (NOD) Gong et al. (2023), the 3T/7T Temporal De-
composition Method for task-based fMRI (TDM) Kay et al. (2020). NSD contains approximately 40
sessions per subject for 8 participants, including natural images and pRF-fLoc stimuli Benson et al.
(2018); Stigliani et al. (2015), providing high-quality (HQ), fine-resolution fMRI data. In contrast,
NOD includes 10 to 63 sessions per subject for 30 participants, with 9 subjects performing pRF-fLoc
tasks and the rest viewing only images, offering broader but lower-quality (LQ) 3T scans in similar
experiments. Additionally, TDM includes 11 subjects with 4 task-based fMRI experiments, among
which 2 subjects (s1, s3) underwent one eccentricity stimuli session in both 3T and 7T resolution,
offering limited but comparable data with paired LQ and HQ fMRI for identical subjects.
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Figure 1: Overview of the Pipeline: We design three different experimental designs from real NOD,
NSD, TDM data and synthetic NSD data. All the experiments go through our pipeline with three
components described in Sec. 2.

Ideally, we seek to evaluate our pipeline using datasets in which the same subjects were scanned
at both 3T and 7T resolution under identical visual stimuli, but publicly available datasets meeting
these criteria are extremely limited. Among them, only TDM partially fulfills this requirement,
providing paired 3T and 7T data for 2 subjects who underwent eccentricity-based visual stimulation.
Unfortunately, each subject has only a single session for this task, making the dataset too small to
support large-scale training or subject-agnostic modeling. To overcome this limitation, we design
two main experiments in addition to using TDM alone. First, to enable evaluation with known
ground truth, we construct a synthetic dataset by down-sampling HQ 7T data to simulate LQ 3T-
like inputs. This allows us to directly compare model outputs with the original 7T data. Second, we
assess the model’s generalization and cross-dataset performance, where LQ and HQ fMRI are drawn
from different subjects and datasets. In this case, the real 7T fMRI for input subjects are unknown, so
we train the model to map real 3T data toward the distribution of 7T data using unpaired examples,
thus enabling enhancement of 3T signals without requiring subjects to undergo costly 7T scanning.

Details of the three experimental designs are: (a) Synthetic Data1: The original NSD fMRI pro-
vides HQ targets, and their down-sampled versions act as LQ inputs. To simulate LQ fMRI, we use
Neuromaps Markello et al. (2022) to transform all pRF sessions from the 164k fsaverage surface
to the 32k fsLR surface, matching the space resolution of the 3T data like NOD. We add Gaussian
noise to each vertex in the transformed fMRI time series to simulate signal degradation. This process
creates synthetic LQ data with corresponding HQ counterparts, enabling ground-truth evaluations.
The first 6 NSD subjects are used for training and the remaining 2 subjects are reserved for testing.
(b) Cross-Dataset Real Data: All 8 NSD subjects serve as HQ targets, while the first 7 NOD sub-
jects with pRF tasks act as LQ sources during training with the remaining 2 NOD subjects reserved
for testing. Since we do not have ground truth 7T fMRI for NOD subjects, we can only evaluate
the results by the overall Fréchet inception distance (FID) and the downstream pRF decoding per-
formance. (c) TDM Real Data1: We use the only 2 subjects from TDM who took the eccentricity
stimuli. Due to the small number of subjects, we use the first 3 runs out of 6 for train and the last 3
runs for test. A summary of the experimental strategies is shown in Tab. 1.

Table 1: Our experimental strategies. For each subject sa from the NSD or NOD datasets, all trials
involving the pRF stimuli are included. For the TDM dataset, only s1 and s3 underwent both 7T and
3T experiments; thus, we include the trials from their single eccentricity stimuli session.

Experiments Train and Valid Test and Output
Source Target Source Target

Synthetic1 Down-sampled NSD s1 ∼ s6 7T NSD s1 ∼ s6 Down-sampled NSD s7, s8 7T NSD s7, s8
Cross-Dataset Real 3T NOD s1 ∼ s7 7T NSD s1 ∼ s8 3T NOD s8 ∼ s9 no ground truth

TDM Real1 3T TDM s1, s3 runs 1 ∼ 3 7T TDM s1, s3 runs 1 ∼ 3 3T TDM s1, s3 runs 4 ∼ 6 7T TDM s1, s3 runs 4 ∼ 6

1Even when paired LQ/HQ data is available for subjects, training is performed in an unpaired manner—i.e.,
the target fMRI corresponds to a randomly selected subject sb, not the same subject as the input subject sa.
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Figure 2: Disk conformal parameterization: (a) full fsaverage surface mesh; (b) ROI subdivision
of the full mesh from FreeSurfer vertex labels Fischl (2012); (c) the parameterized planar disk of
the ROI obtained from harmonic map h; (d) the refined planar disk x′ through resulting conformal
mapping c = r ◦ h; (e) the BDs {x(l)}l∈[1,L] generated by mapping BOLD fMRI time-series
{yv(l)}l∈[1,L] for each vertex v to their corresponding locations on the refined planar disk x′.

2.2 BRAIN DISK PARAMETERIZATION

To translate LQ fMRI slices into HQ counterparts, we need to align the probability spaces of 3T/7T
trials across datasets. Given the SNR variations and structural differences across subjects, a shared
domain is necessary. We achieve this by using the 164k fsaverage Fischl (2012) cortical surface and
conformal mapping to generate parameterized brain disks for our region of interest (ROI).

Shared Surface Mesh and ROI. We start with the original 3D surface meshes from each dataset.
The NSD provides native surface meshes (approximately 220k vertices per hemisphere) for each
subject, along with transformation files in FreeSurfer format Allen et al. (2022); Fischl (2012). Using
the NSD code packages Allen et al. (2022), we retrieve the 3D coordinates of faces and vertices,
along with vertex annotations, and transform them into the 164k fsaverage surface. In contrast, the
NOD dataset stores its surface meshes in the 32k fsLR format using Ciftify Dickie et al. (2019).
The surface data and vertex annotations are retrieved via Ciftify toolbox Dickie et al. (2019). These
meshes are then transformed into the 164k fsaverage surface using Neuromaps toolbox Markello
et al. (2022) with linear approximation. For TDM subjects, we directly use the native surface meshes
(approximately 200k vertices) which are already aligned across 3T and 7T sessions Kay et al. (2020).

To streamline analysis, we define a ROI encompassing vertices labeled as lateraloccipital, cuneus,
pericalcarine, and lingual, representing key cortical regions in the occipital lobe. This ROI ensures
inclusion of most primary visual cortex while significantly reducing computational overhead.

Conformal Mapping. In order to train our enhancement model in 2D space instead of the 3D
surface meshes, we choose the widely used conformal parameterization Tu et al. (2021); Ta et al.
(2022); Xiong et al. (2023; 2024) c : M → D, to map a cortical surface mesh M to a unit disk D.
Given M as an open boundary genus-0 surface after cutting to ROI, the harmonic map h : M →
D′ minimizes the energy Jin et al. (2018); Gu et al. (2004): E(h) =

∫
M

|∇h|2 dvM . For disk-
like surfaces, the harmonic map h satisfies the Laplace equation Wang et al. (2007): ∆h(u)M =
0, h|∂M = g, where ∆ denotes the Laplacian operator and g : ∂M → ∂D′ is a boundary mapping
given by arc-length parameterization. In discrete cases, the harmonic map is efficiently obtained by
solving the sparse linear system Lhh = 0, where Lh is the Laplacian matrix Wang et al. (2007).

Denote a disk to disk refinement r : D′ → D, the final conformal mapping would be a composition
of c = r ◦ h. To achieve conformality for mapping c, we can refine r by iteratively modifying the
mapping until its Beltrami coefficient µr satisfies ||µr||∞ ≤ ϵµr Wang et al. (2007); Ta et al. (2022).

The final parameterization c = r ◦ h produces 2D Brain Disks (BDs), where each vertex’s fMRI
signal is conformally projected onto the disk, ensuring spatially consistency across subjects and
datasets. Fig. 2 illustrates the full process, with BDs visualized by showing BOLD fMRI signal
values in RGB color representation. Finally, for a single trial fMRI series of L samples, we can
produce L BD slices: {x(l)}l∈[1,L].

2.3 BRAIN DISK SCHRÖDINGER BRIDGE ENHANCEMENT

Background. The Schrödinger Bridge Problem (SBP) finds the optimal stochastic process {xt : t ∈
[0, 1]} that transforms an initial distribution p0 into a target distribution p1. Formally, the SBP is
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Figure 3: Illustration of BDSB and all loss terms. For a randomly selected time step ti ∈ t, we
recursively generate samples following Eq. 2 and the joint distribution to approximate distribution
x̂1|ti ∼ p(x1, xti) as discussed in Sec. 2.3. All losses and regulations (LAdv,LSB,Lreg) are combined
with individual weights described in B.1.

defined as T ⋆ = argminT∈Q(p0,p1) DKL(T∥W τ ), where W τ is the Wiener measure with variance
τ , and Q(p0, p1) ⊂ P(Ω) is a stochastic process that requires the boundary distributions (i.e., start
at p0 and end at p1). The solution T ⋆ is called the Schrödinger Bridge (SB), which connects the
boundary distributions (p0, p1) and works as an optimized result for the entire trajectory. In our
application, p0 and p1 represent 3T and 7T BD distributions viewing the same pRF stimuli, and T ⋆

provides a probabilistic path bridging them. The target is to generate enhanced high-quality BDs
{x̂1(l)} from input low-quality BDs {x0(l)}.

Discrete Bridge Approximation. The continuous SBP can be approximated via a sequence of
Entropic Optimal Transport (EOT) problems over successive time intervals [ta, tb] ⊆ [0, 1] Dong
et al. (2024); Kim et al. (2023); Korotin et al. (2023); De Bortoli et al. (2021):

T ⋆
ta,tb

= arg min
γ∈Π(Tta ,Ttb

)
E(xta ,xtb

)∼γ∥xta − xtb∥2 − 2τ(tb − ta)H(γ), (1)

where γ ∈ Π(Tta , Ttb) represents all possible joint marginal distributions consistent with the bound-
ary states Tta and Ttb (i.e., the most likely distributions of BDs over arbitrary interval), and H(·) is
the entropy function. Additionally, for t ∈ [ta, tb], denote s(t) = (t− ta)/(tb − ta), the conditional
distribution p(xt | xta , xtb) follows the Gaussian distribution Tong et al. (2023):

p(xt | xta , xtb) ∼ N
(
s(t)xtb + (1− s(t))xta , s(t)(1− s(t))τ(tb − ta)I

)
, (2)

By fixing tb = 1 and discretizing the interval as t := {ti}Ni=0, we can compute T ⋆
ti,1 sequentially.

The joint distribution p(x1, xti) = p(x1 | xti) p(xti) with p(xti) = p(x0)
∏i−1

j=0 p(xtj+1
| xtj ) can

be iteratively approximated using Eq. 2 under the Markov assumption. Consequently, this procedure
yields the SB trajectory to iteratively approximate the desired distribution p(x1, xti) as Fig. 3.

BDSB Learning. It’s necessary to obtain the posterior p(x1 | xti) in order to compute the objective
function in Eq. 1. We use a neural generator qϕ(x1 | xti) with (xti , ti) as inputs and ϕ as parameters.
The SB objective function over the sub-interval [ti, 1] is then reformulated as:

min
ϕ

LSB(ϕ, ti) := Eqϕ(xti
,x1)∥xti − x1∥2 − 2τ(1− ti)H(qϕ(xti , x1))

subject to: LAdv(ϕ, ti) := DKL(qϕ(x1) ∥ p(x1)) = 0
(3)

where qϕ(xti , x1) := qϕ(x1 | xti)p(xti), and the constraint ensures that the generator learns the
high-quality distributions. By introducing a Lagrange multiplier, Eq. 3 can be reformulated into

min
ϕ

L1(ϕ, ti) := LAdv(ϕ, ti) + λSBLSB(ϕ, ti) (4)

Solving Eq. 4 with the optimal parameters ϕ achieves qϕ(x1 | xti) = p(x1 | xti) and qϕ(xti , x1) =
p(xti , x1) for every steps ti Kim et al. (2023); Dong et al. (2024). Consequently, the generator
qϕ(x1 | xti) can be directly utilized to sample the next BD xti+1 for every steps i = 0, 1, . . . , N−1.
Through the iterative process shown in Fig. 3, we can generate the final enhanced fMRI response
xtN (i.e., the enhanced x̂1) starting from the initial 3T distribution x0 ∼ p0. The training and
inference details are outlined in B.1.

However, optimizing L1 alone does not guarantee x̂1 to preserve the structural details of the brain
since L1 only ensures the optimal transformation path between signals (i.e., enhancing fMRI values
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Table 2: Metrics on enhanced fMRI and down-stream pRF results for all three experiments.

Experiments Metrics raw LQ Cycle-GAN OTT-GAN OTE-GAN SCR-Net fast-DDPM Proposed

Synthetic

SSIM ↑ 0.475 0.760 0.803 0.783 0.525 0.566 0.855
PSNR ↑ 14.24 22.98 23.39 22.16 14.64 15.26 25.05
FID ↓ 152.3 126.7 72.70 77.41 108.6 71.40 42.88
R̄2 ↑ 18.30 17.22 18.01 16.89 13.54 15.53 24.00

Cross-Dataset Real FID ↓ 183.83 139.69 96.90 95.91 177.8 No pair data 70.65
R̄2 ↑ 20.26 19.78 19.99 18.64 15.11 No pair data 25.91

TDM Real
SSIM ↑ 0.402 0.602 0.727 0.702 0.454 0.511 0.718
PSNR ↑ 13.00 18.70 19.18 19.06 13.79 14.06 19.24
FID ↓ 166.7 134.9 84.45 88.00 107.1 96.91 62.09

but distort BD structure). Here, we incorporate two regularization terms: (a) PatchNCE Dong et al.
(2024); Kim et al. (2023) between enhanced x̂1 and its low-quality counterpart x0. (b) Brain disk
structural similarity measure (BD-SSIM) between the generated BDs and the original fsaverage BD
structure x′. The final loss function L2 is now defined as:

L2(ϕ, ti) := LAdv(ϕ, ti) + λSBLSB(ϕ, ti) +
∑

l=nce,bd

λReglLRegl(ϕ, ti) (5)

2.4 RE-SAMPLING AND PRF DECODING

With a well-trained BDSB, we can generate enhanced versions of 3T fMRI BDs. Due to the bijective
nature of conformal mapping, the fMRI response for every vertex v at each sample point l can be
re-sampled from corresponding pixel xv on BDs. By aggregating enhanced BDs across all sample
points {x̂1(l)} within a single pRF trial, we reconstruct a complete enhanced fMRI y = {yv(l)}.

We employ pRF decoding as a downstream neural decoding task to quantify the improvements.
Given a vertex-wise fMRI signal series y = {yv(l)}, the pRF model Dumoulin & Wandell (2008);
Kay et al. (2013); Waz et al. (2024) predicts the receptive center cv = (c

(1)
v , c

(2)
v ) and size σv on the

visual field. A predicted fMRI signal for vertex v is given by:

ŷv(cv, σv, l) = β

[∫
z∈visual field

r(z; cv, σv)s(l,z) dz

]
∗ h(l) (6)

where h(l) is the hemodynamic response, r(z; c, σ) is a Gaussian kernel, and s(l, z) is the visual
stimuli. The parameters {(cv, σv)} are estimated by minimizing the prediction error:

(cv, σv) = arg min
cv,σv

∑
l∈[1,L]

∥ŷv(v, σ, l)− yv(l)∥2 (7)

The pRF results are obtained by solving Eq. 7 for every vertices on the cortical surface. The quality
of fit is usually evaluated using variance explained R2

v for each vertex v (percentage): R2
v := (1 −∑

l∈[1,L](ŷv(l)−yv(l))
2∑

l∈[1,L](yv(l)−ȳv)2
) × 100% Dumoulin & Wandell (2008); Kay et al. (2013); Waz et al. (2024).

Higher R2
v indicates the signal of v align closer to the visual stimuli with better interpretability.

3 EXPERIMENTS AND RESULTS

Hyperparameter and Training. The generator and discriminator follow the architectures outlined
in Kim et al. (2023); Dong et al. (2024), with further training details listed in B.1.

Evaluation Metrics. We assess enhancement quality using standard similarity metrics (SSIM,
PSNR, FID) and downstream q-pRF analysis Kay et al. (2013); Waz et al. (2024). For TDM dataset,
only similarity metrics are reported due to their simplified stimuli. More details are in B.1.

Enhanced fMRI Results. We adopt five 2D translation models to our pipeline as baselines (details
of baseline models can be found in supplementary material). Quantitative results are summarized in
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Figure 4: Illustration of down-sampled LQ, enhanced, and original HQ BDs across different NSD
subjects, trial runs, and sample points. fMRI values are shown as RGB colors at their vertex location
on the parameterized planar disk mapped from the 3D fsaverage surface. See More results in B.2.

Figure 5: BOLD signals from the HQ ground truth, synthetic LQ, and the enhancement. (a) The
enhanced fMRI signal for the vertex with highest R2 shows a significant alignment to the ground
truth, with slight misalignment on valley points. (b) The vertex with minimal R2 shows a worse
alignment, likely due to its minimal visual response and inactive signal pattern on low R2 vertices.
See more results in B.2

Tab. 2. Across all real and synthetic experiments, our pipeline achieves the best performance, sig-
nificantly enhancing LQ fMRI signals to better approximate HQ scans and improving pRF analysis.
In contrast, baseline models generate spurious BDs to increase similarity but distort brain surface
structures, leading to poorer performance in fMRI retrieval and much worse pRF results which is
indicated by average R̄2 confidence across the ROI.

We illustrate the enhanced fMRI on the same parametric brain disks obtained via conformal mapping
in Fig. 4. The enhanced disks display finer spatial resolution and a more distinct fMRI distribution
that aligns closely with the underlying cortical structures, particularly in regions with extreme val-
ues or high curvature. To further analyze the performance, we compared the ground truth and the
enhanced BOLD time series for two distinct vertices within our ROI: one with a strong response
to the pRF stimuli and another with minimal response (determined by the value R2 from the pRF
decoding). As shown in Fig. 5, the enhanced signal closely matches the ground truth for the active
vertex, demonstrating a strong performance in capturing extreme values. However, for inert vertices,
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Figure 6: Illustration of pRF results from the NOD test subject s8 on both the 2D parametric domain
and the 3D brain ROI mesh. Our enhancement preserves brain structure through consistent receptive
fields (note that different vertex labels between fsLR and fsaverage may cause slight ROI shifts),
while achieving much higher retinotopic mapping resolution and R2 confidence across most ROI
regions. Additional visualization results are provided in the B.2.

(a) (b)

Figure 7: (a) R2 values from down-sampled NSD fMRI (left) show greater variability and lower
overall confidence compared to HQ data, while enhanced fMRI (right) significantly improves R2

consistency, especially among high-confidence vertices. (b) Receptive centers cv decoded from ver-
tices with top-40 R2 values under random sampling. LQ fMRI (left) exhibits unstable and dispersed
estimates, whereas enhanced fMRI (right) yields more stable and consistent localization.

where the signal remains relatively constant, the alignment is weaker. This discrepancy likely arises
from the difficulty in learning unchanging values based on their distribution across the brain disks.

Enhanced pRF Results. In addition to evaluating enhanced fMRI signals directly, we assess down-
stream performance to demonstrate the broader utility of our pipeline. Fig. 6 compares pRF results
from the NOD fMRI and those derived from enhanced fMRI time series on the parametric domain
and 3D mesh. The enhanced signals yield notably higher R2 values across many vertices on a much
higher surface resolution, while preserving spatial organization in consistent receptive fields, despite
the absence of paired supervised training.

For synthetic data experiment, we further validate the performance by comparing the R2 values of
the native 7T pRF parameters with those derived from down-sampled and enhanced fMRI, as shown
in Fig. 7(a). The down-sampled fMRI exhibits greater variance and generally lower R2 values
compared to the ground truth high-quality pRF results. In contrast, the R2 values derived from the
enhanced fMRI data shows significant improvement, particularly for vertices with high R2, while
maintaining a comparable confidence threshold to the ground truth.

To evaluate temporal stability, Fig. 7(b) shows receptive centers cv of the top-40 highest R2 left-
hemisphere vertices across 50 independent pRF analyses using random stimulus intervals. Unlike
typical pRF models trained on merged time series from all session runs, randomized intervals will
examine the variability and interpretability of the fMRI time series for different stimuli segments.

Our results indicate that enhanced fMRI signals yield lower variability and more consistent receptive
centers across randomized intervals of the pRF stimuli. These results confirm that our enhancement

8
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pipeline preserves the interpretability and reliability of pRF decoding, bridging the gap to 7T data
in downstream retinotopic decoding tasks.

Table 3: Ablation study of our framework on: (a) different brain mapping strategies, including direct
slicing, harmonic mapping, and conformal mapping; (b) the effect of different regularization terms
in BDSB. All experiments are conducted on the synthetic experimental setting.

Brain Mapping Regnce Regbd-ssim SSIM PSNR FID R̄2

Slice ✗ ✗ 0.237 8.24 226.8 6.102
Harmonic h ✗ ✗ 0.833 24.19 35.56 16.97
Conformal c ✗ ✗ 0.849 24.26 34.23 22.02
Conformal c ✓ ✗ 0.858 24.88 42.64 21.88
Conformal c ✓ ✓ 0.855 25.05 42.88 24.00

Ablation Study. Tab. 3 presents an ablation analysis evaluating the contribution of each component
in our pipeline. Unlike MRI-based models, direct slicing of the cortical surface introduces geometric
distortions in the disk representation, leading to inconsistent training data and terrible performance.
Harmonic mapping also reduces effectiveness by failing to preserve face areas in the transformation
from 3D meshes to 2D parametric disks, which impairs spatial fidelity. Regarding regularization,
PatchNCE loss provides modest gains by encouraging similarity between enhanced and input sig-
nals. In contrast, BD-SSIM loss plays a critical role in maintaining structural integrity of the brain
disk, leading to notable improvements in both BOLD signal quality (measured by PSNR) and func-
tional decoding accuracy (reflected by average R̄2 in pRF analysis).

4 CONCLUSION AND DISCUSSION

We present a robust fMRI enhancement pipeline that maps BOLD signals from 3D cortical surfaces
onto 2D parametric brain disks. Using an unpaired Brain Disk Schrödinger Bridge diffusion model,
our method enhances 3T fMRI signals by learning from unpaired 7T data. It achieves signal quality
and downstream performance comparable to native 7T scans, while preserving both functional re-
sponses and cortical geometry. This enables more accurate pRF modeling and supports a range of
vision-related fMRI decoding tasks.

Lack of Paired Data. A central challenge in this emerging area is the absence of large-scale paired
3T–7T visual fMRI datasets. Unlike structural imaging (e.g., MRI or CT), there are almost no
standardized resources where the same subjects are scanned at both field strengths under identical
visual stimuli. We therefore adopt an unpaired learning framework and benchmark against both
supervised and unsupervised baselines to ensure fairness. To partially mitigate this gap, we also
incorporate the only available paired resource (TDM), though its scope is limited to two subjects
and non-standard stimuli. Our experiments highlight both the difficulty and the importance of this
limitation, underscoring the community need for future standardized, paired datasets.

Synthetic Data. Given the scarcity of paired data, we emphasize synthetic and cross-dataset evalu-
ation. While down-sampling and noise injection provide a principled proxy for low-quality signals,
such synthetic 3T-like data cannot fully capture scanner hardware, pulse sequence, or subject-level
variability. We therefore complement synthetic benchmarks with real-data experiments, balancing
control with realism. This dual strategy directly addresses such concerns by demonstrating both
methodological validity and practical robustness, while calling for more realistic simulation proto-
cols and shared benchmarks. More discussion continued in B.3.

Future Work. Although our current focus is on pRF analysis and retinotopic decoding, the pro-
posed framework is broadly applicable to many downstream tasks which require fMRI quality from
low field strengths, such as fMRI-based segmentation, classification, and visual reconstruction. A
promising direction is to extend our approach from ROI-aggregated samples to vertex-level fMRI
time series, enabling more precise modeling of localized cortical dynamics. With continued devel-
opment, our method has the potential to set a new standard for improving 3T or 1.5T fMRI quality,
effectively narrowing the gap toward 7T-level resolution and expanding the capabilities of functional
neural decoding in both research and clinical applications.

9
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A APPENDIX

A.1 ETHICS STATEMENT

This research fully complies with the ICLR Code of Ethics https://iclr.cc/public/
CodeOfEthics. Our work uses only publicly available, anonymized fMRI datasets Allen et al.
(2022); Gong et al. (2023); Kay et al. (2020); Benson et al. (2018), all of which were collected with
informed consent and ethical approvals by their original providers. No new data involving human or
animal subjects were collected for this study, and therefore no additional institutional review board
(IRB) approval was required.

We emphasize that our contributions respect all ethical terms set forth by ICLR: - Research conduct.
The methodology, experiments, and results are presented with transparency, and we plan to release
code and processed data to enable reproducibility. - Respect for human subjects. All data are de-
identified and provided by prior studies with appropriate consent and oversight; our analysis does
not attempt to re-identify subjects or access any private information. - Privacy and fairness. Since
the datasets are public and anonymized, there are no risks of violating privacy or introducing unfair
treatment of individuals or groups. - Dual use and misuse. Our method is intended for scientific
research to enhance low-field fMRI quality and downstream neuroscience analyses. While any
generative technique may carry hypothetical risks of misuse, we believe this risk is minimal here, as
our framework operates solely on brain imaging data and produces outputs that remain within the
scope of academic research.

By adhering to these principles, we ensure that our work is conducted responsibly, legally, and with
due consideration of both potential benefits and limitations.

A.2 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure that our work is fully reproducible. All datasets used in this
study are publicly available and properly cited, including the 7T Natural Scenes Dataset (NSD) Allen
et al. (2022), the 3T Natural Object Dataset (NOD) Gong et al. (2023), and the 3T/7T Temporal De-
composition Method dataset (TDM) Kay et al. (2020). Details of how these datasets were accessed,
preprocessed, and incorporated into our experiments are described in the methodology sections 2
and B.1. All toolboxes and code packages employed (e.g., FreeSurfer, Ciftify, Neuromaps) are
explicitly listed and cited in the methodology sections and supplementary material. To support re-
producibility, we provide complete descriptions of our experimental designs, hyperparameters, and
evaluation protocols in Sec. 3 and supplementary materials. Finally, we will release our full imple-
mentation, including training code, model checkpoints, and preprocessing pipeline, upon publication
of this work, enabling independent verification and extension of our results.

A.3 USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) were used solely as an assistive tool for language editing
and polishing of the text (e.g., grammar correction, clarity improvements, and stylistic refinement).
No part of the research process—including problem formulation, dataset selection, methodological
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design, model implementation, experiment execution, analysis, or result interpretation—relied on
LLMs. The scientific contributions, technical content, and experimental results are entirely the
work of the authors. We take full responsibility for the accuracy and integrity of the manuscript.

B SUPPLEMENTARY MATERIALS

B.1 ADDITIONAL EXPERIMENTAL DETAILS

B.1.1 DATA SPLITS AND EVALUATION DETAILS

To clarify the construction of our three experimental settings, we provide detailed descriptions of the
dataset splits. Across all settings, training is conducted in an unpaired manner—i.e., the low-quality
(3T) inputs and high-quality (7T) targets always come from different subjects (or even different
datasets) unless otherwise noted. This ensures that our method does not rely on trivial voxel- or
subject-level correspondences, but instead learns to align distributions across domains.

• Synthetic Data Experiment. We use the 7T NSD dataset as the source of high-quality
(HQ) fMRI. Synthetic low-quality (LQ) data are generated by down-sampling from 164k
fsaverage to 32k fsLR surfaces and injecting Gaussian noise. Subjects 1–6 are used for
training and validation, while subjects 7–8 are held out for testing. During training, en-
hanced fMRI from some subjects are generated with reference to HQ fMRI from randomly
selected other subjects.
During testing, we have: down-sampled fMRI, the generated enhancement fMRI, and the
original ground-truth HQ fMRI. This design provides direct ground-truth for evaluating
SSIM and PSNR. FID is always applicable regardless of ground-truth availability.
Since these sessions are from standard pRF stimuli, we can also run downstream pRF
decoding.

• Cross-Dataset Real Data Experiment. We use the 3T NOD dataset as the LQ source and
the 7T NSD dataset as the HQ target. Training is unpaired: NOD subjects 1–7 serve as
inputs, while all NSD subjects (1–8) serve as targets. NOD subjects 8–9 are held out for
testing. During training, enhanced fMRI from NOD subjects are generated with reference
to HQ fMRI from random NSD subjects.
During testing, we have: real LQ fMRI from NOD, the generated enhancement fMRI, and
real HQ fMRI from NSD for target reference (but no paired ground truth). Thus, only FID
can be computed directly.
Since both datasets are from standard pRF stimuli, we can run downstream pRF decoding
to further assess functional improvements.

• TDM Real Data Experiment. We use the two available subjects (s1, s3) who were scanned
with eccentricity stimuli at both 3T and 7T. Runs 1–3 of the 3T scans are used as input and
runs 1–3 of the 7T scans as targets, while runs 4–6 are reserved for evaluation. During
training, enhanced fMRI from 3T recordings of s1 or s3 are generated with reference to
randomly chosen 7T recordings from random subjects (i.e., when enhance s1, the HQ ref-
erence may be s1 or s3).
During testing, we have: real LQ fMRI, the generated enhancement fMRI, and the original
paired HQ fMRI. This allows direct measurement of enhancement quality using SSIM and
PSNR. FID is also computed as it does not require pairing.
Since the TDM dataset used simplified eccentricity stimuli rather than full pRF stimuli,
downstream pRF decoding cannot be performed.

Taken together, these three complementary experiments provide a solid and comprehensive evalu-
ation. The synthetic setting ensures quantitative ground-truth benchmarking, the cross-dataset real
setting demonstrates generalization to unseen subjects and datasets without paired supervision, and
the TDM setting offers the only available partial pairing for visual fMRI. By combining all three,
our evaluation addresses the lack of large-scale paired data while still validating the robustness,
interpretability, and generality of our approach.
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B.1.2 BASELINE DETAILS

In order to ensure fairness, all baseline models and our proposed Brain Disk Schrödinger Bridge
(BDSB) are trained and tested on the same data split. They also share the same preprocessing of
fMRI BDs for generation, and the same quality assessment pipeline from qPRF Waz et al. (2024)
for downstream evaluation.

Implementation details for each model are provided below:

Cycle-GAN Zhu et al. (2017). The model was trained for 200 epochs using the RMSprop optimizer,
with initial learning rates of 0.5 × 10−4 for the generator and 1 × 10−4 for the discriminator. A
linear decay schedule was applied, reducing the learning rate by a factor of 10 every 100 epochs.
Training used a batch size of 4, with input BDs resized to 256 × 256 and augmented via random
horizontal and vertical flips. The final objective combined the GAN loss, cycle consistency loss, and
identity loss with weights λGAN = 1, λCycle = 10, and λIdt = 5, respectively. The GAN loss was
computed using Mean Squared Error (MSE), while the cycle and identity losses were based on the
L1-norm.

OTT-GAN Zhu et al. (2023). This model adopted the same generator and discriminator architectures
as Cycle-GAN, following the designs in Zhu et al. (2023). In addition to the standard objectives, an
optimal transport (OT) loss was included, with a weighting factor of λOT = 40. The OT loss was
computed using MSE to better align data distributions across different BD surfaces.

OTE-GAN Zhu et al. (2023). Similar to OTT-GAN, the OTE-GAN model employed the same
baseline architecture and training strategy. The primary difference was in the computation of the OT
loss, which was based on the MS-SSIM metric instead of MSE, emphasizing perceptual similarity
rather than pixel-wise accuracy.

SCR-Net Li et al. (2022). The model was trained for 150 epochs using the Adam optimizer, with
an initial learning rate of 2 × 10−4 and β1 = 0.5, followed by an additional 50 epochs during
which the learning rate was linearly decayed to zero. The training batch size was set to 16. All BDs
were resized to 256 × 256 and augmented via random flipping. The generator and discriminator
architectures followed the configurations described in Li et al. (2022).

Fast-DDPM Jiang et al. (2024). The model was trained using 10 diffusion steps—slightly more
than the 5 steps used by BDSB. All input BDs were resized to 256 × 256. Training was conducted
using the Adam optimizer with β1 = 0.9, a learning rate of 2 × 10−5, and no weight decay. The
batch size was set to 16, and the model was trained for 400 epochs. Other hyperparameters and
architectural details followed the default settings in the official implementation Jiang et al. (2024).

B.1.3 LOSS TERM DETAILS

For completeness, we describe in detail the three loss terms used in our BDSB framework, as illus-
trated in Fig. 3 of the main paper. The key idea is that each loss term regularizes the enhancement
process from different perspectives: fidelity to HQ signals, preservation of LQ input content, and
maintenance of structural integrity of the BDs.

• Adversarial Loss (LAdv). This loss is computed as the divergence between the distribution
of predicted BDs with enhanced signals x̂1 and the referencing HQ BD x1. It ensures that
the generated outputs are indistinguishable from real HQ data, enforcing global distribution
alignment. Without this adversarial component, the generator may produce enhancements
that match individual metrics but fail to capture realistic overall signal statistics.

• Generation Loss (LSB). This loss is computed during each generation steps. It ensures
that the generated output distribution matches the statistics of HQ data and previous step,
thereby guiding the model to recover high-quality fMRI patterns. This corresponds to the
Schrödinger Bridge objective in Eq. 3 of the main text.

• NCE Regularization Loss (LRegnce
). This loss is computed between the predicted BD with

enhanced signals x̂1 and the input BD with LQ signals x0, using a contrastive (PatchNCE)
formulation Kim et al. (2023). It constrains the enhancement not to drift too far from
the input distribution, thereby preserving subject-specific responses and preventing mode
collapse.
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• BD-SSIM Loss (LRegbd−ssim
). This is a novel structural regularization term, computed

between the predicted BD with enhanced signals x̂1 and the structural BD x′ (i.e., BD
without fMRI values, simply the mapped ROI surface structure) that encodes cortical ge-
ometry without fMRI signals. Unlike conventional SSIM-based losses (which compare
output to input or to HQ references), BD-SSIM explicitly enforces the generated enhance-
ment to align with the underlying cortical structure of the parameterized brain disk. This
unique formulation ensures that enhanced signals respect anatomical consistency, reducing
distortions observed in baseline models. Our ablation study shows that BD-SSIM substan-
tially improves both signal fidelity (PSNR) and downstream functional decoding accuracy
(R̄2).

The final training objective is the weighted combination shown in Eq. 5. In summary, the adversarial
loss enforces distribution realism, the generation loss ensures fidelity to HQ signals, the NCE regula-
tion loss maintains consistency with LQ inputs, and the BD-SSIM regulation loss uniquely preserves
cortical structure. Together, these complementary terms provide both quantitative improvements and
functional interpretability.

B.1.4 EXPERIMENTAL DETAILS

As stated in the main paper, key components in BDSB—namely, the generator and Markovian dis-
criminators—follow the architectures outlined in Kim et al. (2023); Dong et al. (2024). For the
Schrödinger Bridge diffusion process, we discretize the continuous unit interval [0, 1] into N = 5
time steps. The loss function includes weights λSB = 1, λRegnce

= 0.5, and λRegbd−ssim
= 1, cor-

responding to the Schrödinger Bridge loss, PatchNCE regularization Kim et al. (2023); Dong et al.
(2024), and BD-SSIM regularization, respectively. We also set π = 0.01.

For all three experimental settings, despite differing dataset sizes, all input BDs were resized to
256 × 256, and the batch size was set to 8. Models were trained for 150 epochs using the Adam
optimizer with β1 = 0.5, β2 = 0.999, and an initial learning rate of 1 × 10−4, which decayed
linearly after 75 epochs. Training was conducted on a single NVIDIA GeForce GTX TITAN X, with
total training time approximately 45, 41, and 5 GPU hours for the NSD synthetic, NSD-NOD cross-
dataset, and TDM dataset experiments, respectively.

During testing and generation, the batch size was set to 1. A typical fMRI run of around 300
seconds required less than 2 minutes to generate the corresponding enhanced signal for the entire
ROI, covering approximately 14,000 vertices per brain hemisphere.

B.1.5 PRF TASK DETAILS

Before being fed into the population receptive field (pRF) analysis, each input fMRI time series is de-
trended on a per-stimuli basis. Specifically, the entire pRF experiment consists of separate sessions,
and within each session, a second-order (quadratic) polynomial is fitted and removed from the signal
using least-squares projection. This effectively eliminates low-frequency drifts and scanner-related
trends while preserving task-relevant fluctuations. The result is a set of detrended fMRI signals that
are temporally normalized and well-suited for accurate pRF estimation.

We used the qPRF package Waz et al. (2024) to perform downstream pRF estimation. For a typical
NSD subject undergoing 6 sessions of 300-frame pRF stimuli, or a NOD subject with 8–12 sessions
of 150-frame stimuli, qPRF required approximately 100 seconds to estimate optimal pRF parameters
across the full ROI (about 14,000 vertices per hemisphere).

Thanks to the roughly 1000× speed-up offered by qPRF compared to conventional pRF meth-
ods Kay et al. (2013), we were able to efficiently iterate on our method using downstream task
performance as feedback.

B.2 ADDITIONAL RESULTS

B.2.1 ENHANCED FMRI SIGNAL EVALUATION

Due to space constraints in the main paper, we present additional visualizations of enhanced fMRI
signals here, highlighting both BD and temporal perspectives. These examples include results from
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(a)

(b)

Figure 8: Visualization of original 3T, enhanced, and original 7T fMRI signals on brain disks (BDs)
across selected sessions and sample points from TDM subjects (a) s1 and (b) s3. Although the TDM
dataset contains only eccentricity-based stimuli, it is the only known dataset providing matched
3T and 7T acquisitions for the same subjects. Beyond the synthetic enhancement results shown
for NSD, our pipeline also performs reliably on real-world 3T/7T data without requiring paired
supervision. All fMRI values are rendered as RGB colors based on vertex-level values on the 2D
parameterized disk derived from the 3D fsaverage surface.

the TDM real data and NSD synthetic data experiments, demonstrating the effectiveness and robust-
ness of our proposed pipeline in two distinct settings: enhancing real-world 3T-to-7T fMRI data and
recovering high-quality 7T-like signals from degraded synthetic low-quality inputs.

BD Visualization. As illustrated in Fig. 8, the BD representations of enhanced signals reveal
clear improvements over low-quality (LQ) inputs, closely approximating high-quality (HQ) 7T sig-
nals. Despite the TDM dataset’s limitations—specifically, the use of only eccentricity-based stimuli
(which precludes standard pRF analysis) and its restricted subject pool (only subjects s1 and s3 un-
derwent both 3T and 7T scans)—it remains, to our knowledge, the only publicly available dataset
featuring 3T/7T pairs from the same individuals. Our model demonstrates consistently strong en-
hancement performance on this real-world dataset, comparable to the synthetic experiments on NSD
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Figure 9: Temporal BOLD signal comparisons between the original 7T fMRI and enhanced outputs,
focusing on vertices with high R2 values. The enhanced signals closely track the ground truth, espe-
cially for top-ranking vertices. Minor deviations are observed around troughs and rapid transitions,
but the overall dynamics remain well-preserved. Alignment quality gradually decreases as R2 low-
ers, consistent with reduced visual responsiveness in those regions.

data. These results affirm the pipeline’s generalizability and potential for deployment in practical
and clinical neuroscience scenarios.
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Figure 10: Temporal BOLD signal comparisons between the original 7T fMRI and enhanced out-
puts, focusing on vertices with low R2 values. The enhancement results show reduced alignment
due to minimal visual activation and the dominance of noise in these regions. As R2 increases,
alignment quality improves steadily, indicating the model’s capacity to selectively enhance mean-
ingful task-related components.

Time Series fMRI Visualize. In Fig. 9 and Fig. 10, we present temporal BOLD signal traces from
selected cortical vertices ranked by their R2 values—specifically, the top-1, top-5, top-10, and top-
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100 highest and lowest. These values are derived from the quality of the pRF model fits. The
enhanced fMRI signals show strong temporal alignment with the original high-quality 7T signals,
particularly for vertices with high R2 scores. This indicates the model’s ability to recover biologi-
cally meaningful and visually evoked patterns.

In contrast, vertices with low R2 scores exhibit weak or absent stimulus-driven responses, often
dominated by noise or non-task-related fluctuations. These patterns are inherently harder to model
and predict, which explains the decreased alignment observed in low R2 regions. Nevertheless, our
approach still maintains a coherent temporal structure in the enhanced signals, without introducing
artificial oscillations or phase shifts.

B.2.2 ENHANCED PRF RESULTS

We provide additional pRF mapping results from the unsupervised cross-dataset experiments be-
tween NOD and NSD. The pRF maps derived from both the original low-quality 3T fMRI and
our enhanced fMRI are visualized on the 2D parametric surface and the corresponding 3D cortical
meshes. Results are shown for two training subjects (s1, s2) and one unseen test subject (s9). The
results for another held-out test subject (s8) are presented in the main paper.

Fig. 11 highlights the effectiveness of our proposed pipeline in improving the quality of 3T fMRI sig-
nals. The enhanced outputs yield consistently higher average R2 values, sharper and more anatom-
ically coherent region boundaries, and improved eccentricity topographies. Crucially, the enhanced
signals enable robust pRF estimation even on high-resolution cortical meshes, while faithfully pre-
serving each subject’s individual visual response patterns.

In the absence of ground truth 7T data or pRF solutions for the NOD dataset, our enhanced sig-
nals and the corresponding pRF estimates serve as strong approximations of high-field data. This
demonstrates the potential of our method to provide reliable and clinically useful reconstructions for
subjects who can only undergo low-field scans—a particularly important consideration in real-world
and clinical neuroscience settings.

B.2.3 SIGNIFICANCE TEST

To validate the reliability and statistical robustness of our method, we conduct significance test-
ing based on 5-fold cross-validation experiments on the NSD synthetic experiment (i.e., 5 differ-
ent combinations of 6 subjects for training, and the remaining 2 for testing). For each fold, we
compute the performance metrics including the average pRF confidence R̄2 across the ROI re-
gion and the SSIM score between enhanced fMRI and the original fMRI. The performance met-
rics remain consistent across folds, with our method achieving an average R̄2 of 24.00 ± 2.41 and
SSIM of 0.855± 0.034, compared to the best baseline OTT-GAN Zhu et al. (2023) performance of
18.09± 3.15 and 0.803± 0.020, respectively.

To assess statistical significance, we apply a paired t-test between the fold-wise metrics of our
method and the best baseline OTT-GAN. The resulting p-values are p = 0.004 for the NSD syn-
thetic experiment, indicating that the improvements achieved by our method are statistically signifi-
cant at the 0.01 level. These results confirm that the observed gains are not due to random variation
from choice of subjects, and our enhancement pipeline consistently outperforms existing approaches
across different training strategies.
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(a)

(b)

(c)

Figure 11: Visualization of pRF results from NOD subjects: (a) trained subject s1, (b) trained sub-
ject s2, (c) unseen test subject s9. Each panel shows the original and enhanced pRF maps on both
the 2D parametric surface and 3D cortical mesh. Despite the lack of high-resolution supervision,
the enhanced results exhibit clear retinotopic structures and significantly improved R2 distributions
across ROI regions. Notably, consistent receptive field layouts are preserved, with minor ROI align-
ment variations due to registration and surface label differences (e.g., between fsLR and fsaverage
spaces).

B.3 FURTHER DISCUSSIONS

Can we enhance temporal structure? Our model enhances each fMRI time frame independently,
yet it is trained across the entire sequence of frames from pRF experiments (300 frames for 7T, 150
for 3T). This ensures that consistent spatial features are learned and temporal patterns are implic-
itly preserved. Comparisons between ground truth and enhanced signals Fig. 5 and supplementary
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Fig. 9,10 confirm that stimulus-driven fluctuations are retained. Furthermore, improved pRF R2

scores demonstrate that temporal fidelity is maintained in downstream decoding.

ROI selection and computation cost. We restrict analysis to visual cortex regions—lateral oc-
cipital, cuneus, pericalcarine, and lingual cortices—based on the aparc label file in the fsaverage
surface. This ensures alignment across datasets and minimizes confounds. While this focus matches
the datasets’ emphasis on retinotopy, the pipeline can be extended to other brain regions when ap-
propriate task-driven datasets are available. It is possible to work the pipeline on a larger ROI for
different tasks (such as language related fMRI using other ROI), but expanding to larger ROIs re-
quires a higher-resolution BD, increasing computation and memory requirements. For our current
work focusing on retinotopic mapping, the current ROI and BD resolution fit each other.

Real enhancement or hallucination? A key question is whether enhancement preserves neural re-
sponses rather than hallucinating plausible patterns. Our evaluation with ground-truth data (synthetic
and TDM) demonstrates close alignment between enhanced and true signals. Moreover, receptive
field estimates (Fig. 6) show consistent cortical topologies. These analyses indicate that enhance-
ment preserves meaningful neural patterns while reducing noise.

Mapping distortions. Conformal mapping introduces some spatial distortion. However, because
both source and target BDs are aligned to fsaverage and BD-SSIM regularization is applied, dis-
tortions are minimized and back-projection to cortical vertices remains valid. Our measurements
confirm that distortions are acceptable for reliable fMRI reconstruction.

How’s the improvement in downstream R̄2 scale? It is important to interpret the magnitude of
R2 values in context. With our chosen ROI ( 14k vertices across visual cortex), the average R̄2 is
typically around 20% for raw 3T data and 25% for raw 7T data (When restricting to a more localized
regions, such as V1–V3 ( 1k vertices), the average R̄2 for 7T data can reach 60%). On the current
ROI scale. our enhanced data increase the pRF performance close to 7T level (Tab. 2). Moreover,
it increases the number of vertices exceeding R2 > 70% (Fig. 7a), showing that improvements are
meaningful relative to accepted scales according to retinotopic mapping literature Kay et al. (2013);
Dumoulin & Wandell (2008).
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